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A MATHEMATICAL MODEL OF
VERTICALLY TRANSMITTED VECTOR DISEASES

ANTONELLA LUPICA ab∗ AND ANNUNZIATA PALUMBO b

ABSTRACT. A mathematical model of vector-borne infectious diseases is presented, which
takes into account the local interactions between reservoirs and vectors, as well as the
transmission from vectors to dilution hosts. In the model, vectors possess the ability to keep
the virus within their own population through vertical transmission. The existence and the
stability of disease free and endemic equilibria, together with the existence of backward
bifurcation, are discussed.

1. Introduction

Vector-borne diseases are infectious diseases caused by pathogens which are transmitted
by insects, bacteria and protozoa (called vectors), infected by biological agents (anthropoids).
Malaria, dengue, yellow fever, St Louis Encephalitis and West Nile Fever (WNF) are
examples of such vector-borne diseases whose vectors are mosquitoes. These infectious
diseases can be transmitted to two types of host populations: reservoir (birds) and accidental
(humans and horses).

In these diseases, the primary cycle (endemic) of the virus is characterized by mosquito-
bird-mosquito transmission: adult mosquitoes become infected by biting viremic birds
(reservoir). Once the virus is ingested, it spreads within the mosquito organism and is
subsequently transmitted to the host vertebrate. The secondary epidemic cycle manifests
itself when accidental hosts, such as humans or horses, enter the transmission cycle and are
affected by the infection. The virus is not transmitted from person to person or from horse
to horse via mosquito bites due to the low level of virus concentration in the blood.

In addition to the horizontal transmission cycle (vector-host-vector), some species of
mosquitoes transmit the pathogen to their offspring (vertical transmission). Indeed, even in
the absence of infected hosts, the disease is transmitted by the adult mosquitoes to eggs that
survive the dry season and evolve as adult and infectious mosquitoes. Vertical transmission
is observed, for example, in dengue virus transmitting mosquitoes such as Aedes aegypti,
Aedes albopitus, the Culex species and other mosquito-borne flavivirus.

In recent years, various epidemic models have been proposed to describe and control the
spread of infectious diseases such as malaria, dengue and WNF [see Wonham et al. (2004),
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Bowman et al. (2005), Cruz-Pacheco et al. (2005), Maidana and Yang (2008a), Maidana and
Yang (2008b), Cruz-Pacheco et al. (2009), Lashari and Zaman (2011), Maidana and Yang
(2011), Chitnis et al. (2013), Asmaidi et al. (2014), Chen et al. (2016), and Blayneh (2017)
and related references]. Models differ in the description of the interaction between vectors
and host populations. Furthermore some authors incorporate the vertical transmission, others
analyse the interaction of different species of birds with vectors, while others examine the
effect of seasonality on disease transmission. These models describe the interaction between
birds and mosquitoes and only a few studies have explored the transmission of WNF
between birds, mosquitoes and humans [see, for example, Bowman et al. (2005) and Chen
et al. (2016)].

In many mathematical models, the aquatic stage of the vector population consisting of
eggs, larvae and pupae is not included in the transmission of the virus. First in Wonham et al.
(2004) the classical SIR model for malaria transmission is extended to a model describing
WNF cross-infection between birds and mosquitoes, including the larval stage of vector
population. In order to incorporate the vertical transmission of the virus, in our model we
insert the aquatic stage with its epidemiological classes. We also include the exposed class
for the adult stage, accidental hosts, the exposed class in host populations, together with
vertical transmission in vector populations. In this way, horizontal and vertical transmission
of vector-borne diseases are investigated. Our model extends the work by Chen et al.
proposed in Chen et al. (2016).

This paper is organized as follows. In Section 2 we derive a mathematical model for
vector-borne epidemics, taking into account the interaction between birds and mosquitoes,
mosquitoes and humans, as well as the transmission from adult mosquitoes and eggs. In
Section 3 a linear stability analysis around the steady states is investigated both analytically
and numerically together with the possible existence of a backward bifurcation. Finally,
some concluding remarks are made in Section 4.

2. Mathematical Model

The populations involved in transmission are the vector population (mosquitoes) divided
into aquatic (eggs, larvae, pupae) and adult stages. The reservoir host population are birds
while humans constitute the dilution host population. We also assume that only adult
mosquitoes are able to spread the disease.

Due to the short duration of the aquatic phase, there is no incubation period and no
healing from the disease, so exposed and removed classes for the aquatic stage are not
considered. For the same reason, the removed class for the adult stage is also not examined.
While, for host populations, we take into account all the epidemiological classes of the
SEIR model (susceptibles, exposed, infectives and removed).

Let NA(t) = SA(t)+ IA(t) and NM(t) = SM(t)+EM(t)+ IM(t) be the total number of
mosquitoes in the aquatic stage and adult stage, NB(t) = SB(t)+EB(t)+ IB(t)+RB(t) and
NH(t) = SH(t)+EH(t)+ IH(t)+RH(t) the total number of birds and humans, respectively.

The host populations (birds and humans) have constant recruitment rates, γB and γH , and
they decrease by natural and disease-induced death rates, dB, dH , δB and δH , respectively.
The vector population increases through logistic growth, with r the intrinsic oviposition
rate and γ the intrinsic maturation rate from aquatic stage to adult stage. The carrying
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capacity in the aquatic stage, kA, is defined as the available amount of breeding sites, while
the carrying capacity in the adult stage, kM , takes into account the fact that the mosquitoes
cannot survive at high altitudes or temperatures. Therefore, the per-capita oviposition rate
is given by r(1− NA

kA
) and the per-capita growth rate in the adult stage is γ(1− NM

kM
).

The vector populations (aquatic and adult stages) decrease by natural death rates, dA
and dM , by the predation rate, mA, and by chemical control rates, µA and µM , respectively.
The infectious mosquitoes can transmit the virus to host populations and, via vertical
transmission, to their eggs, but they can only be infected by viremic birds.

We assume that the mosquito biting rate to host populations is constant and we accept
the validity of the ‘frequency dependent law’for the infection force. The cross-infection
between birds or humans and mosquitoes is modeled as aBβMB

IM
NB

SB or aHβMH
IM
NH

SH , where
aB and aH describe per capita biting rate of mosquitoes on birds and humans, respectively.
The probabilities of transmission from mosquitoes to birds and humans are denoted by βMB
and βMH , respectively. Similarly, the infection of mosquitoes through biting infectious birds
is described by aBβBM

IB
NB

SM , where βBM is the probability of transmission from birds to
mosquitoes.

To incorporate the vertical transmission, we assume that a fraction of newborns q,
with 0 < q < 1, is already infectious at birth. For this reason, the rate of newborns in
the SA class is r(1− NA

kA
)(SM +EM +(1−q)IM), while the rate of newborns in IA class is

r(1− NA
kA
)qIM . Instead, the rate of newborns in the SM class is γ(1− NM

kM
)SA and similarly the

rate of newborns in IM class is given by γ(1− NM
kM

)IA. Adult mosquitoes, birds and humans
shift from the exposed class to the infectious class with rates τM , τB and τH , respectively.
Furthermore, infectious birds and infectious humans migrate into the corresponding removed
class with rates ωB and ωH , respectively.
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Under these assumptions, our model is described by the following system of thirteen
ordinary differential equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṠA = r
(

1− NA
kA

)
[SM +EM +(1−q)IM]−αASA,

İA = r
(

1− NA
kA

)
qIM −αAIA,

ṠM = γ

(
1− NM

kM

)
SA −aBβBM

IB
NB

SM −αMSM,

ĖM = aBβBM
IB
NB

SM −νMEM,

İM = γ

(
1− NM

kM

)
IA + τMEM −αMIM,

ṠB = γB −aBβMB
IM
NB

SB −dBSB,

ĖB = aBβMB
IM
NB

SB −αBEB,

İB = τBEB −νBIB,

ṘB = ωBIB −dBRB,

ṠH = γH −aHβMH
IM
NH

SH −dHSH ,

ĖH = aHβMH
IM
NH

SH −αHEH ,

İH = τHEH −νH IH ,

ṘH = ωH IH −dHRH ,

(1)

where, for the sake of simplicity, in (1) we set:

αA = γ +dA +mA +µA, αM = dM +µM , νM = dM +µM + τM ,

νB = dB +δB +ωB, αB = dB + τB, νH = dH +δH +ωH , αH = dH + τH .
(2)

Adding the appropriate equations in (1) it is possible to see that the growth of the whole
populations of aquatic mosquitoes, adult mosquitoes, birds and humans satisfy the following
equations ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ṄA = r
(

1− NA
kA

)
NM −αANA,

ṄM = γ

(
1− NM

kM

)
NA −αMNM,

ṄB = γB −dBNB −δBIB,

ṄH = γH −dHNH −δH IH .

(3)

Thus, all total populations may vary in time. In particular, in the absence of disease,
the population size NB and NH converge to the equilibrium value γB

dB
and γH

dH
, respectively.

Furthermore, from (3)3,4, it follows that limsupt→∞NB(t)≤ γB
dB

and limsupt→∞NH(t)≤ γH
dH

.
Since the first nine equations are independent of the other four, we can define the two

vectors

X1(t) = (SA(t), IA(t),SM(t),EM(t), IM(t),SB(t),EB(t), IB(t),RB(t))T (4)
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X2(t) = (SH(t),EH(t), IH(t),RH(t))T (5)

so system (1) can be recast in the following compact form:{
Ẋ1 = F1(X1),

Ẋ2 = F2(X1,X2),
(6)

where F1 and F2 can be easily deduced from system (1).
Now, denoting with Rn

+ the positive orthant in Rn and with ∂Rn
+ its boundary, the model

(6)1 is epidemiologically well-posed in the domain

D1 = {(SA, IA,SM,EM, IM,SB,EB, IB,RB) ∈ R9
+ : SA + IA ≤ kA, SM +EM + IM ≤ kM,

γB

dB +δB
≤ SB +EB + IB +RB ≤ γB

dB
}, (7)

while system (6)2 is epidemiologically well-posed in the domain

D2 = {(SH ,EH , IH ,RH) ∈ R4
+ :

γH

dH +δH
≤ SH +EH + IH +RH ≤ γH

dH
}; (8)

so the whole system (1) is biologically well-defined in D = D1 ×D2.

3. Mathematical Analysis

In this section, we determine the equilibria permitted by our model and study local
stability.

3.1. Existence, unicity and boundedness of solutions.

Theorem 1. For any initial condition which lies in D, system (1) has a unique solution that
exists and remains in D, ∀ t ≥ 0. Furthermore, the compact D is a positively invariant set,
which attracts all positive orbits in R13

+ .

Proof. . For all initial conditions belonging to D, the function F = (F1,F2)
T is locally

lipschitzian in X(t) = (X1(t),X2(t))T , then the Cauchy-Lipschitz theorem ensures that
system (1) admits a unique local solution.

Furthermore, from (3)3,4 by applying the standard comparison theorem, it follows
NB(t)≤ γB

dB
∀ t > 0 and NH(t)≤ γH

dH
∀ t > 0, if initially NB(0)≤ γB

dB
and NH(0)≤ γH

dH
.

Then, D is positively invariant and all solutions of (1) are non-negative and bounded. �

3.2. Disease Free Equilibrium. Basic Reproduction Number.

Theorem 2. Between all possible equilibria, model (6)1 admits the two equilibrium points
with no disease in the population on D1 ∩∂R9

+

E0 = (0,0,0,0,0,
γB

dB
,0,0,0)T , E1 = (A0,0,M0,0,0,

γB

dB
,0,0,0)T (9)

which are the trivial and non-trivial one, where

A0 =
M0kMαM

γ(kM −M0)
, M0 =

kAkM(rγ −αMαA)

r(γkA + kMαM)
. (10)

The equilibrium E1 exists if the condition rγ > αAαM holds.
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Theorem 3. The whole model (1) admits the following trivial and non trivial disease free
equilibrium points

P0 = (0,0,0,0,0,
γB

dB
,0,0,0,

γH

dH
,0,0,0)T , P1 = (A0,0,M0,0,0,

γB

dB
,0,0,0,

γH

dH
,0,0,0)T

(11)
on D∩∂R13

+ .

It follows directly by substituting the equilibria (9) of (6)1 into (6)2.
In the following, we consider the more biologically realistic equilibrium P1. Its character

is related to the basic reproduction number R0 which is defined as the average number of
new cases of an infection caused by an infected individual, in a population consisting of
susceptibles only and where the disease is vertically transmitted.

Following Diekmann and Heesterbeek (2000) and Van den Driessche and Watmough
(2002) and linearizing system (1) around P1, it is possible to compute the transmission matrix
F, describing the production of new infections, and the transition matrix V, representing
changes in state (including removal by death or the acquisition of immunity). The spectral
radius ρ of the matrix KL = FV−1 is the basic reproduction number

R0 =
1
2

⎛⎝q+

√
q2 +

4M0a2
BdBβBMβMBτBτM

γBαMαBνMνB

⎞⎠=
1
2

(
Rvt +

√
R2

vt +4Rht

)
, (12)

where

Rvt = q, Rht = RHRV =
a2

BdBβBMτB

αBνB

M0βMBτM

αMνM
. (13)

We observe that R0 consists of two contributions: the first is due to vertical transmission,
whereas the second is caused by horizontal transmission. In particular, Rht is the product of
the number of new infections in the host population and the number of new infections in the
vector population. As we expected, R0 contains only terms related to the populations that
spread and transmit the disease and not terms related to the human population that, in this
model, constitutes the accidental host population.

The following local stability result about P1 holds (Van den Driessche and Watmough
2002):

Theorem 4. The disease-free equilibrium point, P1 of the model (1), is locally asymptoti-
cally stable if R0 < 1 and unstable if R0 > 1, where R0 is defined by (12).

Theorem 4 shows that in the case R0 < 1 the disease could be eliminated for a small
initial value.

3.3. Endemic Equilibrium States. Bifurcation Analysis.

3.3.1. Existence of endemic equilibria. In this part we study the dynamic of system (1)
as the threshold R0 changes. We start calculating the endemic equilibrium points, which are
solutions of the algebraic system {

F1(X1) = 0,

F2(X1,X2) = 0.
(14)
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Firstly, from (14)1 we deduce

IA =
qaBdBA0βBMτMIB

(1−q)αMνM(γB −δBIB)+ IBaBdBβBM((1−q)αM + τM)
,

EM =
(1−q)aBdBM0αMβBMIB

(1−q)αMνM(γB −δBIB)+ IBaBdBβBM((1−q)αM + τM)
,

IM =
aBdBM0βBMτMIB

(1−q)αMνM(γB −δBIB)+ IBaBdBβBM((1−q)αM + τM)
, (15)

SA = A0 − IA, SM = M0 −EM − IM, SB =
τBγB −αBνBIB

τBdB
, EB =

νB

τB
IB, RB =

ωB

dB
IB

while IB is the positive solution of the following equation

f (IB) = abI2
B +bbIB + cb = 0, (16)

where
ab = αBδBνB[aBβBMdB((1−q)αM + τM)− (1−q)αMνMδB],

bb = 2(1−q)αBαMγBδBνBνM −aBdBαBβBMγBνB((1−q)αM + τM)+

−a2
BdBβBMβMBτMαBνBM0,

cb =−γBαMαBνMνBγB(1−q)(1−R0).

(17)

Existence of endemic equilibrium requires that the roots of (16) are real and positive.
Moreover, since SB must be positive, we also have to impose the further condition IB <
I∗∗B = τBγB

αBνB
.

Let us denote with ∆b the discriminant of (16). Solving ∆b = 0 in terms of R0 we obtain
the critical value

Rc
0 = 1+

b2
b

4r(1−q)abαBνBγ2
BαMνM(γkA + kMαM)

, (18)

so the following relations are verified:

∆b < 0 ⇔ R0 < Rc
0, ∆b = 0 ⇔ R0 = Rc

0, ∆b > 0 ⇔ R0 > Rc
0. (19)

The study of the solutions of (16) implies the following result.

Theorem 5. (1) Let ab = 0. Equation (16) is a linear equation with a unique solution
IB = − cb

bb
. Then the system (6)1 has a unique endemic equilibrium when R0 > 1

and bb < 0 and has no endemic equilibrium when R0 ≤ 1.
(2) Let ab ̸= 0.

a) System (61) has a unique endemic equilibrium whenever R0 > 1
b) System (61) has a unique endemic equilibrium whenever R0 = 1, ab < 0 and
bB > 0
c) System (61) has two endemic equilibria Ei when Rc

0 < R0 < 1, ab < 0 and bb > 0
d) System (61) has a unique endemic equilibrium of multiplicity 2 when R0 = Rc

0,
ab < 0 and bb > 0
e) System (61) has no endemic equilibria whenever R0 < Rc

0 or whenever R0 ≤ 1
and ab > 0

Proof. . Evaluating f (IB) at IB = I∗∗B we have f (I∗∗B )< 0.
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(1) Let ab = 0. This case happens when the disease-induced death rate δB = 0 or
aBβBMdB((1−q)αM + τM)− (1−q)αMνMδB = 0. Equation (16) has one positive
solution IB = − cb

bb
if bb < 0. If R0 < 1, then f (0) < 0. In this case there are no

positive real solutions in the interval [0, I∗∗B ]. For R0 = 1, from (15) we find the
non-trivial DFE E1.

(2) Let ab ̸= 0.
If R0 > 1 than f (0)> 0. In this case there is always a unique positive real solution
in the interval [0, I∗∗B ]. This solution is IB = −bb+

√
∆b

2ab
if ab > 0 and IB = −bb−

√
∆b

2ab

if ab < 0. If R0 = 1 there is a positive solution IB =− bb
ab

if and only if ab < 0 and
bb > 0 (otherwise there are no positive solutions in the interval [0, I∗∗B ]). If R0 < 1
then f (0)< 0. When ab > 0 equation (16) has no positive solutions in the interval
[0, I∗∗B ]. When ab < 0, bb > 0 and ∆b > 0 there are two positive real solutions
I1
B = −bb−

√
∆b

2ab
and I2

B = −bb+
√

∆b
2ab

of equation (16). These solutions coalesce if
∆b = 0.

�

To each endemic equilibrium state for the system (6)1, solution of the equation (14)1,
there is a corresponding equilibrium state for system (6)2. Known Ii

M from Theorem 5 and
solving equation (14)2 in terms of IH , we obtain the following relations

SH =
τHγH −αHνH IH

τHdH
, EH =

νH

τH
IH , RH =

ωH

dH
IH , (20)

in which the endemic value IH is the positive solution of

g(IH) = ahI2
H +bhIH + ch = 0 (21)

where
ah = αHδHνH ,

bh =−(αHγHνH + Ii
MaHβMHαHνH),

ch = aHβMHτHγH Ii
M .

(22)

We set ∆h = b2
h −4ahch > 0 which ensures that the solutions of the equation (21) are real.

Since SH > 0, then IH < I∗∗H = τH γH
αH νH

. Because of ah > 0 and ch > 0, equation (21) has a

unique positive solution IH = −bh−
√

∆h
2ah

in the interval [0, I∗∗H ].
Now, denoting as P∗ = (S∗A, I

∗
A,S

∗
M,E∗

M, I∗M,S∗B,E
∗
B, I

∗
B, R∗

B,S
∗
H ,E

∗
H , I

∗
H ,R

∗
H) a generic en-

demic equilibrium point of system (1), we evaluate its Jacobian matrix

J(P∗) =

(
A11 0
A21 A22

)
, (23)

where A11 and A22 are the Jacobian matrices of the two partial systems in (6) evaluated at
E∗ = (S∗A, I

∗
A,S

∗
M,E∗

M, I∗M,S∗B,E
∗
B, I

∗
B, R∗

B) and U∗ = (S∗H ,E
∗
H , I

∗
H , R∗

H) respectively, while A21
is a matrix that takes into account the interactions between the two partial systems.
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Applying the Routh-Hurwith criterion to the matrix

A22 =

⎛⎜⎜⎜⎜⎝
−dH − aH βMH I∗M(E∗

H+I∗H+R∗
H )

(N∗
H )2

aH βMH I∗MS∗H
(N∗

H )2
aH βMH I∗MS∗H

(N∗
H )2

aH βMH I∗MS∗H
(N∗

H )2

aH βMH I∗M(E∗
H+I∗H+R∗

H )

(N∗
H )2 −αH − aH βMH I∗MS∗H

(N∗
H )2 − aH βMH I∗MS∗H

(N∗
H )2 − aH βMH I∗MS∗H

(N∗
H )2

0 τH −νH 0
0 0 ωH −dH

⎞⎟⎟⎟⎟⎠ ,

(24)
we proved that all eigenvalues of A22 have negative real parts. Following this, the stability
of the equilibrium P∗ depends only on the eigenvalues of the matrix A11. This means
that the system (6)1, which describes the primary transmission of disease between birds
and mosquitoes, adult mosquitoes and the aquatic stage, determines the stability of any
arbitrary equilibrium point of the whole system (1). To conclude this Section, we remark
that the stability of the endemic equilibria is determined by the eigenvalues of the matrix
A11. However, since it is difficult to determine their signs analytically, in Section 3.4 we will
examine the possible dynamical behaviors for the whole system (1) by means of numerical
simulations.

3.3.2. Backward Bifurcation Analysis. In this section we use analytical and numerical
techniques to assess the directions of bifurcations. Theorem 5 shows the possibility of
backward bifurcation in model (1) when Rc

0 < R0 < 1, ab < 0 and bb > 0. Backward
bifurcation is a phenomenon where two endemic equilibria, one stable and the other unstable
co-exist along with the disease-free equilibrium for R0 < 1. The existence of a backward
bifurcation indicates that reduction of the epidemiology threshold, R0, below unity is simply
not a sufficient condition for disease control. We establish that once the epidemiology
threshold R0 is reduced below a critical value Rc

0, under some conditions, the disease could
be eliminated for any initial size.

To do so, we chose as the bifurcation parameter the transmission probability from
mosquitoes to birds β ∗

MB, obtained by solving for βMB from R0 = 1:

β
∗
MB =

(1−q)γBαBαMνBνM

a2
BdBM0βBMτBτM

(25)

Let J∗ be the Jacobian matrix of the system (6)1 evaluated at the DFE E1 and at the bifurca-
tion value β ∗

MB. It has a simple eigenvalue with zero real part and the other eigenvalues with
negative real parts, so we can use the ‘center manifold theory’(Diekmann and Heesterbeek
2000) to analyze the dynamics of the model (1) near the criticality βMB = β ∗

MB and apply a
theorem proved by Castillo-Chavez and Song (2004) that states the conditions for the exis-
tence of backward bifurcation. Let v ≡ (vi) and w ≡ (wi) be the left and right eigenvectors
corresponding to the zero eigenvalue of the Jacobian matrix J∗, respectively,

v1 = 0, v2 =
IMγαM(rkM+αAkA)

rαA(γkA+αMkM) , v3 = 0,

v4 =
τM IM

νM
, v5 = IM , v6 = 0,

v7 =
aBdBβBMτBτMM0

αBγBνBνM
, v8 =

aBdBβBMτMM0
γBνBνM

, v9 = 0,

(26)
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w1 =−IA, w2 = IA, w3 =− γ(rkM+αAkA)([(1−q)αM+τM ]IA
qrτM(γkA+αMkM) ,

w4 =
αMγ(rkM+αAkA)IA
qrτM(γkA+αMkM) , w5 =

γ(rkM+αAkA)IA
qr(γkA+αMkM) , w6 =−αBαMγBνBνM(1−q)IA

qaBd2
BA0βBMτBτM

,

w7 =
αBγBνBνM(1−q)IA
qaBdBA0βBMτBτM

, w8 =
αBγBνM(1−q)IA
qaBdBA0βBMτM

, w9 =
αBγBνM(1−q)ωBIA

qaBd2
BA0βBMτM

.
(27)

Let fk(X1,φ) be the k-th component of vector F1, xk the k-th component of vector state X1
and φ = βMB −β ∗

MB. The model (1) exhibits a backward bifurcation at R0 = 1 (φ = 0) if
the following coefficients (Castillo-Chavez and Song 2004)

a1 = ∑
9
k,i, j=1 vkwiw j

∂ 2 fk
∂xi∂x j

(E1,0) = B1 −B2,

a2 = ∑
9
k,i=1 vkwi

∂ 2 fk
∂xi∂φ

(E1,0) = v7w5aB,
(28)

are positive, where

B1 =−2v2w1w5
qr
kA

−2v5w2w3
γ

kM
> 0,

B2 = 2v2w2w5
qr
kA

−2v4w3w8
aBβBMdB

γB
+2v4w8

aBβBMd2
BM0

γ2
B

(w6 +w7 +w8 +w9)+

+2v5w2
γ

kM
(w4 +w5)+2v7w5

aBβ ∗
MBdB
γB

(w7 +w8 +w9)> 0.

(29)

The coefficient a2 is always positive, but for the other coefficient we have to impose the
further condition

B1 > B2. (30)
Thus, the following result is established.

Theorem 6. Model (1) exhibits a backward bifurcation at R0 = 1 (βMB = β ∗
MB) whenever

the inequality (30) holds. If the reversed inequality holds, then the bifurcation at R0 = 1 is
forward.

Thus the backward bifurcation scenario involve the existence of a subcritical transcritical
bifurcation at R0 = Rc

0 < 1. The qualitative bifurcation diagrams describing two types of
bifurcation al R0 = 1 are depicted in Figure 1.

3.4. Numerical Simulations. In the subsequent discussion observations are made on the
nature of the stability of each fixed point through numerical simulation. These simulations
are made for both primary and secondary transmission cycle.

The case R0 < 1. System (1) has a disease-free equilibrium P1. We show three numerical
simulations corresponding to different initial data sets with R0 = 0.854753. Figure 2
illustrates that each solution is close to the DFE. The occurrence of the backward bifurcation
can be also seen in Figure 3, where R0 is less than the transcritical bifurcation threshold
R0 = 1, but the solution of the system (6)1 can approach either the endemic equilibrium
point or the DFE point, depending on initial condition values.

The case R0 > 1. System (1) has a endemic point when R0 > 1 which can be shown by
simulation. The endemic value is obtained using the parameter values listed in Figure 1-(b)
with aB = 3.9. So we find an endemic equilibrium point P∗ = (S∗A, I

∗
A,S

∗
M,E∗

M, I∗M,S∗B,E
∗
B, I

∗
B,

R∗
B,S

∗
H ,E

∗
H , I

∗
H ,R

∗
H) with R0 = 6.31514. If we consider the Jacobian matrix of model (1),

evaluated in P∗, all eigenvalues have a negative real part, so we have the local linear stability
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of the endemic equilibrium point. Figure 4 shows the behavior of each population in the
existing state of the disease. We see that, after an initial oscillating trend, each solution
riches its endemic value.

4. Conclusions

An autonomous differential equation system for infectious diseases dynamics, which
incorporates vertical transmission and logistic growth for vector population is considered.
We derived an explicit formula for the basic reproductive number R0, investigated the
stability of DFE and the existence of an endemic equilibrium state. A detailed analysis
of the model, based on the use of center manifold theory, shows the presence of the
phenomenon of backward bifurcation, where two stable equilibria co-exist, when the
associated basic reproduction number is less than unity. We compiled three parameter
ranges: one representing the case R0 < 1, one representing the case R0 > 1 and finally a
suitable set of parameters for to exhibit backward bifurcation. The presence of vertical
transmission makes the model more realistic, as it takes into account that some eggs may
already be infected at birth. The introduction of carrier capacity in the vector population
places a limit on the number of existing mosquitoes: a lesser spread of the virus is evident
and a reduction in the time necessary to reach equilibrium.

(a) (b)

FIGURE 1. Bifurcation diagram showing the equilibrium value of the Infective
Birds as the Reproduction Number is varied. (a) Backward bifurcation. Suitable
set of parameters value for the exhibition of backward bifurcation dA=0.056,
kA=1000, r = 0.5, q=0.2, µA=0, mA=0, dM=0.0286, kM = 500, γ=0.2, τM =
0.143, µM=0, dB=0.003, γB=3.1, βBM=0.9, δB=0.9, τB=0.6, ωB=0.3, aB=0.5. Two
endemic equilibrium points coexist for value of R0 ∈ (0.908433,1). (b) Forward
bifurcation corresponding to the parameters value dA=0.056, kA=100, r = 0.1,
q=0.1, µA=0, mA=0, dM=0.0286, kM=25, γ=0.2, τM = 0.143, µM=0, dB=0.02,
γB=2.1, βBM=0.4, δB=0.1, τB=0.2, ωB=0.3, aB=0.5, dH=9×10−4, γH=5×10−2,
βMH=0.5, δH=0.001, τH=0.25, ωH=0.143, aH=0.143.
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(a)

(b)

FIGURE 2. Evolution over time of the susceptible (a) and infective (b) classes of
mosquito (magenta line), bird (orange line) and human (blue line) populations,
corresponding to different initial condition values and parameter values listed in
Fig.1-(b) with βMB = 0.7. (a)-(b) show that system (1) has only one disease-free
equilibrium P1 = (5,65771,0,15,3257,0,0,105,0,0,0,55.5556,0,0,0) and it is
locally asymptotically stable.
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(a)

(b)

FIGURE 3. Solutions regarding model (6)1 of the number of infectious adult
mosquitoes, IM , and the number of infectious birds, IB, for parameter values given
in the bifurcation diagram (Fig. 1-(a)), with βMB = 0.33, so R0 = 0.971781 < 1,
for two different sets of initial conditions. (a)-(b) show that system (6)1 has
the bistable equilibria: the DFE E1 and an endemic equilibrium, and the other
endemic equilibrium is unstable.
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(a)

(b)

FIGURE 4. Evolution over time of susceptible (a) and infective (b) classes of
mosquito (magenta line), bird (orange line) and human (blue line) populations,
corresponding to different initial data. We use the parameter values of Fig.1-(b)
with aB = 3.9 and βMB = 0.7. (a)-(b) show that system (1) has a DFE P1, which
is unstable, and an endemic equilibrium P∗, which is LAS.
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