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ON UNIFORMLY RESOLVABLE {K1,2,K1,3}-DESIGNS

GIOVANNI LO FARO a , SALVATORE MILICI b∗ AND ANTOINETTE TRIPODI a

ABSTRACT. Given a collection of graphs H , a uniformly resolvable H -design of order
v is a decomposition of the edges of Kv into isomorphic copies of graphs from H (also
called blocks) in such a way that all blocks in a given parallel class are isomorphic to the
same graph from H . We consider the case H = {K1,2,K1,3} and prove that the necessary
conditions for the existence of such designs are also sufficient.

1. Introduction

Given a collection of graphs H , an H -design of order v (also called an H -decompo-
sition of Kv) is a decomposition of the edges of Kv into isomorphic copies of graphs from
H , the copies of H ∈ H in the decomposition are called blocks. An H -design is called
resolvable if it is possible to partition the blocks into classes Pi such that every vertex of
Kv appears exactly once in some block of each Pi.

A resolvable H -decomposition of Kv is sometimes also referred to as an H -factorization
of Kv, a class can be called an H -factor of Kv. When H = {K2} we speak of 1-factorization
of Kv and it is well known to exist if and only if v is even. A single class of a 1-factorization
is also known as a 1-factor or a perfect matching. A resolvable H -design is called uniform
if every block of the class is isomorphic to the same graph from H . Of particular note is
the result of Rees (1987) who gives necessary and sufficient conditions for the existence of
uniformly resolvable {K2,K3}-designs of order v. Uniformly resolvable decompositions of
Kv have also been studied by Danziger et al. (2009), Dinitz et al. (2009), Schuster (2009a,b),
Schuster and Ge (2010), Gionfriddo and Milici (2013), Milici (2013), Schuster (2013), Gion-
friddo and Milici (2014), Milici and Tuza (2014), Küçükçifçi et al. (2015a,b), Lo Faro et al.
(2015), and Gionfriddo et al. (2016). In what follows, we will denote by [a;a1, . . . ,ak], k ≥ 2,
the k-star K1,k having vertex set {a,a1, . . . ,ak} and edge set {{a,a1},{a,a2}, . . . ,{a,ak}}.
A resolvable K1,2-design (i.e., P3-design) of order v exists if and only if v ≡ 9 (mod 12)
(see Horton 1985), while there exists no K1,3-design (see Küçükçifçi et al. 2015a). Denoted
by (K1,2,K1,3)-URD(v;r,s) a uniformly resolvable decomposition of Kv into r classes con-
taining only copies of 2-stars K1,2 and s classes containing only copies of 3-stars K1,3, here
we study the existence problem when r and s are positive integers and so, from now on, we
assume r,s > 0 and, necessarily, v ≡ 0 (mod 12). Let URD(v;K1,2,K1,3) be the set of all
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pairs (r,s) such that there exists a (K1,2,K1,3)-URD(v;r,s), and given v ≡ 0 (mod 12), let

J(v) =
{(

6+9x,2+
2(v−12)

3
−8x

)
: x = 0,1, . . . ,

v−12
12

}
in this paper we characterize the existence of uniformly resolvable {K1,2,K1,3}-designs, by
proving the following result:

Main Theorem. A (K1,2,K1,3)-URD(v;r,s) exists if and only if v ≡ 0 (mod 12) and
URD(v;K1,2,K1,3)=J(v).

2. Preliminaries and necessary conditions

In this section we will introduce some useful definitions, results and give necessary
conditions for the existence of a uniformly resolvable decomposition of Kv into r classes
of K1,2 and s classes of K1,3. For missing terms or results that are not explicitly explained
in the paper, the reader is referred to the handbook of Colbourn and Dinitz (2007) and its
online updates. For some results below, we also cite this handbook instead of the original
papers. A (resolvable) H -decomposition of the complete multipartite graph with u parts
each of size g is known as a resolvable group divisible design H -RGDD of type gu, the
parts of size g are called the groups of the design. When H = {Kn} we will call it an
n-(R)GDD. A (K1,2,K1,3)-URGDD (r,s) of type gu is a uniformly resolvable decomposition
of the complete multipartite graph with u parts each of size g into r classes containing only
copies of K1,2 and s classes containing only copies of K1,3.

If the blocks of an H -GDD of type gu can be partitioned into partial parallel classes,
each of which contain all vertices except those of one group, we refer to the decomposition
as a frame. When H = {Kn} we will call it an n-frame and it is easy to deduce that the
number of partial factors missing a specified group G is |G|

n−1 .
An incomplete resolvable (K1,2,K1,3)-decomposition of Kv+h with a hole of size h

is an (K1,2,K1,3)-decomposition of Kv+h \ Kh in which there are two types of classes,
partial classes which cover every vertex except those in the hole (the vertices of Kh
are referred to as the hole) and full classes which cover every vertex of Kv+h. Specifi-
cally, a (K1,2,K1,3)-IURD(v+ h,h; [r1,s1], [r̄1, s̄1]) is a uniformly resolvable (K1,2,K1,3)-
decomposition of Kv+h \Kh with r1 and s1 partial classes of K1,2 and K1,3, respectively, and
r̄1 and s̄1 full classes of K1,2 and K1,3, respectively.

We now recall some results that can be used to produce the main result.

Theorem 2.1. (Milici and Tuza 2014) Let v ≡ 0 (mod 3), v ≥ 9. The union of any two
edge-disjoint parallel classes of 3-cycles of Kv can be decomposed into three parallel
classes of K1,2.

We also need the following definitions. Let (s1, t1) and (s2, t2) be two pairs of non-
negative integers. Define (s1, t1) + (s2, t2) = (s1 + s2, t1 + t2). If X and Y are two sets
of pairs of non-negative integers, then X +Y denotes the set {(s1, t1)+ (s2, t2) : (s1, t1) ∈
X ,(s2, t2) ∈ Y}. If X is a set of pairs of non-negative integers and h is a positive integer,
then h∗X denotes the set of all pairs of non-negative integers which can be obtained by
adding any h elements of X together (repetitions of elements of X are allowed).
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Lemma 2.2. Let v ≡ 0 (mod 12). If there exists a (K1,2,K1,3)-URD(v;r,s), then (r,s) ∈
J(v).

Proof. The condition v ≡ 0 (mod 12) is trivial. Let D be a (K1,2,K1,3)-URD(v;r,s) of Kv.
Counting the edges of Kv that appear in D we obtain

2rv
3

+
3sv
4

=
v(v−1)

2
,

and hence that
8r+9s = 6(v−1). (1)

Since v ≡ 0 (mod 12), Equation (1) implies 8r ≡ 3 (mod 9), 9s ≡ 2 (mod 8), and so
r ≡ 6 (mod 9), s ≡ 2 (mod 8). Letting now r = 6+ 9x, the equation (1) yields 9s =
6(v−1)−48−72x. Then we obtain s = 2+ 2(v−12)

3 −8x, where 8x ≤ 2(v−12)
3 since s is a

positive integer. This completes the proof. □

3. Small cases

Lemma 3.1. URD(12;K1,2,K1,3) = {(6,2)}.

Proof. Let V (K12) = {0,1, . . . ,11} be the vertex set and the classes listed below:
{(0;1,2,3),(4;5,6,7),(8;9,10,11)}, {(1;8,2,3),(5;0,6,7),(9;4,10,11)},
{(0;4,9),(1;5,6),(2;8,11),(3;7,10)}, {(4;1,8),(5;9,10),(6;0,3),(7;2,11)},
{(8;0,5),(9;1,2),(10;4,7),(11;3,6)},{(2;4,5),(6;7,10),(3;9,8),(11;0,1)},
{(6;9,8),(10;11,2),(7;0,1),(3;4,5)}, {(10;0,1),(2;3,6),(11;4,5),(7;8,9)}.

□

Lemma 3.2. There exists a (K1,2,K1,3)-URGDD(r,s) of type 122 with (r,s)∈{(9,0),(0,8)}.

Proof. The case (9,0) corresponds to a K1,2-factorization of K12,12 which is known to exist
(Ushio 1988). The case (0,8) corresponds to a K1,3-factorization of K12,12 which is known
to exist (Chen and Cao 2016). □

Lemma 3.3. There exists a (C3,K1,3)-URGDD(r,s) of type 43 with (r,s) ∈ {(1,4),(4,0)}.

Proof. The case (4,0) corresponds to a 3−RGDD of type 43 which is known to exist (Rees
and Stinson 1987). For the case (1,4) take the groups to be {a0,a1, . . . ,a3}, {b0,b1, . . . ,b3}
and {c0,c1, . . . ,c3} and the classes listed below:

{(ai;bi+1,bi+2,bi+3),(bi;ci+1,ci+2,ci+3),(ci;ai+1,ai+2,ai+3), i ∈ Z4},
{(ai,bi,ci), i ∈ Z4}

□

Lemma 3.4. There exists a (C3,K1,3)-URGDD(r,s) of type 123 with (r,s) ∈ {(12,0),
(9,4),(6,8),(3,12),(0,16)}.

Proof. The case (0,16) corresponds to a K1,3-factorization of K12,12,12 which is known
to exist (Küçükçifçi et al. 2015b). For all the other cases take a 3-RGDD D of type
33 which is known to exist (Rees and Stinson 1987). Expand each vertex 4 times and
for each block b of a given factor of D place on b×{1,2,3,4} a copy of a (C3,K1,3)-
URGDD(r,s) of type 43 with (r,s) ∈ {(1,4),(4,0)}, which exists by Lemma 3.3. Since
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D contains three factors, the result is a (C3,K1,3)-URGDD(r,s) of type 123, for every
(r,s) ∈ 3∗{(4,0),(1,4)}= {(12,0)),(9,4),(6,8),(3,12)}. □

Lemma 3.5. There exists a (K1,2,K1,3)-URGDD(r,s) of type 123 with (r,s) ∈ {(18,0),
(9,8),(0,16)}.

Proof. Take a (C3,K1,3)-URGDD(r,s) of type 123 with (r,s) ∈ {(12,0),(6,8), (0,16)}.
Since, by Theorem 2.1, each two parallel classes of C3 can be decomposed into three
parallel classes of K1,2 we obtain the result. □

Lemma 3.6. URD(36;K1,2,K1,3) = {(24,2),(15,10),(6,18)}.

Proof. Start from a (K1,2,K1,3)-URGDD(r,s) of type 123 with (r,s) ∈ {(18,0), (9,8),(0,
16)}, which exists by Lemma 3.5, and fill the three groups of size 12 with a copy of a
(K1,2,K1,3)-URD(12;6,2), which exists by Lemma 3.1.

□

Lemma 3.7. There exists a (K1,2,K1,3)-IURD(36,12; [6,2], [r,s]) for every (r,s)∈ {(18,0),
(9,8),(0,16)}.

Proof. Start from a (K1,2,K1,3)-URGDD(r,s) of type 123 with (r,s) ∈ {(18,0),(9,8),
(0,16)}, which exists by Lemma 3.5, and fill in two groups of size 12 with a copy of
a (K1,2,K1,3)-URD(12;6,2), which exists by Lemma 3.1. □

Lemma 3.8. URD(60;K1,2,K1,3) = J(60) = {(42,2),(33,10),(24,18),(15, 26),(6,34)}.

Proof. For the case (6,34) start from a (K1,2,K1,3)-URGDD(0,32), which is known to exist
(Küçükçifçi et al. 2015b), and fill the five groups of size 12 with a copy of a (K1,2,K1,3)-
URD(12;6,2), which exists by Lemma 3.1. For all the other cases take a 3-RGDD D of
type 35 which is known to exist (Rees and Stinson 1987). Expand each vertex 4 times
and for each block b of a given factor of D place on b×{1,2,3,4} a copy of a (C3,K1,3)-
URGDD(r1,s1) of type 43 with (r1,s1) ∈ {(1,4),(4,0)}, which exists by Lemma 3.3. This
gives,since D contains six factors, a (C3,K1,3)-URGDD(r2,s2) of type 125, for every
(r2,s2) ∈ 6 ∗ {(4,0),(1,4)} = {(24,0)),(21,4),(18,8),(15,12),(12,16),(9,20),(6,24)}.
Applying Theorem 2.1 we obtain a (K1,2,K1,3)-URGDD(r3,s3) of type 125, for every
(r3,s3) ∈ {(36,0),(27,8),(18,16),(9,24)}. Fill in each group of size 12 with a copy
of a (K1,2,K1,3)-URD(12;6,2), which exists by Lemma 3.1. This gives a (K1,2,K1,3)-
URD(60;r,s) for every (r,s) ∈ {(6,2)}+{(36,0),(27,8),(18,16),(9,24)}= J(60).

□

4. Main results

Lemma 4.1. For every v ≡ 0 (mod 24), J(v)⊆URD(v;K1,2,K1,3).

Proof. For v ≥ 24 start with a 2-RGDD G of type 1
v

12 (Colbourn and Dinitz 2007). Give
weight 12 to each vertex of this 2-RGDD and place on each edge of a given resolution class
the same (K1,2,K1,3)-URGDD(r,s) of type 122, with (r,s) ∈ {(9,0),(0,8)}, which exists
by Lemma 3.2. Fill the groups of sizes 12 with the same (K1,2,K1,3)-URD(12;6,2), which
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exists by Lemma 3.1. Since G contains v−12
12 resolution classes the result is a (K1,2,K1,3)-

URD(v;r,s) of Kv for each (r,s) ∈ {(6,2)}+ v−12
12 ∗{(9,0),(0,8)}. This implies

URD(v;K1,2,K1,3)⊇ {(6,2)}+ (v−12)
12

∗{(9,0),(0,8)}.

Since v−12
12 ∗ {(9,0),(0,8)}=

{(
9x, 2(v−12)

3 −8x
)
,x = 0,1, . . . , v−12

12

}
, it easy to see that

{(6,2)}+ (v−12)
12 ∗{(9,0),(0,8)}=J(v). This completes the proof. □

Lemma 4.2. For every v ≡ 12 (mod 24), v ̸= 60, J(v)⊆URD(v;K1,2,K1,3).

Proof. For v = 12,36 the conclusion follows from Lemmas 3.1 and 3.6. For v > 60 start
with a 2−frame F of type 2

v−12
24 (Schuster and Ge 2010) with groups Gi, i = 1,2, . . . , v−12

24 .
For j = 1,2 let pi, j be the partial parallel classes which miss the group Gi. Expand each
vertex 12 times and add a set H of 12 ideal vertices a1,a2, . . . ,a12. For each i= 1,2, . . . , v−12

24 ,
place on Gi ×{1,2, . . . ,12} ∪H a copy Di of a (K1,2,K1,3)-IURD(36,12; [6,2], [r,s]), with
(r,s) ∈ {(18,0),(9,8),(0,16)} (which exists by Lemma 3.7). For each b ∈ pi, j, place on
b×{1,2, . . . ,12} a copy Db

i, j of a (K1,2,K1,3)-URGDD(r1,s1) of type 122 with (r1,s1) ∈
{(9,0),(0,8)}, which exists by Lemma 3.2. Now combine all together the factors of Db

i, j,
b ∈ pi, j, along with the factors of Di so to obtain r2 K1,2-factors and s2 K1,3-factors with
(r2,s2) ∈ {(18,0),(9,8),(0,16)}, on H ∪ (∪u

i=1Gi ×{1,2, . . . ,12}). Fill the hole H with a
copy D of (K1,2,K1,3)-URD(12;6,2) and combine the factors of D with the partial factors
of Di so to obtain 6 K1,2-factors and 2 K1,3-factors on H ∪ (∪u

i=1Gi ×{1,2, . . . ,12}). The
result is a (K1,2,K1,3)-URD (v;r,s) for each (r,s)∈{(6,2)}+ v−12

24 ∗{(18,0),(9,8),(0,16)}.
This implies

URD(v;K1,2,K1,3)⊇ {(6,2)}+ v−12
24

∗{(18,0),(9,8),(0,16)}.

Since v−12
24 ∗ {(18,0),(9,8),(0,16)}=

{(
9x, 2(v−12)

3 −8x
)

: x = 0,1, . . . , v−12
12

}
, it easy to

see that {(6,2)}+ v−12
24 ∗{(18,0),(9,8),(0,16)}=J(v). This completes the proof.

□

5. Conclusion

We are now in position to prove the main result of the paper.

Theorem 5.1. For every v ≡ 0 (mod 12), URD(v;K1,2,K1,3) = J(v).

Proof. Necessity follows from Lemma 2.2. Sufficiency follows from Lemmas 3.8, 4.1 and
4.2. □

Remark. Note that the existence of uniformly resolvable {K1,k,K1,k+1}-designs with k > 2
is currently under investigation.
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