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Introduction

Decisions inspire our reflections everyday. They are intrinsically related to a plurality of points of

view and are often characterized by uncertainty, imperfect knowledge or ill-determination. So, it

frequently occurs that decisions are faced in conditions of arbitrariness, incompleteness and impreci-

sion. Decision aiding is the activity that, through the use of some formalized models, helps to obtain

recommendations to the questions posed by a Decision Maker (DM) in a decision process.

A further source of complexity of real decision problems originates from the fact that they can

be affected by many different issues at the same time which can not be neglected. To deal with this

complexity, it seems natural to support the DM by providing integrated approaches which, trying to

remaining intelligible, are able to manage the different features that decision problems can conjointly

present. Since the uncertainty and the ambiguity which characterize decision problems can be treated

by generalizing the deterministic cases, it appear natural to explore methods and procedures that

analyze what happens when certain parameters of the models are not stable. According with this

point of view, through this work we analyze some advantages to adopt in detail two families of meth-

ods which are frequently used to cope with a plurality of instances compatible with the preferences

information provided by a DM. In particular, these methods provide results in terms of proportions

or in terms of relations which are both inferred by considering a whole set of parameters that, in

turn, represents all possible preferences which a DM can own.

The methods which deal with uncertainty and imprecision can be usefully applied also when the

preferences can not be restored by using simple mathematical models. In the last part of this thesis,

we analyze the advantages to adopt a decision support model that merges the capacity to represent

a wide range of preferences together with the utility to support the recommendations in terms of

their robustness.

The thesis is organized as follows. In Chapter 1, we shall recall some basic concepts and notions

of Multiple Criteria Decision Aiding (MCDA, [38]). Chapter 2 contains contributions related to an

extension of the PROMETHEE methods [20], while, in Chapter 3 we investigate some robustness
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concerns for the level dependent Choquet integral [53]. Some concluding remarks are contained in

Chapter 4.
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Chapter 1

Multiple Criteria Decision Aiding: basic

concepts and notions

1.1 Aim of Multiple Criteria Decision Aiding

The Multiple Criteria Decision Aiding (MCDA, for some surveys on MCDA see [14, 38, 65]) is a

decision support methodology and its aim is to provide some instruments which allow to obtain

appropriate recommendations for decision problems in which a plurality of points of view, in general

not all concordant, must be taken into account. Therefore, the multicriteria approach aims to

help a decision maker (DM) in the analysis of a decision problem characterized by a set of eligible

alternatives and a set of criteria which is supposed to satisfy some conditions1.

So, in MCDA, a set of alternatives A = {a, b, c, . . .} is evaluated with respect to a set of criteria

G = {g1, . . . , gn} which should be finite and consistent (see [15, 89]). A criterion is a real-valued

function on the set A of the alternatives, i.e. g : A → I ⊆ R, reflecting a value of each alternative

from a particular point of view, such that, in order to compare any two alternatives a, b ∈ A with

respect to the criterion i, it is sufficient to compare two values (gi(a), gi(b)) which are also called

performances. Without loss of the generality, we can suppose that the greater the evaluation gi(a)

the better the performance of alternative a ∈ A on criterion gi ∈ G.

According with B. Roy [89], one can distinguish the following four decision problems:

• The choice decision problem consists in selecting a small number (as small as possible) of

“good” alternatives in such a way that a single alternative may finally be chosen;

1A set of criteria is consistent if it does not contains criteria which violate the following: exhaustive: if ∀a, b ∈
A, gi(a) is indifferent to gi(b) for all i = 1, . . . , n then a must be indifferent to b; monotonic: if a is strictly preferred to
b and there is an alternative c such that gi(c) is weekly preferred to gi(a) for all i = 1, . . . , n then c must be indifferent
to b.
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• The sorting decision problem consists in assigning each alternative to one of the predefined and

ordered classes;

• The ranking decision problem consists in defining a complete or partial ranking on A; this

ranking is the result of a procedure allowing to put together in equivalence classes alternatives

which can be judged indifferent, and to order these classes.

• The description consists in elaborating an appropriate set of alternatives A, building a con-

sistent family of criteria G and determining, for all or some a ∈ A, their performances on the

considered criteria;

In the rest of this section on one hand, we briefly recall the dominance relation being a fundamental

concept in decision theory and decision analysis, on the other hand, we discuss inference of the

parameters used to model the DM preferences.

Dominance

One of the starting point and main concept in the field of MCDA is the dominance relation. Given

a, b ∈ A we say that a dominates b (aDb) iff gi(a) ≥ gi(b), ∀gi ∈ G with at least one strict inequality.

In other terms, aDb if all the evaluations of a are better or equal to the corresponding evaluations

of b with at least one evaluation of a strictly better than the corresponding evaluation of b.

The strength of the concept of dominance relation lies in its objectivity. This because of its

independence from the subjective importance of each criterion gi ∈ G. Indeed the dominance relation

only depends on the evaluations of alternatives from A on criteria from G and it does not require the

elicitation of any preferences information by the DM(s). In this sense, the dominance can be viewed

as the unanimity of the points of view.

Since sometimes phenomena, quantities or qualities are imprecise, uncertain and, more generally,

poorly understood or ill-determined, instead of the dominance it can be considered the stochastic

dominance. The last one is a generalization of the dominance in the sense that the comparison

between two alternatives is made by using probability distributions instead of single evaluations. We

only remark that its use requires the assumption usually referred as “More is better”(for some details

see [37]).

In general, the alternatives show discordant2 evaluations when they are evaluated w.r.t. different

points of view, so, in a lot of situations the dominance relation does not allow to represent overall

2In the most of the cases one alternatives is preferred to another one w.r.t. a proper subset of all considered criteria
while the opposite direction of preference is showed in the complement of the whole set.
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preferences between all alternatives. This is the main weakness of this concept.

To cope with this problems, practitioners use procedures that, on the basis of some assumptions,

enrich the dominance relation to make comparable as many as alternatives in A taking into account

all the criteria in G. So, it is important to remark that there is always a trade-off between objectivity

and feasibility in MCDA.

Preference parameters

As we already argued, because of the poverty of the (objective) relation of dominance, each method

used to deal with multicriteria decision problems needs some additional information that can be

inferred, with some specific procedure, from the preferences information provided by the DM. The

meaning and the values of the parameters induced from these preference information are closely

linked to the specific definition of the criteria and to the adopted aggregation models [92].

Several methodologies have been proposed to infer the values of these preferential parameters.

Two important strategies can be adopted to elicit this preference information:

• a direct procedure consists in asking the DM to provide exact values of the parameters;

• an indirect procedure consists in asking the DM to provide some preferences from which pa-

rameters compatible with these preferences can be inferred.

In other terms, in the indirect technique the DM provides some preference information on reference

alternatives A∗ ⊆ A in terms of pairwise comparisons, or on considered criteria in terms of comparison

between their importance, allowing also the possibility to express the intensity of these preferences.

Generally, MCDA methods based on indirect preference information and on disaggregation ap-

proaches [68, 35] are considered more interesting because they require a relatively smaller cognitive

effort from the DM than methods based on direct preference information. Moreover, psychologists

confirm that DMs are more confident exercising their decisions than explaining them [78, 95].

1.2 Aggregation operators

In order to cope with one of the four problematics mentioned in the previous Section 1.1, it arises

the necessity to aggregate the evaluations of the alternatives taking into account the preferences of

the DM.

Aggregation is the process of combining several numerical values into a single representative

value. An aggregation function performs this operation and this may be specifically important
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in many problems related to the fusion of many information. In the field of MCDA, aggregation

operators [48] are largely used and they are often chosen relying upon their simplicity. As we will see

in the next paragraphs, unfortunately some features of multicriteria decision problems violate the

assumption on which these procedures are founded.

The value computed by one aggregation function should synthesize all individual points of view

but, on one hand, not all functions are good candidate to be an aggregation function, while, on

the other hand, it is not easy to define a minimal set of properties that should be fulfilled by an

aggregation function.

As a first requirement it can be considered the fact that, if inputs are supposed to lie in the interval

[a, b] ∈ R, the output should also lie in the same interval and this leads to define some boundary

condition, while, a second natural requirement is the non-decreasing monotonicity, meaning that if

some of the input values increase then the representative output value should reflect this increment,

so, at least it should remain constant.

In general, if we assume that each variables of the aggregation function belongs to a common

domain I = [0, 1], which is very often considered in the literature, we have the following:

Definition 1.2.1. An aggregation function in In ⊆ R
n is a function f : In → I that:

• is non-decreasing (in each variable), i.e. for each x,y ∈ In if x ≤ y ⇒ f(x) ≤ f(y);

• fulfills the following boundary conditions:

inf
z∈In

f(z) = inf I, sup
z∈In

f(z) = sup I.

The most intuitive and simple aggregation function is the additive one:

f(g1(a), . . . , gn(a)) =
∑n

i=1
ui(gi(a)), (1.1)

where we are considering n criteria and ui(·) are marginal value functions non-decreasing w.r.t. the

evaluation expressed by their argument.

1.2.1 Additive value functions

Among many possible additive aggregation functions, a large amount of literature is spend on the

study of several means and their properties. Many of these means are applied to describe real decision

problems for their simplicity and immediate understanding by the DM.
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The weighted quasi-arithmetic means, also called quasi-linear means, are (weighted) aggregation

function [48]. In what follow we briefly describe the class of the quasi-linear means that, as general-

ization of the class of the quasi-arithmetic means3, comprise most of the algebraic means of common

use such as the arithmetic mean and the geometric mean.

Definition 1.2.2. Given I ∈ R and f : I → R, a function Ff (·) : In → I is a quasi-linear mean if

∀ x ∈ In:

Ff (x) = f−1
(

∑n

i=1
wif(xi)

)

, (1.2)

where w1, . . . , wn > 0 are real numbers satisfying
∑n

i wi = 1 and f : I → R is a continuous and

strictly monotonic function.

In particular, one example of the quasi-linear mean is the class of weighted root-mean-power

which can be expressed as follows:

F (x) =

[

n
∑

j=1

wj

(

xj

)α

]1/α

, (1.3)

where α ∈ R \ {0} and wi ∈ [0, 1] :
∑n

i=1 wi = 1.

The analytical expressions related to these functions is showed in Table 1.1.

Table 1.1: Weighted root-mean-power

Analytical expression Marginal value functions α Names
n
∑

j=1

wjxj x 1 weighted arithmetic mean

n
∑

j=1

(wjx
2
j)

1/2 x2 2 weighted quadratic mean

n
∑

j=1

(wjx
−1
j )−1 x−1 −1 weighted harmonic mean

n
∏

j=1

x
wj

j log(x) → ∞ weighted geometric mean

Looking from the MCDA perspective, we note that most common preference models are based

on the weighted sum:

f(a,w) =
n
∑

i=1

wigi(a), (1.4)

where, as before, each wi ≥ 0, i = 1, . . . , n and
∑n

i=1 wi = 1.

3Let f : I → R be a continuous and strictly monotonic function. The n-ary quasi-arithmetic means generated by
f is the function Mf : In → I defined as: Mf (x) := f−1

(

1
n

∑n
i=1 f(xi)

)

.
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In this case, the choice of the weights w establishes a trade-off between the performances of the

criteria. Indeed, by using the Eq. (1.4) as preference model, it can be consider the following fact:

f(g1(a), g2(a), w1, w2) = f(g1(a) + 1, g2(a) − x, w1, w2);

⇒

g1(a)w1 + g2(a)w2 = (g1(a) + 1)w1 + (g2(a) − x)w2 ⇒ x =
w1

w2

.4

Moreover, in this case the weights and thus the trade-offs are constant for the whole range of variation

of criteria values and this, as we will see in Chapter 3, cannot always be allowable for every decision

problem.

In general, for all additive aggregation functions, the great advantage of the simplicity is compen-

sated by the fact that their use requires the strong assumption that the criteria must be independent

in the sense of preferences, i.e. they require the assumption of the mutual preference independence

between any subset of considered criteria. In this sense, the set of criteria T ⊆ G is preferentially

independent [105] of G \ T if, for all aT , bT ∈
∏

j∈T

Ij, and for all cG\T , dG\T ∈
∏

j∈G\T

Ij,

(aT , cG\T ) % (bT , cG\T ) ⇔ (aT , dG\T ) % (bT , dG\T )

that is, the preference of (aT , cG\T ) over (bT , cG\T ) does not depend on cG\T . The whole set of criteria

G is said to be mutually preferentially independent if T is preferentially independent of G \ T for

every T ⊆ G.

1.2.2 Non-additive integral

In Section 1.2.1, we argued that to represent the preference of a DM by using an additive function

we must consider the independence between the considered criteria and this means that if there

is a certain degree of interaction between them others aggregation operators must by taken into

account. More specifically, in some multicriteria decision problems it is necessary to consider positive

interaction (synergy) or negative interaction (redundancy) between criteria, where we assume that

two or more criteria are synergic (resp. redundant) when their joint weight is greater (resp. smaller)

than the sum of the weights given to the criteria considered singularly. Therefore, it is natural the

4For example, if w1 = 0.6, w2 = 0.4 this means that the change on criterion g2 able to compensate a change by 1.0
on criterion g1 is x = 1.5.
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interest to consider non-additive weights.

Now, whereas the weighted sum is the discrete form of the Lebesgue integral w.r.t. an additive

measure, to deal with a more general framework we may refer to the Choquet integral [24] which, in

turn, is the same integration [32, 40] w.r.t. a non-additive measure (otherwise called fuzzy measure,

or capacity) expressed as a non-linear continuous aggregation function. So, the main reason to

investigate this type of operators (also called non-additive integrals) is that the notion of capacity

allows to consider a wider range of possibilities respect to the weighted sum and which includes this

last one as a particular case.

Among many types of non-additive integrals, such as Sugeno integral [99] and the Shilkret integral

[94], in the next sections we will focus on the Choquet integral, the bipolar Choquet integral and the

level dependent Choquet integral.

The Choquet integral

The basic scope of the Choquet integral is to represent the importance of the criteria by considering

not only weights λi ≥ 0, ∀gi ∈ G, but also by considering a measure for each pair {gi, gj} ∈ 2G,

a measure for each triple {gi, gj, gk} ∈ 2G and so on until to assign a measure to each subset of

G. Indeed, the Choquet integral is a non-additive integral based on the concept of fuzzy measure,

or capacity [24], being a set function µ : 2G → [0, 1], such that µ(T ) represents the comprehensive

importance of criteria in T for each T ⊆ G, satisfying the following boundary and monotonicity

conditions

1a) µ(∅) = 0, µ(G) = 1 (boundary conditions),

2a) ∀R ⊆ T ⊆ G, µ(R) ≤ µ(T ) (monotonicty condition).

So, given R, T ⊆ G such that R ∩ T = ∅, three cases can occur:

case 1) µ(R ∪ T ) = µ(R)+µ(T ) (additivity),

case 2) µ(R ∪ T ) > µ(R)+µ(T ) (superadditivity),

case 3) µ(R ∪ T ) < µ(R)+µ(T ) (subadditivity).

In case 1), the sets of criteria R and T are not interacting since the importance assigned to the set

of criteria R ∪ T (µ(R ∪ T )) is equal to the sum of the importance assigned to the two subsets of

criteria considered separately (µ(R) + µ(T )); in case 2), the sets of criteria R and T are positively
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interacting since the importance assigned to the set of criteria R ∪ T (µ(R ∪ T )) is greater than the

sum of the importance assigned to the two subsets of criteria considered separately (µ(R) + µ(T )),

while in case 3) the sets of criteria R and T are negatively interacting since the importance assigned

to the set of criteria R ∪ T (µ(R ∪ T )) is lower than the sum of the importance assigned to the two

subsets of criteria considered separately (µ(R) + µ(T )).

Given the capacity µ, the Choquet integral assigns to each alternative a ∈ A the following value:

Ch(a, µ) =
n
∑

i=1

µ (Ai) ·
(

g(i)(a) − g(i−1)(a)
)

, (1.5)

where a = (g1(a), . . . , gn(a)) and (·) stands for a permutation of the indices of criteria such that:

0 = g(0)(a) ≤ g(1)(a) ≤ . . . ≤ g(n) (a) , Ai = {(i), . . . , (n)} .

A meaningful and useful reformulation of the capacity µ and of the Choquet integral can be

obtained by means of the Möbius representation [87] of the capacity µ, which is a function m : 2G → R

defined as follows:

µ(R) =
∑

T⊆R

m(T ). (1.6)

Now, if R is a singleton, i.e. R = {i} with i = 1, 2, . . . , n, then µ({i}) = m({i}) while, if R is a

couple (non-ordered pair) of criteria, i.e. R = {i, j}, then µ({i, j}) = m({i}) + m({j}) + m({i, j})

and so on. Note also that, if |R| = n, then there exists a bijection h : {1, . . . , 2n} ↔ 2R such that it

can be defined in the following way:

∑

T⊆R
m(T ) =

∑2n

i=1
m(h(i)) =

∑2n−1

i=0
m(h(i)). (1.7)

The Möbius representation m(R) can be obtained from µ(R) as follows:

m(R) =
∑

T⊆R

(−1)(|R|−|T |)µ(T ). (1.8)

In terms of the Möbius representation of the capacity µ, properties 1a) and 2a) can be restated as

follows [22]:

1b) m(∅) = 0,
∑

T⊆G

m(T ) = 1,
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2b) ∀ gi ∈ G and ∀R ⊆ G \ {gi} , m ({gi}) +
∑

T⊆R

m(T ) ≥ 0,

while, the Choquet integral may be written as [42]:

Ch(a, µ) =
∑

T⊆G

m(T ) · min
gi∈T

gi (a) . (1.9)

Since the application of the Choquet integral preference model involves the knowledge of 2|G| − 2

parameters (because µ(∅) = 0 and µ(G) = 1), it is advisable using k-additive measures [45]. A fuzzy

measure is k-additive if m(T ) = 0 ∀ T ⊆ G such that |T | > k. In other words, considering k-additive

measures we do not take into account the interactions between more than k criteria. In real world

applications, 2-additive measures are considered. In this case, the Choquet integral can be applied

knowing n +
(

n
2

)

values that is, one value for each criterion gi and one value for each pair of criteria

{gi, gj}. Considering 2-additive measures, properties 1b) and 2b) become

1c) m (∅) = 0,
∑

gi∈G

m ({gi}) +
∑

{gi,gj}⊆G

m ({gi, gj}) = 1,

2c)















m ({gi}) ≥ 0, ∀gi ∈ G,

m ({gi}) +
∑

gj∈T

m ({gi, gj}) ≥ 0, ∀gi ∈ G and ∀ T ⊆ G \ {gi} , T 6= ∅.

Finally we arrive at the Möbius representation of the Choquet integral with a 2-additive measure

for the alternative a

Ch(a, µ) =
∑

gi∈G

m ({gi}) gi (a) +
∑

{gi,gj}⊆G

m ({gi, gj}) min{gi (a) , gj (a)} (1.10)

where g(a) = (g1(a), . . . , gn(a)).

In this context, the importance of criterion gi ∈ G does not depend only on itself, but also on its

contribution to all coalitions of criteria. For this reason we use some indices taken from the game

theory.

The Shapley value [93] is used to represent the importance of criterion gi, i = 1, . . . , n, and it is

given by

ϕ(i, µ) =
∑

T⊆G:i/∈T

|T |!(|G| − |T | − 1)!

|G|!
(µ(T ∪ {i}) − µ(T )) , (1.11)

or,
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ϕ(i, µ) =
∑

T⊆G

(|G| − |T |)!(|T | − 1)!

|G|!
(µ(T ) − µ(T \ {i})) . (1.12)

The main property of this index is that
∑

i∈G

ϕ(i, µ) = µ(G). The Shapley value can be considered a

mean of the values (µ(T ∪{i})−µ(T )) with weights |T |!(|G|−|T |−1)!
|G|!

. Indeed, to prove that |T |!(|G|−|T |−1)!
|G|!

are non-negative and sum to one we note that:

1. |T |!(|G|−|T |−1)!
|G|!

≥ 0, ∀ T ⊆ G, which is trivial.

2. By using the Eq. (1.7) and Eq, (1.12), we also have that:

∑

T⊆G:i∈T

(|G| − |T |)!(|T | − 1)!

|G|!
=

2n−1
∑

i=1

(n− |h(i)|)!(|h(i)| − 1)!

n!
.

Now, since

2n−1
∑

i=1

= 2n−1 = 2n2−1 = 2n − 2n−1 = 2n − 2n−1 + 1 − 1 = 2n − 1 − (2n−1 − 1) =

=
n
∑

i=1

(

n

i

)

−

[(

n−1
∑

i=0

(

n− 1

i

)

)

− 1

]

=
n
∑

i=1

(

n

i

)

−

[(

n−1
∑

i=1

(

n− 1

i

)

)

+ 1 − 1

]

=

=
n
∑

i=1

(

n

i

)

−
n−1
∑

i=1

(

n− 1

i

)

,

where we have considered the fact that
(

n−1
0

)

= 1. Noting that, if k > n then
(

n
k

)

= 0 [49, 3],

we have

n
∑

i=1

(

n

i

)

−
n−1
∑

i=1

(

n− 1

i

)

+0 =
n
∑

i=1

(

n

i

)

−
n−1
∑

i=1

(

n− 1

i

)

+

(

n− 1

n

)

=
n
∑

i=1

(

n

i

)

−
n
∑

i=1

(

n− 1

i

)

=

=
n
∑

i=1

((

n

i

)

−

(

n− 1

i

))

=
n
∑

i=1

(

n− 1

i− 1

)

.

So, we can state the following

2n−1
∑

i=1

(n− |h(i)|)!(|h(i)| − 1)!

n!
=

n
∑

i=1

(

n− 1

|h(i)| − 1

)

(n− |h(i)|)!(|h(i)| − 1)!

n!
=

12



=
n
∑

i=1

(n− 1)!

(|h(i)| − 1)!(n− |h(i)|)!

(n− |h(i)|)!(|h(i)| − 1)!

n!
=

n
∑

i=1

1

n
= 1.

Now, by considering the 2-additive Möbius representation of a capacity µ, the Shapley value can

be expressed as follows:

ϕ (i,m) = m ({i}) +
∑

j∈G\{i}

m ({i, j})

2
. (1.13)

Another index of the importance of a criterion that can be mentioned is the Banzhaf interaction

index [11] which can be computed as follows:

ϕ(i, µ) =
∑

T⊆G:i/∈T

1

2|G|−1
(µ(T ∪ {i}) − µ(T )) . (1.14)

Note that, in this last case all the subsets to which the criterion i can belong are equally weighted5.

Analogously, by considering only couples of criteria, the Murofushi-Soneda index [84] expresses the

importance of the pair {gi, gj} as follow:

ϕ ({i, j} , µ) =
∑

T⊆G:i,j /∈T

|T |!(|G| − |T | − 2)!

(|G| − 1)!
(µ(T ∪ {i, j}) − µ(T ∪ {i}) − µ(T ∪ {j}) + µ(T )) .

(1.15)

In case of the 2-additive Möbius representation of a capacity µ, the Murofushi-Soneda index can be

computed as follows:

ϕ({i, j},m) = m({i, j}). (1.16)

The bipolar Choquet integrals

There are multicriteria decision problems in which the underlying scales on which the alternatives

are assessed can be considered as being bipolar scales. In these cases it exists a neutral point (usually

0) on the evaluation scale associated to each criterion. Above this neutral point lie the evaluations

corresponding to a good performance, while, below that point we have evaluations corresponding

to bad performance. The motivation for this argument is that human decision makers do often

distinguish gains and losses and behave differently according to this distinction. For example, if we

5Note that:
∑

T⊆G:i/∈T

1

2|G|−1
=

2n−1

∑

i=1

1

2n−1
=

1

2n−1
2n−1 = 1.
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consider the maximum speed of a car, the reference neutral level can be 130 km/h, in this case, a

maximum speed over 130 km/h is considered positive, while, a maximum speed under 130 km/h is

considered negative. This has lead to models based on the bipolar Choquet integral, the bipolar

Shilkret integral, bipolar Sugeno integral (for further details see [61]) and other models in decision

under risk or uncertainty on Cumulative Prospect Theory ([102]).

In the bipolar case the importance of each subset of criteria depends on whether these criteria

express a positive or negative evaluation with respect to the neutral point and it also depends

on which criteria express an evaluation of the opposite sign. So in this context, for each action

a ∈ A we consider all possible pairs of sets of criteria (E+) which express positive evaluations, and,

in contrast, the set of criteria (E−) which express negative evaluations, with E+, E− ⊂ G such

that E+ ∩ E− = ∅. Then we assign a weight µ+(E+, E−) to the set of criteria E+ and a weight

µ−(E+, E−) to the set of criteria E−, as a function of the particular pair (E+, E−). The difference

µ(E+, E−) = µ+(E+, E−) − µ−(E+, E−) represents the net balance between weights of criteria in

favor of good evaluations and weights of criteria opposing to them.

Formally, the bipolar Choquet integral is based on a bicapacity [46, 47, 61], being a function

µ̂ : P(G) → [−1, 1], where G = {g1, . . . , gn}
6 is the set of evaluation criteria and

P(G) = {(C,D) : C,D ⊆ G and C ∩D = ∅}, such that:

• µ̂(∅, G) = −1, µ̂(G, ∅) = 1, µ̂(∅, ∅) = 0 (boundary conditions),

• for all (C,D), (E,F ) ∈ P(G), if C ⊆ E and D ⊇ F , then µ̂(C,D) ≤ µ̂(E,F ) (monotonicity

condition).

As we noted, the value µ̂(C,D), with (C,D) ∈ P(G), can be interpreted as the net importance of

criteria from C when criteria from D are opposing to them so that, if µ̂(C,D) > 0 (µ̂(C,D) < 0

or µ̂(C,D) = 0), then criteria in C are more (less or equally) important than those in D. Given a

vector x = (x1, . . . , xn) ∈ R
n and a bicapacity µ̂ on P(G), the bipolar Choquet integral of x with

respect to the bicapacity µ̂ can be defined as

ChB(x, µ̂) =
n
∑

j=p

(

|x(j)| − |x(j−1)|
)

µ̂
({

i ∈ G : xi ≥ |x(j)|
}

,
{

i ∈ G : xi ≤ −|x(j)|
})

(1.17)

where (1), (2), . . . , (n) is a permutation of the indices such that 0 = |x(0)| ≤ |x(1)| ≤ . . . ≤ |x(n)| and

6Note that, as we already mentioned, we shall sometimes write criterion i ∈ G instead of criterion gi ∈ G; that is
we shall denote a criterion by its index.

14



p = min
j∈{1,...,n}:
|x(j)|>0

{j}7; moreover, if x(n) = 0 ⇒ ChB(x, µ̂) = 0.

ChB(x, µ̂) can be interpreted as the weighted mean of x ∈ R
n when the importance of criteria is

represented by the bicapacity µ̂.

In [50, 55] the following decomposition of the bicapacity µ̂ has been proposed

µ̂(C,D) = µ+(C,D) − µ−(C,D), for all (C,D) ∈ P(G) (1.18)

where µ+, µ− : P(G) → [0, 1] are such that:

µ+(G, ∅) = 1 and µ+(∅, B) = 0, ∀B ⊆ G,

µ+(C,D) ≤ µ+(E,D), ∀C ⊆ E ⊆ G,

µ+(C,D) ≥ µ+(C,F ), ∀D ⊆ F ⊆ G,























µ−(∅, G) = 1 and µ−(B, ∅) = 0, ∀B ⊆ G,

µ−(C,D) ≤ µ−(C,F ), ∀D ⊆ F ⊆ G,

µ−(C,D) ≥ µ−(E,D), ∀C ⊆ E ⊆ G.























Given a set of alternatives A = {a1, . . . , am} and a, b ∈ A, µ+(C,D) gives the degree of the importance

of criteria in C in favor of the preference of a over b when criteria in D are opposing to it. Conversely,

µ−(C,D) represents the importance of criteria in D opposing to criteria in C. As a consequence, as

above explained, µ̂(C,D) is a balance of the importance of criteria in C (in favor of the preference)

and criteria in D (opposing to the same preference).

Using the decomposition of the bicapacity µ̂ defined above, the positive and negative bipolar

Choquet integrals of x ∈ R
n can be defined:

ChB+(x, µ̂) =
n
∑

j=p

(

|x(j)| − |x(j−1)|
)

µ+
({

i ∈ G : xi ≥ |x(j)|
}

,
{

i ∈ G : xi ≤ −|x(j)|
})

(1.19)

ChB−(x, µ̂) =
n
∑

j=p

(

|x(j)| − |x(j−1)|
)

µ−
({

i ∈ G : xi ≥ |x(j)|
}

,
{

i ∈ G : xi ≤ −|x(j)|
})

. (1.20)

where p = min
j∈{1,...,n}:
|x(j)|>0

{j}. Supposing that x represents the degree of preference of a over b, ChB+(x, µ̂)

and ChB−(x, µ̂) give, respectively, how much a is comprehensively preferred to b (considering the

reasons in favor of a) and how much b is preferred to a (considering the reasons against a). Conse-

quently, the bipolar Choquet integral of x ∈ R
n is obtained as the difference between the positive

7For example, if x = (−1, 1, 0, 2,−2), then |x(1)| = |x3| = 0; |x(2)| = |x1| = 1; |x(3)| = |x2| = 1; |x(4)| = |x4| = 2;
|x(5)| = |x5| = 2. Therefore, p = 2.
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and the negative bipolar Choquet integrals.

ChB(x, µ̂) = ChB+(x, µ̂) − ChB−(x, µ̂). (1.21)

In the following we consider 2-additive decomposable bicapacities, such that the next decompo-

sition of µ+ and µ−, proposed in [50], holds:

• µ+(C,D) =
∑

j∈C

a+({j}, ∅) +
∑

{j,k}⊆C

a+({j, k}, ∅) +
∑

j∈C, k∈D

a+({j}, {k}),

• µ−(C,D) =
∑

j∈D

a−(∅, {j}) +
∑

{j,k}⊆D

a−(∅, {j, k}) +
∑

j∈C, k∈D

a−({j}, {k}).

a+({j}, ∅) represents the importance of criterion j when it is in favor of the preference; a+({j, k}, ∅)

represents the importance of the pair of criteria {j, k} when they are in favor of the preference;

finally, a+({j}, {k}) represents the antagonistic effect exercised by k over j when j is in favor of

the preference and k is against it. The coefficients a−(∅, {j}), a−(∅, {j, k}) and a−({j}, {k}) can be

interpreted analogously. a−(∅, {j}) represents the importance of criterion j when it is against the

preference; a−(∅, {j, k}) represents the importance of the pair of criteria {j, k} when they are against

the preference; finally, a−({j}, {k}) represents the antagonistic effect exercised by j over k when k

is opposing to the preference and j is in favor of it. Let us observe that a+j|k ≤ 0 and a−j|k ≤ 0 for all

j, k = 1, . . . , n, j 6= k, being representative of the antagonistic effect exercised by k over j in a+j|k and

of j over k in a−j|k.

Denoting by a+j , a+jk and a+j|k the coefficients a+({j}, ∅), a+({j, k}, ∅) and a+({j}, {k}) and by a−j ,

a−jk and a−j|k the coefficients a−(∅, {j}), a−(∅, {j, k}) and a−({j}, {k}), the following conditions have

to be satisfied (see [25]):

• monotonicity:















a+j +
∑

k∈C

a+jk +
∑

k∈D

a+j|k ≥ 0, ∀ j ∈ G, ∀(C ∪ {j}, D) ∈ P(G)

a−j +
∑

k∈D

a−jk +
∑

k∈C

a−k|j ≥ 0, ∀ j ∈ G, ∀(C,D ∪ {j}) ∈ P(G)

• normalization:



















µ+(G, ∅) = 1, i.e.,
∑

j∈G

a+j +
∑

{j,k}⊆G

a+jk = 1

µ−(∅, G) = 1, i.e.,
∑

j∈G

a−j +
∑

{j,k}⊆G

a−jk = 1

Finally, by using the 2-additive decomposition of the bicapacity µ̂ defined above, the positive and

negative bipolar Choquet integrals of x ∈ R
n w.r.t. the bicapacity µ̂ can be redefined as follows [25]:
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ChB+(x, µ̂) =
∑

j∈G, xj>0

a+j xj +
∑

j,k∈G, j 6=k
xj , xk>0

a+jk min{xj, xk} +
∑

j,k∈G, j 6=k
xj>0, xk<0

a+j|k min{xj,−xk} (1.22)

ChB−(x, µ̂) = −
∑

j∈G, xj<0

a−j xj −
∑

j,k∈G, j 6=k
xj , xk<0

a−jk max{xj, xk} −
∑

j,k∈G, j 6=k
xj>0, xk<0

a−j|k max{−xj, xk} (1.23)

ChB(x, µ̂) =
∑

j∈G, xj>0

a+j xj +
∑

j∈G, xj<0

a−j xj +
∑

j,k∈G,

j 6=k, xj ,xk>0

a+jk min{xk, xj}+ (1.24)

+
∑

j,k∈G,

j 6=k, xj ,xk<0

a−jk max{xk, xj} +
∑

j,k∈G,

xj>0, xk<0

a+j|k min{xj,−xk} +
∑

j,k∈G,

xj<0, xk>0

a−j|k max{xj ,−xk} (1.25)

The level dependent Choquet integral

Let us consider a multicriteria decision problem of buying a car by taking into account three criteria:

price, maximum speed and comfort which, for the sake of simplicity, we consider normalized on a

common scale, let us, say to fix the idea, between 0, being the worst evaluation, and 1, being the

best evaluation. Now, it can be argued that:

• above a certain threshold t of price, the maximum speed is preferred to comfort,

• for values of price between t and another threshold s, with s < t, the comfort is preferred to

maximum speed,

• below the threshold s of price, the maximum speed is again preferred to comfort.

It is easy to note how the relations of importance between criteria changes according to the level of

the price. Beyond their justification (which can be not so unreal or unreasonable), these sophisticated

preferences are interesting because it can be showed [53] that they cannot be represented, for example,

by using a bipolar Choquet integral or a Cumulative Prospect Theory functional. The reason is that,

in this case, the capacity depends also on the level of the evaluations. These considerations leads to

consider integration with respect to a capacity which is also function of the level of the evaluation,

as shown by what follows.

A level dependent capacity µL [53] is defined as a function µL : 2G × (α, β) → [0, 1], (α, β) ⊆ R,

such that:

1.a) for all t ∈ (α, β) and E ⊆ B ⊆ G, µL(E, t) ≤ µL(B, t),
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2.a) for all t ∈ (α, β), µL(∅, t) = 0 and µL(G, t) = 1,

3.a) for all t ∈ A ⊆ G, µL(E, t) considered as a function with respect to t is Lebesgue measurable.

The level dependent Choquet integral of x = (x1, . . . , xn) ∈ (α, β)n, (α, β) ⊆ R, w.r.t. the level

dependent capacity µL, can be defined as follows:

ChL(x, µL) =

∫ max{x1,...,xn}

min{x1,...,xn}

µL(E(x, t), t)dt + min{x1, . . . , xn}

where E(x, t) = {i ∈ G : xi ≥ t}.

Taking into account α and β, the level dependent Choquet integral can be formulated as:

ChL(x, µL) =

∫ β

α

µL(E(x, t), t)dt + α,

such that, if the value set of criteria is normalized with α = 0, β = 1 and x ∈ [0, 1]n, we get

ChL(x, µL) =

∫ 1

0

µL(E(x, t), t)dt.

Let us remark that the level dependent Choquet integral can also be written as

ChL(x, µL) =
n
∑

i=2

∫ x(i)

x(i−1)

µL(E(x, t), t)dt + x(1).

where (·) stands for a permutation of the indices of criteria such that:

x(1) ≤ x(2) ≤ . . . ≤ x(i) ≤ . . . ≤ x(n).

The use of the level dependent Choquet integral can have some limitations in real world applica-

tions because it needs a definition of an arbitrary large number of capacities µL(A, t), one for each

level t ∈ (α, β), (α, β) ⊆ R. To overcome this problem in [53] the authors suggest the use of an

interval level dependent capacity which is defined with respect to a unique partition of (α, β) as

follow:

(1) a0, a1, . . . , ap−1, ap ∈ (α, β), p > 0, p ∈ N, such that α = a0 < a1 < . . . < ap−1 < ap = β,

(2) p capacities µ1, . . . , µp on G = {1, . . . , n},

such that, for all E ⊆ G and all t ∈ (α, β), µL(E, t) = µj(E) if t ∈]aj−1, aj[, j = 1, . . . , p.
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When the µL is an interval level dependent capacity, the following theorem [53] allows to calculate

the level dependent Choquet integral ChL as the sum of a finite number of classical Choquet integrals,

more precisely one of them for each interval (aj−1, aj), j = 1, . . . , p.

Theorem 1.2.1. If µL is the interval level dependent capacity on G relative to the breakpoints

a0, a1, . . . , ap−1, ap ∈ [α, β] and to the capacities µ1, . . . , µp, then for each x ∈ (α, β)n

ChL(x, µL) =

p
∑

j=1

Ch(xj, µj),

where xj ∈ (0, aj − aj−1)
n is the vector with elements xj

i , i = 1, . . . , n, defined as follows:

xj
i =



















0 if xi < aj−1;

xi − aj−1 if aj−1 ≤ xi < aj;

aj − aj−1 if xi ≥ aj.

So, by using the vector with elements xj
i , i = 1, . . . , n, the level dependent Choquet integral can

be formulated as:

ChL(x, µL) =

p
∑

j=1

n
∑

i=1

µj(Ni)
(

xj
(i) − xj

(i−1)

)

,

where (·) stands for a permutation of the indices of criteria such that xj
(1) ≤ xj

(2) ≤ . . . ≤ xj
(i) ≤ . . . ≤

xj
(n) and Ni = {(i), . . . , (n)} for i = 1, . . . , n.

To make manageable the previous results, from now on, we will refer to the interval level dependent

capacity assuming that only one partition of (α, β) is chosen. This also means that we fix the number

p of the levels which define the level dependent capacity.

Given a level dependent capacity µL, the Möbius transform of a level dependent capacity, is a

function mL : 2G × (α, β) → R, such that, for all E ⊆ G and all t ∈ (α, β) we have that

µL(E, t) =
∑

B⊆E

mL(B, t). (1.26)

From the previous Eq. 1.26, we obtain that, for all A ⊆ G and all t ∈ (α, β),

mL(E, t) =
∑

B⊆E

(−1)|E|−|B|µL(B, t). (1.27)

In terms of Möbius representation, properties 1.a and 2.a are, respectively, restated as:
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1.b) mL(∅, t) = 0,
∑

E⊆G

mL(E, t) = 1, ∀t ∈ (α, β),

2.b) ∀ i ∈ G and ∀ E ⊆ G \ {i} , mL({i}, t) +
∑

E⊆G

mL(E ∪ {i} , t) ≥ 0, ∀t ∈ (α, β).

Now, recalling the Theorem 1.2.1 in [53], for all x ∈ (α, β)n and for all level dependent capacities µL

the following holds:

ChL(x, µL) =
∑

B⊆G

∫ mini∈B{xi}

mini∈G{xi}

mL(B, t)dt + min
i∈G

{xi}. (1.28)

In case of the interval level dependent capacity µL relative to the breakpoints a0, a1, . . . , ap−1, ap ∈

(α, β) and to the capacities µ1, . . . , µp, it is necessary to determine p(2n− 2) values corresponding to

the values µj(E), j = 1, ..., p, for all E ⊆ G with the exception of µj(∅) and µj(G). Now, to be used

in real applications, one need a more manageable interval level dependent capacity which can be

obtained by restricting the analysis to the more significant parameters. So, considering an interval

level dependent capacity where a0, a1, . . . , ap are the elements decomposing the interval (α, β) and

mr the Möbius representation of the capacities µr, r = 1, . . . , p, the level dependent Choquet integral

can be written in the following way

ChL(x, µL) =

p
∑

r=1

Ch(xr, µr) =

p
∑

r=1

(

∑

E⊆G

mr(E) min
i∈E

xr
i

)

, (1.29)

where the xr
i , i = 1, . . . , n have been defined above.

A Möbius representation mL of an interval level dependent capacity µL is k-order additive (1 ≤

k ≤ n − 1) if, for all t ∈ [α, β], mL(E, t) = 0 for all E ⊆ G such that |E| > k. In particular, the

value that a 2-additive interval level dependent capacity µL assigns to a set E ⊆ G can be expressed

in terms of the Möbius representation as follows:

µL(E, t) =
∑

i∈E

mL ({i} , t) +
∑

{i,j}⊆E

mL ({i, j} , t) , ∀E ⊆ G.

With regard to 2-additive capacities, properties 1.b and 2.b have, respectively, the following

expressions:

1.c) mL (∅, t) = 0,
∑

i∈G

mL ({i} , t) +
∑

{i,j}⊆G

mL ({i, j} , t) = 1,
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1.c)















mL ({i} , t) ≥ 0, ∀i ∈ G,

mL ({i} , t) +
∑

j∈E

mL ({i, j} , t) ≥ 0, ∀i ∈ G and ∀ E ⊆ G \ {i} , E 6= ∅.

It is a straightforward consequence of the definitions of k-additive capacities and k-additive in-

terval level dependent capacities that, given:

• an interval level dependent capacity µL over 2G × (α, β), with a0, . . . , ap being a partition of

the interval (α, β) and µr the corresponding capacities, r = 1, . . . , p,

• mL and mr as Möbius representations of µL and µr, respectively,

then µL is a k-additive interval level dependent capacity if and only if all µr are k-additive, r =

1, . . . , p.

Remembering the Eq. 1.28, we get that, if the level dependent capacity µL is k-additive, then for

all x ∈ [α, β]n

ChL(x, µL) =
∑

E⊂G:|E|≤k

∫ mini∈E{xi}

mini∈G{xi}

mL(E, t)dt + min
i∈G

{xi}. (1.30)

In terms of 2-additive level dependent capacity, the level dependent Choquet integral may be also

reformulated as follows:

ChL(x, µL) =

p
∑

t=1

(

∑

i∈G

mL({i}, t)xj
i +

∑

i,y∈G

mL({i, y}, t) min{xj
i , x

j
y}

)

. (1.31)

Likewise to the indices we have remarked in Section 1.2.2, also in case of level dependent capacity

it can be evaluated the importance and the interaction between criteria. So, given a generalized

capacity µL, i ∈ G and t ∈ (α, β), the Shapley index of importance of the i-th criterion φ(µL, i, t),

can be calculated as

φ(i, µL, t) =
∑

E⊆G\{i}

|E|!(|G| − |E| − 1)!

|G|!

(

µL(E ∪ {i}, t) − µL(E, t)
)

. (1.32)

Considering the Möbius transformation mL of µL, the importance index φ(µL, i, t) can be rewritten

as

φ(i, µL, t) =
∑

E⊆G\{i}

mL(E ∪ {i}, t)

|E ∪ {i}|
. (1.33)
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Finally, if µL is an interval level dependent capacity written in terms of Möbius transformation, then

φ(i, µL, t) =
∑

E⊆G\{i}

mr(E ∪ {i})

|E ∪ {i}|
, ∀t ∈ [ar−1, ar[. (1.34)

From Eqs. (1.32)-(1.34), the comprehensive importance of criterion i can be obtained as [53]:

φ(i, µL) =

∫ β

α
φ(µL, i, t) dt

β − α
.

In particular, for an interval level dependent capacity, the importance of criterion i on the interval

[ar−1, ar[ is given by

φ(i, µL, [ar−1, ar[) =
∑

E⊆G\{i}

mr(E ∪ {i})

|E ∪ {i}|
·
ar − ar−1

β − α

and, consequently,

φ(i, µL) =

p
∑

r=1





∑

E⊆G\{i}

mr(E ∪ {i})

|E ∪ {i}|
·
ar − ar−1

β − α



 .

For a 2-additive interval level dependent capacity, the previous index can be rewritten as

φ(i, µL) =

p
∑

r=1







mr({i}) +
∑

j∈G\{i}

mr({i, j})

2



 ·
ar − ar−1

β − α



 . (1.35)

Given a level dependent capacity µL, E ⊆ G and t ∈ [α, β], the interaction index, which measures

the interaction of criteria from E with respect to the generalized capacity µL at the level t ∈ (α, β),

can be calculated as

I(E, µL, t) =
∑

B⊆G\E

|B|!(|G| − |B| − |E|)!

|G|!

(

∑

C⊆E

(−1)E\CµL(C ∪ B, t)

)

. (1.36)

The interaction index I(E, µL, t) can be represented in terms of Möbius transform as follows:

I(E, µL, t) =
∑

B⊆G\E

mL(E ∪B, t)

|B| + 1
. (1.37)

If µL is an interval level dependent capacity, then

I(E, µL, t) =
∑

B⊆G\E

mr(E ∪B)

|B| + 1
, ∀t ∈ [ar−1, ar[. (1.38)
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As a consequence, the importance of criteria in E for the interval [ar−1, ar[ is

I(E, µL, [ar−1, ar[) =
∑

B⊆G\E

mr(E ∪ B)

|B| + 1
·
ar − ar−1

β − α

and, therefore,

I(E, µL) =

p
∑

r=1





∑

B⊆G\E

mr(E ∪ B)

|B| + 1
·
ar − ar−1

β − α



 . (1.39)

If E = {i, j} and µL is a 2-additive interval level dependent capacity, then Eq. (1.39) can be

rewritten as

I({i, j}, µL) =

p
∑

r=1

(

mr({i, j}) ·
ar − ar−1

β − α

)

. (1.40)

1.3 Reference approaches

What is usually called preference aggregation model is a well-defined model which produces results

allowing comparison of any pair of potential alternatives, in crisp or fuzzy terms, which reflects the

relations of preference, indifference, or incomparability.

The three main families of preference aggregation models are:

• Multiple Attribute Utility Theory (MAUT) [72]: the main hypothesis in the utility theory is

that there exists a function U(·) mapped into reals, called utility function, which associates

to each alternative a value (real number) that represents its degree of “goodness”. So, the

number assigned to a ∈ A is independent from the evaluations of the other alternatives. It

leads us to define a complete preorder on A and it does not allow any incomparability among

the alternatives.

• Decision Rule Approach [54, 56, 57]: in this approach the DM’s preferences are represented by

a set of decision rules (“if..., then...”), which are expressed in a natural language and are easily

understandable by the DM. Decision rule model is the most general of all three.

• Outranking methods [51, 88, 89]: first developed in France in the late sixties by B. Roy, they

are based on a preference relation, usually called an outranking relation, which is a binary

relation R on the set of alternatives A, such that aRb means that alternative a is at least as

good as alternative b and it holds if a majority of the criteria supports this assertion and the
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opposition of the other criteria is not too strong. This outranking relation is neither complete

(it is possible that not(aRb) and not(bRa)) nor transitive (it is possible that aRb and bRc

but not(aRc)). The two most known families of outranking methods are ELECTRE [91] and

PROMETHEE [18, 19, 20].

We conclude this paragraph by briefly summarizing the main features of ELECTRE methods,

while, in Section 1.3.1 we show the PROMETHEE methods a little more in detail because we will

deal with them it in Chapter 2.

A glimpse of ELECTRE methods

ELECTRE methods build one (or several) binary outranking relations which is based on two principal

concepts:

1. the concordance verify if for an outranking aRb to be validated, a certain majority of criteria

is in favor of this assertion;

2. the non-discordance test verifies that none of the criteria in the minority is so strongly in favor

of action b against action a that is no more possible to conclude that aRb.

These two conditions must be both verified for validating the assertion aRb.

In the ELECTRE methods the relative importance wi attached to each criterion reflects its voting

power when it contributes to the majority which is in favor of an outranking relation. Note that these

parameters cannot be interpreted in terms of substitution rates as in the weighted sum preference

model (see Section 1.2.1).

1.3.1 PROMETHEE methods

PROMETHEE [20] is a family of MCDA methods developed to deal with ranking, choice and sorting

problems (see [13] for a survey of PROMETHEE methods). In order to apply the PROMETHEE

methods, one has to define for each criterion gj ∈ G a preference function pj(a, b) expressing, for each

couple of alternatives (a, b) ∈ A×A, the degree of preference of a over b on criterion gj. Six different

value functions have been proposed in [20]. Here we shall recall the V-shape function Pj(a, b) being

the most used in practice,

Pj(a, b) =



















0 if dj(a, b) ≤ qj,

dj(a,b)−qj
pj−qj

if qj < dj(a, b) < pj,

1 if dj(a, b) ≥ pj

(1.41)
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where dj(a, b) = gj(a) − gj(b), and qj, pj are the indifference and preference thresholds for criterion

gj, respectively. Given the positive weights of n criteria (w1, . . . , wn) such that
n
∑

j=1

wj = 1, the

comprehensive preference of a over b is given by π(a, b) =
n
∑

j=1

Pj(a, b)wj, while the positive, negative

and net flows of a ∈ A are consequently computed as follows:

φ+(a) =
1

m− 1

∑

b∈A\{a}

π(a, b), φ−(a) =
1

m− 1

∑

b∈A\{a}

π(b, a), φ(a) = φ+(a) − φ−(a),

with m being the cardinality fo the set A of feasible alternatives. φ+(a) represents how much, in

average, a is preferred to the other alternatives in A; φ−(a) represents how much, in average, the

other alternatives in A are preferred to a, while φ(a) represents the comprehensive value of a. On one

hand, PROMETHEE I provides a partial preorder on A building a preference (P I), an indifference

(II) and an incomparability (RI) relations. In particular, aP Ib if φ+(a) ≥ φ+(b), φ−(a) ≤ φ−(b)

and at least one of the two inequalities is strict; aIIb if φ+(a) = φ+(b) and φ−(a) = φ−(b); aRIb

otherwise. On the other hand, PROMETHEE II provides a complete ranking on A by comparing

the alternatives with respect to their net flow. More in detail, it defines a preference P II and an

indifference III relations stating that aP IIb iff φ(a) > φ(b), while aIIIb iff φ(a) = φ(b).

In the following, we briefly recall the main characteristics of some others PROMETHEE methods.

PROMETHEE III

PROMETHEE III [19] defines a complete interval order by associating to each action a ∈ A an

interval [xa, ya] which is given by







xa = φ(a) − ασa,

ya = φ(a) + ασa;
(39)

where:

• φ(a) =
1

m

∑

x∈A

[π(a, x) − π(x, a)],

• σ2
a =

1

m

∑

x∈A

[

π(a, x) − π(x, a) − φ(a)
]2
,
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For α > 0 this method takes into account the variability of the net flows. The complete interval

order (P III , IIII) is defined as follows:

aP IIIb (a is preferred to b) iff xa > yb;

aIIIIb (a is indifferent to b) iff xa ≤ yb and xb ≤ ya.

PROMETHEE IV

PROMETHEE IV [19] handles multicriteria decision problems with a continuous infinity of alterna-

tives. Therefore denoting by Xj ⊆ R the set of values that can be assumed by criterion gj ∈ G, it is

assumed that there exists a distribution ρ on X = X1× . . . Xn such that, for all x ∈ X, ρ(x) ≥ 0 and
∫

X
ρ(x)dx = 1. In this context the positive and the negative flows for each alternative a are defined

as follows:

φ+(a) =

∫

X

π(a,x)ρ(x)dx (40)

φ−(a) =

∫

X

π(x, a)ρ(x)dx (41)

PROMETHEE V

PROMETHEE V [16] deals with problems in which alternatives have to be grouped in clusters or

segments. After defining different clusters of alternatives C1, . . . , Ck, . . . , CR, and after computing

the net flow of each alternative a ∈ A, the following 0-1 problem has to be solved

max
∑

a∈A

xaφ(a),

∑

a∈A

αaxa ≥ [≤,=]β, [BeCl]

∑

a∈Ck

γa,kxa ≥ [≤,=]δk, [WiCl],

(44)

where xa ∈ {0, 1} for all a ∈ A, while αa, γa,k ∈ R are coefficients attached to the single alternatives.

Inequalities [BeCl] are used to include constraints between the different clusters (for example, a

maximum number of alternatives that should be selected), while inequalities [WiCl] are used to

include constraints within the same cluster (for example, the maximum investment in a particular

region cannot be greater than a certain threshold δk). Of course, the chosen alternatives are those

for which xa = 1 after solving the 0-1 program.
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PROMETHEE VI

In PROMETHEE VI [17], the DM does not provide exact values for the weights of criteria but

intervals of possible values:

w = (w1, . . . , wn) : w−
j ≤ wj ≤ w+

j , for all j = 1, . . . , n.

Then, all allowable weight vectors are considered and projected on a specific graphic representation

of the multicriteria decision problem called GAIA plane [79] (for the detail see the following Section

2.2.2) in order to distinguish between hard and soft problems.

1.4 Robustness of the recommendations

In every model, the values assigned to the required parameters reflect in some sense the preferences

expressed by the DM and they directly influence the recommendations obtained according to the

procedure followed. So, it can be useful to verify which conclusions could be considered stable with

respect to some perturbations of the values that can be assigned to that parameters or, at least, with

respect to a subset of value clearly identified. Conclusions which satisfy this property are defined

robust and the whole procedure to verify the stability of the results is called robustness analysis [90].

The robustness analysis takes into account a different point of view with respect to the sensitivity

analysis. Indeed, the first one considers simultaneous variations of all parameters together, while,

the last one is focused on the variation of only one parameter each time by leaving fixed the others

(ceteris paribus analysis). Clearly, one of the two analysis does not exclude the other.

In the following two sections we remark two approaches which account for robustness concerns.

One is based on the ordinal regression [35, 68] of the preference information and another which can

be considered a volume based approach [104].

1.4.1 Robust Ordinal Regression

Usually, from among many sets of parameters of a preference model representing the preference

information given by the DM, only one specific set is selected and used to work out a recommendation.

In general, more than one set of parameters compatible with the preferences provided by the DM

exists. Clearly, each of them provides the same results on the reference alternatives but they can

differ w.r.t. the recommendations on the other alternatives that do not belong to the reference set
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A∗.

For example, let us consider two alternatives a, b ∈ A∗ for which the DM is able to state that a∗ is

preferred to b∗. Then, all compatible models will be concordant with the preference of a over b but,

considering other two alternatives c, d ∈ A \ A∗ on which the DM did not provide any information,

it is possible that for some compatible models, c is preferred to d, while for other compatible models,

d is preferred to c. For this reason, the choice of only one among the many compatible models is,

in some sense, arbitrary. From this information the parameters of a decision model can be induced

by using a methodology called ordinal regression [58]. The ordinal regression paradigm which has

been applied within the approaches using a value functin [21, 67, 68, 86, 98], and those using an

outranking relation [82, 83].

Robust Ordinal Regression (ROR) [27] methods takes into account simultaneously all models

compatible with the preferences information provided by the DM. The results of the ROR are given

in terms of necessary and possible consequences of applying all the compatible preference models on

the considered set of alternatives. More precisely, the couple (a, b) belongs to the necessary preference

relation, denoted a %N b, iff a is at least as good as b for all compatible models, while the couple

(a, b) belongs to the possible preference relation, denoted a %P b, iff a is at least as good as b for at

least one model compatible.

ROR has been already applied to value functions in [28, 59, 60, 71], to the Choquet integral

preference model in [6] and to the outranking methods in [29, 52, 71].

Non Additive Robust Ordinal Regression (NAROR)

The NAROR [6] belongs to the family of ROR methods and, as any ROR method, it is based on the

indirect preference information.

In general, the parameters of the decision model can be inferred by some preference information

supplied by the DM in the following form:

• possibly incomplete binary preference relation %∗ on an improper subset of alternatives A∗ ⊆ A

and/or a possibly incomplete preference relation one on an improper subset G∗ ⊆ G of criteria,

• the assignment of positive or negative interactions between criteria, and the comparison of their

strenght.

Such inputs of the analysis at hand induce some restrictions on the parameters θ ∈ Θ of the function

U(a, θ) chosen to evaluate the alternatives, defining a set of parameters P , consistent with the
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provided preferences information, defined as follow

P := {θ ∈ Θ | U(a, θ) ≥ U(b, θ) iff a %∗ b, ∀a, b ∈ A∗}.

Since the aim is to extend the relation %∗ to all A, as output, the NAROR builds two very informative

preference relations, one necessary preference relation %N and one possible preference relation %P ,

which are returned to DM in the following terms:

a %N b iff U(a, θ) ≥ U(b, θ) for all θ ∈ P,

a %P b iff U(a, θ) ≥ U(b, θ) for at least one θ ∈ P.

1.4.2 Stochastic Multicriteria Acceptability Analysis

Stochastic Multicriteria Acceptability Analysis (SMAA [75]) is a family of MCDA methods which

take into account uncertainty or imprecision on the evaluations and preference model parameters. In

this section we describe SMAA-2 [76], since our proposed methodology also regards ranking problems.

In SMAA methods, once chosen a value function, for example the linear U(a,w) =
∑n

i=1wigi(a),

where w ∈ W = {(w1, . . . , wn) ∈ R
n : wi ≥ 0 and

∑n
i=1 wi = 1} and a = (g1(a), . . . , gn(a)), the

indirect preference information is composed of two probability distributions, fχ and fW , defined on

the evaluation space χ and on the weight space W , respectively. Defining the rank function rank(·)

as

rank(a, ξ,w) = 1 +
∑

x∈A\{a}

ρ (U(ξx,w) > U(ξa,w)) ,

(where ρ(false) = 0 and ρ(true) = 1) that, for all x ∈ A, ξ ∈ χ and w ∈ W gives the rank position

of alternative a, SMAA-2 computes the set of weights of criteria for which alternative a assumes

rank r = 1, 2, . . . , n, as follows:

W r(a, ξ) = {w ∈ W : rank(a, ξ,w) = r} .

The following further indices are computed in SMAA-2:

• The rank acceptability index :

bra =

∫

ξ∈χ

fχ(ξ)

∫

w∈W r(a,ξ)

fW (w) dw dξ; (1.42)
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that measures the variety of different parameters compatible with the DM’s preference infor-

mation giving to the alternative a the rank r. Clearly, the best alternatives are those having

rank acceptability index greater than zero for the first positions and rank acceptability index

close to zero for the lower positions and it is within the range [0, 1].

• The central weight vector :

wc
d =

1

b1d

∫

ξ∈χ

fχ(ξ)

∫

w∈W 1(d,ξ)

fW (w)w dw dξ; (1.43)

describes in terms of a representative weight vectors the preferences of a typical DM that make

alternative d the most preferred;

• The pairwise winning index :

pde =

∫

w∈W

fW (w)

∫

ξ∈χ:u(ξd,w)>u(ξe,w)

fχ(ξ)dξ dw. (1.44)

considers the frequency with which an alternative d is weakly preferred to an alternative e in

the space of the preference parameters and it is within the range [0, 1].

From a computational point of view, the multidimensional integrals defining the considered indices

are estimated by using the Monte Carlo method.

The following is an example of situation in which SMAA methodology can help the DM.

Example 1.4.1. Let us consider three alternatives A = {a1, a2, a3} and three criteria G = {g1, g2, g3}.

The evaluation matrix is showed in Table 1.2.

Table 1.2: The evaluation table computed for the example at hand

ai g1(·) g2(·) g3(·)

a1 6 8 7
a2 10 6 5
a3 8 4 9

The three alternatives share the same arithmetic mean and it is easy to show that their rank

strictly depends on the choice of the weights. For example if we choose the three different vectors of

weights below

w1 = (w1
1, w

1
2, w

1
3) = (0, 5; 0, 25; 0, 25);
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w2 = (w2
1, w

2
2, w

2
3) = (0, 25; 0, 5; 0, 25);

w3 = (w3
1, w

3
2, w

3
3) = (0, 25; 0, 25; 0, 5);

we get that the utilities of the alternatives at hand and, consequently, their rankings are the following:

U(a1, w
1) = 6, 75; U(a2, w

1) = 7, 75; U(a3, w
1) = 7, 25 ⇒ a2 ≻ a3 ≻ a1;

U(a1, w
2) = 7, 25; U(a2, w

2) = 6, 75; U(a3, w
2) = 6, 25 ⇒ a1 ≻ a2 ≻ a3;

U(a1, w
3) = 7, 00; U(a2, w

3) = 6, 50; U(a3, w
3) = 7, 50 ⇒ a3 ≻ a1 ≻ a2.

By using the SMAA methodology, after that we sampled a certain number of vectors of weights

and, consequently, we obtained the rankings of the alternatives for each sampled vector, we can

compute the rank acceptability indices and the pairwise winning indices to evaluated the goodness

of all considered alternatives with respect to the problem at hand.

The SMAA for the Choquet integral preference model

Assuming as preference model the Choquet integral, in the computation of the indices in Eqs. (1.42)

and (1.44) we have to consider two probability distributions fM(µ) and fχ(ξ) on M and χ, respec-

tively, where

M = {µ : 2G → [0, 1] : µ(∅) = 0, µ(G) = 1, and µ(R) ≤ µ(T ) for all R ⊆ T ⊆ G}

is the set of admissible capacities and χ ⊆ R
m×n is the evaluation space, that is the set of all the

performance matrices χ = [gi(a), gi ∈ G, a ∈ A]. For each µ ∈ M and for each ξ ∈ χ, a complete

ranking of the alternatives at hand can be computed. SMAA-2 introduces a ranking function relative

to the alternative a,

rank(a, ξ, w) = 1 +
∑

x∈A\{a}

ρ (Ch (ξx, µ) > Ch (ξa, µ)) , (1.45)
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where ρ(false) = 0, ρ(true) = 1 and ξa = (ξa1, . . . , ξan) ∈ R
1×n is the vector of the performances of

alternative a ∈ A. Consequently, since the position filled by an alternative depends on the capacity

µ, for each alternative a ∈ A, for each performance matrix ξ ∈ χ and for each rank r = 1, . . . ,m,

SMAA-2 computes the set of capacities for which alternative a assumes rank r:

Mr
a(ξ) = {µ ∈ M : rank(a, ξ, w) = r} . (1.46)

1.5 Introductive example

Sport provides a natural setting for interesting decision making problems and the first applications

of the Operation Research tools on this issue have occurred since the 50’s [41, 80, 107]. Even

if the greatest part of contributions in literature are related to the scheduling of different sport

championships (for a survey of scheduling in sports see [73]), many proposals regarding the application

of MCDA to sport can be found as well. In [97], the authors apply the MACBETH method [10]

to rank the performances of Brazilian athletes in 2008 Olympic Games; in [33] the AHP method is

applied to compare cricket bowlers in the Indian premier league, while [30] use the TOPSIS method

[64] to evaluate the performances of basketball players of the Lithuanian league; [85] measures the

accuracy of PROMETHEE [20], SMART [36] and a centroid method [12] in describing the abilities

of baseball teams in the American major league. Finally, [66] proposes several models to aggregate

the results obtained by the athletes in the 10 decathlon events analyzing, at the same time, the

aggregated results obtained by the PROMETHEE II method.

In the following, we propose to apply the SMAA-Choquet method [5] to evaluate the performances

of different sailboats in sailing regattas. This method is taken into account, instead of other possible

methods, mainly because it permits to deal with interactions between criteria, expressed in different

scales, also considering robustness concerns. More precisely:

• through the use of the Choquet integral, it permits to handle positive and negative interactions

between criteria,

• through the construction of a common scale for the evaluations on the considered criteria, it

permits to aggregate criteria of heterogeneous nature,

• through the consideration of a plurality of preference parameters for the Choquet integral (com-

mon scales and sets of non-additive weights called capacities), it permits to handle robustness

concerns in multicriteria aggregation.
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In general, sailboats of different design (shape, size, etc.) compete in worldwide regattas. Ob-

viously, the design of the sailboats strongly influences their performances, so that comparing them

taking into account the time necessary to complete the course is not fair. Indeed, for example, long

sailboats have an advantage over short ones in case of strong wind, while short sailboats are favored

in case of low wind. The scoring options used to rank the participants to the regattas, assign a

“corrected time” to each sailboat taking into account the time spent to complete the race and the

specific design of each sailboat. Nevertheless, the way in which the scoring options compute this

corrected time are based on different assumptions and, consequently, the complete ranking of the

participants varies with respect to the considered scoring option.

Here, we propose to aggregate the corrected times computed by the different scoring options to

assign a single comprehensive corrected time to each sailboat taking into account the good charac-

teristics of each scoring option. To this aim, we can restate this problem as an MCDA problem, by

considering the sailboats as alternatives, the different scoring options as the evaluation criteria on

which the different alternatives have to be evaluated and, consequently, the corrected time assigned

to each sailboat by the considered scoring option as the evaluation of the alternative on the criterion

at hand. Since the corrected time values computed by the scoring options are not expressed on the

same scale and some type of interaction can be observed among the scoring options, we shall evaluate

the comprehensive performance of the different sailboats by using the SMAA-Choquet method.

Sailboats handicapping rules: the ORC

Longer sailboats are inherently faster than shorter ones, and so, in the interest of fairness, since the

1820s in the sailboat races, the larger sailboat started to be imprecisely handicapped. Unfortunately,

the results showed to have many problems with the allowance system. Modern rating systems are

based on a precise analysis of very specific physical parameters (such as: length, sail area, sail

material, etc.) and this analysis is done in a unique way, differently from the calculation of the

corrected time on which the final ranking of the sailboats depends. The most prevalent handicap

rating systems today are the ORC, the Offshore Racing Rule (ORR)8, the IRC 9 and the Performance

Handicap Racing Fleet (PHRF)10.

The ORC is an international body for the sport of competitive sailing and it is responsible for

fixing and maintaining the rating and classification standards used to define offshore, sailboat racing

handicap categories. In the ORC handicap system, the final ranking can be established by using

8http://offshoreracingrule.org/
9https://www.rorcrating.com/

10http://www.ussailing.org/racing/offshore-big
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a certain number of scoring options but, usually, none of them is universally accepted or always

adopted. This disagreement exists because each of these scoring options takes into account different

conditions of the race and, therefore, it is meaningful according to some aspects of the race such as

course distance, wind direction, wind strength, etc. In order to make comparable the performances

of the different sailboats, each of these scoring options transforms the real time spent by a sailboat to

finish the race in another corrected time, taking into account also the different physical characteristics

of the sailboat.

The ORC gives a certificate to each sailboat providing the parameters necessary to compute the

corrected time in each of the considered scoring options. For any of the simple scoring options,

parameters are given for the offshore (coastal/long distance) and for the inshore (windward/leeward)

races. In the ORC, there are four main scoring options through which it is possible to build the

final ranking and these are the Time on Distance (ToD), the Time on Time (ToT), the Performance

Line (PL), and the Triple Number (ToT:low, Medium, Hight). Moreover, in our application, we

shall take into account also another scoring option, the General Purpose Handicap method, being

a scoring method universally recognized in this sector. The selection of the scoring option usually

depends on the size of the sailboats, type and level of the fleet, type of the race and local racing

conditions. Moreover, the choice of the scoring option is at the discretion of National Authorities or

local event organizers. Figure 1.1 shows an extract of a sailboat’s ORC certificate where we can find

the parameters necessary to compute the corrected time, while Table 1.3 shows the formulas used to

obtain the corrected time in each of the five scoring options. The term Distance appearing in the

formulas in Table 1.3 is the distance between the start and the end points of the course expressed in

miles.

Table 1.3: Formulas for Corrected Times through ORC simple scoring option

Scoring option Formula

T ime on Distance Elapsed Time - (ToD × Distance)
T ime on T ime Elapsed Time × ToT

Performance Line Elapsed Time × PLT - PLD × Distance
Triple Number Elapsed Time × ToT (Low, Medium, High)
General Purpouse Handicap Elapsed Time - (GPH × Distance)

Example 1.5.1. Let us consider the certificate shown in Figure 1.1 and the five scoring options

described in Table 1.3 supposing that the time (expressed in seconds) necessary to the sailboat for

11http://www.orc.org/rules/ORC%20Rating%20Systems%202015.pdf
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Figure 1.1: Example of an ORC certificate11

concluding the offshore course is t and the covered distance is d, then the corrected time in the five

scoring options is computed as follows:

• Time on Distance: t− 604.4d,

• Time on Time: t× 0.9928,

• Performance Line: t× 0.83 − 91.6 × d,

• Triple Number: t×c. The parameter c for which the elapsed time has to be multiplied is chosen

in the end of the course from the authorities or organizers depending on the speed of the wind.

If the speed of the wind is Low, then t has to be multiplied by c = 0.9354, if it is Medium, by

c = 1.2329 and, if it is High, by c = 1.3949,

• General Purpose Handicap: t− 621.1d.

Now, let us show how the application of the different scoring options affects the final ranking of

the alternatives. Let us consider three sailboats (XP-ACT, PROFILO, MAYDA) whose parameters

necessary to compute the corrected time are shown in Table 1.4.

Using each of the five scoring options, we computed the corrected time for the three sailboats shown

in Table 1.5.
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Table 1.4: Parameters necessary for the computation of the corrected time for the five considered
scoring options; t is expressed in seconds

Sailboat / Paramaters / Real Time ToD ToT PLT PLD TN: Low; Medium; High GPH t

XP-ACT 542.50 1.11 0.972 116.70 1.0593; 1.3851; 1.5609 624.70 76,873
PROFILO 605.80 0.99 0.881 124.30 0.9503; 1.2368; 1.3952 615.20 84,321
MAYDA 592.80 1.01 0.882 114.40 0.9629; 1.2638; 1.4246 598.50 83,188

Table 1.5: Corrected time of the three sailboats with respect to the five scoring options; the considered
distance is d = 82.4 miles, while t is expressed in seconds

Sailboat / Scoring Option ToD ToT PL TN GPH

XP-ACT 32,171 85,014 65,104 102,633 31,504
PROFILO 34,403 83,520 64,044 100,688 33,629
MAYDA 34,341 84,195 63,945 101,248 33,872

Analyzing the values of the corrected time, it is possible to compute the relative ranking of the

three sailboats for each scoring option as shown in Table 1.6.

Table 1.6: Ranking of the three sailboats with respect to the five scoring options

Sailboat / Scoring Option ToD ToT PL TN GPH

XP-ACT 1st 3rd 3rd 3rd 1st

PROFILO 3rd 1st 2nd 1st 2nd

MAYDA 2nd 2nd 1st 2nd 3rd

As one can see, each of the three sailboats can fill the first position, depending on the considered

scoring option. Moreover, we can also underline that:

• XP-ACT fills the first position in two of the considered scoring options, while in the remaining

three, it is in the third position,

• PROFILO fills the first position in two of the considered scoring options, the second position

in other two scoring options and the third position in the remaining one,

• MAYDA fills the first and the third position for one score option only, while it is in the second

position for the other three score options.

SMAA approach applied to the ORC simple scoring

In what follow we apply some MCDA methods combined with the SMAA approach to the “53rd Syra-

cuse - Malta” regatta12 which length is 82.4 miles. At this end, we shall consider 13 sailboats partic-

ipating to the regatta that will be the considered alternatives, while the 5 scoring options will be the

12Official website of the Siracusa-Malta regatta: http://www.rmyc.org/races/archive/?id=115&page=4
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evaluation criteria. In the following, we shall denote the five scoring options by gToD, gToT , gPL, gTN

and gGPH and, consequently, the set of criteria will be denoted by G = {ToD, ToT, PL, TN,GPH}.

The corrected time computed by the five considered scoring options will be the evaluations of the

alternatives (the different sailboats) with respect to the considered criteria and they are provided in

Table 1.7.

Table 1.7: Table of the evaluations of the different sailboats expressed in seconds for each simple
scoring option. For the sake of simplicity, with respect to Triple Number scoring option, we averaged
the three evaluations with respect to Low, Medium and High wind speed

Scoring Option gToD gToT gPL gTN gGPH

a1 OTTOVOLANTE 23,530 73,144 54,225 88,191 22,549
a2 JUNO OILTANKING 25,193 76,546 57,768 92,471 24,773
a3 WOLVERINE 26,744 74,856 55,853 89,827 25,533
a4 NAUTILUS QQ7 26,518 77,374 57,958 93,400 25,760
a5 UNICA 30,135 81,139 61,187 97,610 29,047
a6 ARTIE RTFX 30,194 81,358 62,087 98,029 29,683
a7 RICOMINCIO DA TRE 30,954 78,812 59,338 94,642 29,859
a8 DREAMER TECH 31,212 87,667 64,689 105,588 30,339
a9 XP-ACT 32,171 85,014 65,104 102,633 31,504
a10 SQUALO BIANCO 33,599 82,026 61,998 98,540 32,495
a11 EMILE GALLE’ 33,672 83,070 63,999 100,020 32,815
a12 PROFILO 34,403 83,520 64,044 100,688 33,629
a13 MAYDA 34,341 84,195 63,945 101,248 33,872

The SMAA-PROMETHEE II method: the weighted sum is often referred as compensatory

operator by meaning that a decrease in one evaluation of an action w.r.t. a certain criterion can be

compensated, i.e. balanced, by the improvement of its evaluation with respect to one (or more) differ-

ent criteria among those considered. In other words, low scores on one criterion may be compensated

by high scores on another one. The concept of compensation is based on the intensity of preference

expressed by each criterion in the sense that the global comparison between two alternatives depends

on how much one action is preferred to the other compared to each criterion considered rather than

compared to which criteria is preferred.

Instead, the basic idea of a non-compensatory aggregation procedure is that only ordinal infor-

mation on individual criteria is taken into account. According with [39], an aggregation procedure

in non-compensatory if ∀a, b, c, d ∈ A we have that

{gj ∈ G : aPjb} ⊆ {gj ∈ G : cPjd} , {gj ∈ G : bPja} ⊇ {gj ∈ G : dPjc} ⇒ (aPb ⇒ cPd) ,
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where cPjd is a preference relation of c over d w.r.t. criterion j while, cPd is the preference relation

of c over d considered as comprehensive.

In order to use a locally non-compensatory approach, we implement the PROMETHEE II method

supported by the SMAA method.

Let us start from the following reformulation of the PROMETHEE net flow:

φ(a) = φ+(a) − φ−(a) =
1

m− 1

∑n

j=1

∑

x∈A
[Pj(a, x) − Pj(x, a)] =

=
∑n

j=1

1

m− 1

∑

x∈A
[Pj(a, x) − Pj(x, a)] , (1.47)

where, if φj(a) =
∑

x∈A [Pj(a, x) − Pj(x, a)] is the single criterion net flow [20], then

φ(a) =
∑n

j=1
φj(a)wj. (1.48)

So, the Eq. (1.48) clearly shows how the final rank is directly influenced by the choice of the weight

of each criterion.

Now, we can apply SMAA-2 in order to explore the weight space, describing for example:

• the preferences (weight vector) that make an alternative the most preferred one,

• the preferences that would give a certain rank to a specific alternative,

• the preferences that make an alternative preferred to another one.

These results are presented in the form of the typical indices of SMAA. In particular, the rank

acceptability indices are showed in Table 1.8 and the pairwise winning indices are showed in Table

1.9.

Table 1.8: The table of the rank acceptability indices

Sailboat b1k b2k b3k b4k b5k b6k b7k b8k b9k b10k b11k b12k b13k
a1 OTTOVOLANTE 100 0 0 0 0 0 0 0 0 0 0 0 0
a2 JUNO OILTANKING 0 46,91 53,09 0 0 0 0 0 0 0 0 0 0
a3 WOLVERINE 0 53,09 44,79 2,12 0 0 0 0 0 0 0 0 0
a4 NAUTILUS QQ7 0 0 2,12 97,88 0 0 0 0 0 0 0 0 0
a5 UNICA 0 0 0 0 59,41 40,59 0 0 0 0 0 0 0
a6 ARTIE RTFX 0 0 0 0 0 9,08 89,82 1,1 0 0 0 0 0
a7 RICOMINCIO DA TRE 0 0 0 0 40,59 50,33 9,08 0 0 0 0 0 0
a8 DREAMER TECH 0 0 0 0 0 0 0 7,68 20,89 20,41 9,7 17,53 23,79
a9 XP-ACT 0 0 0 0 0 0 0 0 2,09 21,66 31,29 26,76 18,2
a10 SQUALO BIANCO 0 0 0 0 0 0 1,1 91,22 5,59 2,09 0 0 0
a11 EMILE GALLE’ 0 0 0 0 0 0 0 0 69,73 11,65 18,62 0 0
a12 PROFILO 0 0 0 0 0 0 0 0 0 25,79 16,72 30,94 26,55
a13 MAYDA 0 0 0 0 0 0 0 0 1,7 18,4 23,67 24,77 31,46

In particular we observe that OTTOVOLANTE is the best alternative and it is ranked first.

Instead, for the last position we can consider the sailboats PROFILO and MAYDA but on the other
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Table 1.9: Table of the pairwise winning indices

Sailboat Sailboat a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13

a1 OTTOVOLANTE 0 100 100 100 100 100 100 100 100 100 100 100 100
a2 JUNO OILTANKING 0 0 46,91 100 100 100 100 100 100 100 100 100 100
a3 WOLVERINE 0 53,09 0 97,88 100 100 100 100 100 100 100 100 100
a4 NAUTILUS QQ7 0 0 2,12 0 100 100 100 100 100 100 100 100 100
a5 UNICA 0 0 0 0 0 100 59,41 100 100 100 100 100 100
a6 ARTIE RTFX 0 0 0 0 0 0 9,08 100 100 98,9 100 100 100
a7 RICOMINCIO DA TRE 0 0 0 0 40,59 90,92 0 100 100 100 100 100 100
a8 DREAMER TECH 0 0 0 0 0 0 0 0 67,66 7,68 28,57 58,14 58,07
a9 XP-ACT 0 0 0 0 0 0 0 32,34 0 2,09 18,61 53,72 55,92
a10 SQUALO BIANCO 0 0 0 0 0 1,1 0 92,32 97,91 0 100 100 100
a11 EMILE GALLE’ 0 0 0 0 0 0 0 71,43 81,39 0 0 100 98,29
a12 PROFILO 0 0 0 0 0 0 0 41,86 46,28 0 0 0 53,61
a13 MAYDA 0 0 0 0 0 0 0 41,93 44,08 0 1,71 46,39 0

side, looking at the pairwise winning index we can say that PROFILO is preferred to MAYDA in the

53,61% of the times so the worst alternative is MAYDA. Looking at the second best alternative we

have to chose between JUNO OILTANKING (46.91%) and WOLVERINE (53,09%). Again, looking

at the pairwise winning index we can observe that WOLVERINE is preferred to JUNO OILTANKING

in the 53,09% of the times.

The SMAA-Choquet method: the application of the Choquet integral preference model re-

quires, on one hand, that the evaluations of the alternatives on the considered criteria are given on

the same scale and, on the other hand, that a capacity µ is given.

Regarding the first point, in order to build a scale common to all the evaluations of the alternatives,

in [5] an heuristic, that we shall briefly recall in the following, has been proposed.

For each criterion gi ∈ G, α different values x1, . . . , xα are uniformly sampled in the interval [0,1],

where α is the number of different evaluations got on criterion gj by the alternatives in A, that is

|{x ∈ R : gi(ak) = x, ak ∈ A}| = α. Then, after ordering the α real numbers in an increasing way,

that is xi(1) < xi(2) < . . . < xi(α), one has to assign the value xi(h), h = 1, . . . , α, to the alternative(s)

having the h-th evaluation in an increasing way with respect to the preferences of the DM on criterion

gi. For example, let us consider five alternatives evaluated on criterion gi as shown in the first line

of Table 1.10.

Table 1.10: An example of the scale construction

Criterion/Alternative a1 a2 a3 a4 a5

gi 3 5 3 4 6
Constructed value 0.1270 0.9058 0.1270 0.8147 0.9134

After sampling five different real numbers in [0, 1] such as, x1 = 0.8147, x2 = 0.9058, x3 = 0.1270,

x4 = 0.9134 and x5 = 0.9134 and after ordering them in an increasing way, xi(1) = 0.1270 <
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xi(2) = 0.1270 < xi(3) = 0.8147 < xi(4) = 0.9058 < xi(5) = 0.9134, these values are assigned to the

alternatives a1, . . . , a5 as shown in the second line of Table 1.10. Applying the same procedure for

each of the n criteria, a common scale to the evaluations of the alternatives on the considered criteria

is built.

Regarding the second point, in order to get a capacity µ necessary for the application of the

Choquet integral preference model, the DM has to provide a direct or an indirect preference in-

formation. In the direct case, the DM has to provide a value for each subset of criteria T ⊆ G

(µ(T )) representing the importance of the set of criteria T . Since the DM, in general, is not able

to provide this information, the indirect preference information is more used in practice [68]. In the

indirect case, the DM has to provide some preferences in terms of comparisons between alternatives

(for example, ah is preferred to ak or ah and ak are indifferent) or comparison between importance

of criteria and interaction between criteria (for example, gi is more important than gj or criteria gi

and gj are positively interacting) from which a capacity compatible with these preferences can be in-

ferred. After that these preferences are translated to constraints, the space of the 2-additive Möbius

representations of capacities µ compatible with the preferences provided by the DM is defined by the

following set of constraints,

ϕ({gi}) ≥ ϕ({gj}) + ε, if criterion i is more important than criterion j, with i, j ∈ G,

ϕ({gi, gj}) ≥ ε, if criteria i and j are positively interacting, with i, j ∈ G,

ϕ({gi, gj}) ≤ −ε, if criteria i and j are negatively interacting, with i, j ∈ G,


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Ch(a, µ) ≥ Ch(b, µ) + ε, if a is preferred to b

Ch(a, µ) = Ch(b, µ), if a is indifferent to b
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m ({gi, gj}) = 1,
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where ε is an auxiliary variable used to convert the strict inequalities into weak inequalities. For

example, the constraint ϕ({gi}) > ϕ({gj}), translating the preference of criterion gi over criterion

gj, is converted into the weak constraint ϕ({gi}) ≥ ϕ({gj}) + ε. If EDM is feasible and ε∗ > 0, where

ε∗ = max ε subject to EDM , then there exists at least one capacity compatible with the preferences

provided by the DM.

Considering the two aspects simultaneously, many common scales can be built by using the
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proposed heuristic and many capacities compatible with the preferences provided by the DM can

be inferred. For this reason, the SMAA-Choquet method proposes to take into account at the same

time a plurality of common scales and a plurality of compatible capacities by means of an iterative

procedure. At each iteration, a common scale is built by using the procedure described above and,

therefore, the existence of a capacity compatible with the preferences provided by the DM has to be

checked by solving the previous LP problem.

We have to distinguish the case in which the DM is able to provide preference information in terms

of comparisons between alternatives (EA 6= ∅) from the case in which (s)he is not able to do it

(EA = ∅), since the sampling procedure depends on it:

• In the first case, since constraints translating the preferences of the DM on the considered

alternatives are dependent on the evaluations of the same alternatives on the considered criteria,

that are replaced by the values obtained in the common scale, the set of constraints EDM will

vary depending on the built common scale. Consequently, it is possible that for a certain

common scale no capacity compatible with the preferences provided by the DM there exists.

If there exists a compatible capacity, then it is stored. The procedure of building the common

scale ends when a satisfying number of scales, for example 10,000, and the corresponding 10,000

capacities compatible with the preferences provided by the DM have been stored.

• In the second case, the set of constraints EDM will be independent on the built common scale.

Consequently, the procedure used to build the common scale and the procedure used to sample

a capacity compatible with the preferences provided by the DM are independent. Therefore,

10,000 common scales are built by using the suggested heuristic, while 10,000 compatible ca-

pacities can be sampled by using the Hit-And-Run method [96, 101] since the set of compatible

capacities defined by the constraints in EDM is convex.

In both cases, 10,000 pairs (scale, capacity) have been stored and for each of them the Choquet

integral of the alternatives at hand and their ranking can be obtained. After computing the cor-

responding 10,000 rankings of the alternatives, the rank acceptability indices and pairwise winning

indices described in Section 1.4.2 can be computed. More details on the SMAA-Choquet method

can be found in [5].

To apply the SMAA-Choquet method to this particular problem, the preference information was

collected by a DM being an expert on the Syracuse-Malta regatta. We asked him to provide us

some preference information of the nature shown in Section 1.5. On one hand he was confident

enough in providing preference information on the considered criteria, while he was not sure in
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the comparisons between the alternatives at hand since he did not know very well their design

characteristics. Consequently, EA = ∅. In the following, we shall give in detail the statements

provided by the expert:

• Information in terms of importance of criteria:

1. the Performance Line is considered the most important scoring option since it gives the

best approximation13 of the time necessary to each sailboat to complete the race. This

preference is translated to the constraints ϕ({gPL}) > ϕ({gi}) for all i ∈ G \ {PL};

2. the Time on Distance and the Time on Time scoring options are the most adopted in

long and short races, respectively. In a comparison between the two criteria, the DM

thinks that they have the same importance. This piece of information is translated to the

constraint ϕ({gToD}) = ϕ({gToT});

3. as previously observed, the corrected time computed by the Triple Number scoring option

depends only on the speed of the wind that in a long race, such as the Syracuse - Malta is,

cannot be assumed as constant, while it does not consider the length of the course of the

race. Since, instead, the corrected time computed by the Time on Distance scoring option

depends on the covered distance, the DM considers the Time on Distance scoring option

more important than the Triple Number one. The related constraint is ϕ({gToD}) >

ϕ({gTN});

4. a DM can argue that the General Purpouse Handicap scoring option gives less information

on the race with respect to the others and, therefore, we can add the following constraints:

ϕ({gGPH}) < ϕ({gi}) for all i ∈ G \ {GPH}.

• Information in terms of interaction between criteria:

1. since, as already stated above, the Time on Distance scoring option and the Time on

Time scoring option take into account different aspects of the considered race, a sailboat

presenting good values of the corrected time for both scoring options will be particularly

appreciated. Therefore the two criteria gToD and gToT present a positive interaction. The

constraint translating this piece of preference information is ϕ({gToD, gToT}) > 0;

2. the formulas used in the Time on Distance and in the General Purpouse Handicap scoring

options differ only in the coefficients used to compute the corrected time. For this reason,

13The Performance Line is a linearization of the Performance Curve which is a function that, given the wind speed,
gives back the speed of the sailboat.
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the two criteria can be considered as negatively interacting because, in general, a good

performance on one of the two criteria can be expected when there is a good performance

on the other criterion. The constraint translating this piece of preference information is

ϕ({gToD, gGPH}) < 0;

3. for the same reasons expressed in the previous item, the Time on Time scoring option and

the Triple Number one present a negative interaction. The constraint ϕ({gToT , gTN}) < 0

is used to translate this piece of preference information;

4. the Performance Line scoring option takes into account aspects already considered both

in the Time on Distance and Time on Time scoring options. Consequently, the DM thinks

that the two pairs of criteria {gPL, gToD} and {gPL, gToT} are negatively interacting. The

constraints ϕ({gToD, gPL}) < 0 and ϕ({gToT , gPL}) < 0 are therefore used to translate this

piece of preference information.

Summing up, the set of constraints translating the preferences of the DM is the following:

ϕ({gPL}) ≥ ϕ({gToD}) + ε,

ϕ({gToD}) = ϕ({gToT}),

ϕ({gToT}) ≥ ϕ({gTN}) + ε,

ϕ({gTN}) ≥ ϕ({gGPH}) + ε,

ϕ(gToT , gPL) ≤ −ε,

ϕ({gToD, gToT}) ≥ ε,

ϕ({gToD, gGPH}) ≤ −ε,

ϕ({gToT , gTN}) ≤ −ε,

ϕ({gToD, gPL}) ≤ −ε.
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Based on the preference information provided by the DM, and observing that she did not provide

any preference in terms of comparisons between alternatives, we apply the SMAA-Choquet method

by sampling 10,000 pairs (common scale, capacity) computing for each of them the Choquet integral

of the 13 alternatives14. Consequently, the rank acceptability indices and the pairwise winning indices

described in Section 1.4.2 have been computed and reported in Tables 1.11 and 1.12, respectively.

Looking at Table 1.11 one can see that, apart from OTTOVOLANTE that is the best among

the considered sailboats in each case, each sailboat can fill different positions depending on the built

common scale and on the sampled capacity compatible with the preferences of the DM. For example,

14From the computational point of view, the method has been implemented in Matlab environment and executed
on a computer with an Intel Core 2 Quad 2.0 GHz and 4 Gb of RAM.
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Table 1.11: Rank Acceptability Indices of the considered sailboats expressed in percentage

Sailboat b1k b2k b3k b4k b5k b6k b7k b8k b9k b10k b11k b12k b13k
a1 OTTOVOLANTE 100 0 0 0 0 0 0 0 0 0 0 0 0
a2 JUNO OILTANKING 0 39.64 60.36 0 0 0 0 0 0 0 0 0 0
a3 WOLVERINE 0 60.36 38.94 0.70 0 0 0 0 0 0 0 0 0
a4 NAUTILUS QQ7 0 0 0.70 99.30 0 0 0 0 0 0 0 0 0
a5 UNICA 0 0 0 0 48.66 51.34 0 0 0 0 0 0 0
a6 ARTIE RTFX 0 0 0 0 0 1.17 97.53 1.30 0 0 0 0 0
a7 RICOMINCIO DA TRE 0 0 0 0 51.34 47.49 1.17 0 0 0 0 0 0
a8 DREAMER TECH 0 0 0 0 0 0 0 0 2.95 17.98 25.95 32.04 21.08
a9 XP-ACT 0 0 0 0 0 0 0 0 1.29 11.06 20.58 28.73 38.34
a10 SQUALO BIANCO 0 0 0 0 0 0 1.30 98.7 0 0 0 0 0

a11 EMILE GALLÉ 0 0 0 0 0 0 0 0 89.39 8.99 1.43 0.19 0
a12 PROFILO 0 0 0 0 0 0 0 0 0 12.51 31.91 22.68 32.90
a13 MAYDA 0 0 0 0 0 0 0 0 6.37 49.46 20.13 16.36 7.68

Table 1.12: Pairwise Winning Indices for each pair of alternatives expressed in percentage

Sailboat a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13

a1 OTTOVOLANTE 0 100 100 100 100 100 100 100 100 100 100 100 100
a2 JUNO OILTANKING 0 0 39.64 100 100 100 100 100 100 100 100 100 100
a3 WOLVERINE 0 60.36 0 99.3 100 100 100 100 100 100 100 100 100
a4 NAUTILUS QQ7 0 0 0.70 0 100 100 100 100 100 100 100 100 100
a5 UNICA 0 0 0 0 0 100 48.66 100 100 100 100 100 100
a6 ARTIE RTFX 0 0 0 0 0 0 1.17 100 100 98.70 100 100 100
a7 RICOMINCIO DA TRE 0 0 0 0 51.34 98.83 0 100 100 100 100 100 100
a8 DREAMER TECH 0 0 0 0 0 0 0 0 62.92 0 3.58 52.94 30.24
a9 XP-ACT 0 0 0 0 0 0 0 37.08 0 0 2.18 44.78 24.19
a10 SQUALO BIANCO 0 0 0 0 0 1.30 0 100 100 0 100 100 100

a11 EMILE GALLÉ 0 0 0 0 0 0 0 96.42 97.82 0 0 100 93.34
a12 PROFILO 0 0 0 0 0 0 0 47.06 55.22 0 0 0 21.75
a13 MAYDA 0 0 0 0 0 0 0 69.76 75.81 0 6.66 78.25 0

JUNO OILTANKING can fill the second and the third positions with a frequency of the 39.64% and

60.36%, respectively. WOLVERINE is the sailboat filling the second position more frequently since

b23 = 60.36%, NAUTILUS QQ7 is almost always in the fourth position (b44 = 99.3%) while one among

UNICA and RICOMINCIO DA TRE is the fifth among the considered sailboats since b55 = 48.66%

and b57 = 51.34%. Looking at the last positions in the ranking, one can observe that the worst is one

between DREAMER TECH, XP-ACT, PROFILO and MAYDA. Indeed, only these four sailboats

can fill the last position in the ranking and, moreover, their best possible rank position is the 9th.

Analogously, looking at Table 1.12 one can observe that MAYDA is the best among the ones that

can fill the last position since it is preferred to the other three with a frequency at least equal to the

69.76%; PROFILO is preferred with a frequency greater than the 50% only to XP-ACT (p(a12,9) =

55.22%) while DREAMER TECH is preferred to XP-ACT and PROFILO with a frequency of the

62.92% and 52.94%. The worst among the four considered sailboats appears to be XP-ACT since

the other three sailboats are preferred to it with a frequency at least equal to the 55.22%.

Since the DM is interested in getting a unique ranking of the alternatives at hand, we need to

consider only one among the built common scales and only one among the capacities compatible

with the preferences provided by the DM. As explained in section 1.5, to each built common scale
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Sk corresponds a value ε∗k obtained by solving the corresponding LP problem. Therefore, among the

built common scales, we consider the most discriminant one, that is the common scale SDM such

that ε∗DM = max
k

ε∗k. The most discriminant common scale is shown in Table 1.13.

Table 1.13: Most discriminant built common scale

Sailboat / Criterion ToD ToT PL TN GPH

OTTOVOLANTE 0.9016 0.8564 0.9218 0.9102 0.9028
JUNO OILTANKING 0.8089 0.6022 0.5966 0.7698 0.5542
WOLVERINE 0.6412 0.7925 0.6205 0.7961 0.5457
NAUTILUS QQ7 0.7864 0.5979 0.5555 0.7647 0.5422
UNICA 0.6393 0.2760 0.2098 0.6315 0.4841
ARTIE RTFX 0.5703 0.1967 0.1719 0.4595 0.4436
RICOMINCIO DA TRE 0.5583 0.3777 0.5085 0.7245 0.3698
DREAMER TECH 0.4457 0.0479 0.0540 0.0367 0.3545
XP-ACT 0.4260 0.0557 0.0055 0.0523 0.2145
SQUALO BIANCO 0.3793 0.1898 0.2017 0.2828 0.1668
EMILE GALLE’ 0.3322 0.1217 0.1646 0.2346 0.1560
PROFILO 0.0285 0.0658 0.1158 0.1788 0.1367
MAYDA 0.1405 0.0641 0.1672 0.1736 0.0001

At the same time, among the capacities compatible with the preferences provided by the DM, we

shall consider their barycenter that is their average component by component (see Table 1.14).

Table 1.14: The Möbius representation of the barycenter of the capacities compatible with the
preferences provided by the DM

m(gToD) m(gToT ) m(gPL) m(gTN) m(gGPH) m(gToD, gToT ) m(gToD, gPL) m(gToD, gGPH) m(gToT , gPL) m(gToT , gTN) m(gPL, gTN)
0.2626 0.2803 0.3836 0.2034 0.1290 0.078 -0.0963 0.0093 -0.0645 -0.0952 0.0017

By using the common scale and the Möbius representation of the barycenter of the compatible

capacities shown in Tables 1.13 and 1.14, we can compute the Choquet integral of the 13 sailboats

obtaining, therefore, their ranking shown in Table 1.15.

One can observe that the recommendations obtained by the rank acceptability indices shown in

Table 1.11 are almost confirmed. Indeed, the first nine positions are filled by the sailboats presenting

the highest rank acceptability index for that position (for example WOLVERINE is second with a

frequency of the 60.36% while EMILE GALLÉ fills the ninth position with a frequency equal to

the 89.39%). The last four positions (from the 10th to the 13th) are filled by DREAMER TECH,

XP-ACT, MAYDA and PROFILO being the four sailboats presenting the highest rank acceptability

indices for these positions.
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Table 1.15: Ranking of the sailboats considerig the most discriminat scale and the Möbius represen-
tation of the barycenter of the compatible capacities

Position Sailboat

1st OTTOVOLANTE
2nd WOLVERINE
3rd JUNO OILTANKING
4th NAUTILUS QQ7
5th RICOMINCIO DA TRE
6th UNICA
7th ARTIE RTFX
8th SQUALO BIANCO

9th EMILE GALLÉ
10th DREAMER TECH
11th XP-ACT
12th MAYDA
13th PROFILO
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Chapter 2

GAIA-SMAA-PROMETHEE for a

hierarchy of interacting criteria

Real world decision problems generally present the following features: criteria structured in a hier-

archical way, positive, negative and antagonist effects between considered criteria and uncertainty

or imprecision in the definition of the parameters as well as on the evaluations of the alternatives at

hand. Many multiple criteria methods have been proposed to deal with these complex aspects of a

decision problem and among them some of the most appreciated are PROMETHEE methods.

Basic PROMETHEE methods make the following assumptions:

• there is a finite set of criteria: in general the considered criteria are not too numerous; moreover,

it is also supposed that the criteria are not hierarchically organized;

• the criteria are not interacting: there are no phenomena of mutual strengthening or weakening,

or antagonistic effects between them;

• it is possible to define precisely the parameters of the decision model: weights of considered

criteria are supposed to be clearly fixed.

Real world decision problems are very often violating the above assumptions, so that the applica-

tion of PROMETHEE methods in these cases is affected by a simplified reformulation which neglects

several aspects that can be indeed quite salient for the definition of the final recommendation. For ex-

ample, in risk-return evaluation of industrial companies, it is quite natural to cope with the following

situations:

• taking into account economic indices such as:
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– debt ratio, current ratio and quick ratio defining solvency and liquidity aspects,

– return on equity, return on investment and gross profit ratio defining the profitability

aspects,

– interest expense ratio, account receivable ratio and administration cost per unit defining

managerial aspects.

In these cases, it is therefore natural to compare industrial companies not only at the global

level, but also at the intermediate level of profitability, solvency and liquidity and managerial

aspects. Anyway, these intermediate comparisons are not supplied by basic PROMETHEE

methods;

• managerial aspects and profitability aspects are both quite important, therefore both of them

receive a relevant weight. However, if a company is profitable, in general, it is also well man-

aged. Consequently, there is the risk of an overevaluation of companies that are both profitable

and well managed. In this case, we can say that there is a mutual weakening effect between

managerial aspects and profitability aspects. Basic PROMETHEE methods have no possi-

bility to avoid such type of overevaluation. Analogously, other interactions between criteria,

such as mutual strengthening and antagonistic effects, cannot be properly handled with basic

PROMETHEE methods;

• the financial analysts have not a clear-cut idea about the weights of considered criteria. Again,

basic PROMETHEE methods cannot handle in a systematic way these zones of imprecision

and hesitation.

Even if there are some extensions of PROMETHEE methods able to deal with the above points

singularly (see [29, 26, 25, 71]), to the best of our knowledge, there is not any PROMETHEE method

taking into consideration the above points all together. Moreover, in so complex problems there is

not the possibility to use the very useful visualization support of the GAIA plane [79]. In fact, the

representation on a two dimensional plane supplied by the GAIA plane handles only non-interacting

criteria without any consideration of hierarchy of criteria.

In the last years many extensions of PROMETHEE methods have been proposed. They re-

gard weights determination [43], integration with other methods such as Data Envelopment Analysis

(DEA [8, 9]), Analytic Network Process (ANP) [74], Analytic Hierarchy Process (AHP) [31] or

fuzzy approaches [23, 100], integration of quantitative and qualitative information [62], robustness

of the recommendations as in [34] and, finally, sorting methods [70]. Looking at the appeal of the
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PROMETHEE methods, witnessed by the many recent papers in the topic mentioned above, we think

that it could be interesting an extension of PROMETHEE methods permitting to conjointly handle

hierarchy of criteria, interaction between criteria and imprecise definition of weights. Methodologi-

cally, the construction of such an extension of the PROMETHEE methods is based on the following

tools:

• the Multiple Criteria Hierarchy Process (MCHP, [28]), which permits to deal with a set of

criteria hierarchically structured,

• the bipolar Choquet integral which permits to deal with interacting criteria,

• the Robust Ordinal Regression and the Stochastic Multicriteria Acceptability Analysis, which

permit to deal with imprecision and hesitation in the definition of weights.

• an extension of the GAIA plane [79] which permits, taking into account the plurality of instances

of the preference model considered by SMAA (with a procedure different from that one proposed

by [63] for the basic PROMETHEE methods), to obtain a graphical visualization of alternatives

and criteria, as well as interactions between criteria organized in a hierarchy. In this way, some

relevant features (such as clusters, agreements and conflicts between criteria) of the decision

problem at hand can be observed.

Of course, MCHP, bipolar Choquet integral, ROR and SMAA, and GAIA plane are not simply

put together, but they have to be harmonized within PROMETHEE methods, taking care that the

interrelations properly answer to the requirements of the most complex real world decision problems.

2.1 The Bipolar PROMETHEE methods

To extend the PROMETHEE methods to the bipolar case let consider that for each criterion gj ∈ G,

in [25] a bipolar preference function PB
j : A× A → [−1, 1] has been defined such that:

PB
j (a, b) = Pj(a, b) − Pj(b, a) =











Pj(a, b) if Pj(a, b) > 0

−Pj(b, a) if Pj(a, b) = 0

(2.1)

Of course a positive value of PB
j (a, b) involves the preference of a over b on j, while a negative value

represents the preference of b over a on the same criterion.
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In order to deal with interactions and antagonistic effects, the bipolar Choquet integral (presented

in the previous Section 1.2.2) is applied to aggregate the bipolar vector
[

PB
j (a, b)

]

j
= PB(a,b). By

using the 2-additive decomposition of the bicapacity µ̂ (Eqs. (1.22)-(1.25)) we have the following

reformulation:

ChB+(PB(a,b), µ̂) =
∑

j∈G: PB
j (a,b)>0

a+j Pj
B(a, b) +

∑

j,k∈G,

PB
j (a,b)>0, PB

k
(a,b)>0

a+jk min{PB
j (a, b), PB

k (a, b)} +

+
∑

j,k∈G,

PB
j (a,b)>0, PB

k
(a,b)<0

a+j|k min{PB
j (a, b),−PB

k (a, b)}, (2.2)

ChB−(PB(a,b), µ̂) = −
∑

j∈G: PB
j (a,b)<0

a−j Pj
B(a, b) −

∑

j,k∈G,

PB
j (a,b)<0, PB

k
(a,b)<0

a−jk min{PB
j (a, b), PB

k (a, b)} −

−
∑

j,k∈G,

PB
j (a,b)>0, PB

k
(a,b)<0

a−j|k max{−PB
j (a, b), PB

k (a, b)}. (2.3)

and

ChB(PB(a,b), µ̂) = ChB+(PB(a,b), µ̂) − ChB−(PB(a,b), µ̂). (2.4)

where ChB+(PB(a,b), µ̂) represents the magnitude of the reasons for which a is preferred to b, while

ChB−(PB(a,b), µ̂) represents the magnitude of the reasons against this preference. Therefore,

ChB(PB(a,b), µ̂) gives an estimate of the overall preference of a over b.

In order to impose that the amount of the reasons in favor of the preference of a over b is the

same of the amount of the reasons against the preference of b over a, technically ChB+(PB(a,b), µ̂) =

ChB−(PB(a,b), µ̂), the following symmetry conditions must be fulfilled (see [25]):























a+j = a−j , for each j ∈ G,

a+jk = a−jk, for each {j, k} ⊆ G,

a+j|k = a−k|j, for each j, k ∈ G.

(2.5)

Now, for each alternative a ∈ A, we can define the bipolar positive flow, the bipolar negative

flow and the bipolar net flow needed by the bipolar PROMETHEE methods to build the relations
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of preference, indifference and incomparability

φB+(a) =
1

m− 1

∑

x∈A\{a}

ChB+(PB(a,x), µ̂), φB−(a) =
1

m− 1

∑

x∈A\{a}

ChB−(PB(a,x), µ̂),

where |A| = m. Reminding Eq. (2.4) and using the two equations above, the bipolar net flow

φB(a) = φB+(a) − φB−(a) can be written as φB(a) =
1

m− 1

∑

x∈A\{a}

ChB(PB(a,x), µ̂).

2.1.1 The bipolar Choquet integral for criteria hierarchically structured

When the alternatives are evaluated with respect to criteria which are not all located at the same

level but which are hierarchically structured, the MCHP [28] approach can be applied. Thus, there

is a root criterion (the “comprehensive objective”) at level zero, a set of subcriteria of the root

criterion at level one, etc. The criteria at the lower level of the hierarchy (which are the “leaves” of

the associated tree of criteria) are called elementary criteria. In what follow we will use the following

notation:

- G is the comprehensive set of criteria (at all levels of the hierarchy), and g0 is the root criterion;

- IG is the set of indices of the criteria in G;

- GE ⊆ G is the set of all elementary criteria in G, that are the criteria located at the bottom of the

hierarchy;

- EG ⊆ IG is the set of indices of elementary criteria;

- gr is a non-elementary criterion if gr ∈ G \ GE;

- E(gr) ⊆ EG is the set of indices of all the elementary criteria descending from gr (it follows that

E(g0) = EG);

- given F ⊆ G, E(F) = ∪gr∈FE(gr);

- Gk
r
⊆ G is the set of subcriteria of gr located at level k.

Example 2.1.1. In order to better explain the proposed extensions, we shall introduce a decision

problem that we will analyze through this chapter and that will be discussed in detail in Section 2.4.

Let us consider the case of financial decision problem of ranking some companies for possible in-

vestment. From a risk-return tradeoff point of view, an investment in a company can be measured

according to the following main aspects: Profitability (P), Solvency and Liquidity (S&L) and Man-

agerial Performance (MP). Each of these three aspects can be defined by using some financial ratios

which can be considered as elementary criteria since they are located at the bottom of the hierarchy

(see Figure 2.1): Gross Profit Ratio (GP/S) and Return on Total Assets (EBIT/S) are subcriteria of
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Profitability; Debt Ratio (TL/TA) and Current Ratio (CA/CL) are elementary criteria descending

from Solvency and Liquidity, while Account Receivable Ratio (AR/S) and Interest Expense Ratio

(IE/S) are subcriteria of Managerial Performance. The description of the elementary criteria is

provided in Table 2.1.

Figure 2.1: Hierarchical structure of criteria considered in the example

Global
G0

P
g1

GP/S
g(1,1)

EBIT/S
g(1,2)

S&L
g2

TL/TA
g(2,1)

CA/CL
g(2,2)

MP
g3

AR/AS
g(3,1)

IE/S
g(3,2)

Table 2.1: Criteria Description

Notation Criterion Description

g1 Profitability (P) It assesses the ability of a firm to generate earnings.
g2 Solvency and Liquidity (S&L) It assesses the dependency of the firms on debt financing and their overall level of

leverage.
g3 Managerial Performance (MP) It focuses on the efficiency of a firm’s policy towards its creditors and clients as well

as its financial efficiency.

Notation Elementary Criterion Description

g(1,1) Gross Profit Ratio (GP/S) It shows the proportion of profits generated by the sales, before selling and adminis-
trative expenses.

g(1,2) Return On Total Assets (EBIT/S) It is an indicator of how effectively a company is using its assets to generate earnings
before contractual obligations must be paid.

g(2,1) Debt Ratio (TL/TA) It shows a company’s ability to pay off its liabilities with its assets.
g(2,2) Current Ratio (CA/CL) It measures the company’s ability to meet short-term commitments.
g(3,1) Account Receivable Ratio (AR/S) It shows the relationship between unpaid sales and the total sales revenue.
g(3,2) Interest Expense Ratio (IE/S) It computes the amount of gross income that is being spent to pay the interest on

borrowed money.

Now, we will apply the bipolar Choquet integral to the hierarchical case to compute, in the

next section 2.2, the bipolar PROMETHEE preference of an alternative a over an alternative b with

respect to a particular criterion gr. To do this, we need to introduce a small change in the notation

used until now. Indeed, while in case of a flat structure of criteria the bicapacity µ̂ was defined on

P(G), where G was the set of criteria {g1, . . . , gm}, from here on, by µ̂ we shall denote a bicapacity

defined on P(GE) = {(C,D) : C,D ⊆ GE and C ∩D = ∅} that is on the set composed of the couples

of disjoint subsets of elementary criteria. The same applies to µ+ and µ− which will be defined on

P(GE) too.

From a formal point of view, to apply the bipolar Choquet integral of x ∈ R
|GE| to the hierarchical

case, for each non-elementary criterion gr in the hierarchy, we need to define a bicapacity µ̂k
r

on

P(Gk
r
) =

{

(C,D) : C,D ⊆ G
k
r

and C ∩D = ∅
}

, such that, for all (A,B) ∈ P(Gk
r
),
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µ̂k
r
(A,B) =

µ̂ ({gt : t ∈ E(A)}, {gt : t ∈ E(B)})

µ̂({gt : t ∈ E(Gk
r
)}, ∅)

=
µ̂ ({gt : t ∈ E(A)}, {gt : t ∈ E(B)})

µ̂({gt : t ∈ E(gr)}, ∅)
(2.6)

where µ̂({gt : t ∈ E(gr)}, ∅) 6= 0, because, on the contrary, criteria from G
k
r

would have null impor-

tance and would not be meaningful for the decision problem.

Proposition 2.1.1. If µ̂ is 2-additive and it satisfies the symmetry conditions in (2.5), for each

non-elementary criterion gr the following holds:

µ̂({gt : t ∈ E(gr)}, ∅) = −µ̂(∅, {gt : t ∈ E(gr)}).

Proof. By Eq. (1.18),

µ̂({gt : t ∈ E(gr)}, ∅) = µ+({gt : t ∈ E(gr)}, ∅) − µ−({gt : t ∈ E(gr)}, ∅).

Now, considering a 2-additive decomposition of µ+ and µ− and observing that µ−({gt : t ∈ E(gr)}, ∅) =

0, we have that

µ+({gt : t ∈ E(gr)}, ∅) − µ−({gt : t ∈ E(gr)}, ∅) =
∑

t∈E(gr)

a+({gt}, ∅) +
∑

{t1,t2}⊆E(gr)

a+({gt1 , gt2}, ∅);

reminding the symmetry conditions (13), and that µ+(∅, {gt : t ∈ E(gr)}) = 0, we obtain

∑

t∈E(gr)

a+({gt}, ∅) +
∑

{t1,t2}⊆E(gr)

a+({gt1 , gt2}, ∅) =
∑

t∈E(gr)

a−(∅, {gt}) +
∑

{t1,t2}⊆E(gr)

a−(∅, {gt1 , gt2}) =

= µ−(∅, {gt : t ∈ E(gr)}) − µ+(∅, {gt : t ∈ E(gr)}) = −µ̂(∅, {gt : t ∈ E(gr)})).

Note 2.1.1. As a consequence of Proposition 2.1.1, the normalization conditions for the bicapacity

µ̂k
r
are satisfied. Indeed:

• µ̂k
r
(∅, ∅) = µ̂(∅,∅)

µ̂({gt: t∈E(gr)},∅)
= 0 because µ̂(∅, ∅) = 0,

• µ̂k
r
(Gk

r
, ∅) = µ̂({gt: t∈E(G

k
r )},∅)

µ̂({gt: t∈E(gr)},∅)
= 1 because E(Gk

r
) = E(gr),

• µ̂k
r
(∅,Gk

r
) = µ̂(∅,{gt: t∈E(G

k
r )})

µ̂({gt: t∈E(gr)},∅)
= µ̂(∅,{gt: t∈E(G

k
r )})

−µ̂(∅,{gt: t∈E(gr)})
= −1 because E(Gk

r
) = E(gr) and by Proposition

2.1.1,
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As the bicapacity µ̂ has been decomposed by means of µ+ and µ−, also the bicapacity µ̂k
r

can be

decomposed in a similar way,

µ̂k
r
(A,B) = µk,+

r
(A,B) − µk,−

r
(A,B)

where µk,+
r

, µk,−
r

: P(Gk
r
) → [0, 1] and

µk,+
r

(A,B) =
µ+({gt : t ∈ E(A)}, {gt : t ∈ E(B)})

µ+ ({gt : t ∈ E(gr)}, ∅)
for all (A,B) ∈ P(Gk

r
), (2.7)

µk,−
r

(A,B) =
µ−({gt : t ∈ E(A)}, {gt : t ∈ E(B)})

µ− (∅, {gt : t ∈ E(gr)})
for all (A,B) ∈ P(Gk

r
). (2.8)

with µ+ ({gt : t ∈ E(gr)}, ∅), µ− (∅, {gt : t ∈ E(gr)}) 6= 0 because, on the contrary, criteria from E(gr)

would have null importance and would not be meaningful for the decision problem at hand.

Example 2.1.2. Let us continue the example introduced above, and let us suppose we wish to compute

the bicapacities µ1,+
0

, µ1,−
0

, µ̂1
0
on G

1
0

= {g1, g2, g3}. As shown in Eqs. (2.7) and (2.8), the three

bicapacities are dependent on the bicapacities µ+ and µ− defined on P(GE). For illustrative reasons,

let us consider the 2-additive decomposition of µ+ and µ− shown in Table 2.2; we considered the

coefficients a+ only because the analogous coefficients a− can be obtained by a+ due to the symmetry

conditions in 2.5. Moreover, all coefficients a+ not specified in Table 2.2 are fixed equal to zero.

In the following, we shall show how to compute µ1,+
0

({g1}, {g2}) and µ1,−
0

({g1}, {g2}). From Eqs.

Table 2.2: Example of the 2-additive decomposition of µ+

a+ ({·}, {·}) a+ ({·}, {·}) a+ ({·}, {·})
(

{g(1,1)}, ∅
)

0.281
(

{g(1,1), g(3,1)}, ∅
)

0.043
(

{g(2,2), g(3,1)}, ∅
)

-0.028
(

{g(1,2)}, ∅
)

0.282
(

{g(1,1), g(3,2)}, ∅
)

-0.054
(

{g(2,2), g(3,2)}, ∅
)

-0.077
(

{g(2,1)}, ∅
)

0.218
(

{g(1,2), g(3,1)}, ∅
)

-0.076
(

{g(1,1)}, {g(2,1)}
)

-0.015
(

{g(2,2)}, ∅
)

0.173
(

{g(1,2), g(3,2)}, ∅
)

0.083
(

{g(1,1)}, {g(2,2)}
)

-0.0700
(

{g(3,1)}, ∅
)

0.121
(

{g(2,1), g(2,2)}, ∅
)

-0.053
(

{g(1,1)}, {g(3,1)}
)

-0.036
(

{g(3,2)}, ∅
)

0.234
(

{g(2,1), g(3,1)}, ∅
)

-0.015
(

{g(1,2)}, {g(2,1)}
)

-0.049
(

{g(1,1), g(1,2)}, ∅
)

-0.032
(

{g(2,1), g(3,2)}, ∅
)

-0.102
(

{g(1,2)}, {g(2,2)}
)

-0.051

(2.7) and (2.8), we have

µ1,+
0

({g1}, {g2}) =
µ+ ({gt : t ∈ E(g1)}, {gt : t ∈ E(g2)})

µ+ ({gt : t ∈ E(g0)}, ∅)

and

µ1,−
0

({g1}, {g2}) =
µ− ({gt : t ∈ E(g1)}, {gt : t ∈ E(g2)})

µ− (∅, {gt : t ∈ E(g0)})
.
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In consequence of the 2-additive decomposition of µ+ and µ− provided in Section 1.2.2, we have that:

• µ+ ({gt : t ∈ E(g1)}, {gt : t ∈ E(g2)}) =

=
∑

t∈E(g1)

a+ ({gt}, ∅) +
∑

t1,t2∈E(g1)

a+ ({gt1 , gt2}, ∅) +
∑

t1∈E(g1)

t2∈E(g2)

a+ ({gt1}, {gt2}) = a+
(

{g(1,1)}, ∅
)

+

+a+
(

{g(1,2)}, ∅
)

+ a+
(

{g(1,1), g(1,2)}, ∅
)

+ a+
(

{g(1,1)}, {g(2,1)}
)

+ a+
(

{g(1,1)}, {g(2,2)}
)

+

+a+
(

{g(1,2)}, {g(2,1)}
)

+a+
(

{g(1,2)}, {g(2,2)}
)

= 0.281 + 0.282− 0.032− 0.015− 0.070− 0.049−

−0.051 = 0.344.

• µ+ ({gt : t ∈ E(g0)}, ∅) = µ+
(

{g(1,1), g(1,2), g(2,1), g(2,2), g(3,1), g(3,2)}, ∅
)

= 1 in consequence of

the normalization constraints on µ+,

• µ− ({gt : t ∈ E(g1)}, {gt : t ∈ E(g2)}) =

=
∑

t∈E(g2)

a− (∅, {gt}) +
∑

t1,t2∈E(g2)

a− (∅, {gt1 , gt2}) +
∑

t1∈E(g1)

t2∈E(g2)

a− ({gt1}, {gt2}) = a−
(

∅, {g(2,1)}
)

+

+a−
(

∅, {g(2,2)}
)

+ a−
(

∅, {g(2,1), g(2,2)}
)

+ a−
(

{g(1,1)}, {g(2,1)}
)

+ a−
(

{g(1,1)}, {g(2,2)}
)

+

+a−
(

{g(1,2)}, {g(2,1)}
)

+ a−
(

{g(1,2)}, {g(2,2)}
)

= 1a+
(

{g(2,1)}, ∅
)

+ a+
(

{g(2,2)}, ∅
)

+

+a+
(

{g(2,1), g(2,2)}, ∅
)

+ a+
(

{g(2,1)}, {g(1,1)}
)

+ a+
(

{g(2,2)}, {g(1,1)}
)

+ a+
(

{g(2,1)}, {g(1,2)}
)

+

+a+
(

{g(2,2)}, {g(1,2)}
)

= 0.218 + 0.173 − 0.053 = 0.338.

• µ− (∅, {gt : t ∈ E(g0)}) = µ−
(

∅, {g(1,1), g(1,2), g(2,1), g(2,2), g(3,1), g(3,2)}
)

= 1 in consequence of

the normalization constraints on µ−.

Analogously, one can compute the values of the bicapacity for each pair of subsets of criteria (A,B) ∈

P(G1
0
) as shown in Table 2.3.

Considering Eqs. (2.7) and (2.8), the positive and negative bipolar Choquet integral of x ∈ R
|EG|

on a particular node gr can be computed as follows:

ChB+
r

(x, µ̂k
r
) =

ChB+(xr, µ̂)

µ+ ({gt : t ∈ E(gr)}, ∅)
(2.9)

ChB−
r

(x, µ̂k
r
) =

ChB−(xr, µ̂)

µ− (∅, {gt : t ∈ E(gr)})
(2.10)

1Remember that a+({gt}, ∅) = a−({gt}, ∅) for all gt ∈ GE; a+ ({gt1 , gt2}, ∅) = a− (∅, {gt1 , gt2}) and
a+ ({gt1}, {gt2}) = a− ({gt2}, {gt1}) for all gt1 , gt2 ∈ GE
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Table 2.3: Values of the bicapacities µ1,+
0

, µ1,−
0

and µ̂1
0

considering the 2-additive decomposition of
µ+ given in Table 2.2

(·, ·) µ1,+
0

(·, ·) µ1,−
0

(·, ·) µ̂1
0
(·, ·) (·, ·) µ1,+

0
(·, ·) µ1,−

0
(·, ·) µ̂1

0
(·, ·) (·, ·) µ1,+

0
(·, ·) µ1,−

0
(·, ·) µ̂1

0
(·, ·)

(g1, ∅) 0.531 0 0.531 ({g2}, {g1}) 0.338 0.344 -0.005 ({g1, g3}, {g2}) 0.698 0.338 0.359

(g2, ∅) 0.338 0 0.338 ({g2}, {g3}) 0.338 0.356 0.018 ({g2, g3}, {g1}) 0.471 0.307 0.163

(g3, ∅) 0.356 0 0.356 ({g3}, {g1}) 0.356 0.494 -0.138 (∅, {g1}) 0 0.531 -0.531

({g1, g2}, ∅) 0.870 0 0.870 ({g3}, {g2}) 0.356 0.338 0.017 (∅, {g2}) 0 0.338 -0.338

({g1, g3}, ∅) 0.885 0 0.885 ({g1}, {g2, g3}) 0.307 0.471 -0.163 (∅, {g3}) 0 0.356 -0.356

({g2, g3}, ∅) 0.471 0 0.471 ({g2}, {g1, g3}) 0.338 0.698 -0.359 (∅, {g1, g2}) 0 0.870 -0.870

({g1}, {g2}) 0.344 0.338 0.006 ({g3}, {g1, g2}) 0.356 0.833 -0.477 (∅, {g1, g3}) 0 0.885 -0.885

({g1}, {g3}) 0.494 0.356 0.138 ({g1, g2}, {g3}) 0.833 0.356 0.477 (∅, {g2, g3}) 0 0.471 -0.471

(∅, ∅) 0 0 0 ({g1, g2, g3}, ∅) 1 0 1 (∅, {g1, g2, g3}) 0 1 -1

where xr is a fictitious vector having the same components of x on the indices corresponding to the

elementary criteria descending from gr and zero on the others.

Proposition 2.1.2. If µ̂ is 2-additive and it satisfies the symmetry conditions in 2.5, for each non-

elementary criterion gr, the following holds:

µ+ ({gt : t ∈ E(gr)}, ∅) = µ− (∅, {gt : t ∈ E(gr)}) .

Proof. Considering a 2-additive bicapacity and in consequence of the symmetry conditions in Eq.

(2.5), we have that:

µ+ ({gt : t ∈ E(gr)}, ∅) =
∑

t∈E(gr)

a+({gt}, ∅) +
∑

{t1,t2}⊆E(gr)

a+({gt1 , gt2}, ∅) =

=
∑

t∈E(gr)

a−(∅, {gt}) +
∑

{t1,t2}⊆E(gr)

a−(∅, {gt1 , gt2}) = µ− (∅, {gt : t ∈ E(gr)}) .

The bipolar Choquet integral of x on a node gr can be defined as

ChB
r

(x, µ̂k
r
) = ChB+

r
(x, µ̂k

r
) − ChB−

r
(x, µ̂k

r
) (2.11)

that, on the basis of the positive and negative bipolar Choquet integral of x w.r.t. gr given in Eqs.

(2.9) and (2.10) and considering Proposition 2.1.2, can be written as
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ChB
r

(x, µ̂k
r
) =

ChB(xr, µ̂)

µ̂ ({gt : t ∈ E(gr)}, ∅)
. (2.12)

2.2 The Bipolar PROMETHEE methods for the MCHP

While in the previous section we proposed to apply the bipolar Choquet integral to the case of a

set of criteria hierarchically structured, in this section we will consider the bipolar PROMETHEE

method to the case of interacting criteria organized in a hierarchy but also interacting between them.

On the basis of the comprehensive positive and negative preference of a over b given in Eqs. (2.2) and

(2.3) and by considering the definitions of the bipolar positive, negative and comprehensive Choquet

integral with respect to a criterion gr in the hierarchy, we can give the following definition.

Definition 2.2.1. Given a, b ∈ A and a non-elementary criterion gr in the hierarchy, we can define:

• The comprehensive positive preference of a over b on gr:

ChB+
r

(PB(a,b), µ̂k
r
) =

ChB+(PB

r
(a,b), µ̂)

µ+ ({gt : t ∈ E(gr)}, ∅)
, (2.13)

• The comprehensive negative preference of a over b on gr:

ChB−
r

(PB(a,b), µ̂k
r
) =

ChB−(PB

r
(a,b), µ̂)

µ− (∅, {gt : t ∈ E(gr)})
(2.14)

• The comprehensive preference of a over b on gr:

ChB
r

(PB(a,b), µ̂k
r
) =

ChB(PB

r
(a,b), µ̂)

µ̂ ({gt : t ∈ E(gr)}, ∅)
, (2.15)

In all three definitions, PB

r
(a,b) is the vector belonging to R

|E(gr)| such that

(

PB

r
(a,b)

)

t
=







PB
t

(a, b) if t ∈ E(gr),

0 if t /∈ E(gr).

Example 2.2.1. Let us back to the example introduced in Section 2.1.1. The evaluations of the

eight most capitalized European pharmaceutical companies on the six elementary criteria are shown

in Table 2.4, while the indifference and preference thresholds for all elementary criteria are given in

Table 2.5.
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Table 2.4: Evaluations of the eight pharmaceutical companies on the considered elementary criteria

Pharma Companies GP/S EBIT/S TL/TA CA/CL AR/S IE/S

Glaxo 0.664 0.209 0.904 1.236 0.160 0.027

Sanofi 0.687 0.054 0.430 1.482 0.212 0.007

Novartis 0.660 0.067 0.414 0.964 0.162 0.013

Roche Holding 0.708 0.177 0.723 1.186 0.170 0.018

AstraZeneca 0.818 0.068 0.692 1.077 0.188 0.016

Bayer 0.543 0.085 0.672 1.403 0.214 0.016

Merck 0.683 0.048 0.664 0.783 0.213 0.024

Novo Nordisk 0.850 0.539 0.488 1.349 0.143 0.001

Preference direction Incr. Incr. Decr. Incr. Decr. Decr.

Table 2.5: Indifference and preference thresholds for the elementary criteria

q(1,1) p(1,1) q(1,2) p(1,2) q(2,1) p(2,1) q(2,2) p(2,2) q(3,1) p(3,1) q(3,2) p(3,2)
0.02 0.06 0.01 0.03 0.05 0.15 0.10 0.20 0.01 0.02 0.003 0.006

Considering Sanofi and Novartis we can compute the bipolar vector PB(Sanofi,Novartis) at the

global level as well as on all three macrocriteria:

• PB(Sanofi,Novartis) = (0.1711,−0.1379, 0, 1,−1, 1),

• PB

1
(Sanofi,Novartis) = (0.1711,−0.1379, 0, 0, 0, 0),

• PB

2
(Sanofi,Novartis) = (0, 0, 0, 1, 0, 0),

• PB

3
(Sanofi,Novartis) = (0, 0, 0, 0,−1, 1).

Now, let us consider the 2-additive decomposition of a bicapacity µ̂ given in Table 2.2. To compute

the comprehensive positive preference of Sanofi over Novartis on Profitability, by Eq. (2.13), we have

that

ChB+
1

(PB(Sanofi,Novartis), µ̂2
1
) =

ChB+(PB

1
(Sanofi,Novartis), µ̂)

µ+({gt : t ∈ E(g1)}, ∅)
=

=
ChB+((0.1711,−0.1379, 0, 0, 0, 0) , µ̂)

µ+({g(1,1), g(1,2)}, ∅)
.

By Eq. (2.2) and considering the 2-additive decomposition of µ+ we get

• ChB+((0.1711,−0.1379, 0, 0, 0, 0) , µ̂) =

= 0.1711 · a+
(

{g(1,1)}, ∅
)

+ min{0.1711, 0.1379} · a+
(

{g(1,1)}, {g(1,2)}
)

= 0.1711 · 0.281 = 0.048.

• µ+({g(1,1), g(1,2)}, ∅) =

= a+
(

{g(1,1)}, ∅
)

+ a+
(

{g(1,2)}, ∅
)

+ a+
(

{g(1,1), g(1,2)}, ∅
)

= 0.281 + 0.282 − 0.032 = 0.531.
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Consequently, ChB+
1

(PB(Sanofi,Novartis), µ̂2
1
) =

0.048

0.531
= 0.090.

By using the definitions above, the comprehensive negative preference and the comprehensive prefer-

ence of Sanofi over Novartis at a global level as well as at partial level can be computed (see Table

2.6).

Table 2.6: Comprehensive positive and negative preference of Sanofi over Novartis at global level
as well as at partial level

ChB+
r (PB(Sanofi,Novartis), µ̂2

r) ChB−
r (PB(Sanofi,Novartis), µ̂2

r) ChB
r (PB(Sanofi,Novartis), µ̂2

r)

r = (1) 0.0906 0.0734 0.0172

r = (2) 0.5117 0 0.5117

r = (3) 0.6581 0.3419 0.3163

On the basis of the previous definitions, the positive, negative and net bipolar flows w.r.t. a

criterion gr can be computed.

Definition 2.2.2. Given a ∈ A and a non-elementary criterion gr, we can define:

• The bipolar positive flow of a on gr:

φB+
r

(a) =
1

m− 1

∑

x∈A\{a}

ChB+
r

(PB(a,x), µ̂k
r
) =

1

m− 1

∑

x∈A\{a}

ChB+(PB

r
(a,x), µ̂)

µ+ ({gt : t ∈ E(gr)}, ∅)

• The bipolar negative flow of a on gr:

φB−
r

(a) =
1

m− 1

∑

x∈A\{a}

ChB−
r

(PB(a,x), µ̂k
r
) =

1

m− 1

∑

x∈A\{a}

ChB−(PB

r
(a,x), µ̂)

µ− (∅, {gt : t ∈ E(gr)})

• The bipolar net flow of a on gr:

φB
r

(a) = φB+
r

(a) − φB−
r

(a) =
1

m− 1

∑

x∈A\{a}

[

ChB+
r

(PB(a,x), µ̂k
r
) − ChB−

r
(PB(a,x), µ̂k

r
)
]

=

=
1

m− 1

∑

x∈A\{a}

ChB
r

(PB(a,x), µ̂k
r
) =

1

m− 1

∑

x∈A\{a}

ChB(PB

r
(a,x), µ̂)

µ̂ ({gt : t ∈ E(gr)}, ∅)
.

Using definitions 2.2.1 and 2.2.2, the extension of the bipolar PROMETHEE I and II meth-

ods to the case of criteria organized in a hierarchical way (that we shall call hierarchical bipolar

PROMETHEE I and II methods) can be provided. In particular, given a, b ∈ A and a non-elementary

criterion gr,
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• the hierarchical bipolar PROMETHEE I method defines a preference (PI
r,B), an indifference

(II
r,B) and an incomparability (RI

r,B) relation as follows:

– aPI
r,Bb iff φB+

r
(a) ≥ φB+

r
(b), φB−

r
(a) ≤ φB−

r
(b) and at least one of the two inequalities is

strict,

– bPI
r,Ba iff φB+

r
(b) ≥ φB+

r
(a), φB−

r
(b) ≤ φB−

r
(a) and at least one of the two inequalities is

strict,

– aII
r,Bb iff φB+

r
(a) = φB+

r
(b) and φB−

r
(a) = φB−

r
(b),

– aRI
r,Bb, otherwise.

• the hierarchical bipolar PROMETHEE II method defines a preference relation (PII
r,B) and an

indifference relation (III
r,B), only:

– aPII
r,Bb iff φB

r
(a) > φB

r
(b),

– aIII
r,Bb iff φB

r
(a) = φB

r
(b).

Example 2.2.2. Continuing the previous example, we shall show how to compute the relations de-

fined above on profitability for the hierarchical bipolar PROMETHEE I and II methods. Let us

consider the 2-additive decomposition of the bicapacity µ̂ given in Table 2.2 and the evaluations of

the eight companies on the eight elementary subcriteria shown in Table 2.4. The bipolar positive,

negative and net flow of each alternative on criterion g1 shown in Table 2.7 can be computed. One

Table 2.7: Bipolar positive, negative and net flows on Profitability

φB+
1

(·) φB−

1
(·) φB

1
(·)

Glaxo 0.5230 0.2693 0.2537

Sanofi 0.0942 0.4791 -0.3849

Novartis 0.1194 0.4629 -0.3435

Roche Holding 0.5486 0.2946 0.2540

AstraZeneca 0.5007 0.2708 0.2299

Bayer 0.2032 0.7313 -0.5218

Merck 0.0808 0.5217 -0.4409

Novo Nordisk 0.9256 0 0.9256

can observe that Roche is preferred to Glaxo on profitability considering the hierarchical bipolar

PROMETHEE II method (RochePII
1,BGlaxo), while the two companies are incomparable consider-

ing the bipolar PROMETHEE I method (RocheRI
1,BGlaxo). The preferences between all pairs of

companies obtained by the new hierarchical bipolar PROMETHEE methods are shown in Figure 2.2.
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Glaxo

Sanofi

Novartis

AstraZeneca

Bayer

Merck

Roche

Novo
Nordisk

(a) Hierarchical bipolar PROMETHEE I
method

Glaxo

AstraZeneca

Sanofi

Merck

Novartis

Roche

Bayer

Novo
Nordisk

(b) Hier-
archical
bipolar
PROMETHEE
II method

Figure 2.2: Preference relations obtained by the hierarchical bipolar PROMETHEE methods on
Profitability

2.2.1 The Bipolar PROMETHEE III, IV, V, VI

PROMETHEE III

We observe that PROMETHEE III can be easily extended to the hierarchical bipolar case by con-

sidering an adaptation of the formulas provided in Section 1.3.1. Indeed, defining

φ
B

r
(a) =

1

m

∑

x∈A

ChB(PB

r
(a,x), µ̂)

µ̂ ({gt : t ∈ E(gr)}, ∅)
,

σ2
a,r =

1

m

∑

x∈A

[

ChB(PB

r
(a,x), µ̂)

µ̂ ({gt : t ∈ E(gr)}, ∅)
− φ

B

r
(a)

]2

and replacing φ(a) and σa with φ
B

r
(a) and σa,r in Eq. (39), we obtain a complete interval order on

the set of alternatives A. Note that it is possible to obtain the complete interval order w.r.t. each

non-elementary criterion gr and w.r.t. each compatible bicapacity µ̂.
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PROMETHEE IV

PROMETHEE IV can be extended to a hierarchy of interacting criteria by defining φB+
r

(a) and

φB−
r

(a) as follows:

φB+
r

(a) =

∫

X

ChB+(PB+
r

(a,x), µ̂)

µ+ ({gt : t ∈ E(gr)}, ∅)
ρ(x) dx (42)

φB−
r

(a) =

∫

X

ChB−(PB−
r

(a,x), µ̂)

µ− (∅, {gt : t ∈ E(gr)})
ρ(x) dx (43)

PROMETHEE V

By considering PROMETHEE V, for each alternative a ∈ A and for each criterion gr, one can

compute the bipolar net flow of a on gr, φB
r

(a), being the equivalent of φ(a) in our case. As a

consequence, the 0-1 programming problem in Eq. (44) can be easily extended to our methodology.

Indeed, for each criterion gr in the hierarchy, after defining the clusters Cr

1 , . . . , C
r

k , . . . , C
r

R, one has

to solve the following 0-1 program

max
∑

a∈A

xr

aφ
B
r

(a),

∑

a∈A

αr

ax
r

a ≥ [≤,=]βr, [BeClr]

∑

a∈Cr

k

γr

a,kx
r

a ≥ [≤,=]δrk, [WiClr],

(45)

where constraints [BeClr] and [WiClr] are the equivalent of constraints [BeCl] and [WiCl]. The

difference is related to the fact that they will take into account a criterion only. In this way, one can

look at the best portfolio of alternatives when considering a particular criterion gr in the hierarchy

and, therefore, different subsets of alternatives can be chosen for different aspects of the problem

at hand. For example, in a project selection problem in which economic, environmental and social

aspects are considered, one can look at the best subset of alternatives that should be chosen when

all three aspects are taken into account simultaneously but also the sets of alternatives that should

be selected when the three different aspects are considered separately.

PROMETHEE VI

We have already taken into account this preference information in a direct or an indirect way by

using the SMAA methodology as explained in Section 4. In order to consider a similar case, we

added the possibility that the DM provides some preferences in terms of intervals of possible values

for the weights of elementary criteria gt. For example, he can state that the importance of elementary

62



criterion gt varies between a lower (lt) and an upper (ut) bound:

at ∈ [lt, ut] .

Consequently, the application of SMAA permits to study the different ranking of the alternatives

varying the weights in the considered intervals.

2.2.2 The GAIA plane for the bipolar PROMETHEE methods

Since PROMETHEE methods are often implemented along with the GAIA plane [79], we propose

an extension of this visualization tool to the case of bipolar PROMETHEE methods with criteria

organized in a hierarchy taking also into account the plurality of instances of the preference model

considered by SMAA.

As known, the purpose of this technique is to obtain a graphical representation of the matrix

of the partial criteria net flows by using the Principal Component Analysis (PCA) [2, 69, 106] to

reduce the dimensionality. In particular, in the classical case, the GAIA plane permits to visualize in

a two dimensional space the projections of criteria and alternatives which look as vectors and points,

respectively. In many applications of the GAIA plane, the PCA is based on the covariance matrix.

In this case, if there are large differences between the variances of the single criteria net flows then,

those single criteria net flow which have the largest variance tend to dominate the first principal

component. For this reason, here we apply the PCA to the correlation matrix2 in order to avoid an

unreasonably large impact on the principal components by few variables treating all variables on an

equal footing.

To apply this visualization technique to the bipolar case, we start by decomposing the net flow

w.r.t. the bipolar PROMETHEE method defined in Section 2.1 in terms of parameters useful for

the visual tool, as follows:

φB(a) =
1

m− 1

∑

x∈A\{a}





∑

j∈G

a+j P
B
j (a, x) +

∑

(j,k)∈Syn

a+jkαjk(a, x) +
∑

(j,k)∈Ant

a+j|kβj|k(a, x)



(2.16)

where:

• Syn ⊆ {(j, k) : j, k ∈ G, j < k} = {(js1, k
s
1), . . . , (j

s
q , k

s
q)} is the set of non-ordered pairs of

criteria for which the DM declared that there is interaction and therefore a+jk 6= 0,

2In this case the vectors of loadings (principal component coefficients) consist of the eigenvectors of the correlation
matrix.

63



• Ant ⊆ {(j, k) : j, k ∈ G, j 6= k} = {(ja1 , k
a
1), . . . , (jat , k

a
t )} is the set of ordered pairs of criteria

for which the DM declared that there is antagonism and therefore a+j|k < 0,

•

αjk(a, x) =



















min{PB
j (a, x), PB

k (a, x)} if PB
j (a, x) > 0, PB

k (a, x) > 0;

max{PB
j (a, x), PB

k (a, x)} if PB
j (a, x) < 0, PB

k (a, x) < 0;

0 otherwise

(2.17)

•

βj|k(a, x) =



















min{PB
j (a, x),−PB

k (a, x)} if PB
j (a, x) > 0, PB

k (a, x) < 0;

max{−PB
j (a, x), PB

k (a, x)} if PB
k (a, x) > 0, PB

j (a, x) < 0;

0 otherwise.

(2.18)

Through this decomposition, we are considering interactions and antagonistic effects as criteria for

which the evaluations of alternatives are given by the functions defined in Eqs. (2.17) and (2.18),

respectively.

Now, instead of the classical matrix containing the single criterion net flows, we have to consider

a matrix Φ which, as in the classic case, takes into account the preferences given by the generalized

criteria but with the additional information given by the interactions between criteria as well as the

antagonistic effects between them. The size of the matrix Φ depends on the information provided by

the DM in the sense that it contains the columns related to interactions and antagonistic effects only

if the DM provides them. This means that the matrix Φ does not contain the columns for which the

related information is not provided3. We consider the matrix Φ as input data to perform the PCA.

The general form of the matrix Φ is shown in Table 2.8, where

φB
j (a) =

1

m− 1

∑

x∈A

PB
j (a, x) (2.19)

φB
jk(a) =

1

m− 1

∑

x∈A

αjk(a, x) (2.20)

φB
j|k(a) =

1

m− 1

∑

x∈A

βj|k(a, x) (2.21)

Note that the vector φB = [φB(a1), . . . , φ
B(am)] containing the net flow of alternatives from

A can be written in terms of the product between the matrix Φ and the vector â containing the

3The maximum size of the matrix is m × [n +
(

n
2

)

+Dn,2], where n is the number of considered criteria and m is
the number of alternatives. Note that each element of Φ belongs to [−1, 1].
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Table 2.8: Matrix of the parameters involved in the extension of the GAIA method. Partial bipolar
preference index for each criterion and parameters representing interaction and antagonistic effects
between criteria.

φB
1 (·) . . . φB

n (·) φB
js1k

s
1
(·) . . . φB

jsqk
s
q
(·) φB

ja1 |k
a
1
(·) . . . φB

jat |k
a
t
(·)

a1 φB
1 (a1) . . . φB

n (a1) φB
js1k

s
1
(a1) . . . φB

jsqk
s
q
(a1) φB

ja1 |k
a
1
(a1) . . . φB

jat |k
a
t
(a1)

...
...

...
...

...
...

...
...

...
...

am φB
1 (am) . . . φB

n (am) φB
js1k

s
1
(am) . . . φB

jsqk
s
q
(am) φB

ja1 |k
a
1
(am) . . . φB

jat |k
a
t
(am)

decomposition of the bicapacity µ̂ as shown in Eq. (2.22).

â =
(

a+1 , . . . , a
+
n , a

+
js1k

s
1
, . . . , a+jsqksq , a

+
ja1 |k

a
1
, . . . , a+jat |kat

)

. (2.22)

We apply the principal component analysis solving the following problem:

max u′Cu subject to

u′u = 1.
(2.23)

where u is a unit vector, while

C =
ΦStd′ΦStd

n + q + t

is the variance-covariance matrix of centered and standardized data

ΦStd = [φstd
r (ai), r = 1, . . . , n, js1k

s
1, . . . , j

s
qk

s
q , j

a
1k

a
1 , . . . , j

a
t k

a
t ] (2.24)

which generic element is obtained as

φStd
r (ai) =

φB
r (ai) −Mr

σr

(2.25)

with Mr and σr denoting the the mean and the standard deviation of the elements in the r-th column

of matrix Φ, respectively, that is

Mr =

m
∑

i=1

φB
r (ai)

m
, σr =

√

√

√

√

√

m
∑

i=1

(φB
r (ai) −Mr)

2

m
. (2.26)
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Using the Lagrange theorem this amounts to solve the system







Cu = λu

u′u = 1.
(2.27)

After this, the two largest eigenvalues λ1 and λ2 of C and the corresponding eigenvectors u1 and u2

have to be calculated. Then each point

x =
(

x+
1 , . . . , x

+
n , x

+
js1k

s
1
, . . . , x+

jsqk
s
q
, x+

ja1 |k
a
1
, . . . , x+

jat |k
a
t

)

, (2.28)

is projected on the GAIA plane to the point having coordinates (u′
1x,u

′
2x). The explained variance

of the GAIA plane, that is the percentage of information kept by the projection, is given by

δ =
λ1 + λ2

n+q+t
∑

r=1

λr

(2.29)

where λr, r = 1, . . . , n + q + t, is the r-th eigenvalue of C. The value of δ is in general larger than

60% and most times larger than 85% [17].

In this framework, each alternative a ∈ A is represented by the projection on the GAIA plane of

the following vector

φB(a) =
[

φB
1 (a), . . . , φB

n (a), φB
js1k

s
1
(a), . . . , φB

jsqk
s
q
(a), φB

ja1 |k
a
1
(a), . . . , φB

jat k
a
t
(a)
]

. (2.30)

Analogously, importance of criteria, positive and negative interactions and antagonism between

pairs of criteria are projected on the GAIA plane as follows:

• criterion gj ∈ G is represented by the axis linking the origin of the plane with the projection

of the vector x whose components are all null with the exception of xj being equal to 1,

• the negative or positive interaction between criteria (jse , k
s
e), e = 1, . . . , q, is represented by the

axis linking the origin of the plane with the projection of the vector x which components are

all null with the exception of xjse ,k
s
e

being equal to 1,

• the antagonism between criteria (jaf , k
a
f ), f = 1, . . . , t is represented by the axis linking the

origin of the plane with the projection of the vector x which components are all null with the

exception of xja
f
,ka

f
being equal to 1.
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We briefly recall some properties of the GAIA plane:

• the length of the projection of a criterion, the interaction or the antagonism between a pair of

criteria, is representative of its capacity to discriminate between the alternatives;

• projections of criteria, positive or negative interactions or antagonisms between pairs of criteria

oriented in similar directions express similar preferences. Analogously, projections of criteria,

positive or negative interactions or antagonisms having opposite directions represent opposite

preferences;

• criteria, synergies or antagonisms between pairs of criteria which projections appear orthogonal

are uncorrelated in terms of preferences;

• the closer the points representing two alternatives on the GAIA plane, the more similar the

alternatives are;

• an alternative a ∈ A has a good evaluation with respect to criterion gj ∈ G if it is located in

the same direction of gj and, instead, it has a bad evaluation if it is located in the opposite

direction of gj. More precisely, in case of location in the same (opposite) direction of gj, the

longer the projection of the point representing an alternative a ∈ A on the axis of a criterion

gj ∈ G, the better (worse) its evaluation on gj; similar interpretations hold with respect to

interaction and antagonism of pairs of criteria.

With respect to the overall evaluation of an alternative from A, the projection of the vector â on

the GAIA plane constitutes the PROMETHEE decision axis corresponding to the projection of the

weight vector for the classical PROMETHEE methods. In general, the longer the projection of the

point representing an alternative a ∈ A on the decision axis, the greater the net flow φB(a).

The above general principles of the GAIA plane suffer of some exceptions due to the approximation

of the projection of all the variables related to single criteria, interactions and antagonistic effects on

the 2-dimensional plane. Anyway, the greater the variance δ explained by the first two components

of PCA, the greater the information preserved and, consequently, the less these exceptions are.

In case of a hierarchy of criteria, one can get a GAIA plane for each non elementary criterion

gr ∈ G \GE by narrowing the above analysis to the elementary criteria gt, t ∈ E(gr), descending from

gr.

Example 2.2.3. Let us continue the example introduced above. Let us consider the 2-additive de-

composable bicapacity whose decomposition vector â is presented in Table 2.9. In this case, the PCA
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is applied to 21 variables (6 criteria, 10 interactions and 5 antagonistic effects). Figure 2.3 (a),(b)

and (c) show axis representing single criteria gj ∈ G, pairs of criteria (j, k) ∈ Syn for which there is

a positive or negative interaction, and pairs of criteria (j, k) ∈ Ant for which there is an antagonistic

effect, respectively. For reasons of space, in Figure 2.3, numbers 1,2,3,4,5 and 6 represent elemen-

tary criteria GP/S, EBIT/S, TL/TA, CA/CL, AR/S and IE/S, respectively. The points representing

the alternatives as well as the PROMETHEE decision axis, indicated with the label “Capacity”, are

shown in all the three Figure 2.3 (a),(b) and (c). One can observe the following points:

• Figure 2.3(a), having an explained variance δ = 68.72% (as well as Figure 2.3(b) and (c)

that show different elements, but on the same GAIA plane), shows that all criteria are quite

discriminating because their axis are quite long. Moreover, criteria CA/CL, TL/TA, IE/S, on

one hand, and GP/S, EBIT/S and AR/S, on the other hand, express similar preferences. Novo

Nordisk is in the same direction of all criteria and has long projections on their axis, so that

it has good evaluations on all criteria. On the contrary, Merck is in the opposite direction of

all criteria and has relatively long projections on their axis, so that it has bad evaluations on

all criteria. AstraZeneca and Roche Holding are relatively close on the GAIA plane and this

shows that they have similar evaluations on all the criteria.

• Figure 2.3(b) displays a certain proximity of the axis representing interaction between the pairs

of criteria (TL/TA, CA/CL), (CA/CL, IE/S) and (TL/TA, IE/S), showing that they express

similar aspects in the decision problem. Analogously, there is a certain similarity between the

interaction of the pairs (CA/CL, AR/S), (TL/TA, AR/S), (GP/GS, IE/S), (EBIT/S, IE/S),

on one hand, and the pairs (GP/S,EBIT/S), (GP/S,AR/S), (EBIT/S,AR/S), on the other

hand.

• Figure 2.3(c) shows a certain similarity of the antagonism for the pairs (GP/S | TL/TA) and

(GP/S | CA/CL), on one hand, and the pairs (EBIT/S | TL/TA) and (EBIT/S | CA/CL).

Instead the antagonism of the pair (GP/S | AR/S) has its own specific features as shown by

the location of its axis which is quite isolated with respect to the other axis representing pairs

of antagonistic criteria.

• Comparing the points representing alternatives with the PROMETHEE decision axis “Capacity”

one can see that Novo Nordisk is by far the best alternative, while Bayer and Meck are the worst

ones. Indeed, all these alternatives have a long projection on the “Capacity” axis. However,

Novo Nordisk is in the same direction of “Capacity” axis, while Bayer and Merck are in the
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opposite direction.

• Figure 2.3(d), having an explained variance δ = 99.47%, shows that with respect to the non-

elementary criterion Solvency and Liquidity, the two elementary criteria CA/CL and TL/TA

are both discriminant (because of their long axis) and independent (because of the orthogonality

of their axis), while the interaction between the two criteria is less discriminant (because of

the relatively short axis). Alternatives are quite different between them (because of their quite

scattered location), with the exception of a relative similarity between Novo Nordisk and Sanofi,

on one hand, and Roche Holding and AstraZeneca, on the other hand. With respect to the

overall evaluation related to Solvency and Liquidity, one can see that the best alternatives are

Novo Nordisk and Sanofi while the worst alternatives are Merck and Glaxo. All these four

alternatives have long projections on the PROMETHEE decision axis “Capacity”, but Novo

Nordisk and Sanofi are in the same direction of the “Capacity” axis, while Merck and Glaxo

are in the opposite direction.

Table 2.9: 2-additive decomposable bicapacity considered in the example.

a+1 a+2 a+3 a+4 a+5 a+6 a+12 a+15 a+16 a+25 a+26
0.259 0.296 0.185 0.222 0.148 0.222 -0.037 0.037 -0.074 -0.037 0.037

a+34 a+35 a+36 a+45 a+46 a+1|3 a+1|4 a+1|5 a+2|3 a+2|4
-0.074 -0.037 -0.037 -0.037 -0.074 -0.037 -0.037 -0.037 -0.055 -0.055

2.3 Exploring the results through SMAA and ROR

The proposed hierarchical bipolar PROMETHEE methods can be easily considered as a general-

ization of the classical PROMETHEE methods. Indeed, they are able to take into account several

aspects that are not considered in the classical PROMETHEE methods such as the hierarchical

structure of criteria, the interactions between criteria as well as the antagonistic effects between

them. Anyway, the advantages coming from the capabilities of the new methodology are in part

balanced from its complexity related, in particular, to the elicitation of the involved parameters. As

already explained, the hierarchical bipolar PROMETHEE methods are based on a bicapacity defined

on P(GE). This means that values for the importance of each elementary criterion at, the interaction

coefficients at1t2 for each couple of elementary criteria {t1, t2} and the antagonistic effects at1|t2 for

each pair of elementary criteria (t1, t2) (t1, t2 ∈ EG) have to be provided. Therefore, the total number

of parameters necessary for the application of the methodology is equal to |EG| +
(

|EG|
2

)

+ 2D|EG|,2.
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(a) Criteria (b) Interactions

(c) Antagonistic effects (d) Solvency and Liquidity

Figure 2.3: Extension of the GAIA plane to take into account interactions and antagonistic effects
between criteria

For example, in the previously considered case, being |EG| = 6, the number of parameters is equal to

6+
(

6
2

)

+D6,2 = 6+15+30 = 51. Of course, asking the DM to provide values for all these parameters

is unreasonable.

To solve this issue the use of an indirect technique is required [68], meaning that the DM is asked to

provide some preference information in terms of comparisons between alternatives or criteria, interac-

tion between criteria and antagonistic effects between them from which parameters compatible with

this information can be inferred. In the following, according to [71], we distinguish between local

and global preferences at different levels of the hierarchy. A preference, as well as an indifference or

an incomparability between alternatives a, b ∈ A is called local if it is based on considerations of the
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relation between a and b in terms of ChB
r

(PB(a,b), µ̂), ChB+
r

(PB(a,b), µ̂) and ChB−
r

(PB(a, b), µ̂) for

gr ∈ G\GE. Instead, a preference, as well as an indifference or an incomparability between a and b is

called global if it is based on consideration of the relation between a and all the other alternatives as

well as b and all the other alternatives in terms of φB
r

(a), φB+
r

(a), φB−
r

(a), φB
r

(b), φB+
r

(b) and φB−
r

(b)

for gr ∈ G \ GE.

The DM can therefore express:

• Preferences on alternatives:

1. a is locally preferred to b, translated into ChB(PB(a,b), µ̂) > 0,

2. a is locally preferred to b on gr, translated into ChB(PB

r
(a,b), µ̂) > 0,

3. a is comprehensively preferred to b, translated into

– φB(a) > φB(b) if the bipolar PROMETHEE II is considered,

–























φB+(a) ≥ φB+(b),

φB−(a) ≤ φB−(b),

φB(a) > φB(b)

if the bipolar PROMETHEE I is considered,

4. a is comprehensively preferred to b on gr, translated into

– φB
r

(a) > φB
r

(b) if the hierarchical bipolar PROMETHEE II is considered,

–























φB+
r

(a) ≥ φB+
r

(b),

φB−
r

(a) ≤ φB−
r

(b),

φB
r

(a) > φB
r

(b)

if the hierarchical bipolar PROMETHEE I is considered,

5. a is locally indifferent to b, translated into the constraint ChB(PB(a,b), µ̂) = 0,

6. a is locally indifferent to b on gr, translated into the constraint ChB(PB

r
(a,b), µ̂) = 0,

7. a is comprehensively indifferent to b, translated into the constraints

– φB
r

(a) = φB
r

(b) if the hierarchical bipolar PROMETHEE II is considered,

–











φB+
r

(a) = φB+
r

(b),

φB−
r

(a) = φB−
r

(b)
if the hierarchical bipolar PROMETHEE I is considered,

• Preferences on importance of and interactions between elementary criteria:

– the importance of criterion gt varies between lt and ut, translated into the constraint

lt ≤ at ≤ ut,

– gt1 is more important than gt2 , translated into the constraint at1 > at2 ,

71



– gt1 and gt2 are equally important, translated into the constraint at1 = at2 ,

– gt1 and gt2 are positively interacting, translated into the constraint at1t2 > 0,

– gt1 and gt2 are negatively interacting, translated into the constraint at1t2 < 0,

– gt2 exercises an antagonistic effect over gt1 , translated into the constraint a+
t1|t2

< 0.

• Preferences on importance of and interactions between non-elementary criteria:

– gr1 is more important than gr2 , translated into the constraint

∑

t1∈E(gr1 )

at1 >
∑

t2∈E(gr2 )

at2 ,

– gr1 and gr2 are positively (negatively) interacting, translated into the constraint

∑

t1∈E(gr1 )
t2∈E(gr2 )

at1t2 > 0 (< 0) .

In this case, the DM could be willing to be more precise in his preferences, specifying the

nature of the interactions between some gt1 , t1 ∈ E(gr1) and some gt2 , t2 ∈ E(gr2); this

means that at1t2 can be greater than zero for some t1 ∈ E(gr1) and t2 ∈ E(gr2), while at1t2

can be lower than zero for some t1 ∈ E(gr1) and t2 ∈ E(gr2);

– criterion gr2 exercises an antagonistic effect over gr1 , translated into the constraint:

∑

t1∈E(gr1 )
t2∈E(gr2 )

at1|t2 < 0.

As in the previous case, the DM can be willing to specify if there is some antagonist effect

exercised from elementary criteria descending from gr2 over elementary criteria descending

from gr1 . This means that at1|t2 < 0 for some t1 ∈ E(gr1) and t2 ∈ E(gr2).

Let us observe that because of the symmetry conditions (2.5), a+
t

= a−
t

= at and a+
t1t2

= a−
t1t2

=

at1t2 for all t, t1, t2 ∈ EG. Consequently, in the above constraints, we used at and at1t2 only, without

distinguishing between the positive and the negative importance of criteria and interaction coeffi-
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cients. Moreover, monotonicity [MC] and normalization [NC] constraints can be written as follows:

[MC]



















at +
∑

t1∈C

att1 +
∑

t1∈D

a+
t|t1

≥ 0, ∀t ∈ EG, ∀(C ∪ {t}, D) ∈ P(GE),

at +
∑

t1∈D

att1 +
∑

t1∈C

a+
t1|t

≥ 0, ∀t ∈ EG, ∀(C,D ∪ {t}) ∈ P(GE),

[NC]
∑

t∈EG

at +
∑

t1t2∈EG

at1t2 = 1.

In the following, by EDM we shall denote the set of constraints translating the preferences provided

by the DM, together with the normalization [NC] and monotonicity [MC] constraints, where strict

inequalities are converted into weak inequalities by using an auxiliary variable ε assumed to be a small

value greater than zero (for example, ChB(PB(a, b), µ̂) > 0 is converted into ChB(PB(a, b), µ̂) ≥ ε).

If EDM is feasible and ε∗ > 0, where ε∗ = max ε subject to EDM , then there is at least one set of

parameters compatible with the preferences provided by the DM. In the opposite case, in which EDM

is infeasible or ε∗ ≤ 0, one can check the cause of the infeasibility by using some of the methodologies

presented in [81].

In general, if there exists one set of compatible parameters, then there exists an infinity of them. Con-

sequently, the choice of only one of these sets of parameters can be considered arbitrary. The SMAA

and the ROR avoid this choice by considering simultaneously all compatible sets of parameters.

2.3.1 The SMAA for bipolar PROMETHEE with hierarchy of criteria

In Section 1.5 we have seen that SMAA methods explore the space of parameters compatible with

the preferences provided by the DM and defined by the set of constraints EDM as well as the

space of the evaluations of the alternatives on the considered criteria in an iterative way 4. In this

case, we shall assume that the evaluations of the alternatives are fixed. Several compatible sets

of parameters can be sampled from the corresponding space and, since the set of constraints EDM

is convex, one can use the Hit-And-Run algorithm to sample them [96, 101]. For each of these

compatible sets of parameters, a different ranking of the considered alternatives can be obtained by

the hierarchical bipolar PROMETHEE II method. Analogously, one preference, one indifference and

one incomparability relation between the same alternatives can be obtained in case the hierarchical

bipolar PROMETHEE I method is applied. For this reason, the application of SMAA in this context

4Let us observe that the DM is not obliged to provide any preference information. Just in case he is not willing to
provide any preferences in terms of comparison between alternatives or in terms of comparison between criteria and
interaction or antagonistic effects between them, then the set of constraints EDM is composed of the monotonicity
[MC] and normalization [NC] constraints only.
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can provide the following indices:

• the rank acceptability index bk
r
(a) (in case one applies the hierarchical bipolar PROMETHEE

II method) giving the frequency with which an alternative a gets the k-th position in the final

ranking computed for criterion gr,

• the preference index Prefr(a, b) (both in case of the hierarchical bipolar PROMETHEE I and

II methods), called also pairwise winning index in [77], giving the frequency with which a is

preferred over b on criterion gr,

• the indifference index Indr(a, b) (both in case of the hierarchical bipolar PROMETHEE I and

II methods) giving the frequency with which a and b are indifferent on criterion gr,

• the incomparability index Incr(a, b) (in case of the hierarchical bipolar PROMETHEE I method)

giving the frequency with which a and b are incomparable on criterion gr.

2.3.2 GAIA plane for SMAA

From the previous Section 2.3, it becomes clear that there is not only one bicapacity µ̂, represented

by its corresponding vector â, of parameters compatible with the preferences provided by the DM,

but a whole set of them. Consequently, the GAIA plane can be extended to permit to convey

information about the plurality of bicapacities compatible with the preferences provided by the DM.

The idea of considering the whole set of bicapacities corresponds to the imprecise determination

of the weight vector for the classical PROMETHEE methods considered in the PROMETHEE VI

Sensitivity Tool [17], in which the weight wj of each criterion gj ∈ G is supposed to be in an interval,

that is w−
j ≤ wj ≤ w+

j . In this way, taking into account the constraint related to the normalization

of the weights, that is w1 + . . . + wn = 1, a polyhedron of feasible weight vector is determined and

it is projected on the GAIA plane. This projection, denoted by ∆, has the same interpretation of

the PROMETHEE decision axis, but, more realistically, it takes into account ill-determination and

imprecision of the weights. The projection ∆ permits to distinguish between:

• soft problems, when the projection of the set of feasible weight vectors does not include the

origin of the axis in the GAIA plane and, then, the direction of the PROMETHEE decision

axis is similar for all feasible weight vectors,

• hard problems, when the projection of the set of feasible weight vectors includes the origin

of the axis in the GAIA plane and, then, the PROMETHEE decision axis corresponding to

74



feasible weight vectors take all directions.

The plurality of feasible weight vectors is also considered by [63] that proposes to couple SMAA

method with the GAIA plane. With this aim, on the basis of the results obtained by the ran-

dom sampling of the preferential parameters, they estimate their distribution that is consequently

projected on the GAIA plane.

In order to better explain this approach, we propose the Example 2.3.1 in which this methodology

is applied to the decision problem at hand.

Example 2.3.1. Provided the evaluations in Table 2.4 and the indifference and preference thresholds

in Table 2.5, it can be calculated a matrix N which has the same size of the evaluation matrix and

that has as elements the single criterion net flows φj(a) defined as in [20], which expresses how much

an alternative a is outranking (φj(a) > 0) or it is outranked (φj(a) < 0) by all the other alternatives

in A with respect to a single criterion only. The matrix N is showed in Table 2.10.

Table 2.10: Matrix N of the single net flow

φ1(·) φ2(·) φ3(·) φ4(·) φ5(·) φ6(·)

Glaxo -0,23866 0,71428 -1 0,11475 0,48778 -0,89476
Sanofi -0,11122 -0,61934 0,72238 0,76078 -0,71429 0,71429
Novartis -0,27615 -0,39875 0,74857 -0,61813 0,44347 0,09987
Roche Holding 0,06304 0,42857 -0,30131 -0,07738 0,38051 -0,13761
AstraZeneca 0,81553 -0,37322 -0,28571 -0,36568 -0,10214 0
Bayer -1 -0,04679 -0,28376 0,66660 -0,71429 0
Merck -0,1513 -0,70476 -0,27208 -0,97178 -0,71429 -0,78179
Novo Nordisk 0,89875 1 0,67189 0,49084 0,93324 1

We also suppose that the DM provides the following preference information about the comparisons

between the importance of (elementary) criteria5:

• EBIT/S is more important than GP/S;

• GP/S is more important than IE/S;

• IE/S is more important than TL/TA;

• TL/TA is more important than AR/S.

5Note that these preferences about comparison between criteria are the same of those in Section 2.4 but without
considering interactions between criteria.
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Now, according with the SMAA approach, we may sample a certain number of compatible weights

vectors that can be projected in the GAIA plane appearing as a cloud of points. This visualization is

showed in Figure 2.4 where it can also be noted that:

• in blue, we have the sampling of 10,000 decision axes,

• in red, we have the decision axis corresponding to the barycenter of the sampling.

Figure 2.4: GAIA plane with the 10,000 sampled decision axes (without interactions between criteria)
with δ = 70, 77%

Keeping in mind the previous Example 2.3.1 and with the aim of including the information given

by the interactions and the antagonistic effects, we note that the vectors â which represent the

sampled feasible bicapacities µ̂, can be directly projected instead of representing an estimation of

their distribution. In this way, one can obtain a useful visualization of the decision problem at hand,

showing the main results obtained through this extension of the SMAA-PROMETHEE methods.

More in detail, on the GAIA plane can be projected:

• the whole set of feasible bicapacities µ̂, represented by the corresponding vectors â, so that the

DM can visualize the set of PROMETHEE decision axis as well as importance, interaction and

antagonistic effects, compatible with the preference information;

• the set of feasible bicapacities µ̂ for which an alternative attains a given ranking position (first,

second, etc...);
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• the set of feasible bicapacities µ̂ for which one alternative is preferred, indifferent or incompa-

rable to another one.

Clearly, the GAIA plane technique can be also applied to single non-elementary criteria in order

to obtain a graphical representation of the SMAA results in case of hierarchical structure of the set

of criteria. In Section 2.4, considering the problem of evaluating pharmaceutical companies, we show

an application of the GAIA plane technique coupled with SMAA in case of hierarchy of interacting

criteria.

2.3.3 The ROR for bipolar PROMETHEE with hierarchy of criteria

In the case of bipolar PROMETHEE with criteria hierarchically structured, the typical results of the

ROR in terms of necessary and possible relations can be obtained as follows:

• a is necessarily preferred to b on gr:

– locally, iff EN = EDM ∪ {ChB(PB

r
(a,b), µ̂) + ε ≤ 0} is infeasible or ε∗N ≤ 0, where

ε∗N = max ε subject to EN ,

– globally and considering the hierarchical bipolar PROMETHEE II method, if EN =

EDM ∪ {φB
r

(a) + ε ≤ φB
r

(b)} is infeasible or ε∗N ≤ 0, where ε∗N = max ε subject to

EN ,

– globally and considering the hierarchical bipolar PROMETHEE I method, if EN is infea-

sible or ε∗N ≤ 0, where ε∗N = max ε subject to EN and

EN =























EDM ,

φB+
r

(a) + ε ≤ φB+
r

(b) + 2M1 and φB−
r

(a) + 2M2 ≥ φB−
r

(b) + ε

where Mi ∈ {0, 1}, i = 1, 2, and
∑2

i=1 Mi ≤ 1,

• a is possibly preferred to b on gr:

– locally, iff EP = EDM ∪{ChB(PB

r
(a,b), µ̂) ≥ 0} is feasible and ε∗P > 0, where ε∗P = max ε

subject to EP ,

– globally and considering the hierarchical bipolar PROMETHEE II method, if EP = EDM∪

{φB
r

(a) ≥ φB
r

(b)} is feasible and ε∗P > 0, where ε∗P = max ε subject to EP ,
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– globally and considering the hierarchical bipolar PROMETHEE I method, if EP is feasible

and ε∗P > 0, where ε∗P = max ε subject to EP where

EP =























EDM ,

φB+
r

(a) ≥ φB+
r

(b),

φB−
r

(a) ≤ φB−
r

(b).

All the parameters representing the interactions between criteria which are not expressed by the

DM are set equal to zero.

The flow chart and main steps of the proposed method

In this section we shall briefly summarize the main steps involved in the application of the hierarchical

bipolar PROMETHEE method (see the flow chart in Fig. 2.5).

Figure 2.5: Flow chart of the hierarchical bipolar PROMETHEE method

Step 0) The problem is structured in a hierarchical way by defining elementary criteria and all other

criteria placed at intermediate level between the root node and the bottom of the hierarchy

(Section 2.1.1);

Step 1) For each elementary criterion one of the six preference functions proposed in [20] has to be

chosen. Each of them involves the definition of at most 2 parameters being indifference and
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preference threshold or the inflection parameter (Section 2.1);

The DM is invited to provide some preference in terms of pairwise comparison between alter-

natives (preference or indifference between them) at comprehensive level (that is considering

all alternatives) or at a partial level (considering only two alternatives). Moreover, could be

provided at the root level (considering all elementary criteria at the same time), or at a certain

node (considering the elementary criteria descending from a certain criterion only). If he is

willing to, the DM can also provide some preference information in terms of importance com-

parison between criteria, positive or negative interaction or antagonistic effect between them

(Section 2.3);

Step 2) The analyst checks if there exists at least one model compatible with the preferences pro-

vided by the DM. If this is not the case, the cause of the infeasibility has to be investigated

(Section 2.3);

Step 3) Several sets of parameters compatible with the preferences provided by the DM (compatible

models) are randomly sampled by using the Hit-And-Run method (Section 2.3.1);

Step 4) For each compatible model the bipolar positive, negative and net flows of each alternative

are computed at root level as well as at partial level. On the basis of this flow the preference and

indifference relations can be computed considering the hierarchical bipolar PROMETHEE I and

II methods, while the incomparability relation can be computed in considering the hierarchical

bipolar PROMETHEE I method (Section 2.2);

Step 5) The SMAA (Section 2.3.1) and ROR (Section 2.3.3) methodologies are applied to get robust

recommendations on the problem at hand and are graphically represented on the GAIA plane

to supply an easily understandable intuition.

This procedure, that has been built for the extension of the PROMETHEE I and II methods to take

into account hierarchy and interaction between criteria as well as robustness concerns, can be easily

adapted to other PROMETHEE methods (PROMETHEE III, IV, V and VI) which extensions have

been briefly described in the Section 2.2.1.

2.4 Illustrative example

In this section we show how to apply the proposed methodology to the financial decision problem

handled starting from section 2.1.1. The eight most capitalized European pharmaceutical companies
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are evaluated on three aspects: Profitability (P), Solvency and Liquidity (S&L) and Managerial

Performance (MP). The evaluations of the eight considered companies on the six elementary criteria

descending from the three macro-aspects have been extracted from [1].

At first, for each pair of alternatives (a, b) ∈ A×A the bipolar vector PB(a, b) has been computed

as described in section 2.1. After that, since we would like to apply the hierarchical extension of the

bipolar PROMETHEE methods, we asked the DM to provide some preference information. He is

confident in giving us the following information:

1. comparisons between the importance of criteria:

• P is more important than S&L that, in turn, is more important than MP ,

•



































EBIT/S is more important than GP/S;

GP/S is more important than IE/S;

IE/S is more important than TL/TA;

TL/TA is more important than AR/S;

2. positive and negative interactions between criteria:

• P and MP are negatively interacting,

• S&L and MP are negatively interacting; in particular, all elementary criteria descend-

ing from S&L are negatively interacting with all elementary criteria descending from

MP ; this means that the pairs of elementary criteria {TL/TA,AR/S}, {TL/TA, IE/S},

{CA/CL,AR/S} and {CA/CL, IE/S} are negatively interacting,

•



































GP/S and EBIT/S are negatively interacting;

GP/S and AR/S are positively interacting;

EBIT/S and IE/S are positively interacting;

TL/TA and CA/CL are negatively interacting;

3. antagonistic effect between criteria:

• S&L has an antagonistic effect over P ; in particular, all elementary criteria descending

from S&L have an antagonistic effect over all elementary criteria descending from P ; this

means that an antagonistic effect is exercised from TL/TA over GP/S and EBIT/S and

from CA/CL over GP/S and EBIT/S;

• AR/S has an antagonistic effect over GP/S.
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At this point, the ROR and the SMAA methodologies are applied to get robust recommendations

on the problem at hand. By applying the ROR to the hierarchical bipolar PROMETHEE II method,

we get the necessary preference relation at global level as well as on the three considered aspects as

shown in Figure 2.6.

Glaxo Sanofi

Merck

Novartis Roche AstraZeneca Bayer

Novo
Nordisk

(a) Comprehensive level

Glaxo

AstraZeneca Bayer

Sanofi

Merck

Novartis

Roche

Novo
Nordisk

(b) Profitability (P)

Glaxo

Sanofi

Bayer
Novo

Nordisk

Novartis

Roche AstraZeneca Merck

(c) Solvency and Liquidity (S&L)

Glaxo

Sanofi

AstraZeneca

Novartis

Roche

Merck Bayer

Novo
Nordisk

(d) Managerial Perfor-
mance (MP)

Figure 2.6: Necessary preference relation at the comprehensive level, as well as with respect to
macro-criteria P, S&L and MP considering the hierarchical bipolar PROMETHEE II method.

As one can see in Fig. 2.6(a), Novo Nordisk is comprehensively necessarily preferred to all other

companies, while all companies apart from Bayer are comprehensively necessarily preferred to Merck.

Considering the remaining six companies, nothing can be concluded looking at this figure since they

are incomparable.

Something different can be observed on the three single main aspects:

• with respect to profitability (Fig. 2.6(b)), again Novo Nordisk is the best, while Merck is the

worst one. Anyway, only the incomparabilities between AstraZeneca and Bayer and between

Roche and AstraZeneca can be highlighted,
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• on solvency and liquidity (Fig. 2.6(c)) Novo Nordisk is no longer the best company. Instead,

Sanofi is necessarily preferred to all other companies but Novartis; looking at the lowest level

of the diagram some companies are necessarily preferred to Glaxo, Roche, AstraZeneca and

Merck, while each of them is not necessarily preferred to anyone else,

• considering managerial performance (Fig. 2.6(d)), Novo Nordisk is, again, the best company,

while Merck, Glaxo and Bayer are at the bottom of the ranking.

Table 2.11: Results obtained by applying SMAA to the hierarchical bipolar PROMETHEE II method

(a) Rank acceptability indices (in percentage) at global level

Pharma Company b1 b2 b3 b4 b5 b6 b7 b8

Glaxo 0 0 1.82 5.7 12.57 57.75 22.16 0
Sanofi 0 66.75 31.02 2.23 0 0 0 0
Novartis 0 0 3.79 17.07 57.88 15.85 5.41 0
Roche Holding 0 33.25 62.84 3.29 0.62 0 0 0
AstraZeneca 0 0 0.53 71.71 27.2 0.56 0 0
Bayer 0 0 0 0 1.73 25.84 72.43 0
Merck 0 0 0 0 0 0 0 100
Novo Nordisk 100 0 0 0 0 0 0 0

(b) Pairwise winning indices (in percentage) at global level

Pharma Company Gl Sa No Ro AsZe Ba Me NoNo

Glaxo (Gl) 0 1.82 19.94 0 8.08 77.43 100 0
Sanofi (Sa) 98.18 0 100 66.75 99.59 100 100 0
Novartis (No) 80.06 0 0 3.79 20.86 93.27 100 0
Roche (Ro) 100 33.25 96.21 0 99.26 100 100 0
AstraZeneca (AsZe) 91.92 0.41 79.14 0.74 0 100 100 0
Bayer (Ba) 22.57 0 6.73 0 0 0 100 0
Merck (Me) 0 0 0 0 0 0 0 0
Novo Nordisk (NoNo) 100 100 100 100 100 100 100 0

(c) Rank acceptability indices (in percentage) with respect to
S&L

Pharma Company b1 b2 b3 b4 b5 b6 b7 b8

Glaxo 0 0 0 0 1.75 13.17 77.68 7.4
Sanofi 100 0 0 0 0 0 0 0
Novartis 0 0 13.92 78.62 5.71 1.75 0 0
Roche Holding 0 0 0 7.46 92.54 0 0 0
AstraZeneca 0 0 0 0 0 85.08 14.92 0
Bayer 0 0 86.08 13.92 0 0 0 0
Merck 0 0 0 0 0 0 7.4 92.6
Novo Nordisk 0 100 0 0 0 0 0 0

(d) Pairwise winning indices (in percentage) on S&L

Pharma Company Gl Sa No Ro AsZe Ba Me NoNo

Glaxo (Gl) 0 0 1.75 0 14.92 0 92.6 0
Sanofi (Sa) 100 0 100 100 100 100 100 100
Novartis (No) 98.25 0 0 92.54 100 13.92 100 0
Roche (Ro) 100 0 7.46 0 100 0 100 0
AstraZeneca (AsZe) 85.08 0 0 0 0 0 100 0
Bayer (Ba) 100 0 86.08 100 100 0 100 0
Merck (Me) 7.4 0 0 0 0 0 0 0
Novo Nordisk (NoNo) 100 0 100 100 100 100 100 0

As previously observed, the necessary preference relations computed at the global level as well

as with respect to the three considered aspects, leave many pairs of companies incomparable. For

example, looking at Fig. 2.6(c), we can observe that, on one hand, Novartis is not necessarily
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preferred to any other company and, on the other hand, no company is necessarily preferred to

it. For this reason, we decided to apply also the SMAA methodology to the hierarchical bipolar

PROMETHEE methods to get some estimate of the frequency with which a company gets a certain

rank position or the frequency with which one company is preferred to another not only at global

level but also with respect to a particular aspect.

As shown in Tables 2.11(a) and 2.11(b), Novo Nordisk is undoubtedly the best among the eight

companies since it achieves always the first position in the ranking and, consequently, it is always

preferred to all other companies. On the opposite side, the Merck is always in the last position and

all companies are always preferred to it. Other information can be gathered:

• apart from Novo Nordisk and Merck filling always the first and the last position, respectively,

all other companies can reach different positions. For instance, Glaxo and Novartis show a non-

zero percentage from the third to the seventh position, while the Bayer fills always a position

from the fifth to the seventh. Moreover, Roche achieves the second position in 33.25% of the

cases;

• looking at Table 2.11(b), Sanofi can be considered the second best company since it is preferred

to all other companies, apart from Novo Nordisk, with a percentage no lower than 66.75%;

conversely, the Bayer is the second worst company since all other ones, apart from Merck, are

preferred to it with a percentage no lower than 77.43%.

Similar considerations can be done also on single aspects. Here we report those related to S&L:

• while Novo Nordisk was always in the first position at a global level, a different situation can

be observed on S&L. Indeed, Sanofi ranks always first (see Table 2.11(c)) and, consequently,

it is always preferred to all other companies (see Table 2.11(d));

• looking at Table 2.11(d), most of the pairwise comparisons are certain, while others are not

true in all cases. For example, AstraZeneca is preferred to Glaxo with the 85.05%, while Glaxo

is preferred to AstraZeneca with a percentage equal to 14.92%; analogously, Glaxo is preferred

to Merck with a percentage of the 92.6%, while the viceversa is true in the 7.4% of the cases.

Let us show how the GAIA plane technique can support the DM in the interpretation of all

the results supplied by the SMAA-PROMETHEE method. With this aim we present and comment

Figures 2.7(a)-2.7(c). Let us start by pointing out that Figures 2.7(a) and 2.7(b) have the same

explained variance δ = 78.72% of Figures 2.3(a),2.3(b) and 2.3(c), because they refer to the same
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(a) Sampling of 10,000 compatible capacities (b) Compatible capacities for which Roche Holding
achieves the second position at global level

(c) A sampling of compatible capacities for
which AstraZeneca is preferred to Glaxo with re-
spect to Solvency and Liquidity

Figure 2.7: GAIA plane for SMAA-PROMETHEE applied to the hierarchy of interacting criteria

matrix Φ. Analogously, Figure 2.7(c) has the same explained variance δ = 92.47% of Figure 2.3(d).

Figure 2.7(a) shows the projection on the GAIA plane of a random sample of 10,000 compatible

bicapacities. It is presented also the PROMETHEE decision axis corresponding to the barycenter of

the sampled compatible bicapacities. Looking at Figure 2.7(a) it is evident how much robust is the

best position of Novo Nordisk, that is in the same direction of the projections of all the compatible

bicapacities, as well as the last position of Merck, which is in the opposite direction. Figure 2.7(b),

instead, permits to have a visualization of the 33.25% of compatible bicapacities for which, according

to Table 2.11(a), Roche Holding gets the second rank position. Comparing them with the whole

set of bicapacities represented in Figure 2.7(a), one can see that Roche Holding is the second for

those bicapacities giving more importance to criteria GP/S, EBIT/S and AR/S. Observe that, again

on the basis of Table 2.11(a), for the other compatible bicapacities Sanofi attains the second rank
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position. Consequently, the compatible bicapacities shown in 2.7(a) but not in 2.7(b) are those for

which the second best company is Sanofi, which is therefore preferred to Roche Holding for those

bicapacities giving more importance to criteria CA/CL, TL/TA and IE/S. Finally, Figure 2.7(c)

presents the projection of the 85.08% compatible bicapacities for which, according to Table 2.11(d),

AstraZeneca is preferred to Glaxo with respect to Solvency and Liquidity. Of course, all the rich and

varied information supplied by PROMETHEE method with respect to all criteria in the hierarchy

can be visualized analogously, permitting to the DM to gain a better insight of the decision problem

and of the recommendation obtained through the decision process.

To conclude this section, we would like to show the usefulness of considering the MCHP in the

problem at hand. To this aim, in Fig. 2.8 we have shown the comparison between Sanofi and Novartis

in terms of frequency of preference of one over the other. In particular, Sanofi is always preferred to

Novartis both at global level as well as on S&L, while Novartis is always preferred to Sanofi on P . A

not so certain comparison can be done on MP . Indeed, on one hand, Sanofi is preferred to Novartis

with a frequency of 58.39%, while the viceversa is true in the remaining 41.61%. Let us observe that

so detailed considerations can be possible only using the extension of the bipolar PROMETHEE

method to the case of criteria structured in a hierarchical way.

Figure 2.8: Frequency of preference of Novartis and Sanofi and viceversa at global level as well as on
the three main aspects considering the hierarhical bipolar PROMETHEE II method
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Chapter 3

Robustness concerns for the level

dependent Choquet integral

In this chapter we show a quite “rich” decision support model built by the ROR and SMAA method-

ologies applied to the level dependent Choquet integral.

On one hand, the level dependent Choquet integral permits to handle criteria for which the

importance and the interaction change from one level to the other of the evaluations. Indeed, the

Choquet integral permits to aggregate the evaluations taking into account interaction of criteria by

using capacities that assign a weight to each subset of the considered criteria and not only to single

criteria as in the usual weighted sum. The level dependent Choquet integral goes a further step

forward taking into account a set of level dependent capacities, that is, a capacity for each level of

the evaluation criteria. This permits to represent different attitudes, that is, different importance

and interaction assigned to considered criteria, for different evaluation levels.

On the other hand, the robustness concerns are handled by an exploration of the space of the

feasible parameters of the decision model, that are, the level dependent capacities compatible with

the preference information supplied by the DM. This is done by applying:

• ROR, that, for each pair of alternatives a and b, tells us if a is preferred to b for all compatible

level dependent capacities (in which case, we say that a is necessarily preferred to b) or for at

least one compatible level dependent capacity (in which case we say that a is possibly preferred

to b);

• SMAA, that, for each alternative a and for each rank order position r, tells us which is the

probability that, randomly extracting a compatible level dependent capacity, a attains the

position r, as well as, for each pair of alternatives a and b, the probability that a is preferred
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to b.

3.1 An introductive explanatory example

Let us explain the richness and usefulness of the level dependent Choquet integral coupled with

methodologies taking into account robustness concerns, as ROR and SMAA, and representing quite

articulated preferences.

Inspired by [44], let us suppose that the dean of a scientifically oriented high school wants to

provide an overall evaluation of its students. For the sake of simplicity, the dean wants to take

into account only notes on Mathematics and Physics, expressed on a thirty point scale. The dean

expresses the following convictions:

• considering the required skills, Physics is more important than Mathematics in evaluating

students with good notes on both subjects, that are those having a mark of at least 26 in these

subjects;

• considering students needing to improve their background, that are students having a mark at

most equal to 25 on the two subjects, Mathematics is more important than Physics;

• a student with notes at least equal to 26 in both subjects is excellent if he has very good notes

both in Mathematics and in Physics;

• among students with notes at most equal to 25 in both subjects, the dean prefers students with

a relatively good note in at least one of the subjects, because this can be seen as a starting

point to reduce the gap from better students.

On the basis of the above considerations, taking into account the students whose evaluations on

the two subjects are presented in Table 3.1, the dean expresses the following preferences

A ≻ C ≻ B ≻ E ≻ F ≻ D

where X ≻ Y means that student X is preferred to student Y , with X, Y ∈ {A,B,C,D,E, F}.

One can see that the dean is giving a rich preference information, but one can also wonder if it

is possible to represent his preferences using a model as simple as possible. The simplest model one

can consider is the weighted sum, that is

U(X) = wM ·M(X) + wPh · Ph(X) (3.1)
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Table 3.1: Students’ notes on Mathematics and Physics

Mathematics (M) Physics (Ph)

A 28 28
B 30 26
C 26 30
D 23 23
E 25 21
F 21 25

where

• U(X) is the overall evaluation of X,

• M(X) and Ph(X) are the notes of X in Mathematics and Physics, respectively,

• wM and wPh are the weights of Mathematics and Physics and they are such that, wM ≥ 0,

wPh ≥ 0 and wM + wPh = 1.

Apparently a so simple model cannot model the preference information supplied by the dean. On

one hand, taking into account students B and C and remembering that the dean prefers C over B,

one would get,

U(B) = wM · 30 + wPh · 26 < wM · 26 + wPh · 30 = U(C) (3.2)

implying that wM < wPh. On the other hand, considering E and F and remembering that the dean

prefers E over F , one could get that

U(E) = wM · 25 + wPh · 21 > wM · 21 + wPh · 25 = U(F ) (3.3)

that implies wM > wPh. Of course the two inequalities translating the preferences of the dean are

incompatible and, consequently, the weighted sum is not able to represent these preferences.

Looking for an amendment of the weighted sum able to represent preferences that cannot be

expressed by using (3.1), one could imagine that weights depend on the level of the notes. For

example, one can imagine that Mathematics has a weight w1
M for notes up to 25, that is M1(X) =

min{M(X), 25}, and weight w2
M for the possible excess to 25, that is, M2(X) = max{M(X)−25, 0}.

Analogously, one could assume that Physics has weight w1
Ph for notes up to 25, that is, Ph1(X) =

min{Ph(X), 25}, and weight w2
Ph for the possible excess to 25, that is, Ph2(X) = max{Ph(X) −

25, 0}. Nonnegativity and normalization of the weights in this case would require that
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w1
M , w2

M , w1
Ph, w

2
Ph ≥ 0, w1

M + w1
Ph = 1, w2

M + w2
Ph = 1. (3.4)

In this way, we could have a new model, the level dependent weighted sum ,(in fact, the two additive

level dependent weighted sum) having the following form:

ULDWS(X) = w1
M ·M1(X) + w2

M ·M2(X) + w1
Ph · Ph1(X) + w2

Ph · Ph2(X) (3.5)

that is

ULDWS(X) = w1
M · min{M(X), 25} + w2

M · max{Ph(X) − 25, 0} + w1
Ph · min{Ph(X), 25}+ (3.6)

+w2
Ph · max{Ph(X) − 25, 0}.

The level dependent weighted sum permits to take into account that, for notes at least equal to 26,

Physics is more important than Mathematics (w2
Ph > w2

M), while for notes at most equal to 25, it is

exactly the opposite (w1
M > w1

Ph).

The level dependent weighted sum is therefore able to represent some of the preferences provided

by the dean. Indeed, considering students B,C,E and F , the preference of C over B is translated

to the constraint

ULDWS(B) = w1
M ·min{30, 25}+w2

M ·max{30−25, 0}+w1
Ph ·min{26, 25}+w2

Ph ·max{26−25, 0} (3.7)

<

w1
M · min{26, 25} + w2

M · max{26 − 25, 0} + w1
Ph · min{30, 25} + w2

Ph · max{30 − 25, 0} = ULDWS(C)

while, the preference of E over F is translated to the constraint

ULDWS(E) = w1
M ·min{25, 25}+w2

M ·max{25−25, 0}+w1
Ph ·min{21, 25}+w2

Ph ·max{21−25, 0} (3.8)

>

w1
M · min{21, 25} + w2

M · max{21 − 25, 0} + w1
Ph · min{25, 25} + w2

Ph · max{25 − 25, 0} = ULDWS(F ).

On one hand, by (3.7) one gets

w1
M · 25 + w2

M · 5 + w1
Ph · 25 + w2

Ph · 1 < w1
M · 25 + w2

M · 1 + w1
Ph · 25 + w2

Ph · 5 (3.9)
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and, consequently, w2
M < w2

Ph.

On the other hand, by (3.1) we get

w1
M · 25 + w2

M · 0 + w1
Ph · 21 + w2

Ph · 0 > w1
M · 21 + w2

M · 0 + w1
Ph · 25 + w2

Ph · 0, (3.10)

and, consequently, w1
M > w1

Ph.

Therefore, we have seen that the level dependent weighted sum permits to represent importance of

criteria changing from a level to another. However, we have still to check if ULDWS allows to consider

also the conjunctive or disjunctive nature of the overall evaluation that changes from one level to

another. In fact, according with the preference information supplied by the dean, the aggregation

procedure has to be

• conjunctive for notes at least equal to 26 in both subjects: in this case, a student good in both

subjects is more appreciated than a student very good in one subject and not so good in the

other,

• disjunctive for notes at most equal to 25 in both subjects: in this case, a student relatively

good in at least one of the two subjects is more appreciated than a student presenting medium

marks on both subjects.

In consequence of the previous observations, in evaluating students A, B and C the dean stated

that A is preferred to C that, in turn, is preferred to B. Using the ULDWS, the previous preferences

are translated into the constraints

ULDWS(A) > ULDWS(C) > ULDWS(B).

The first inequality, that is, ULDWS(A) > ULDWS(C), implies that

w1
M · min{28, 25} + w2

M · max{28 − 25, 0} + w1
Ph · min{28, 25} + w2

Ph · max{28 − 25, 0}

>

w1
M · min{26, 25} + w2

M · max{26 − 25, 0} + w1
Ph · min{30, 25} + w2

Ph · max{30 − 25, 0}

from which, w2
M > w2

Ph.

The second inequality, that is ULDWS(C) > ULDWS(B), instead, implies that
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w1
M · min{26, 25} + w2

M · max{26 − 25, 0} + w1
Ph · min{30, 25} + w2

Ph · max{30 − 25, 0}

>

w1
M · min{30, 25} + w2

M · max{30 − 25, 0} + w1
Ph · min{26, 25} + w2

Ph · max{26 − 25, 0}

and, consequently, w2
Ph > w2

M . Of course, the two obtained inequalities are incompatible since w2
Ph

cannot be simultaneously lower and greater than w2
M .

Analogously, taking into consideration students D,E and F , and reminding that the dean stated

that E is preferred to F that, in turn, is preferred to D, the application of the level dependent

weighted sum would translate these preferences into the following chain of constraints

ULDWS(E) > ULDWS(F ) > ULDWS(D).

On one hand, the first inequality, that is ULDWS(E) > ULDWS(F ), implies w1
M > w1

Ph, while,

on the other hand, the second inequality, that is ULDWS(F ) > ULDWS(D), implies that w1
M < w1

Ph.

Again, the two inequalities are incompatible and, consequently, even the level dependent weighted

sum is not able to represent the preferences given by the DM.

To represent the more or less conjunctive character of the aggregation procedure one can use the

Choquet integral that has been successfully applied in multiple criteria decision analysis to handle

interaction between criteria. The Choquet integral of the evaluations of student X on Mathematics

and Physics can be defined as follows:

UCh(X) =







M(X) + wCh
Ph · (Ph(X) −M(X)) iff M(X) ≤ Ph(x),

Ph(X) + wCh
M · (M(X) − Ph(X)) iff M(X) ≥ Ph(x),

(3.11)

with 0 ≤ wCh
M , wCh

Ph ≤ 1 and not necessarily wCh
M +wCh

Ph = 1. Let us see if the Choquet integral permits

to represent the preferences expressed by the dean on students A,B and C. Since A ≻ C ≻ B we

should have

UCh(A) > UCh(C) > UCh(B),

and, consequently,

28 + wCh
Ph × 0 > 26 + 4 · wCh

Ph > 26 + 4 · wCh
M
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from which

0.5 > wCh
Ph > wCh

M (3.12)

which is in agreement with the greater importance assigned by the dean to Physics over Mathematics

in case of notes not smaller than 26 in both the two subjects. Thus we proved that the Choquet

integral can represent the preferences about students A,B and C.

With analogous considerations, we can show that the Choquet integral can represent also the

preferences over students D,E and F . In fact, from E ≻ F ≻ D we obtain that

UCh(E) > UCh(F ) > UCh(D),

and, consequently,

21 + 4 · wCh
M > 21 + 4 · wCh

Ph > 23 + 0 · wCh
Ph.

The inequalities above imply that

wCh
M > wCh

Ph > 0.5 (3.13)

which are in agreement with the greater importance assigned by the dean to Mathematics over

Physics in case of notes not greater than 25 in both subjects. Thus also the preferences between the

students E,F and D can be represented by the Choquet integral UCh.

However let us remark that conditions (3.12) and (3.13) are incompatible, which means that the

Choquet integral is not able to represent, simultaneously, all the preferences expressed by the dean

over the six students. The problem is that the importance of criteria as well as the conjunctive

or disjunctive nature of the aggregation procedure are different for students with notes at least

equal to 26 and students with notes at most equal to 25. Thus, one has to further generalize

the model considering the level dependent Choquet integral [53] that permits to take into account

importance of criteria and interaction between criteria related to conjunctive or disjunctive nature

of the aggregation procedure that can change from one level to the others of the evaluations on

considered criteria. With respect to the overall evaluation of students on Mathematics and Physics,

the level dependent Choquet integral can be formulated as follows:

ULDCh(X) =







UM(X) iff M(X) ≤ Ph(X),

UPh(X) iff M(X) ≥ Ph(X),
(3.14)
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where

UM(X) = M(X)+wCh,1
Ph ·(min{Ph(X), 25}−min{M(X), 25})+wCh,2

Ph ·(max{Ph(X), 25}−max{M(X), 25}),

and

UPh(X) = Ph(X)+wCh,1
M ·(min{M(X), 25}−min{Ph(X), 25})+wCh,2

M ·(max{M(X), 25}−max{Ph(X), 25}).

Let us check if the level dependent Choquet integral is able to represent the preferences over the

six students, that is if there exist wCh,1
M , wCh,2

M , wCh,1
Ph and wCh,2

Ph such that

ULDCh(A) > ULDCh(C) > ULDCh(B) > ULDCh(E) > ULDCh(F ) > ULDCh(D).

Using Eq. (3.14), the previous inequalities are translated into the following chain of constraints:

ULDCh(A) = 28 + wCh,1
Ph · (min{28, 25} − min{28, 25}) + wCh,2

Ph · (max{28, 25} − max{28, 25})

>

ULDCh(C) = 26 + wCh,1
Ph · (min{30, 25} − min{26, 25}) + wCh,2

Ph · (max{30, 25} − max{26, 25})

>

ULDCh(B) = 26 + wCh,1
M · (min{30, 25} − min{26, 25}) + wCh,2

M · (max{30, 25} − max{26, 25})

>

ULDCh(E) = 21 + wCh,1
M · (min{25, 25} − min{21, 25}) + wCh,2

M · (max{25, 25} − max{21, 25})

>

ULDCh(F ) = 21 + wCh,1
Ph · (min{25, 25} − min{21, 25}) + wCh,2

Ph · (max{25, 25} − max{21, 25})

>

ULDCh(D) = 23 + wCh,1
Ph · (min{23, 25} − min{23, 25}) + wCh,2

Ph · (max{23, 25} − max{23, 25}).

We obtain the following conditions:

1. ULDCh(A) > ULDCh(C) ⇒ 2 > wCh,2
Ph · 4 ⇒ 0.5 > wCh,2

Ph ,
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2. ULDCh(C) > ULDCh(B) ⇒ wCh,2
Ph · 4 > wCh,2

M · 4 ⇒ wCh,2
Ph > wCh,2

M ,

3. ULDCh(E) > ULDCh(F ) ⇒ wCh,1
M · 4 > wCh,1

Ph · 4 ⇒ wCh,1
M > wCh,1

Ph ,

4. ULDCh(F ) > ULDCh(D) ⇒ wCh,1
Ph · 4 > 2 ⇒ wCh,1

Ph > 0.5.

The four inequalities above are not in contradiction and, therefore, the level dependent Choquet in-

tegral permits to represent the preferences expressed by the dean. Moreover, the conditions perfectly

translate the preferences of the dean in terms of importance of criteria and the desired conjunctive

and disjunctive nature of the aggregation. However, there is still another aspect that deserves to be

investigated. Let us consider the new students G, H and I whose notes in Mathematics and Physics

are presented in Table 3.2 trying to rank them on the basis of conditions 1.-4. above.

Table 3.2: Notes on Mathematics and Physics of the new students

Mathematics (M) Physics (Ph)

G 26 29
H 29 26
I 30 27

On one hand, comparing G and H, we get that

ULDCh(G) = 26 + wCh,1
Ph · (min{29, 25} − min{26, 25}) + wCh,2

Ph · (max{29, 25} − max{26, 25})

>

26 + wCh,1
M · (min{29, 25} − min{26, 25}) + wCh,2

M · (max{29, 25} − max{26, 25}) = ULDCh(H)

being always true since it coincides with condition 2.

On the other hand, comparing G and I, we can have ULDCh(G) > ULDCh(I) as well as ULDCh(I) >

ULDCh(G), depending on the values of wCh,1
M , wCh,2

M , wCh,1
Ph and wCh,2

Ph . Indeed, we get

ULDCh(G) = 26 + wCh,1
Ph · (min{29, 25} − min{26, 25}) + wCh,2

Ph · (max{29, 25} − max{26, 25})

>

27 + wCh,1
M · (min{30, 25} − min{27, 25}) + wCh,2

M · (max{30, 25} − max{27, 25}) = ULDCh(I),

iff

26 + wCh,2
Ph · 3 > 27 + wCh,2

M · 3, (3.15)
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as well as ULDCh(G) < ULDCh(I) when

26 + wCh,2
Ph · 3 < 27 + wCh,2

M · 3. (3.16)

None of the two inequalities is in contradiction with conditions 1.-4. Therefore, we have to conclude

that the preference information given by the DM, and formally expressed by conditions 1.-4., does

not permit to rank order unambiguously all students since different values of parameters can provide

a different comparison of G and I. For example, taking wCh,2
M = 1

18
and wCh,2

Ph = 4
9

we get

ULDCh(G) = 27.333 > 27.166 = ULDCh(I) (3.17)

while, taking wCh,2
M = 1

6
and wCh,2

Ph = 1
3

we get

ULDCh(G) = 27 < 27.5 = ULDCh(I). (3.18)

With a more level of detail, we can say that student G will be overall evaluated at least as good as

student I, that is, ULDCh(G) ≥ ULDCh(I), in case wCh,2
M and wCh,2

Ph satisfy conditions 1.-4. on one

hand, and condition

ULDCh(G) ≥= ULDCh(I) ⇔ 26 + wCh,2
Ph · 3 ≥ 27 + wCh,2

M · 3 ⇔ wCh,2
Ph · 3 ≥ 1 + wCh,2

M · 3, (3.19)

on the other hand.

In the space wCh,2
M −wCh,2

Ph , this amounts to the set of weights in the triangle WG%I having vertices

P2 = (1
6
, 1
2
), P3 = (0, 1

2
) and P4 = (0, 1

3
) in Figure 3.1. Instead, student I will get an overall evaluation

not worse than G, that is, ULDCh(I) ≥ ULDCh(G), in case wCh,2
M and wCh,2

Ph satisfy conditions 1.-4.

and condition

ULDCh(G) ≤= ULDCh(I) ⇔ 26 + wCh,2
Ph · 3 ≤ 27 + wCh,2

M · 3 ⇔ wCh,2
Ph · 3 ≤ 1 + wCh,2

M · 3, (3.20)

that is, the set of weights in the trapezoid WI%G having vertices P1 = (1
2
, 1
2
), P2 = (1

6
, 1
2
), P4 = (0, 1

3
)

and O = (0, 0) in Figure 3.1. The centroids of WG%I and WI%G are the pairs of weights (wCh,2
M , wCh,2

Ph )

P5 = ( 1
18
, 4
9
), and P6 = (1

6
, 1
3
), respectively, that have been used as examples of parameters for which

ULDCh(G) > ULDCh(I) and ULDCh(G) < ULDCh(I).

The above considerations show that a special attention has to be given to robustness concerns

95



Figure 3.1: Representation of the subset of weights in the wCh,2
M -wCh,2

Ph space for which G is necessarily
preferred to I (the triangle WG%I ≡ P2P3P4) or I is necessarily preferred to G (the trapezoid WI%G ≡
P1P2P4O)

related to the application of the decision model. In general, it is always advisable to avoid to consider

only one instance of the decision model compatible with the preference information provided by the

DM (in our example the dean) because its choice is arbitrary to some extent. One possible answer

to this type of situations is to distinguish preferences that hold for all compatible decision models

and preferences that hold for at least one compatible decision model, called respectively necessary

and possible preferences ([27, 58]). With respect to students G, H and I we have to conclude that

we have a necessary preference of G over H and, also, due to dominance with respect to notes in

Mathematics and Physics, of H over I. Instead, with respect to students G and I we have only a

possible preference both for G over I and for I over G.

One can try to give a more precise evaluation of the range of compatible decision models for which

student G is more appreciated than student I and viceversa by estimating the probability that picking

randomly a vector of compatible parameters one gets G preferred over I or viceversa. Let us observe

that the overall evaluations of students G,H and I involve only the weights wCh,2
M and wCh,2

Ph , while

the weights wCh,1
M and wCh,1

Ph have no role. Consequently, to compare students G, H and I, the set of

the compatible decision models can be identified with the set W of pairs of weights
(

wCh,2
M , wCh,2

Ph

)

satisfying conditions 1.-4. (in fact, only conditions 1. and 2., because conditions 3. and 4. are related

to the weights wCh,1
M and wCh,1

Ph ). The set W of compatible weights
(

wCh,2
M , wCh,2

Ph

)

are represented by

the triangle having vertices O, P1 and P3 in figure 3.1. We have already seen that the the triangle

WG%I represents the set of pairs of weights (wCh,2
M , wCh,2

Ph ) for which G is at least as good as I, while
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the trapezoid WI%G represents the set of pairs of weights for which I is at least as good as G. One can

assume a uniform distribution on the set of compatible pairs of weights W . Under this hypothesis,

the probability of random picking a decision model for which G is preferred to I is given by the ratio

between the area of WG%I and the area of W , while the analogous probability for I being preferred

to G is given by the ratio between the area of WI%G and the area of W . Since the area of W , WG%I

and WI%G are 1
8
, 1

72
and 8

72
, respectively, we have that the probability of obtaining G preferred over

I is 1
9
, while the probability of having I preferred over G is 8

9
. Instead, we have already seen that

for all compatible decision models G is preferred to H as well as I is preferred to H, so that the

corresponding probabilities are equal to 1. One could also look for the probability for which each

student G, H and I attains the first, the second and the third ranking position. Since we have

already seen both G and I are always preferred to H, we have to conclude that H takes always

the third ranking position, so that the probability of being the third is 1 while the probability of

being the first or the second is null. Instead G takes the first ranking position if he is preferred to I,

otherwise he is the second. Consequently, the probability that G attains the first ranking position is

1
9
, while the probability of being the second is 8

9
. Analogously, we have that for I the probabilities of

being the first and the second are 8
9

and 1
9
, respectively. Both for G and I the probability of being

the third is null. In the following we shall show how to apply systematically the decision analysis

approach proposed in this introductive example.

3.2 NAROR and SMAA applied to the level dependent

Choquet integral preference model

In this section we shall describe the extension of the NAROR and the SMAA to the level dependent

Choquet integral.

3.2.1 The NAROR for the level dependent Choquet integral

The extension of the NAROR analysis to the level dependent Choquet integral preference model can

be implemented by considering that, given the preferences information provided by the DM and fixed

a partition of the evaluation scale, it computes the necessary relations and the possible relations for

each interval of the level dependent capacity and it also compute the same relations considering the

global level dependent capacity µL.

So, the DM can provide (among parenthesis the constraints translating this piece of preference
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information):

• a possibly incomplete binary relation %DM on a subset of alternatives A∗ ⊆ A for which

a %DM b iff a is at least as good as b
(

ChL(a, µL) ≥ ChL(b, µL)
)

,

• a possibly incomplete binary relation %DM on a subset of criteria G∗ ⊆ G, for which gi %
DM gj

iff gi is at least as important as gj
(

φ(i, µL) ≥ φ(j, µL)
)

,

• a possibly incomplete binary relation %DM
[ar−1,ar [

on a subset of criteria G∗ ⊆ G, for which

gi %
DM
[ar−1,ar[

gj iff, considering the evaluations in the interval [ar−1, ar[, gi is at least as important

as gj
(

φ(i, µL, [ar−1, ar[) ≥ φ(j, µL, [ar−1, ar[)
)

,

• positive or negative interactions between criteria gi and gj in a comprehensive way (I(µL, {i, l}) >

0 if gi and gj are positively interacting, while I({i, j}, µL) < 0 if gi and gj are negatively in-

teracting) or considering a particular interval of evaluations
(

I({i, j}, µL, [ar−1, ar[) > 0 if gi

and gj are positively interacting, while I({i, j}, µL, [ar−1, ar[) < 0 if gi and gj are negatively

interacting).

Considering a 2-additive interval level dependent capacity µL relative to the breakpoints a0, a1, . . . , ap

and mr the Möbius representation of the capacities µr, r = 1, . . . , p, to check if there exists at least

one interval level dependent Choquet integral compatible with the preferences provided by the DM,

the following LP problem has to be solved
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ε∗ = max ε, subject to,

ChL(a, µL) ≥ ChL(b, µL) + ε, if a ≻DM b,

ChL(a, µL) = ChL(b, µL), if a ∼DM b,

φ(i, µL) ≥ φ(j, µL) + ε, if gi ≻
DM gj,

φ(i, µL) = φ(j, µL), if gi ∼
DM gj,

φ(i, µL, [ar−1, ar[) ≥ φ(j, µL, [ar−1, ar[) + ε, if gi ≻
DM
[ar−1,ar[

gj,

φ(i, µL, [ar−1, ar[) = φ(j, µL, [ar−1, ar[), if gi ∼
DM
[ar−1,ar[

gj,

I({i, j}, µL) ≥ ε if gi and gj are comprehensively positively interacting,

I({i, j}, µL, [ar−1, ar[) ≥ ε if gi and gj are positively interacting considering

evaluations in the interval [ar−1, ar[,

I({i, j}, µL) ≤ −ε if gi and gj are comprehensively negatively interacting,

I({i, j}, µL, [ar−1, ar[) ≤ −ε if gi and gj are negatively interacting considering

evaluations in the interval [ar−1, ar[,

mr (∅) = 0,
∑

i∈G

mr ({i}) +
∑

{i,j}⊆G

mr ({i, j}) = 1,

mr ({i}) ≥ 0, ∀i ∈ G,

mr ({i}) +
∑

j∈E

mr ({i, j}) ≥ 0, ∀i ∈ G and ∀ E ⊆ G \ {i} , E 6= ∅.
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EDM

(3.21)

If EDM is feasible and ε∗ > 0, then there exists at least one interval level dependent capacity

compatible with the preferences provided by the DM, otherwise, there is not any interval level

depedent capacity compatible and therefore, the constraints causing this incompatibility can be

checked by using one of the methods presented in [81].

In general, if there exists one interval level dependent capacity compatible with the preferences

provided by the DM, more than one there exists and, therefore, the choice of only one of them can be

considered arbitrary to some extent. For this reason, ROR takes into account all of them defining a

necessary %N and a possible %P preference relation. The necessary preference relation holds between

two alternatives a and b if a is at least as good as b for all compatible models, while the possible

preference relation holds between a and b if a is at least as good as b for at least one compatible
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model.

From a computational point of view, the two preference relations can be computed as follows:

• a %N b iff EN(a, b) is infeasible or εN ≤ 0 where = εN max ε subject to EN(a, b) and

EN(a, b) = {ChL(b, µL) ≥ ChL(a, µL) + ε} ∪ EDM ,

• a %P b iff EP (a, b) is feasible and εP > 0 where = εP max ε subject to EP (a, b) and

EP (a, b) = {ChL(a, µL) ≥ ChL(b, µL)} ∪ EDM .

3.2.2 The SMAA for the level dependent Choquet integral

In order to apply SMAA to the level dependent Choquet integral, we shall denote by χ the evaluation

space and by M the set of all interval level dependent capacities satisfying the constraints in EDM .

As we remarked in Section 1.4.2, SMAA takes into account all the models compatible with the

preferences provided by the DM even if in a different way. The indirect preference information is

composed of two probability distributions, fχ and fM, defined on χ and M, respectively.

So in the case of level dependent Choquet integral, given ξ ∈ χ and µL ∈ M, SMAA methods define

the rank function as:

rank(a, ξ, µL) = 1 +
∑

b∈A\{a}

ρ
(

ChL(ξb, µ
L) > ChL(ξa, µ

L)
)

,

(where ρ(false) = 0 and ρ(true) = 1 and ξa are the evaluations of a in the matrix ξ) that gives

the rank position of alternative a. On the basis of this rank function, SMAA-2 computes the set of

capacities Ms(a, ξ) ⊆ M for which alternative a assumes rank s = 1, 2, . . . , |A|, as follows:

Ms(a, ξ) =
{

µL ∈ M : rank(a, ξ, µL) = s
}

.

The following indices are therefore computed in SMAA-2:

• The rank acceptability index that measures the variety of different parameters compatible with

the DM’s preference information giving to a the rank s:

bs(a) =

∫

ξ∈χ

fχ(ξ)

∫

µL∈Ms(a,ξ)

fM(µL) dµLdξ;
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bs(a) gives the probability that a has rank s, and it is within the range [0, 1].

• The pairwise winning index [77] that is defined as the frequency that an alternative a is preferred

to an alternative c in the space of the interval level dependent capacities:

p(a, c) =

∫

µL∈M

fM(dµL)

∫

ξ∈χ: ChL(ξa,µL)>ChL(ξc,µL)

fχ(ξ) dξdµL.

From a computational point of view, the multidimensional integrals defining the considered indices are

estimated by using the Monte Carlo method. In particular, since the preference information provided

by the DM and translated by constraints in EDM defines a convex space of parameters (interval level

dependent capacities), the Hit-And-Run (HAR) method can be used to sample several of these sets of

parameters [96, 101, 103]. The application of the level dependent Choquet integral to each of these

sets of parameters produces a ranking of the alternatives at hand. Consequently, considering all

these rankings simultaneously, the rank acceptability index, as well as the pairwise winning indices

described above, can be computed for each alternative and for each pair of alternatives, respectively.

3.3 Illustrative example

In this section we shall present an example of the application of the proposed methodology putting

together with the interval level dependent Choquet integral, the NAROR and the SMAA methdolo-

gies. For this reason, we will recall the example provided in [53]. 11 students have to be evaluated

on a [18, 30] scale on Mathematics (M), Physics (P) and Literature (L) as shown in Table 3.3. Let

us observe that w.r.t. the original example, three more students (S9, S10, S11) have been taken into

account.

Figure 3.2: Dominance relation between the 11 students

S1

S3 S4

S2

S5 S6

S7 S8

S9 S10 S11

Looking at the evaluations of the considered students, one can get the dominance relation shown

in Figure 3.2. Anyway, many pairs of students are still incomparable and, therefore, the dean decides
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Table 3.3: Students’ evaluations on the three considered subjects

Mathematics (M) Physics (P) Literature (L)

S1 28 28 27
S2 27 28 28
S3 26 26 25
S4 25 26 26
S5 23 23 22
S6 22 23 23
S7 19 19 18
S8 18 19 19
S9 18 30 18
S10 30 18 19
S11 19 18 30

to provide the following preference information:

S1 ≻ S2; S4 ≻ S3; S5 ≻ S6; S8 ≻ S7.

As already observed in [53], the Choquet integral is not able to represent these preferences. For this

reason, we apply the interval level dependent Choquet integral considering the partition a0 = 18,

a1 = 22, a2 = 25, a3 = 27, a4 = 30 of the interval [18, 30]. Solving the LP problem (3.21), we get

ε∗ > 0. This means that there exists at least one interval level dependent capacity compatible with

the preference information provided by the DM.

At this point, to have more insight on the considered ranking, we apply the NAROR. In particular,

Figure 3.3 shows the necessary preference relation. This provides a complete ranking of the first 8

students. Anyway, the other three added students result incomparable with the remaining ones. For

this reason, we decided to apply the SMAA methodology in order to investigate how the three added

students can be compared with the other 8 students.

In Tables 3.4(a) and 3.4(b), we show the Rank Acceptability Indices and the Pairwise Winning

Indices relative to the 11 students at hand.

As one can see in Table 3.4(a), S1 and S2 fill always the first and the second position in the

considered ranking, while S4 and S3 are in the third and in the fourth positions, respectively, with a

percentage very close to the 100%. Analogously, the last two positions are filled almost surely by S8

and S7 since b10(S8) and b11(S7) are equal to the 99.99%. Regarding the three students S9, S10 and

S11, looking at the positions for which they present the highest rank acceptability index, these are the
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Figure 3.3: Necessary preference relation between the 11 students. Red arrows represent the prefer-
ences provided by the DM.

S1

S2

S4

S3

S5

S6

S8

S7

S9 S10 S11

Table 3.4: Results obtained by applying SMAA to the interval level dependent Choquet integral

(a) Rank acceptability indices (in percentage)
b1(·) b2(·) b3(·) b4(·) b5(·) b6(·) b7(·) b8(·) b9(·) b10(·) b11(·)

S1 100 0 0 0 0 0 0 0 0 0 0
S2 0 100 0 0 0 0 0 0 0 0 0
S3 0 0 0 94.597 5.403 0 0 0 0 0 0
S4 0 0 96.048 3.952 0 0 0 0 0 0 0
S5 0 0 0 0 20.119 40.988 32.924 5.969 0 0 0
S6 0 0 0 0 0 13.492 37.716 38.571 10.221 0 0
S7 0 0 0 0 0 0 0 0 0 0.004 99.996
S8 0 0 0 0 0 0 0 0 0.01 99.99 0
S9 0 0 2.286 0.29 24.546 11.462 8.91 20.956 31.549 0.001 0
S10 0 0 0.004 0.025 28.944 18.962 13.009 17.998 21.058 0 0
S11 0 0 1.662 1.136 20.988 15.096 7.441 16.506 37.162 0.005 0.004

(b) Pairwise winning indices (in percentage)

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11

S1 0 100 100 100 100 100 100 100 100 100 100
S2 0 0 100 100 100 100 100 100 100 100 100
S3 0 0 0 0 100 100 100 100 97.424 99.971 97.202
S4 0 0 100 0 100 100 100 100 97.714 99.996 98.338
S5 0 0 0 0 0 100 100 100 61.66 52.807 60.79
S6 0 0 0 0 0 0 100 100 55.903 43.035 55.541
S7 0 0 0 0 0 0 0 0 0 0 0.004
S8 0 0 0 0 0 0 100 0 0.001 0 0.009
S9 0 0 2.576 2.286 38.34 44.097 100 99.999 0 44.905 54.308
S10 0 0 0.029 0.004 47.193 56.965 100 100 55.095 0 57.541
S11 0 0 2.798 1.662 39.21 44.459 99.996 99.991 45.692 42.459 0

9th (b9(S9) = 31.549%), the 5th (b5(S10) = 28.944%) and the 9th again (b9(S11) = 37.162%). Anyway,

these three students are more or less similar among them if one looks at Table 3.4(b). Indeed, on one

hand, S10 is preferred to S9 and S11 more than the viceversa but with frequencies very close to the

50% (p(S10, S9) = 55.095% and p(S10, S11) = 57.541%); on the other hand, S9 and S10 are preferred
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to S11 more frequently than the viceversa (p(S11, S9) = 45.692% and p(S11, S10) = 42.459%).
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Chapter 4

Concluding remarks

In this thesis we have mainly dealt with two important issues of MCDA, which are the interaction

between criteria and the robustness concerns of the results.

In Chapter 1 we have seen a procedure which integrated two preference models, such as the

PROMETHEE II and the Choquet integral, with the Stochastic Multicriteria Acceptability Anal-

ysis (SMAA) methodologies to compare the performances of different sailboats in sailing regattas

accounting also for the different scales in which each criterion is expressed [4]. In particular, the

application of the SMAA-Choquet method permits, on one hand, to compute a scale common to

all the evaluations and, on the other hand, it permits to take into account the possible positive and

negative interactions among the five considered criteria highlighted by the Decision Maker (DM).

Dealing with real world decision problems, we generally face a lot of features such as: hierarchical

structure of criteria, interaction between criteria and uncertainty or imprecision in the evaluations

of the alternatives. Moreover, we have also observed that PROMETHEEE methods are widely used

in Multiple Criteria Decision Aiding [13] to deal with such type of problems.

In Chapter 2 we have showed an extension of the PROMETHEE methods presented in [7], where

the hierarchical bipolar PROMETHEE methods combine the Multiple Criteria Hierarchy Process

(MCHP), the PROMETHEE methods and the bipolar Choquet integral together with the Robust

Ordinal Regression (ROR) and the SMAA.

In particular, we showed an extension of the bipolar Choquet integral to problems presenting

criteria organized in an hierarchy by considering indirect preference information provided by the

DM. ROR and SMAA methodologies provide robust recommendations with respect to the problem

at hand by exploring the whole set of parameters compatible with the provided preferences. All this

decision procedure is supported by the graphical visualization supplied by an extension of the GAIA
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plane technique that permits to take into account interaction and antagonistic effects of criteria

organized in a hierarchy as well as the plurality of feasible parameters compatible with the provided

preference information.

We would like to underline that the proposed method is not a simple aggregation of methods

already existing. The hierarchical bipolar PROMETHEE method is the result of a harmonization

of all of them involving a fine adaptation. Moreover we believe that the points we considered are

crucially relevant in many real world decision problems that can benefit from the methodology we

have proposed.

Parsimony of models in multiple criteria decision analysis has to be tempered by the possibility

to permit a rich interaction with the DM and the consideration of robustness concerns. In this

perspective, in Chapter 3, we showed a decision model that has the following interesting properties:

• interaction between criteria is taken into consideration,

• importance and interaction of criteria can change from one level to the other of the evaluations

taken by considered alternatives on criteria at hand,

• the parameters of the model are obtained by starting from some preference information supplied

by the decision makers in terms that are relatively easily understandable by them such as

– pairwise comparisons of some alternatives,

– comparisons of criteria in terms of their importance,

– nature of interaction between criteria (synergy or redundancy) and comparisons related

to intensity of the interaction between pairs of criteria;

• consideration of the plurality of instances of the decision model compatible with the preferences

provided by the DM so that, not only necessary preferences (valid for all compatible models)

are distinguished from possible preferences (valid for at least one compatible model), but even

a probabilistic evaluation of a preference of an alternative over another or the ranking position

of the alternatives is given to the DM.

All this is obtained by coupling:

• the level dependent Choquet integral, which permits to take into account importance and

interaction of criteria that can change from one level to the other of the evaluations of criteria,
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• the Robust Ordinal Regression and the Stochastic Multiobjective Acceptability Analysis method-

ologies, which permit to take into account the plurality of instances of the preference model

compatible with the preference information supplied by the decision makers.

We believe that the good properties of the methodology we have proposed can be very useful in

many real life complex decision problems related to many domains of interest.
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[28] S. Corrente, S. Greco, and R. S lowiński. Multiple Criteria Hierarchy Process in Robust Ordinal

Regression. Decision Support Systems, 53(3):660–674, 2012.
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