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COMPLETING SIMPLE PARTIAL k-LATIN SQUARES

NICHOLAS CAVENAGH a , GIOVANNI LO FARO b∗ AND ANTOINETTE TRIPODI b

ABSTRACT. We study the completion problem for simple k-Latin rectangles, which are a
special case of the generalized latin rectangles for which embedding theorems are given
by Andersen and Hilton (1980) in “Generalized Latin rectangles II: Embedding”, Discrete
Mathematics 31(3). Here an alternative proof of those theorems are given for k-Latin
rectangles in the “simple” case. More precisely, generalizing two classic results on the
completability of partial Latin squares, we prove the necessary and sufficient conditions for
a completion of a simple m×n k-Latin rectangle to a simple k-Latin square of order n and
we show that if m ≤ n/2, any simple partial k-Latin square P of order m embeds in a simple
k-Latin square L of order n.

1. Introduction

An m×n k-Latin rectangle is an m×n array of multisets, each of size k, such that each
element of N(n) = {1,2, . . . ,n} occurs k times in each row and at most k times in each
column. If there are no repeated elements within a cell we say that the k-Latin rectangle is
simple. If m = n then we obtain a k-Latin square of order n. A 1-Latin square is simply a
Latin square. Observe that k ≤ n is necessary for the existence of a simple k-Latin square of
order n. It is not hard to show that a simple k-Latin square of order n exists whenever k ≤ n;
see Lemma 1.2 of Cavenagh et al. (2011).

The above combinatorial structures are examples of a more general structure introduced
by Andersen and Hilton (1980). Here a partial (p,q,x)-Latin rectangle is a a rectangular
matrix in which each cell is filled with at most x symbols, each symbol occurs at most p
times in each row and each symbol occurs at most q times in each column. Thus the above
structures are particular types of (k,k,k)-Latin rectangles.

Using Hall’s theorem, it was shown by Cavenagh et al. (2011) that any m×n k-Latin
rectangle embeds in a k-Latin square of order n. Unbeknownst to the authors this is implied
by Theorem 4.1.1 of Andersen and Hilton (1980).

Theorem 1.1. (Andersen and Hilton 1980; Cavenagh et al. 2011) Let R be an m×n k-Latin
rectangle of order n. Then R completes to a k-Latin square of order n.
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However, the above theorem does not hold in general if we require a completion to a
simple k-Latin square, even when k = 2. For n = 3, we exhibit an example of a 2×3 simple
2-Latin rectangle which clearly does not complete to a simple 2-Latin square.

1,2 2,3 3,1
1,2 2,3 3,1

A partial k-Latin square of order n is an n×n array of multisets, each of size between
0 and k, such that each element of N(n) occurs at most k times in each row and at most k
times in each column. Again, if there are no repeated elements within a cell we say that the
partial k-Latin square is simple.

In this paper we consider the completability of certain partial k-Latin squares to k-Latin
squares, generalizing two classic results on the completability of partial Latin squares. We
show that an m× n k-Latin rectangle R completes to a simple k-Latin square of order n
whenever R is simple and m ≤ n− k (Theorem 2.4), generalizing Evan’s theorem on Latin
rectangles (1960). Moreover we give necessary and sufficient conditions for a completion if
m > n− k. In Theorem 2.9 we generalize the well-known result (a special case of Ryser’s
condition, 1951) that any partial Latin square of order m embeds in a Latin square of order
n whenever n ≥ 2m. It is easy to show that this is best possible as any k-Latin square of
order m cannot embed in a k-Latin square of order n if n < 2m. Finally, some examples are
given to explain the hypotheses of the results.

Theorems 2.4 and 2.9 are each implied by Theorem 4.1.2 of Andersen and Hilton (1980)
which gives a much more general result, however the proofs in our paper were found
independently.

2. Main Results

To obtain our main results we will apply a graph-theoretic result which will be given
in terms of factors and factorizations and proved for the sake of completeness and self-
sufficiency, although it is a particular case of a more general result on balanced edge-
colorings of bipartite graphs (see De Werra 1970).

In the following any graph is allowed to have parallel edges unless it is specified to be
simple.

Let f be some function from the vertices of a graph G to the non-negative integers. A
subgraph H of G is said to be an f -factor if the degree of each vertex v in H is equal to f (v).
In the case where f (v) = k for each vertex v where k is a positive integer we say that H is a
k-factor. For any vertex v in a given graph G, δH(v) is defined to be the number of edges
incident with v and a vertex from H, where H is any subset of the vertex set of G.

We make use of the following results, the first of which is a well-known corollary of
Hall’s theorem. The second is due to Ore (1957) and Folkman and Fulkerson (1970); see
also Akiyama and Kano (2011) for a proof.

Theorem 2.1. Let G be a regular bipartite graph. Then G has a 1-factorization, i.e. a
partition of the edges into 1-factors.
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Theorem 2.2. (Ore 1957; Folkman and Fulkerson 1970) The f -Factor Theorem for
Bipartite Graphs: Let G be a bipartite graph with bipartition (U,V ). Then G has an
f -factor if and only if ∑x∈U f (x) = ∑x∈V f (x) and

∑
x∈S

f (x)+ ∑
x∈T

(δU\S(x)− f (x))≥ 0

for all subsets S ⊂U and T ⊂V .

A simple k-factorization of a graph G is a set of simple k-factors of G which include
each edge of G exactly once. The following graph theoretic theorem allows us to prove the
main results in this paper.

Theorem 2.3. Let B be an mk-regular bipartite graph with maximum edge multiplicity at
most m. Then B has a simple k-factorization.

Proof. The result is trivially true for m = 1, so we assume that m ≥ 2. Let E be the (possibly
empty) set of edges of multiplicity m (here E is a set rather than a multiset, i.e. only one
copy of each such edge is included). It suffices to show that B has a simple k-factor F which
includes each edge from E. The removal of F then results in an (m−1)k-regular bipartite
graph with maximum edge multiplicity at most m−1 and the result follows inductively.

Let B1 be the simple graph obtained from B by replacing each edge of multiplicity at
least 2 with a single edge. We need to show that the graph B1 has a k-factor which includes
all the edges from E.

Let B2 be the graph obtained by removing the edges of E from B1. For each vertex v in
B2, define f (v) = k−dv, where dv is the number of edges in E which are incident with v.
We are done if we can show that B2 has an f -factor.

Let B (and thus B1 and B2) have bipartition (U,V ). It is clear that ∑x∈U f (x) =∑x∈V f (x),
since each edge from E is incident with both U and V . Let S ⊂ U and T ⊂ V . Let B3
be the bipartite graph obtained by removing from B all edges of multiplicity m. Let e1
(respectively, a1) be the number of edges from E (respectively, B3) between S and T . Let e2
(respectively, a2) be the number of edges from E (respectively, B3) between S and V \T .
Let e3 (respectively, a3) be the number of edges from E (respectively, B3) between T and
U \S.

Observe the following, where f and δ are defined with respect to the graph B2.

|S|km = a1 + e1m+a2 + e2m;
|T |km = a1 + e1m+a3 + e3m;

∑
x∈S

f (x) = k|S|− e1 − e2;

∑
x∈T

f (x) = k|T |− e1 − e3;

∑
x∈T

δU\S(x) ≥ a3/(m−1).

Thus:

∑
x∈S

f (x)+ ∑
x∈T

(δU\S(x)− f (x))≥ (a2 −a3)/m+a3/(m−1)≥ 0.

The result follows by Theorem 2.2. □
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Theorem 2.4. Let R be an m×n simple k-Latin rectangle of order n where m ≤ n−k. Then
R completes to a simple k-Latin square L of order n.

Proof. Label the columns of R with N(n). Construct a bipartite graph B with bipartition
(U = {u1,u2, . . . ,un},V = {v1,v2, . . . ,vn}) where there are λ edges from ui to v j if and only
if symbol j appears k−λ times in column i of R. Observe that B is k(n−m)-regular. Thus
by Theorem 2.1, B has a 1-factorization.

Choose any k2 1-factors from B to create a k2-regular graph B′. Since B′ is a subgraph of
B, the maximum multiplicity of an edge in B′ is at most k. Thus by Theorem 2.3, the edges
of B′ may be partitioned into k simple k-factors F1, F2, . . . ,Fk.

Let n−m = qk+ r, where q ≥ 0 and 1 ≤ r ≤ k. We extend R to an (m+ r)×n simple
k-Latin rectangle R′ by placing symbol e in cell (m+ i, j) of R′ whenever {u j,ve} is an edge
in the k-factor Fi, for each i ∈ N(r).

Observe that either R′ is a simple k-Latin square of order n (and we are done) or R′ is a
simple m′×n k-Latin rectangle such that n−m′ is a multiple of k. The result follows by
recursion, adding k rows at a time. □

Theorem 2.5. Let R be an m×n simple k-Latin rectangle of order n where m > n−k. Then
R completes to a simple k-Latin square L of order n if and only if each symbol from N(n)
appears at least k−n+m times in each column of R.

Proof. If there exists a symbol e which appears less than k− n+m times in a particular
column, e must appear more than n−m times within the final n−m rows, making L non-
simple. To see sufficiency, create a bipartite graph B as in the previous theorem. Observe
that B is k(n−m)-regular with maximum edge multiplicity at most n−m. Thus the edges
of B may be partitioned into n−m simple k-factors by Theorem 2.3. The extension to L
then follows as in the previous theorem. □

In the following theorems, the operation ⊕ℓ denotes arithmetic modulo ℓ with residues
from N(l) (performed on an element or a set). Formally, for any positive integer ℓ and
subset S ⊆ N(ℓ), define the set S⊕ℓ 1 by {s+1 | s ∈ S} where ℓ+1 is replaced by 1. We
then recursively define S⊕ℓ a := (S⊕ℓ (a−1))⊕ℓ 1 for each a > 1.

Theorem 2.6. Let 0 < n− k < m < n. Then there exists an m×n simple k-Latin rectangle
R of order n which does not complete to a simple k-Latin square L of order n.

Proof. In order to construct the desired m×n k-Latin rectangle R, we distinguish two cases
(denoting the contents of cell (i, j) of R by Ri, j):

(1) if m ≤ k < n, then for each 1 ≤ i ≤ m, let cell Ri,1 = N(k) and let cell Ri, j =
Ri,1 ⊕n ( j−1) for each 2 ≤ j ≤ n;

(2) if m> k, then for each 1≤ i≤m, let Ri,1 =N(k)⊕m (i−1) and Ri, j =Ri,1⊕n ( j−1)
for each 2 ≤ j ≤ n.

Consider the first column of R. In Case 1, each element 1,2, . . . ,k appears m times, while
in Case 2 each element 1,2, . . . ,m appears k times. In both cases there exists at least one
element that must appear k times in the remaining n−m rows of any k-Latin square of order
n that completes our m×n simple k-Latin rectangle. Since k > n−m, a such k-Latin square
of order n cannot be simple. □
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We illustrate the previous theorem with the following examples.

Example 2.7 n = 8, k = 5, m = 4

12345 23456 34567 45678 56781 67812 78123 81234
23451 34562 45673 56784 67815 78126 81237 12348
34512 45623 56734 67845 78156 81267 12378 23481
45123 56234 67345 78456 81567 12678 23781 34812

66?
6
6
6

Example 2.8 n = 8, k = 4, m = 5

1234 2345 3456 4567 5678 6781 7812 8123
2345 3456 4567 5678 6781 7812 8123 1234
3451 4562 5673 6784 7815 8126 1237 2348
4512 5623 6734 7845 8156 1267 2378 3481
5123 6234 7345 8456 1567 2678 3781 4812
66?
6
6

The case when L is not required to be simple in the theorem below is proved in The-
orem 3.1 of Cavenagh et al. (2011). In the following we must be careful with multiset
operations. Let the multiplicity of an element s in a multiset A be denoted by µA(s). Then,
µA∪B(s) =max{µA(s),µB(s)}, µA\B(s) =max{0,µA(s)− µB(s)} and µA⊎B(s) = µA(s) +
µB(s).

Theorem 2.9. Let m ≤ n/2. Then any simple partial k-Latin square P of order m embeds
in a simple k-Latin square L of order n.

Proof. Since P is simple, k ≤ m. By definition the symbols in P belong to the set N(m); for
notational convenience we complete P to a simple k-Latin square L based on symbol set

S := N(m)∪{1′,2′ . . . ,m′}∪{1′′,2′′, . . . ,(n−2m)′′}.
Let S∗ be the multiset of size nk consisting of k copies of each element from S.

Let Pi, j be the set of symbols in cell (i, j) of P. We first fill any empty or partially-filled
in cells of P with elements from {1′,2′, . . . ,m′} by adding the elements

(i⊕m ( j+1))′,(i⊕m ( j+2))′, . . . ,(i⊕m ( j+ k−|Pi, j|))′

to cell (i, j) of P, where i, j ∈ N(m). We also add n−m empty rows and n−m empty
columns; the resultant structure P′ is a simple partial k-Latin square with cell (i, j) filled if
and only if i ≤ m and j ≤ m.
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Our aim is to fill the rest of the first m rows of P′ to create an m× n simple k-Latin
rectangle R; the result then follows by Theorem 2.4. For each i ∈ N(m), let X(i) be the
multiset ⊎m

j=1P′
i, j. Define A(i) to be the multiset containing k− xi(e) copies of each symbol

e ∈ S, where xi(e) is the number of occurrences of e in X(i).
We claim there exists a k(n−m)-regular bipartite graph B with bipartition

{A(1), . . . ,A(m),C(1), . . . ,C(n−m)}

(for some sets C(1),C(2), . . . ,C(n−m)) and S, where there are λ edges between a multiset
and an element e if and only if e occurs λ times within that multiset. As part of our claim
we also require that the maximum multiplicity of an edge in B is at most k.

To prove our claim we must specify the sets C(1),C(2), . . . ,C(n−m). We construct
these inductively. Let C0(i) = X(i) for each i ∈ N(m). Our inductive hypothesis is that at
stage 0 ≤ j ≤ n−2m:

• For each i ∈ N(m), C j(i) is a multiset of size (m+ j)k containing no element more
than k times;

• The multisets C(m+1), . . . ,C(m+ j) each have size (n−m)k;
• For each i ∈ N( j), S∗ =C(m+ i)⊎

⨄
j∈N(m)(C j(i)\C j(i−1)).

Observe the hypothesis is true for j = 0. Assuming it holds for some fixed j ≥ 0, observe
that for each i ∈ N(m), the number of elements in C j(i) which occur exactly k times is at
most m+ j. Let D(1) be any subset of size k from the multiset S∗ \C j(1). For 1 < i ≤ k,
we recursively define D(i) to be any subset of size k from the multiset

S∗ \ (C j(k)⊎
i−1⨄
j=1

D( j)).

Since

|S∗ \ (C j(k)⊎
i−1⨄
j=1

D( j))| ≥ nk− (m+ j)k− (m−1)k = (n−2m− j+1)k ≥ k,

such a multiset always exists. We emphasize that each D(i) may be a multiset. We then
define C j+1(i) =C j(i)⊎D(i) for each i ∈ N(m) and we let

C(m+ j+1) := S∗ \ (
k⨄

j=1

D( j)).

The induction then follows. Letting C(i) =Ck(i) for each i ∈ N(m), the claim above also
follows, i.e. such a bipartite graph B exists.

Thus by Theorem 2.1 B has a 1-factorization; choose any k2 of these 1-factors to form a
bipartite graph B′. Since B′ is a subgraph of B, the maximum multiplicity of an edge in B′ is
at most k. Thus by Theorem 2.3, the edges of B′ may be partitioned into k simple k-factors
F1, F2, . . . ,Fk.

Let n−m = qk+ r, where q ≥ 0 and 1 ≤ r ≤ k. We extend P′ to an m× (m+ r) simple
partial k-Latin rectangle P′′ by placing symbol e in cell (i,m+ j) of P′′ whenever {A(i),e}
is an edge in the k-factor Fj, for each i ∈ N(r).
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Observe that either P′′ is an m×n simple k-Latin rectangle (and we are done) or P′′ is a
simple m×m′ k-Latin rectangle such that n−m′ is a multiple of k. The result follows by
recursion, adding k columns at a time. □
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