
Journal of

Actuator Networks
Sensor and

Article

How to Develop IoT Cloud e-Health Systems Based
on FIWARE: A Lesson Learnt

Antonio Celesti 1,2,*, Maria Fazio 1,3, Fermín Galán Márquez 4, Alex Glikson 5, Hope Mauwa 6,
Antoine Bagula 6, Fabrizio Celesti 7 and Massimo Villari 1,3

1 Department of Mift, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy;
mfazio@unime.it (M.F.); mvillari@unime.it (M.V.)

2 BIG DATA Laboratory - CINI, Via Volturno, 58, 00185 Rome, Italy
3 IRCCS Centro Neurolesi “Bonino Pulejo”, Contrada Casazza, SS113, 98124 Messina, Italy
4 Telefónica S. A., Telefónica Research and Development (TID), Distrito Telefónica Edificio Oeste 1,

Ronda de la Comunicació, 28050 Madrid, Spain; fermin.galanmarquez@telefonica.com
5 IBM Research, Abba Khoushy Ave 199, Haifa 3498838, Israel; gliksonn@il.ibm.com
6 University of the Western Cape, Robert Sobukwe Rd, Bellville, Cape Town 7535, South Africa;

hmauwa@uwc.ac.za (H.M.); abagula@uwc.ac.za (A.B.)
7 Department of Biomedical and Dental Sciences and Morphological and Functional Images,

University of Messina, Azienda Ospedaliera Universitaria Policlinico “G. Martino”, Via Consolare Valeria 1,
98125 Messina, Italy; fabrizio.celesti@studenti.unime.it

* Correspondence: acelesti@unime.it; Tel.: +39-090-676-8577

Received: 23 November 2018; Accepted: 2 January 2019; Published: 10 January 2019
����������
�������

Abstract: Nowadays, the penetration of sensors and actuators in different application fields is
revolutionizing all aspects of our daily life. One of the major sectors that is taking advantage of such
cutting-edge cheap smart devices is healthcare. In this context, Remote Patient Monitoring (RPM)
at home represents a tempting opportunity for hospitals to reduce clinical costs and to improve the
quality of life of both patients and their families. It allows patients to be monitored remotely by
means networks of Internet of Things (IoT) medical devices equipped with sensors and actuators
that collect healthcare data from patients and send them to a Cloud-based Hospital Information
System (HIS) for processing. Up to now, many different proprietary software systems have been
developed as stand-along expensive solutions, presenting interoperability, extensibility, and scalability
issues. In recent years, the European Commission (EC) has promoted the wide adoption of FIWARE
technology, launching 16 Industrial Accelerators focusing on different application fields. One of these,
i.e., FICHe, is specialized in healthcare, providing the guidelines on how to develop eHealth systems.
This paper focuses on how to compose new cutting-edge IoT and Cloud-based Cyber Physical Health
Sytem (CPHS) services and applications interconnected with remote medical sensors and actuators
using FIWARE technology in the context envisioned by FICHe. In particular, we discuss the design
and development of an RPM system implemented through the collaboration between the Istituto di
Ricovero e Cura a Carattere Scientifico (IRCCS) “Bonino Pulejo” (i.e., a clinical and research healthcare
centre specialized in the treatment of neuro lesions), University of Messina, IBM Research, Telefónica,
and the University of the Western Cape in South Africa. The description of our best practice provides
a model and guidelines for the development of lightweight and low cost RPM services for rural
and isolated areas, with the expectation of expanding healthcare to the developing world and in
general allows us to outline how to deal with the real adoption of the FIWARE technology in an
e-health project.

Keywords: sensors; actuators; internet of things; cloud computing; e-health; FIWARE

J. Sens. Actuator Netw. 2019, 8, 7; doi:10.3390/jsan8010007 www.mdpi.com/journal/jsan

http://www.mdpi.com/journal/jsan
http://www.mdpi.com
http://www.mdpi.com/2224-2708/8/1/7?type=check_update&version=1
http://dx.doi.org/10.3390/jsan8010007
http://www.mdpi.com/journal/jsan

J. Sens. Actuator Netw. 2019, 8, 7 2 of 24

1. Introduction

Nowadays, clinical centres are looking at Cloud computing and Internet of Things (IoT)
technologies to develop new cutting-edge e-health services and applications. In this context, telehealth
and, in particular, Remote Patient Monitoring (RPM) at home, represent a tempting opportunity for
hospitals to reduce clinical costs and to improve the quality of life of both patients and their families.
It allows patients to be monitored remotely in their homes by means networks of Internet of Things
(IoT) medical devices equipped with sensors and actuators that collect healthcare data from patients
and send them to a cloud-based Hospital Information System (HIS) for processing. RPM is also a
powerful tool that can be leveraged by the developing world to provide remote access to patients’ data
in rural clinics. The expectation is to avail such data to medical experts worldwide, thus bridging the
medical divide between developed and developing countries. RPM allows patients to be monitored
remotely by means of IoT-based medical devices equipped with sensors and actuators that collect and
send data to hospital cloud system providing services to the patients and clinical personnel. Up to now,
many different proprietary software systems have been developed as stand-along, often expensive,
solutions presenting interoperability, extensibility, and scalability issues.

In recent years, different tele-healthcare initiatives have been proposed. A holistic approach to
design and implementation of a medical teleconsultation workspace is proposed in [1]. A system
architecture implementation called TeleDICOM II based on Service Oriented Architecture (SOA) and
Virtual Organization (VO) concepts is discussed. A mobile patient monitoring system that makes use of
mobile computing and wireless communication technologies for continuous or periodic measurement
and analysis of biosignals of patients is presented in [2]. In particular, a generic architecture associated
terminology and a classificatory framework for comparing mobile patient monitoring systems are
proposed, aimed at both healthcare and computer science professionals. A cloud-based mobile
system to improve respiratory therapy services at home is proposed in [3]. The platform uses vital
signs monitoring as a way of sharing data between hospitals, caregivers, and patients. Using an
iterative research approach and the user’s direct feedback, they show how mobile technologies can
improve a respiratory therapy and a family’s quality of life. A Framework for European Services
in Telemedicine (FEST) is discussed in [4]. The main objective of FEST is to develop a framework
of common understanding, which will assist those wishing to set up a Telemedicine service by
providing structured guidance to the information required for such an endeavour. A software agent
approach for telemonitoring of patients at home is presented in [5]. In particular, it is considered as
an alarm raising system that addresses the issue of the increasing social, economical, and medical
needs of maintaining people at home in loss of autonomy, while preserving privacy and quality of
life. A preliminary study for the development and implementation of a national Taiwan’s Telehealth
Pilot Project (TTPP) for long-term care is presented in [6]. The system has three different models;
the home-care, the community-care, and the residential-care model to assist the elderly in the pursuit
of better healthcare and improved quality of life. The results revealed that both the home-care and
community-care models facilitate timely medical responses if the enrolled patients have emergent
conditions. An architecture for a continuous, user-driven, and data-driven application of clinical
guidelines and its evaluation is discussed in [7]. Specifically, a realistic continuous guideline (GL)-based
decision support architecture, i.e., PICARD that accesses a temporal reasoning engine and provides
several different types of application interfaces is proposed. The feasibility and acceptability of using
mobile phones as part of an existing Web-based system for collaboration between patients with
diabetes and a primary care team is assessed in [8]. In design sessions, mobile wireless glucose meter
uploads are tested along with two approaches to mobile phone-based feedback on glycemic control,
highlighting how mobile diabetes management systems may present a strategy to improve the quality
of diabetes care. However, this state of the art analysis highlights how most of existing solutions
have been conceived as “stand-alone”, adopting different technological approaches that require a
considerable level of complexity with high design, development, and management costs. The adoption
of the cloud computing technology could push down such costs. However, it is at an early stage in the

J. Sens. Actuator Netw. 2019, 8, 7 3 of 24

field of tele-health. A framework for supporting healthcare was proposed in [9], with the objective of
providing a model and guidelines for deploying lightweight and low cost Cyber Physical Health Sytem
(CPHS) in rural and isolated areas, with the expectation of expanding healthcare to the developing
world.

Currently, Cloud technology is recognized as the enabling key technology for Future Internet.
Several years ago, the European Commission (EC) envisioned a challenge for fostering a wide adoption
of Cloud and IoT based systems, avoiding vendor lock-in and simplifying the composition of new
services. The Future Internet initiative that involved Public and Private Partners (FI-PPP) has brought
to the delivery of a new advanced European cloud platform, named FIWARE [10]. The FIWARE
Accelerator Programme was part of the FI-PPP. It is investing 80 million euros to promote the use
and adoption of FIWARE technologies and to help Smart and Medium Enterprises (SMEs) and
entrepreneurs create innovative Future Internet applications [11,12]. The program included 16 Future
Internet Accelerator projects covering different topics, such as smart cities, multimedia, agrifood,
healthcare, etc.

Therefore, in recent years, several applications have been developed adopting the FIWARE
technology in different application domains including information management [13,14], Cloud resource
management [15], smart mobility [16–19], smart parking [20], smart agriculture [21,22], energy [23],
security [24–27], human-computer interaction [28], earthquake prevention [29], and healthcare [30].

Moreover, in order to promote the wide adoption of a such an emerging technology, the EC
launched 16 Industrial Accelerator programs focusing on different application fields. One of these,
i.e., FICHe [31], was specialized on healthcare providing the guidelines on how to develop e-health
systems. In its activity, it also boosted 20 innovative eHealth startups. However, how to use the
FIWARE platform and its additional components, called Generic Enablers (GEs), for the development
of e-health solutions is not trivial at all. In fact, currently, the development of a full e-health solution
using the FIWARE components is not trivial at all because it is hard to understand how to effectively
integrate them.

In this paper, we present the developement experience of an RPM system based on FIWARE
in the context envisioned by FICHe. Such an experience was performed thanks to the collaboration
among researchers belonging to both clinical, academinc and industrial partners including the
Istituto di Ricovero e Cura a Carattere Scientifico (IRCSS) “Bonino Pulejo” (Italy) (i.e., a clinical
and research healthcare centre specialized in the treatment of neuro lesions), University of Messina
(Italy), IBM Research (Israel), Telefónica (Spain), and the University of the Western Cape (South
Africa). In particular, we start from the preliminary RPM architectural model provided by IRCSS
“Bonino Pulejo” previously discussed in [32], in order to describe how it was extended according to
FICHe guidelines and how it was implemented considering the most recent FIWARE components.
More specifically, the description of our case study allows us to outline how to deal with the real
adoption of the FIWARE technology in an e-health project. The proposed solution aims at improving
remote assistance to patients at home optimizing the management of the workflow of physicians,
medical assistants, and operators involved in the service. We describe how such an e-health solution
has been designed, composed of several FIWARE services and GEs, highlighting the main advantages
in the modus operandi of the researchers involved in the project. Also, we provide a full description of
the FIWARE ecosystem and of the specific GEs that were used in the RPM system in order to describe
the main advantages in the agile software development of an e-health project. It can be a useful
contribution for entrepreneurs or developers that would want to exploit the FIWARE platform to easily
develop e-health projects. The solution is also expected to be implemented as a first fully fledged
CPHS for the rural and underdeveloped areas of South Africa.

The paper is organized as follows: In Section 2, we provide an overview of the FIWARE technology
and we discuss the method we adopted to design the RPM architecture; in Section 3, we discuss
how can be possible to developed a FIWARE-based RPM system. In particular, we will focus on
how to setup RPM IoT devices, how to collect and permanently store patients’ health data over

J. Sens. Actuator Netw. 2019, 8, 7 4 of 24

Cloud, also addressing security issues. Moreover, we will explain in detail how we integrated GEs.
A discussion on the overall design and development experience and conclusions are provided in
Section 4.

2. System and Software Architecture

2.1. FIWARE Platform and Software Components Overview

At present, a few big cloud players in the world, such as Google, Amazon, Facebook, Apple (see
Les GAFA [33]), Rackspace, Saleforce, have a prominent position in the business on cloud computing.
They are actuating the policy of Vendor Lock-In, where it is easy to go in their systems, but it is a
nightmare to go out of their cloud systems. For example, Amazon gives its clients the possibility to
import data in its cloud for free, but it is necessary to pay to export data and services out. As described
in this section, FIWARE might represent the redemption of Europe in cloud offerings as it represent a
meaningful alternative to speed up new ICT applications under the Future Internet ecosystem in a
safe and secure way thanks to its Openness and free availability of the cloud infrastructure.

The aim of FIWARE is to provide an open standard platform and an open, sustainable,
global ecosystem. Being a cloud-based platform, FIWARE heavily relies on its cloud hosting layer.
Both the reference architecture and the reference implementation of FIWARE Cloud are based on
OpenStack [34], the leading open source cloud middlewere that has been developed collaboratively
and widely adopted by the industry. The following mainstream OpenStack modules are being adopted:

• OpenStack Compute Service (Nova)—used to provide and manage Compute resources (including
virtual machines and Linux containers), hosting the various runtime components of the software
stack comprising the application;

• OpenStack Image Service (Glance)—used to store and manage virtual machine images,
which encapsulate the pre-installed operating system and the software stack to be deployed
on the individual virtual machines hosting the application;

• OpenStack Volume Service (Cinder)—used to provide and manage block storage resources
(storage volumes), which can be attached to Compute resources as data disks in order to keep the
persistent state of the application;

• OpenStack Network Service (Neutron)—used to provide and manage virtual networks, which can
be attached to Compute resources so that the different application components can interact
between themselves as well as with external users/entities;

• OpenStack Orchestration Service (Heat)—used to orchestrate the provisioning of complex
multi-resource configurations, as well as computation, storage and network artifacts associated
with a particular application infrastructure;

• OpenStack Identity Service (Keystone)—used to manage authentication, authorization and access
control for the various cloud components;

• OpenStack Application Management Service (Murano)—used to manage the provisioning and life
cycle of the individual software components comprising the application, including dependencies
between them and on the underlying infrastructure;

• OpenStack Object Storage Service (Swift)—allows the application to hold BLOBs and
associated metadata, in a large scale, highly available, and low cost storage facility built on
commodity hardware.

OpenStack is the buiding block of FIWARE that can take advantage of its large community
involving developers and companies. The complementary interaction with the OpenStack community
makes the FIWARE Cloud sustainable over time, allowing the developers to leverage best-of-bread
capabilities in cloud infrastructure and in other areas, where FIWARE is providing innovative GEs that
can be hosted on FIWARE Cloud seamlessly.

J. Sens. Actuator Netw. 2019, 8, 7 5 of 24

The FIWARE Reference Architecture includes a set of general-purpose platform functions available
through APIs that are GEs. GEs provide advanced and middleware interfaces to networks and
devices, advanced Web-based user interfaces, application/services ecosystems and delivery networks,
cloud hosting, data/context management, IoT service enablement, and security. FIWARE considers GE
Open Specifications (that are public and royalty-free) and their implementations (GEi). There might be
multiple compliant GEi(s) of each GE open specification. At least, there is one open source reference
implementation of FIWARE GEs (FIWARE GEi(s)) with a well-known open source license.

As described by Hierro et Al. in [35], FIWARE is working in the following directions:

• the technical approach for implementing use case and trial projects using FIWARE generic enablers
on available infrastructures;

• the operational approach for deploying and running the experiments and trials;
• the way social, legal, and economic requirements and constraints are addressed.

The FIWARE Ecosystem is rather comprehensive and it is composed of the elements and
stakeholders reported here:

• Small and Medium-sized Enterprises (SMEs), i.e., the players that are able to provide new ICT
services to a wider audience. FIWARE with its Ecosystem tries to increase new business for SMEs.

• Platform Providers (PPs) hosting the FIWARE Cloud infrastructure.
• Service Provider (SP), i.e., a company that provides organizations with consulting, legal,

real estate, education, communications, storage, processing, and many other services. In general
in FIWARE, SPs can be PPs, but also creators and providers of GEs and SEs.

• FIWARE-LAB, i.e., a live instance of FIWARE available to developers for free experimentation
with the technology.

• FI-OPS, i.e., a collection of tools that eases the deployment, setup and operation of FIWARE
instances by PPs.

• Experimentation Environment, i.e., the FIWARE Cloud infrastructure hosted by PPs that can be
either academics or industrial.

• Production Environment, i.e., the FIWARE Cloud infrastructure hosted PPs aimed at Business
purposes typically created by industrial providers like industrial companies.

• XIFI, i.e., project facilitates the uptake, deployment and federation of several instances of such a
common platform to pave the way for a unified European marketplace that is crucial for enabling
commercial exploitation of FI resources.

The FIWARE Ecosystem is shown in Figure 1. Starting from the left part of the picture, the GE
repository holds the code of available GEs. Different geometric shapes for GEs remark the variety of
GEs already available in FIWARE. GEs can be instantiated in the FIWARE infrastructure and executed
in the RunTime environment (RT). RT is included in the FIWARE platform and it can be a component
of an isolated cloud (such as in Production Environments), or part of federated clouds, where different
RT interact with each other by means of XIFI specifications (such as in Experimentation Environments).
In the example of Figure 1, University A (PP) and University B (PP) are PPs federated following XIFI
agreements, whereas Cloud Provider C and Cloud Provider D manage isolated clouds. However, due the
open nature of FIWARE, GEs can be moved from one RT to another and vice versa (see the dashed-lines)
seamlessly. Even if PPs present different Cloud interfaces, users, SMEs and IoT devices manage GEs in
the RT in the same way. That is why FIWARE represents the Standard de Facto for future systems.

For the best of our knowledge, apart from the solution discussed in [30], there are not other
scientific works focusing on the adoption of the FIWARE technology for healthcare applications.
The best practice described in this paper aims at contributing to improve the state of the art in
this context.

J. Sens. Actuator Netw. 2019, 8, 7 6 of 24

Figure 1. FIWARE Ecosystem.

2.2. Case Study: An e-Health System for Remote Patient Monitoring (RPM)

In order to describe how the FIWARE technology can be used in a real healthcare use case,
we focus on a solution for RPM at home. RPM is becoming a challenging solution for hospitals and
healthcare organizations, which aims at offering a high quality care service, keeping costs down,
and increasing their potential market. Actually, patients with multiple chronic diseases consume a
high quantity of healthcare resources and, often, they have to frequently come back to the hospital for
clinical treatments. Providing health assistance to patients at home allows health providers to reduce
hospitalizations and allows patients to stay in a more homely environment.

RPM is based on the continuous assessment of patience’s health status and allows ill patients or
patients with disabilities to interact with the medical personnnel [36]. It may include physiological
monitoring (e.g., temperature, weight, glucose, blood pressure, etc) and motor exercise tracking tools.
Nowadays, most of hospitals do not provide RPM services, but thanks to the new ICT technologies,
in our opinion, they can be easily developed in order to offer advanced heath care services. Our use
case is focused on a cloud system providing RPM services at home. Specifically, it proposes a support
system to optimize the workflow of medical and paramedical personnel according to available health
resources based on the real needs of patients.

Such a scenario includes many different actors who are classified as:

• Physicians: Medical personnel who are responsible to take care of patients through the analysis,
diagnosis, and treatment of diseases. They can be typically general or specialist medical
practitioners focused on specific disease categories and methods of treatment.

• Operators: Medical personnel who is responsible for visiting (periodically or on demand) patients
at home and to forward information to physicians if a risk is detected. They represent the direct
link between patients and the hospital/caregiver services.

• Patients: People with cronical disease or who need a long time convalescence. Their biological
activities, habits, and environmental factors are continually monitored in order to give medical
personnel updated information on the patients’ health status.

RPM at home is possible thanks to the large adoption of many health monitoring devices along
with new tele-healthcare services. To this end, cloud computing can be very convenient for the
development of reliable and scalable solutions that can be employed in many different contexts.
In particular, the exploit of FIWARE technologies is strategic for several reasons. FIWARE allows
developers to reduce the time necessary to set up the whole solution and to increase the modularity,

J. Sens. Actuator Netw. 2019, 8, 7 7 of 24

scalability, and flexibility of the final product. The basic cloud-based components used in this initiative
are aimed at data storage and processing, brokerage, and security. Moreover, software modules for
collecting data are really important, due the massive data that need to be treated. The advantages
of using FIWARE components is that they can be easily instantiated and interconnected using well
defined Application Program Interfaces (APIs). IoT devices equipped with sensors and actuators
integrated with the FIWARE platform play a fundamental role in development of Future Internet
applications. The FIWARE platform can easily orchestrate all the necessary services of a RPM scenario
that is rather critical in terms of medical IoT device management (including sensors and actuators),
data management (information have to be processed and exchanged between physicians and medical
operators) and patients’ privacy.

2.3. Design Steps

To face the development of a new project, it is necessary to perform well defined independent
steps. They are:

• functional analysis—it describes what the system does and identifies all the functions that must
be performed by the system in order to meet the operational requirements. Each of these
functions is decomposed into sub-functions, and the requirements allocated to the function
are each decomposed with it. This process is iterated until the system has been completely
decomposed into basic sub-functions and each sub-function at the lowest level is completely,
simply, and uniquely defined by its requirements.

• technology investigation—it describes how the system works and identifies possible technologies
useful to implement the sub-functions in the system.

• service and software development—it includes the effort in developing new services and software
components that are specifically designed for the project.

• integration—it provides an abstract definition of the system to capture the key processes,
data relationships, and data sources necessary to the whole system. Such abstraction maps
one or a set of functions and sub-functions in modules. Then, modules can be organized in an
ordered structure, where interactions among different modules are fully defined, as well as the
interfaces towards the external world.

Whereas Step 1 is strictly related to the specific project, FIWARE provides great support for
Step 2 of the project development, offering a useful set of technologies and packages that can be
easily adopted. Thus, in the following, we briefly describe the functional analysis of our specific
use case (Step 1). Then, in the next Sections, we deal with the technology investigation process
using FIWARE technologies (Step 2). Step 3 is out of the scope of this paper, since it includes design
and implementation strategies for proprietary software developed for the e-health solution. We will
describe the Step 3 results in a future work. About Step 4, we provide a skeleton of an integration
structure, where the main components identified for the development of the project are interconnected.

With reference to the specific use case, the RPM solution need to implement the following
main functionalities:

• Input data management: RPM solutions are based on data gathered by remote sensors or
measurement systems necessary to detect specific physiological and environmental parameters.
Data gathering can be performed by small healthcare devices either clipped onto patients’
clothings or directly attached on the patient’s body by means of smartphones, smartwatches.
Moreover, devices placed in the patient’s home (e.g., equipped with motion sensors) can also
automatically collect data coming from the surrounding environment without the need of any
specific action performed by the patient. Other devices can be explicitly used by patients to
manually insert data.

• Data storage: Data collected at the patient’s homes need to be transmitted from healthcare devices
to a central data repository placed in the clinical centre for benchmarking [37]. It is hosted in a

J. Sens. Actuator Netw. 2019, 8, 7 8 of 24

remote server that is accessed by authorized users (e.g., medical personnel responsible for nursing
of the patient) for further processing or history tracking.

• Service development: Specific e-health services need to be developed to process information
according to users’ configurations and event occurrences. They include alarm detection, medical
activities scheduling, personnel management, patients cross-information processing for statistics,
etc. Moreover, additional services need to be deployed to interconnect different components
aimed at specific goal.

• Application development: It helps patients and medical personnel to interpret data coming from
medical devices and equipments in order to plan the workflow for RPM at home. Software
applications can be developed as mobile apps for smartphones/tablets or as web applications.

• Secure data access: Security is crucial in healthcare solutions. Thus, specific functionalities for
data authentication and access management are necessary. The implementation of specific access
policies specifies how different users can use information on patients. For example, physicians
can modify monitoring configurations and visualize statistics, whereas operators cannot.

In order to proceed with the development of the e-health solution, we investigated on how to
implement each of the above functionalities using the FIWARE technologies, trying to respond to the
question: How can we do that with FIWARE? Our approach and the results we achieved are described
in the next sections, where each section addresses a specific question.

3. Results

3.1. How to Setup RPM Devices at Patients’ Home

Recent technological advantages allow to setup personal body networks of low-cost IoT medical
devices equipped with sensors and actuators able to collect parameters related to the health status
of patients directly in their homes enabling tele-monitoring. In this context, patients can use both
wearable and wireless IoT medical devices able to monitor their health status (heart rate, speed,
respiratory rate, single-lead ECG, and training load in real-time). Such devices, being connected over
the Internet send monitored health data to the hospital Cloud.

Up to now the healthcare market has been dominated by vendor lock-in societies providing
expensive solutions that make difficult their integration with third-party software systems. However,
current trend of creating very low-cost programmable IoT devices is opening towards new frontiers
in RPM. Indeed, in the last period we are witnessing to a real battle among Single Board Devices
(SBD) makers that are pushing down costs. Such players includes Raspberry, Arduino, Realtek,
and Espressif, among others. Emerging IoT devices are all characterized not only by a remarkable
low cost, but even by their standalone capabilities, such as computation resources (micro-controller
based products are very powerful), RAM (at least 1 MByte of memory), communications&protocols
(e.g., WiFI, Bluetooth, Ethernet, IP, UDP, TCP, CoAP), and many GPI/Os (e.g., PWM, PCM, ADC,
DAC etc.) for interfacing them with any external physical/electrical transducer. In acquiring and
converting analogue physical/electrical data (ADC), the GPIOs of such devices present a considerable
sampling rate in terms of frequency (up to 100 khz, that is also good for ultrasound scans), along with
a good depth of bits per sample (at least 10 bits).

In the context of human health monitoring, RPM tools can be arranged using such IoT
devices equipped with proper sensors and actuators able to collect bioelectrical signals from
patients. Differently from existing Commercial off-the-shelf (COTS) human health monitoring devices,
medical IoT devices allow the development of a plethora of very cheap RPM solutions that can
revolutionize healthcare, not only in more developed countries, but also in developing ones and
isolated rural ares. In fact, patients can benefit of many Internet-attached medical IoT devices able
to monitor and assist them at home, such as: A low cost treadmill, a low cost exercise bike, a low
cost adult walker aid, a bluetooth scale, a blood monitor (for pressure, glucose, oxygen, etc.), a step
counter (pedometer), a bluetooth Heart Rate Monitor, a game-based interaction with SmartPhones,

J. Sens. Actuator Netw. 2019, 8, 7 9 of 24

a game-based interaction with Smart TVs and Remote Controllers. In some cases, cheap smart
sensing devices measure physical parameters interfacing them with physical/electrical transducer
(e.g., pedalling electronic measurement, running electronic measurement, indoor positions in home,
etc.). In other cases, they may represent the sinks conveying all the data generated by wireless systems
(e.g., smart health monitoring devices with remote controllers) [38].

Since each medical IoT device has its own local computing and storage capabilities, it is able to
pre-process the collected raw health data and send only required aggregated pieces of information to
the hospital Cloud system, hence reducing the communication overhead in term of data transmission.
Furthermore, each personal body network can be interconnected with other ones forming a network of
personal body network accessed by the hospital Cloud system.

3.2. How to Collect Data Over the Cloud

As previously specified, in the RPM use case, it is fundamental to collect data at the patient’s homes
and move them into the Cloud. To this aim, we identified Orion in the GE repository as key solution.
Orion is the reference implementation of the publish/subscribe context broker GE. Orion implements
the context management functionality in FIWARE, based on the OMA’s NGSI standard [39]. A good
introduction to context management in FIWARE can be found in [40]. Context management includes
a set of API to create, update, read, or remove context information. A piece of context information
consists of a set of attributes that characterize the entities of an application. In the e-health scenario,
for example, each single entity can represent patients, whereas attributes can represent related diseases.

As shown in Figure 2, Orion includes a set of operations used by context producers (e.g., a medical
sensor) to generate and update context information that are provided to context consumers (e.g., e-health
services). Context consumption can be carried out by means of synchronous or asynchronous tasks.
Context data production and consumption are decoupled. It is interesting to notice that producer and
consumer are independent. Some complex applications have some parts playing the producer role
and others playing the consumer role to provide a global service. For example, an e-health application
could have two parts: The first one runs in the medical sensors (context producers) and the second in
the doctors’ smartphones (context consumers) to provide real-time clinical information about patients.

Figure 2. Orion Context Broker in a nutshell.

Considering the Orion API, we note that the OMA standard is abstract, thus not directly
implementable by any piece of software. For this reason, FIWARE has defined a concrete syntax by
means of a RESTful binding [41] that adopts HTTP as transport protocol and JSON as payload encoding
format. The API is divided into two kinds of sub-APIs: the first for context management itself (i.e., OMA’s
NGSI10) and the second for context availability management (i.e, OMA’s NGSI9). The difference among

J. Sens. Actuator Netw. 2019, 8, 7 10 of 24

them is that the latter does not manage pieces of context information themselves (e.g., the attribute A
of entity E), instead the context provider of such pieces of information (e.g., the provider of attribute A
of entity E is the context provider at URL P). This enables interesting scenarios in which context broker
delegates context management to such providers and acts basically as a proxy, providing transparency
to context consumers (i.e. if the provider of a given piece of context information changes, the change
does not have any impact on context consumers), context provision infrastructure hiding (the context
broker acts as single entry point for context management operations), and hierarchical scalability
(one context broker can acts as context provider of a high-level context roker).

Both NGSI9 and NGSI10 sub APIs present a parallel structure and they include:

• Task to create/update context information (NGSI10) or context provider registrations (NGSI9).
• Task to query context information (NGSI10) or context provider registrations (NGSI9) in a

synchronous fashion.
• Task to subscribe a context information (NGSI10) or context provider registration (NGSI9) so as to

receive notifications in an asynchronous fashion.

From a RESTful perspective, the API implements two “families”. One family (named standard
operations) has been designed to be as closer as possible to the OMA specification, thus each resource in
the RESTful API models an operation in the OMA API and the only verb used is POST. There is another
family (named convenience operations) with a richer set of resources and verbs in which resources model
context concepts (entities, attributes and subscriptions) and all the usual verbs are used (GET, POST,
PUT, and DELETE). It is important to remark that both families are equivalent and are provided
to enhance the flexibility of the enabler, so that the developer using Orion can chose the one the
developer prefers.

Other functionalities that Orion Context Broker provides are the following:

• Horizontal scalability. The Orion Context Broker logic is basically stateless, so it can scale
horizontally. The persistence layer used by Orion is based in MongoDB, which also scales
horizontally using shards.

• Geolocation awareness. On the one hand, entities can be marked with a location (in GPS
coordinates) at context broker. On the other hand, context broker is able to process queries
scoped to geographic areas (e.g., inside/outside a circle or a polygon), which response takes into
account the location information associated to entities.

• Pagination. Context information base can be very large, e.g., an e-health application managing
information of 1,000,000 patients, each patient modelled as a different entity. Orion Context
Broker API takes this into account and provide mechanism to query context information by blocks
(named pages).

• Multitenancy. A single instance of Orion Context Broker may manage context information sets
belonging to different parties (usually referred as tenants) isolated at DB level, so operations done
by one tenant only take into account the context information belonging to that tenant.

Orion Context Broker could be compared with messaging systems (messaging queues/buses,
service buses, etc.). In addition, it could be compared with conventional databases to store the same
entity/attributes context information. In general, Orion Context Broker is simpler and more flexible than
other kinds of system. Regarding simplicity, given that everything is about entities and attributes,
no complex modelling (e.g., relational modelling) is needed. Moreover, entities and attributes are
concepts that naturally arise during the analysis and design steps of an application. In addition,
as explained before, the API itself includes a small number of operations that are easy to master.
Regarding flexibility, context is a rather generic concept, so it is suited for many applications and not
only to applications related to e-health. As part of this flexibility, take into account that an entity does
not necessarily models things in the real world (such as a medical sensors). It can also model things
in the virtual world, such as an “alarm” (which does not have any physical representation and only
exists within the IT system, which manages alarms).

J. Sens. Actuator Netw. 2019, 8, 7 11 of 24

Specifically regarding the messaging system, they also allow actors (context consumer) to consume
the information published by other actors (context producers). However, messaging systems used to
process messages in an opaque way. Thus, the advanced functionality that Orion implements (such as
geolocation awareness or context management delegation in context providers) is not possible with a
messaging system. However, a messaging system could be a good complement to Orion, covering
messaging bridging functionality (e.g., RESTful to Web-sockets), notification retries policies, etc.

Regarding conventional databases, they are general purpose systems, not specifically oriented
to context management. Thus, although in some sense they are more powerful (e.g., queries and
aggregations), they have a steep learning curve, compared with using the Orion RESTful API. Moreover,
the lack of push functionality (all databases work under the pull paradigm) can have horizontal
scalability problems (depending on the technology) and involve modeling complexity (typically,
relational modelling, which is not needed with the entity-attribute approach).

Finally, there is an intrinsic advantage of using Orion Context Broker compared with the previous
systems: Its seamless integration in the core of the FIWARE platform, thus opening the door to added
value functionality directly or with out-of-the-box connectors. Orion Context Brokers sits in the heart
of the platform, pumping data from/to several GEs or, in other words, being the “glue” to integrate
different FIWARE GEs together.

3.3. How to Permanently Store Data

The huge amount of collected context data that can be defined as “big data” is stored in the Object
Storage GE reference implementation in order to track the history of patients’ diseases for possible
further data analytics tasks. The Object Storage GE on one hand can be easily accessed to upload data
into the cloud from external sources (e.g., IoT) and to store it in a scalable and resilient manner and
on the other hand, it can be easily used as a source for complex processing and analytics workflows
implemented using the various Data/Context Management GEs. Such combination provides a strong
foundation for Big Data analytics, including evolution of existing GEs as well as introduction of new
GEs (e.g., leveraging results of complementary development efforts).

The basic concepts of Object Storage are Containers, which must possess a unique name and
contain the real data Objects. Users can create several Containers up to a certain limit. An Object
also possesses a unique name within its Container and contains the real data, e.g., a document.
An Object can be understood as a file having additional metadata. Some metadata is predefined
such as HTTP-Metadata (Last-Modified, ETag, Content-Length, Content-Type, Content-Encoding,
Content-Language etc.). Users can also attach user-defined metadata. Since the Object name may
contain a separator ‘/’, Objects can be organized in a form of directory hierarchies.

Typical operations for Object Storage are CRUD operations on Containers and Objects and
the setting of properties or metadata attached to an Object. Addressing Containers and Objects
is done by means of special Uniform Resource Identifications (URIs). The URI “http://tributary-
gallery.s3.amazonaws.com/sinwaves.png” addresses an Object sinwaves.png in a Container named
tributary-gallery. The element s3.amazonaws.com is a predefined host name to be used.

Access is given by the REST web services. REST is an HTTP-based protocol, which uses
HTTP operations such as POST, GET, DELETE, and PUT for performing corresponding CRUD data
manipulations. Since handling HTTP operations in a programming language is not trivial, specific APIs
for various programming languages are provided, thus releasing programmers from the complicated
HTTP programming APIs.

The Object services typically maintain multiple copies of an Object, in general, 3 redundant copies
with eventual consistency. As already mentioned, Objects can have system-defined and user-defined
metadata attached to them. A GET operation also retrieves the associated metadata.

Here, the idea of the e-health use case is the usage of FIWARE Object Storage as an archive for
generic and medical data, more precisely, the storage of medical imaging data. For this use case,
many types of file format are considered, like PDF, JPEG, DOCX, etc. and for this domain specific

http://tributary-gallery.s3.amazonaws.com/sinwaves.png
http://tributary-gallery.s3.amazonaws.com/sinwaves.png

J. Sens. Actuator Netw. 2019, 8, 7 12 of 24

such as the DICOM file format, HL7, etc. In particular, considering DICOM file format, it does not
only contain a set of metadata values but also involves a data model that reflects the handling of
medical imaging data in the e-health domain. For example, different images are part of a series, and
this relation between the series should also be reflected in the storage. Therefore, the Object Storage
needs to deal with the following capabilities:

• Support for the metadata as existing in the e-health domain: The idea here is to have a first test
on what is required for the automated extraction of DICOM file metadata for FIWARE Object
Storage GE.

• Support of the data model relations: in the e-health domain, different images stand in relation to
each other and such relations should be reflected. The relations should not only be stored in the
way that this information is retrieved when retrieving the data item. The useful implementation
of this functionality is to quickly identify Objects belonging together.

The Object Storage GE on one hand can be easily accessed to upload data into the cloud from
external sources through RESTful API (e.g., IoT) and to store it in a scalable and resilient manner and
on the other hand, it can be easily used as a source for complex processing and analytics workflows
implemented using the various Data/Context Management GEs leveraging data and metadata.

3.4. How to Instantiate New Software Components in the FIWARE infrastructure

FIWARE heavily relies on its cloud hosting layer that is based on OpenStack, as discussed in
Section 2.1. FIWARE clouds typically offer “ready to deploy” packages including independent GEs,
popular combinations of GEs and packaged pieces of software by using the innovative FIWARE Cloud
tools. This makes extremely easy to setup complex development and deployment environments.
Similarly, our RPM system is packaged using FIWARE Cloud tools, hence ensuring seamless
compatibility and portability.

Developers can enjoy the standardized approach to package their applications (e.g., in VM images),
which can be then deployed on any FIWARE Cloud seamlessly. Moreover, since FIWARE Cloud is
compatible with OpenStack, the same applications can be deployed on any OpenStack-compliant
cloud, private or public seamlessly.

For complex applications (e.g., multi-tier), FIWARE Cloud offers the abilities to implement logical
network segregation, allowing to isolate individual application components from each other and from
the external users/entities easily. The network virtualization capabilities are delivered following the
modern Software Defined Networking (SDN) principles, available via OpenStack Network Service.
Moreover, the SDN foundation enables the innovation in the network function virtualization area,
where individual advanced network functions, such as load balancing or firewalls, are delivered
flexibly within a unified cloud infrastructure, spanning compute, network, and storage resources.
Such innovations are likely to be easily adopted by future FIWARE Cloud implementations, based on
emerging standards and the ongoing work to make them compatible with OpenStack.

FIWARE Cloud provides seamless integration with the FIWARE Identity Management GE,
enabling single-sign-on between the cloud GEs and the GEs hosted on the cloud. This way developers
can maintain a single set of credentials for the different parts of their applications, including those
delivering services to end-users and those controlling the life cycle of the application deployment itself,
hosted on the FIWARE cloud.

In addition to capabilities provided by “Vanilla” OpenStack, FIWARE Cloud provides several
innovations beyond what is currently available in mainstream OpenStack deployments. This includes
the following capabilities:

• Support for LinuX Containers (LXC) as a novel mechanism to provide compute resources, enabling
higher density, agility, and flexibility. With LinuX Containers (such as Docker), the application
developer can enjoy a much more lightweight compute resource, hosting only the incremental

J. Sens. Actuator Netw. 2019, 8, 7 13 of 24

parts of the particular application component, as opposed to full operating system and the
heavy-weight software stacks typically deployed in virtual machines.

• Support for execution of processing tasks called “storlets” within the Object Storage infrastructure,
reducing the need to transfer large amounts of data between the data cluster and the Compute
cluster. By using storlets, the application developer can easily offload many data-intensive tasks
such as media transcoding or data anonymization to the Object Storage facility, leaving mostly
the heavy-weight Compute-intensive processing within the Compute cluster.

• Support for template-based holistic management of complex application deployments,
involving composite configurations of infrastructure resources (compute, storage, network) as
well as software components installed and configured within the individual virtual machines
or Containers. This technology enables DevOps-style approach to application development,
where the individual provisioning and configuration steps across the different application
components are fully automated, using easy to use declarative or prescriptive interfaces.

3.5. How to Develop Application Front-End

An e-health scenario requires a Graphical User Interface (GUI) that is easy to used by the clinical
personnel and patients. FIWARE, by means of particular GEs, offers developers and end-users
the possibility to build HTML5-based GUI to develop their front-end software components that are
commonly used to arrange Software as a Service (SaaS). We can distinguish between developer-oriented
and user-oriented GEs.

By means of developer-oriented GEs, developers can build pre-customized front-end software
components. These GEs facilitate the developemnt of 2D/3D User Interfaces (UI), providing advanced
tools for image rendering, interface design, synchronization, animation, etc. GEs belonging to such
category include: 2D-UI, 2D/3D Capture, 3D-UI-XML-3D, 3DUI-Web Tundra, Cloud Rendering,
GIS-Data Provider - Geoserver-3D, Interface Designer, POI Data Provider, Real Virtual Interaction,
Synchronization, and Virtual Characters. Using such GEs, developers are responsible for defining the
application logic and the interaction with back-end components (e.g., third-party software systems
and other GEs).

Besides software developers, the FIWARE technology aims to enable “common” users (who do
not have programming skills) to acquire built-in software components and combine them with a
drag-and-drop approach in order to customize their applications. This is possible by means of
user-oriented GEs. Such a new methodology opens FIWARE users to a new flexible software
delivery model; users can easily acquire pieces of front-end software, each one controlling a
particular back-end component and combine mash-up applications. GEs that enable such a scenario
include: Application Mashup (whose reference implementation is Wirecloud), Marketplace (whose
reference implementation is SAP RI), Repository SAP RI, Revenue Settlement and Sharing System,
Store (whose reference implementation is WStore). In particular, Wirecloud allows both developers and
end-users to build their own application by integrating different widgets in order to compose mashups.
A widget is a graphical HTML5-based front-end that allows to control a particular software component
back-end. Different from developer-oriented GEs, user-oriented GEs allow users to integrate different
widgets according to a drag-and-drop approach. Wirecloud is aimed at both desktop and mobile users.

Wirecloud is the reference implementation of the Applicatin Mashup GE based on Rich
Internet Application (RIA) and semantic technologies. It offers a web platform that allows users
(without programming skills) to easily compose “on-fly” with a “drag and drop” approach their own
dashboard/cockpit applications according to their specific needs. In fact, Wirecloud allows to develop
an application logic by integrating heterogeneous data and UI components called “widgets”. They can
be chosen by users from a vast, ever-growing catalogue and integrated by means of a piping editor in
order to develop dashboard/cockpit applications.

Wirecloud suits well the requirements of the RPM front-end. In fact, it allows medical personnel to
customize their dashboard/cockpit applications easily in order to monitor the health status of patients.

J. Sens. Actuator Netw. 2019, 8, 7 14 of 24

This is possible by developing different widgets that can be integrated (wired) by the medical personnel
according to their needs. Application mashups can be built, e.g., to address particular doctors and
patients’ needs and to monitor thresholds related to different patients’ biological parameters. Let us
think, for example, a doctor who is able to compose “on-fly” different widgets in order to build a
dashboard that provides a global picture of the health status of a patient, or let us think of a doctor who
is able to modify “on-fly” the same dashboard by removing or adding widgets according to his/her
needs. In such a scenario, widgets can be the front-end component of a medical device, monitoring
particular biological parameters of a patient (heartbeat, blood pressure, neurological activity, and so
on). In this way, doctors can build customized dashboard/cockpit that can help them to make complex
diagnosis, e.g., combining different widgets related to different observations in order to identify
possible inter-dependent aspects that can condition a specific disease. In addition, considering an RPM
scenario, doctors can access the real-time observations of a patients.

3.6. How to Address Security Issues

Security and privacy in e-health raise several issues. In order to address such issues, FIWARE
offers several GEs, such as the Identity Management GE (whose reference implementation is KeyRock),
the PEP Proxy GE (whose reference implementation is Wilma), and the Authorization PDP GE (whose
reference implementation is AuthZForce).

Keyrock provides Single-Sign-On (SSO) authentication as a service. Users’ identity attributes
are typically managed by a trusted party. Keyrock, acting as Identity Provider (IdP) provides
authentication services to different Service Providers (SP) acting as relying parties via open standard
protocols such as OASIS SAML (Security Assertion Markup Language) version 2.0 [42] and OAuth.
It covers attributes for both users and IoT devices, managing also the identity of “things” themselves
(attributes, location, history, and so on).

Wilma is based on the eXtensible Access Control Markup Languages (XACML) [43]. It is
responsible for controlling resource access. When a third party software component would like
to access a resource, it includes in the requests a token issued by KeyRock that identifies the user
that is going to perform the action. It is also possible to add specific access authorization policies to
resources by means of AuthZForce. In a typical configuration, Wilma is integrated with the Keyrock
and AuthZForce in order to carry out both authentication and authorization services.

Considering our RPM solution, we used the KeyRock to provide user authentication to both
patients and medical personnel. When a widget receives a request from another widget from a user,
the process of authentication and authorization for accessing the resources and/or services of the
widget back-end begins. According to this approach, it is safe the access the resources and/or services
belonging to other GEri(s) (e.g., Object Storage and Orion Context) or other third-party software
systems (e.g., legacy systems belonging to hospitals). This approach is very smart because the security
of an application mashup in not a monolithic but can be configured with a modular approach on each
involved widget. Figure 3 depicts the authentication and authorization processes required to access
both resources and services of a single widget back-end. The authentication process takes place by
means of KeyRock that issues a OAuth token that then is sent to the Wilma. If the token is not expired,
the request is forwarded to AuthZForce that verifies if the user holds the rights to access the widget
back-end. If so, the widget back-end serves the request.

J. Sens. Actuator Netw. 2019, 8, 7 15 of 24

Figure 3. Integration between IdM, Authorization PDP, and Proxy Generic Enablers (GEs).

3.7. FIWARE-Based RPM Architecture

To integrate the above technologies in an efficient e-health solution, we need to organize
components in a whole system, specifying how they are interconnected and the type of information
they process. Figure 4 shows the skeleton of our solution, that describes how information flows in the
system across different components. Rectangles in the picture represent the components implementing
the main functionalities necessary to develop the e-health solution. Inside each rectangle, we identify
the specific GEs useful for the related functionality. All the components and GEs in the system can
be deployed in FIWARE VMs. Monitoring data collected from patients are forwarded across the
Internet to the FIWARE-based hospital Cloud, where the Data Collection component, implemented by
the Orion Context Broker GE, is devoted to organize data according to the context. Then, health data
are processed by specific services arranged by the service deployment component, implemented by the
Infrastructure as a Service (IaaS) GE (i.e., OpenStack), or simply stored by the Data Storage component
implemented by the Object Storage GE. Raw and processed health data can be accessed by end users
through applications, arranged by the Wirecloud GE, characterized by different features according to
the particular involvement of the end user in the healthcare workflow (e.g., he/she is a doctor, operator,
health assistant, and so on). In the end the Secure Data Access component implemented by IdM, PDP,
and PEP GEs guarantees security. Focusing on the specific interaction among GEs, we provide some
details that can be useful to develop the whole system.

First of all, widgets and operators wishing to use the Javascript bindings provided by Wirecloud
for accessing the FIWARE NGSI Open RESTful API in order to seamlessly interoperate with the Orion
Context Broker GE must add the NGSI feature as a requirement into their description files (config.xml
files). Listing 1 shows an example of connection query. In order to create queries, it is required to enable
the NGSI support to widgets/operators (XML). The following is an example of a widget description
using the XML flavour of the Workflow Description Language (WDL):

Listing 1. Example of connection query.

Version December 29, 2018 submitted to J. Sens. Actuator Netw. 16 of 24

Figure 4. Skeleton of GE composition.

on the specific interaction among GEs, we provide some details that can be useful to develop the641

whole system.642

643
connect ion . query ([{644

i s P a t t e r n : true ,645

id : MashupPlatform . p r e f s . get (’ id ’)646

}] ,647

null ,648

{649

f l a t : true ,650

onSuccess : funct ion (discovered) {651

. . .652

}653

}654

) ; "655656

Listing 1: Example of connection query.

First of all, widgets and operators wishing to use the Javascript bindings provided by Wirecloud657

for accessing the FIWARE NGSI Open RESTful API in order to seamlessly interoperate with the Orion658

Context Broker GE must add the NGSI feature as a requirement into their description files (config.xml659

files). Listing 1 shows an example of connection query. In order to create queries, it is required660

to enable the NGSI support to widgets/operators (XML). The following is an example of a widget661

description using the XML flavour of the Workflow Description Language (WDL):662

663
<?xml version= ’ 1 . 0 ’ encoding= ’UTF−8 ’ ?>664

<widget xmlns=" h t t p : //wirecloud . conwet . f i .upm. es/ns/macdescript ion /1 "665

vendor="CoNWeT" name=" observat ion−r e p o r t e r "666

version=" 1 . 0 ">667

< d e t a i l s >668

< t i t l e >Observation Reporter</ t i t l e >669

<authors>aarranz</authors>670

<email>aarranz@conwet . com</email>671

672

<smartphoneimage>673

images/smartphone . png674

J. Sens. Actuator Netw. 2019, 8, 7 16 of 24

Figure 4. Skeleton of GE composition.

Listing 2. Example of Widget description using the XML flavour of the workflow description language
(WDL).

J. Sens. Actuator Netw. 2018, xx, x 17 of 24

<?xml version= ’ 1 . 0 ’ encoding= ’UTF−8 ’ ?>
<widget xmlns=" h t t p : //wirecloud . conwet . f i .upm. es/ns/macdescript ion /1 "

vendor="CoNWeT" name=" observat ion−r e p o r t e r "
version=" 1 . 0 ">

< d e t a i l s >
< t i t l e >Observation Reporter</ t i t l e >
<authors>aarranz</authors>
<email>aarranz@conwet . com</email>

<smartphoneimage>

images/smartphone . png
</smartphoneimage>
< d e s c r i p t i o n >

Creates a new observat ion
</ d e s c r i p t i o n >
<doc> h t t p : //www. e n v i r o f i . eu/</doc>

</ d e t a i l s >
<requirements>

< f e a t u r e name="NGSI"/>
</requirements>
<wiring/>
<contents s r c =" index . html "

contenttype=" t e x t /html "
c h a r s e t =" utf−8"
u s e p l a t f o r m s t y l e=" t rue "/>

<rendering height=" 20 " width=" 5 "/>
</widget>

Listing 2: Widget description using the XML flavour of the WDL.

It is also possible to enable the NGSI support to widgets/operators (RDF). In order to create a
connection from Wirecloud Widgets to NGSI Context Brokers, first of all, the developer has to make
use of the NGSI API by creating a connection with the NGSI Context Broker the developer is going to
use. This can be accomplished with the following code:

var ngsi_connect ion =
new NGSI . Connection (ngs i_server , opt ions) ;

Listing 3: Connection with the NGSI Context Broker.

The ngsi_proxy_url option is required for being able to create subscriptions handled by
widgets/operators. Also, if you are connecting to a Orion Context Broker using the IdM authentication,
you will need to pass the required authentication credentials. This can be accomplished in two ways:

• Making use of the request_headers option and passing directly the required authentication header;
• Making use of the use_user_fiware_token option to make the NGSI API user the FIWARE’s

OAuth2 token of the current user (obtained by Wirecloud from the IdM). Any request made by a
connection using this option will fail if the current users does not have a valid token (take into
account that anonymous users and users authenticated using other authentication back-ends fall
into this category). If you are worried about security, take into account that the OAuth2 token is
injected in the request by the Wirecloud’s proxy

The code below shows a NGSI connection creation using the resources available at FIWARE Lab:

var ngsi_connect ion =
new NGSI . Connection (

’ ht tp :// orion . lab . f iware . org :1026 ’ ,
{ use_user_fiware_token : true ,

ngsi_proxy_ur l :
’ h t tps :// ngsiproxy . lab . f iware . org ’

}) ;

J. Sens. Actuator Netw. 2019, 8, 7 17 of 24

It is also possible to enable the NGSI support to widgets/operators (RDF).
In order to create a connection from Wirecloud Widgets to NGSI Context Brokers, first of all,

the developer has to make use of the NGSI API by creating a connection with the NGSI Context Broker
the developer is going to use. This can be accomplished with the following code:

Listing 3. Connection with the NGSI Context Broker.

Version December 29, 2018 submitted to J. Sens. Actuator Netw. 17 of 24

</smartphoneimage>675

< d e s c r i p t i o n >676

Creates a new observat ion677

</ d e s c r i p t i o n >678

<doc> h t t p : //www. e n v i r o f i . eu/</doc>679

</ d e t a i l s >680

<requirements>681

< f e a t u r e name="NGSI"/>682

</requirements>683

<wiring/>684

<contents s r c =" index . html "685

contenttype=" t e x t /html "686

c h a r s e t =" utf−8"687

u s e p l a t f o r m s t y l e=" t rue "/>688

<rendering height=" 20 " width=" 5 "/>689

</widget>690691

Listing 2: Widget description using the XML flavour of the WDL.

It is also possible to enable the NGSI support to widgets/operators (RDF). In order to create a692

connection from Wirecloud Widgets to NGSI Context Brokers, first of all, the developer has to make693

use of the NGSI API by creating a connection with the NGSI Context Broker the developer is going to694

use. This can be accomplished with the following code:695

696
var ngsi_connect ion =697

new NGSI . Connection (ngs i_server , opt ions) ;698699

Listing 3: Connection with the NGSI Context Broker.

The ngsi_proxy_url option is required for being able to create subscriptions handled by700

widgets/operators. Also, if you are connecting to a Orion Context Broker using the IdM701

authentication, you will need to pass the required authentication credentials. This can be702

accomplished in two ways:703

• Making use of the request_headers option and passing directly the required authentication704

header;705

• Making use of the use_user_fiware_token option to make the NGSI API user the FIWARE’s706

OAuth2 token of the current user (obtained by Wirecloud from the IdM). Any request made by707

a connection using this option will fail if the current users does not have a valid token (take into708

account that anonymous users and users authenticated using other authentication back-ends709

fall into this category). If you are worried about security, take into account that the OAuth2710

token is injected in the request by the Wirecloud’s proxy711

The code below shows a NGSI connection creation using the resources available at FIWARE Lab:712

713
var ngsi_connect ion =714

new NGSI . Connection (715

’ ht tp :// orion . lab . f iware . org :1026 ’ ,716

{ use_user_fiware_token : true ,717

ngsi_proxy_ur l :718

’ h t tps :// ngsiproxy . lab . f iware . org ’719

}) ;720721

Listing 4: NGSI connection creation.

Once created the connection, you will be able to use the NGSI API bindings (in the example, through722

the ngsi_connection variable).723

Queries are the most basic operations that can be executed in a Orion Context Broker. This724

operation can be accessed thought the query method of the connection object:725

The ngsi_proxy_url option is required for being able to create subscriptions handled by
widgets/operators. Also, if you are connecting to a Orion Context Broker using the IdM authentication,
you will need to pass the required authentication credentials. This can be accomplished in two ways:

• Making use of the request_headers option and passing directly the required authentication header;
• Making use of the use_user_fiware_token option to make the NGSI API user the FIWARE’s OAuth2

token of the current user (obtained by Wirecloud from the IdM). Any request made by a connection
using this option will fail if the current users does not have a valid token (take into account that
anonymous users and users authenticated using other authentication back-ends fall into this
category). If you are worried about security, take into account that the OAuth2 token is injected
in the request by the Wirecloud’s proxy

The code below shows a NGSI connection creation using the resources available at FIWARE Lab:

Listing 4. NGSI connection creation.

Version December 29, 2018 submitted to J. Sens. Actuator Netw. 17 of 24

</smartphoneimage>675

< d e s c r i p t i o n >676

Creates a new observat ion677

</ d e s c r i p t i o n >678

<doc> h t t p : //www. e n v i r o f i . eu/</doc>679

</ d e t a i l s >680

<requirements>681

< f e a t u r e name="NGSI"/>682

</requirements>683

<wiring/>684

<contents s r c =" index . html "685

contenttype=" t e x t /html "686

c h a r s e t =" utf−8"687

u s e p l a t f o r m s t y l e=" t rue "/>688

<rendering height=" 20 " width=" 5 "/>689

</widget>690691

Listing 2: Widget description using the XML flavour of the WDL.

It is also possible to enable the NGSI support to widgets/operators (RDF). In order to create a692

connection from Wirecloud Widgets to NGSI Context Brokers, first of all, the developer has to make693

use of the NGSI API by creating a connection with the NGSI Context Broker the developer is going to694

use. This can be accomplished with the following code:695

696
var ngsi_connect ion =697

new NGSI . Connection (ngs i_server , opt ions) ;698699

Listing 3: Connection with the NGSI Context Broker.

The ngsi_proxy_url option is required for being able to create subscriptions handled by700

widgets/operators. Also, if you are connecting to a Orion Context Broker using the IdM701

authentication, you will need to pass the required authentication credentials. This can be702

accomplished in two ways:703

• Making use of the request_headers option and passing directly the required authentication704

header;705

• Making use of the use_user_fiware_token option to make the NGSI API user the FIWARE’s706

OAuth2 token of the current user (obtained by Wirecloud from the IdM). Any request made by707

a connection using this option will fail if the current users does not have a valid token (take into708

account that anonymous users and users authenticated using other authentication back-ends709

fall into this category). If you are worried about security, take into account that the OAuth2710

token is injected in the request by the Wirecloud’s proxy711

The code below shows a NGSI connection creation using the resources available at FIWARE Lab:712

713
var ngsi_connect ion =714

new NGSI . Connection (715

’ ht tp :// orion . lab . f iware . org :102 6 ’ ,716

{ use_user_fiware_token : true ,717

ngsi_proxy_ur l :718

’ h t tps :// ngsiproxy . lab . f iware . org ’719

}) ;720721

Listing 4: NGSI connection creation.

Once created the connection, you will be able to use the NGSI API bindings (in the example, through722

the ngsi_connection variable).723

Queries are the most basic operations that can be executed in a Orion Context Broker. This724

operation can be accessed thought the query method of the connection object:725

Once created the connection, you will be able to use the NGSI API bindings (in the example,
through the ngsi_connection variable).

Queries are the most basic operations that can be executed in a Orion Context Broker.
This operation can be accessed thought the query method of the connection object:

Listing 5. Connection query.

Version December 29, 2018 submitted to J. Sens. Actuator Netw. 18 of 24

726
var e n t i t y I d L i s t = [727

{ type : ’ P a t i e n t ’ , id : ’ .∗ ’ , i s P a t t e r n : t rue }728

] ;729

var a t t r i b u t e L i s t = [’ c u r r e n t _ p o s i t i o n ’] ;730

var opt ions = {731

f l a t : true ,732

onSuccess : funct ion (data) {733

n g s i _ s u b s c r i p t i o n I d = data . s u b s c r i p t i o n I d ;734

}735

} ;736

ngsi_connect ion . query (e n t i t y I d L i s t , a t t r i b u t e L i s t , opt ions) ;737738

Listing 5: Connection query.

The first parameter is the list of entities you are interested on. In our case, we are interested in739

all Patient entities. This is accomplished using the isPattern option that allows us to use a regular740

expression that matches with any id.741

The second one is the list of attributes you are interested on. In our case, we are interested742

only in the current_position attribute. However, you can pass null or an empty list to indicate that743

you are interested in all the attributes of the selected entities. Finally, all the methods support a last744

parameter called options that should be used to pass the callbacks and the extra options. Any method745

of NGSI.connection supports at least the following callbacks:746

• onSuccess is called when the request finishes successfully. The parameters passed to this callback747

depends on the invoked method. In the case of the query operation, the first parameter will748

contain the data returned after querying the context broker.749

• onFailure is called when the request finishes with errors.750

• onComplete is called when the request finishes regardless of whether the request is successful or751

not.752

The query method also supports other extra options. The flat options is used for simplifying the data753

structure used for representing the returned data. This simplification relies in making the following754

assumptions about the returned entry set: given an entity id there is only one value for the entity’s755

type parameter; entities do not have attributes called id or type; attribute types do not matter or are756

already known; attribute metadata does not matter or is already known. For example, this is the value757

of the data parameters passed to the onSuccess callback when using the flat option:758

759
{760

" P a t i e n t 1 " : {761

" id " : " P a t i e n t 1 " ,762

" type " : " P a t i e n t " ,763

" c u r r e n t _ p o s i t i o n " :764

" 4 3 . 4 7 5 5 7 , −3.8048315 "765

} ,766

" P a t i e n t 2 " : {767

" id " : " P a t i e n t 2 " ,768

" type " : " P a t i e n t " ,769

" c u r r e n t _ p o s i t i o n " :770

" 4 3 . 4 7 2 5 8 , −3.8026643 "771

} ,772

" P a t i e n t 3 " : {773

" id " : " P a t i e n t 3 " ,774

" type " : " P a t i e n t " ,775

" c u r r e n t _ p o s i t i o n " :776

" 4 3 . 4 7 8 6 6 , −3.7991238 "777

}778

}779780

Listing 6: Example of data parameters.

The first parameter is the list of entities you are interested on. In our case, we are interested in
all Patient entities. This is accomplished using the isPattern option that allows us to use a regular
expression that matches with any id.

J. Sens. Actuator Netw. 2019, 8, 7 18 of 24

The second one is the list of attributes you are interested in. In our case, we are interested only
in the current_position attribute. However, you can pass null or an empty list to indicate that you
are interested in all the attributes of the selected entities. Finally, all the methods support a last
parameter called options that should be used to pass the callbacks and the extra options. Any method
of NGSI.connection supports at least the following callbacks:

• onSuccess is called when the request finishes successfully. The parameters passed to this callback
depends on the invoked method. In the case of the query operation, the first parameter will
contain the data returned after querying the context broker.

• onFailure is called when the request finishes with errors.
• onComplete is called when the request finishes regardless of whether the request is successful

or not.

The query method also supports other extra options. The flat options is used for simplifying
the data structure used for representing the returned data. This simplification relies in making the
following assumptions about the returned entry set: given an entity id there is only one value for the
entity’s type parameter; entities do not have attributes called id or type; attribute types do not matter
or are already known; attribute metadata does not matter or is already known. For example, this is the
value of the data parameters passed to the onSuccess callback when using the flat option:

Listing 6. Example of parameters.

Version December 29, 2018 submitted to J. Sens. Actuator Netw. 18 of 24

726
var e n t i t y I d L i s t = [727

{ type : ’ P a t i e n t ’ , id : ’ .∗ ’ , i s P a t t e r n : t rue }728

] ;729

var a t t r i b u t e L i s t = [’ c u r r e n t _ p o s i t i o n ’] ;730

var opt ions = {731

f l a t : true ,732

onSuccess : funct ion (data) {733

n g s i _ s u b s c r i p t i o n I d = data . s u b s c r i p t i o n I d ;734

}735

} ;736

ngsi_connect ion . query (e n t i t y I d L i s t , a t t r i b u t e L i s t , opt ions) ;737738

Listing 5: Connection query.

The first parameter is the list of entities you are interested on. In our case, we are interested in739

all Patient entities. This is accomplished using the isPattern option that allows us to use a regular740

expression that matches with any id.741

The second one is the list of attributes you are interested on. In our case, we are interested742

only in the current_position attribute. However, you can pass null or an empty list to indicate that743

you are interested in all the attributes of the selected entities. Finally, all the methods support a last744

parameter called options that should be used to pass the callbacks and the extra options. Any method745

of NGSI.connection supports at least the following callbacks:746

• onSuccess is called when the request finishes successfully. The parameters passed to this callback747

depends on the invoked method. In the case of the query operation, the first parameter will748

contain the data returned after querying the context broker.749

• onFailure is called when the request finishes with errors.750

• onComplete is called when the request finishes regardless of whether the request is successful or751

not.752

The query method also supports other extra options. The flat options is used for simplifying the data753

structure used for representing the returned data. This simplification relies in making the following754

assumptions about the returned entry set: given an entity id there is only one value for the entity’s755

type parameter; entities do not have attributes called id or type; attribute types do not matter or are756

already known; attribute metadata does not matter or is already known. For example, this is the value757

of the data parameters passed to the onSuccess callback when using the flat option:758

759
{760

" P a t i e n t 1 " : {761

" id " : " P a t i e n t 1 " ,762

" type " : " P a t i e n t " ,763

" c u r r e n t _ p o s i t i o n " :764

" 4 3 . 4 7 5 5 7 , −3.8048315 "765

} ,766

" P a t i e n t 2 " : {767

" id " : " P a t i e n t 2 " ,768

" type " : " P a t i e n t " ,769

" c u r r e n t _ p o s i t i o n " :770

" 4 3 . 4 7 2 5 8 , −3.8026643 "771

} ,772

" P a t i e n t 3 " : {773

" id " : " P a t i e n t 3 " ,774

" type " : " P a t i e n t " ,775

" c u r r e n t _ p o s i t i o n " :776

" 4 3 . 4 7 8 6 6 , −3.7991238 "777

}778

}779780

Listing 6: Example of data parameters.
One of the most important operations provided by the context broker is the support for creating

subscriptions, in this way our system can obtain “real time” notifications about the status of the entities
of our system. Subscriptions are very similar to queries. The main difference between queries and
subscriptions is that queries are synchronous operations. Moreover, the Orion Context Broker will
send a first notification containing the data that would be returned for the equivalent query operation.
This way, you will know that there is no gap between the current values and their notified changes.
Both widgets and operators can create subscriptions through the createSubscription method. In the
previous example, this call to createSubscription will make the context broker to call the onNotify function
each time the current_position attribute of the entities of type Patient is changed. You must take into
account that the Orion Context Broker evaluates patterns at runtime, so using patters, one is able to
receive notification about new entities provided that the notify conditions are meet.

This subscription expires after 3 h, from which time the context broker stops sending notifications.
Anyway, widgets/operators can renew those subscriptions by using the updateSubscription method,

J. Sens. Actuator Netw. 2019, 8, 7 19 of 24

even if they have expired. Subscriptions can be cancelled using the cancelSubscription method making
the context broker release any info about the subscription. In any case, Wirecloud cancels any
subscription automatically when widgets/operators are unloaded. As with the query operations,
one can make use of the flat option when creating subscriptions. The assumptions made by the
createSubscription method will be the same as the ones used by the query method. The only thing
that changes is that this affects the parameter passed to the notification callback instead of the
success callback.

Widgets and operator can update entities using the updateAttributes and addAttributes methods.
The updateAttributes and addAttributes methods use the same format for their parameters. The main
difference is that addAttribute method will create new attributes/entities if needed, whereas
updateAttributes will fail if the referred entities/attributes does not exist. For example, the code
in Listing 7 updates the attribute position of the Patient1 entity if it exists, or creates the attribute or
the entity if one of them does not exist. The response_data parameter of the onSuccess callback is a
summary of the accepted changes as returned by the Orion Context Broker. This info can normally
be ignored, as it will be very similar to the one provided to the updateAttributes/addAttribute methods
when the request ends successfully. If everything goes fine, the unaccepted_changes parameter will
contain an empty array. If something goes wrong, the unaccepted_changes parameter will contain all the
information about what changes were rejected. It is very important to take this into account as the
onFailure callback will not be called for reporting unaccepted changes as they are treated individually
by the Orion Context Broker.

Listing 7. Example of attribute update.

Version December 29, 2018 submitted to J. Sens. Actuator Netw. 19 of 24

781
ngsi_connect ion . addAttr ibutes ([{782

e n t i t y : { id : ’ P a t i e n t 1 ’ , type : ’ P a t i e n t ’ } ,783

a t t r i b u t e s : [784

{785

type : ’ s t r i n g ’ ,786

name : ’ current\ _ p o s i t i o n ’ ,787

contextValue : coordinates788

}789

]790

}] , {791

onSuccess : funct ion792

(accepted_changes , unaccepted_changes) {793

/ / The Orion Contex t B r o k e r p r o c e s s e d794

/ / t h e r e q u e s t s u c c e s s f u l l y795

i f (unaccepted_changes . length === 0) {796

/ / P a t i e n t c r e a t e d / upda t ed s u c c e s s f u l l y797

. . .798

} e lse {799

/ / Something went wrong800

}801

} . bind (t h i s) ,802

onFai lure : func t ion (e r r o r) {803

/ / G e n e r a l f a i l u r e when804

/ / c r e a t i n g / u p d a t i n g t h e P a t i e n t805

} ,806

onComplete : func t ion () {807

/ /808

} . bind (t h i s)809

}810

) ;811812

Listing 7: Example of attribute update.

One of the most important operations provided by the context broker is the support for creating813

subscriptions, in this way our system can obtain “real time” notifications about the status of the814

entities of our system. Subscriptions are very similar to queries. The main difference between queries815

and subscriptions is that queries are synchronous operations. Moreover, the Orion Context Broker816

will send a first notification containing the data that would be returned for the equivalent query817

operation. This way, you will know that there is no gap between the current values and their notified818

changes. Both widgets and operators can create subscriptions through the createSubscription method.819

In the previous example, this call to createSubscription will make the context broker to call the onNotify820

function each time the current_position attribute of the entities of type Patient is changed. You must821

take into account that the Orion Context Broker evaluates patterns at runtime, so using patters, one822

is able to receive notification about new entities provided that the notify conditions are meet.823

This subscription expires after 3 hours, time from which the context broker stops824

sending notifications. Anyway, widgets/operators can renew those subscriptions by using the825

updateSubscription method, even if they have expired. Subscriptions can be cancelled using the826

cancelSubscription method making the context broker release any info about the subscription. In any827

case, Wirecloud cancels any subscription automatically when widgets/operators are unloaded. As828

with the query operations, one can make use of the flat option when creating subscriptions. The829

assumptions made by the createSubscription method will be the same as the ones used by the query830

method. The only thing that changes is that this affects the parameter passed to the notification831

callback instead of the success callback.832

Widgets and operator can update entities using the updateAttributes and addAttributes methods.833

The updateAttributes and addAttributes methods use the same format for their parameters. The834

main difference is that addAttribute method will create new attributes/entities if needed whereas835

updateAttributes will fail if the referred entities/attributes does not exist. For example, the code in836

J. Sens. Actuator Netw. 2019, 8, 7 20 of 24

Since widgets are developed using HTML5, CSS, and Javascript, besides the FIWARE NGSI Open
RESTful API, it is possible to develop other types of asynchronous interaction with other third-party
systems and back-end GEs. To this end, cutting-edge technologies including Asynchronous Javascript
and XML (AJAX), Web Sockets, and eXtensible Message Presencce Protocol (XMPP) can be used to
achieve such communications. Figure 5 shows how the communication between a widget and a system
back-end can take place.

Figure 5. Interaction of a widget with a third-party system or a GE.

In the following, we provide a brief description on how to accomplish such communication
mechanisms. AJAX is a programming technique that allows web application to asynchronously load
contents by means of a particular Javascript function, i.e., ActiveXObject("Microsoft.XMLHTTP") for IE6
and IE5 and window.XMLHttpRequest for IE7+, Firefox, Chrome, Opera, Safari. By using these functions
in the client-side code embedded in the index.html file of a widget, it is possible to asynchronously load
contents processed by server-side codes placed in remote systems, e.g., legacy systems or back-end
GEs. The system interface back-end can be developed by using different server-side programming
languages including PHP, Asp, Asp.NET, JSP, Ruby on Rails, etc.

Communication should be immediate, secure, private, and without hurdles. The XMPP already
provides the first three. But in today’s world, most users will be in the browser, so even the most basic
application installation can be a major hurdle. Javascrip XMPP Client (JSXC), Strophe.js, and Candy are
some of the major projects that allow developers to add a few simple lines to a client-side code of a Web
application in order to enable users to immediately communicate over organisation’s XMPP server.
They allow full-featured XMPP client in the browser, no client installation required; easy integration
into existing Web page or application; one-to-one chats among people and systems, e.g., legacy systems
or back-end GEs. By using these libraries in the client-side code embedded in the index.html file of
a widget, it is possible to asynchronously communicate server-side codes placed in remote systems.
The back-end interface can be developed using an XMPP client library such as the Smack written
in Java.

WebSocket is a protocol providing full-duplex communications channels over a single TCP
connection. The WebSocket protocol was standardized by the IETF as RFC 6455 in 2011, and the
WebSocket API in Web IDL is being standardized by the W3C. WebSocket is designed to be
implemented in web browsers and web servers, but it can be used by any client or server application.
The WebSocket Protocol is an independent TCP-based protocol. Its only relationship to HTTP is that its
handshake is interpreted by HTTP servers as an Upgrade request. A client-side code embedded

J. Sens. Actuator Netw. 2019, 8, 7 21 of 24

in a widget can be developed using the native HTML5 WebSocket library. On the server-side,
Web sockets interfaces for the communication with legacy systems or GEs can be developed using
different programming languases including Java, C#, and PHP.

4. Discussion and Conclusions

Nowadays, clinical centres are looking at cloud computing technology to develop new
cutting-edge tele-health services and applications. In this context, Remote Patient Monitoring (RPM)
at home represents a tempting opportunity for hospitals to reduce clinical costs and to improve the
quality of life of both patients and their families.

However, currently, existing tele-health solutions have been conceived as “stand-alone”, adopting
different technological approaches that require a considerable level of complexity with high design,
development, and management costs. The adoption of the cloud computing technology could push
down such costs, however, it is at an early stage in the field of tele-health.

This work deals with the adoption of the FIWARE for the development of RPM and, in
general, for tele-health projects aiming at supporting clinical centres interested in adopting the cloud
computing technology. Specifically, we presented a step-by-step approach to develop a a RPM solution,
investigating how the FIWARE platform and Generic Enablers (GEs) could be adopted and integrated.
Our requirement analysis brought us to define a skeleton of the whole RPM architecture based on the
integration of FIWARE GEs.

From our experience, the advantages of using FIWARE in the tele-medicine context are multiple.
Hospitals are not restricted to vendor lock-in solutions. In fact, FIWARE allows software architects and
developers to adopt an agile software development approach. Moreover, FIWARE allows to re-use
and integrate a set of reliable cloud components that require only minimal customization in order
to fit the tele-health requirements. In addition, clinical centres do not have to take care of system
management tasks because these are demanded to the cloud service provider hosting the tele-health
system. As far as security, FIWARE offers a set of features allowing hospitals to preserve the patients’
privacy. In any case, for security reasons, clinical centres have the chance to setup theirs own “in-home”
FIWARE platform where they can deploy their tele-health systems since it is based on open source code.
Moreover, hospitals can rely on a wide FIWARE community that actively maintain and develop GEs.
Apart from open source GEs, it is also raising a market of proprietary Specific Enables (SEs), and the
offerings of FIWARE-based cloud service provider are also rising. Engineering (Italy), Telefónica
(Spain), and Orange (France) have been pioneers in this sense. As far as the effort required for
clinical centers in order to use FIWARE platform, we can state that it was designed to enable an agile
development strategy and that grantees of the FIWARE acceleration programmes developed their
applications with 100.000,00 Euros funding roughly in 12 months.

The solution discussed in this paper is also expected to be implemented as a first fully fledged
CPHS for the rural and underdeveloped areas of South Africa.

With this paper, we hope to succeed in stimulating the e-health community for the adoption
of FIWARE.

Author Contributions: A.C. and M.F. designed the archtecture of the system; F.G. and A.G. technically supported
the FIWARE implementation; H.M. and A.B. analysed the case study in developing coutry; F.C. analysed the RPM
scenario; M.V. supervised the paper.

Funding: This research was funded by the Italian Healthcare Ministry, project name “Do Severe acquired
brain injury patients benefit from Telerehabilitation? A Cost-effectiveness analysis study”, grant number
GR-2016-02361306.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Łukasz C.; Malawski, F.; Wyszkowski, P. Holistic approach to design and implementation of a medical
teleconsultation workspace. J. Biomed. Inform. 2015, 57, 225–244.

J. Sens. Actuator Netw. 2019, 8, 7 22 of 24

2. Pawar, P.; Jones, V.; van Beijnum, B.J.F.; Hermens, H. A framework for the comparison of mobile patient
monitoring systems. J. Biomed. Inform. 2012, 45, 544–556. [CrossRef] [PubMed]

3. Risso, N.A.; Neyem, A.; Benedetto, J.I.; Carrillo, M.J.; Farías, A.; Gajardo, M.J.; Loyola, O. A cloud-based
mobile system to improve respiratory therapy services at home. J. Biomed. Inform. 2016, 63, 45–53. [CrossRef]
[PubMed]

4. Gerneth, M. FEST: Framework for European services in telemedicine. Comput. Methods Progr. Biomed. 1994,
45, 71–74. [CrossRef]

5. Rialle, V.; Lamy, J.B.; Noury, N.; Bajolle, L. Telemonitoring of patients at home: A software agent approach.
Comput. Methods Progr. Biomed. 2003, 72, 257–268. [CrossRef]

6. Hsu, M.H.; Chu, T.B.; Yen, J.C.; Chiu, W.T.; Yeh, G.C.; Chen, T.J.; Sung, Y.J.; Hsiao, J.; Li, Y.C.J. Development
and implementation of a national telehealth project for long-term care: A preliminary study. Comput. Methods
Progr. Biomed. 2010, 97, 286–296. [CrossRef] [PubMed]

7. Shalom, E.; Shahar, Y.; Lunenfeld, E. An architecture for a continuous, user-driven, and data-driven
application of clinical guidelines and its evaluation. J. Biomed. Inform. 2016, 59, 130–148. [CrossRef]
[PubMed]

8. Harris, L.T.; Tufano, J.; Le, T.; Rees, C.; Lewis, G.A.; Evert, A.B.; Flowers, J.; Collins, C.; Hoath, J.; Hirsch,
I.B.; Goldberg, H.I.; Ralston, J.D. Designing mobile support for glycemic control in patients with diabetes.
J. Biomed. Inform. 2010, 43, S37–S40. [CrossRef] [PubMed]

9. Bagula, A.; Mandava, M.; Bagula, H. A framework for healthcare support in the rural and low income areas
of the developing world. J. Netw. Comput. Appl. 2018, 120, 17–29. [CrossRef]

10. FI-WARE Cost-Effective Creation and Delivery of Future Internet Applications. Available online: http:
//www.fi-ware.eu/ (accessed on 1 October 2014).

11. Celesti, A.; Tusa, F.; Villari, M.; Puliafito, A. How the Dataweb Can Support Cloud Federation: Service
Representation and Secure Data Exchange. In Proceedings of the 2012 Second Symposium on Network
Cloud Computing and Applications, London, UK, 3–4 December 2012; pp. 73–79.

12. Fazio, M.; Celesti, A.; Ranjan, R.; Liu, C.; Chen, L.; Villari, M. Open Issues in Scheduling Microservices in the
Cloud. IEEE Cloud Comput. 2016, 3, 81–88. [CrossRef]

13. Li, W.; Privat, G.; Cantera, J.M.; Bauer, M.; Gall, F.L. Graph-based Semantic Evolution for Context Information
Management Platforms. In Proceedings of the 2018 Global Internet of Things Summit (GIoTS), Bilbao, Spain,
4–7 June 2018; pp. 1–6.

14. Steinmetz, C.; Schroeder, G.; dos Santos Roque, A.; Pereira, C.E.; Wagner, C.; Saalmann, P.; Hellingrath,
B. Ontology-driven IoT code generation for FIWARE. In Proceedings of the 2017 IEEE 15th International
Conference on Industrial Informatics (INDIN), Emden, Germany, 24–26 July 2017; pp. 38–43.

15. Zahariadis, T.; Papadakis, A.; Alvarez, F.; Gonzalez, J.; Lopez, F.; Facca, F.; Al-Hazmi, Y. FIWARE
Lab: Managing Resources and Services in a Cloud Federation Supporting Future Internet Applications.
In Proceedings of the 2014 IEEE/ACM 7th International Conference on Utility and Cloud Computing (UCC),
London, UK, 8–11 December 2014; pp. 792–799.

16. Carnevale, L.; Galletta, A.; Fazio, M.; Celesti, A.; Villari, M. Designing a FIWARE Cloud Solution for
Making Your Travel Smoother: The FLIWARE Experience. In Proceedings of the 2018 IEEE 4th International
Conference on Collaboration and Internet Computing (CIC), Philadelphia, PA, USA, 18–20 October 2018;
pp. 392–398.

17. Carnevale, L.; Celesti, A.; Pietro, M.D.; Galletta, A. How to Conceive Future Mobility Services in Smart
Cities According to the FIWARE frontierCities Experience. IEEE Cloud Comput. 2018, 5, 25–36. [CrossRef]

18. De Fátima Pereira Marquesone, R.; de Brito Carvalho, T.C.M.; Guimarães, L.B.; Dias, E.M. A FIWARE-Based
Component for Data Analysis in Smart Mobility Context. In Proceedings of the 2017 IEEE First Summer
School on Smart Cities (S3C), Natal, Brazil, 6–11 August 2017; pp. 25–30.

19. Souza, A.; Pereira, J.; Oliveira, J.; Trindade, C.; Cavalcante, E.; Cacho, N.; Batista, T.; Lopes, F. A data
integration approach for smart cities: The case of natal. In Proceedings of the 2017 International Smart Cities
Conference (ISC2), Wuxi, China, 14–17 September 2017; pp. 1–6.

20. Araújo, A.; Kalebe, R.; Girão, G.; Filho, I.; Gonçalves, K.; Melo, A.; Neto, B. IoT-Based Smart Parking for
Smart Cities. In Proceedings of the 2017 IEEE First Summer School on Smart Cities (S3C), Natal, Brazil,
6–11 August 2017; pp. 31–36.

http://dx.doi.org/10.1016/j.jbi.2012.02.007
http://www.ncbi.nlm.nih.gov/pubmed/22406009
http://dx.doi.org/10.1016/j.jbi.2016.07.006
http://www.ncbi.nlm.nih.gov/pubmed/27392646
http://dx.doi.org/10.1016/0169-2607(94)90019-1
http://dx.doi.org/10.1016/S0169-2607(02)00161-X
http://dx.doi.org/10.1016/j.cmpb.2009.12.008
http://www.ncbi.nlm.nih.gov/pubmed/20092907
http://dx.doi.org/10.1016/j.jbi.2015.11.006
http://www.ncbi.nlm.nih.gov/pubmed/26616284
http://dx.doi.org/10.1016/j.jbi.2010.05.004
http://www.ncbi.nlm.nih.gov/pubmed/20937484
http://dx.doi.org/10.1016/j.jnca.2018.06.010
http://www.fi-ware.eu/
http://www.fi-ware.eu/
http://dx.doi.org/10.1109/MCC.2016.112
http://dx.doi.org/10.1109/MCC.2018.053711664

J. Sens. Actuator Netw. 2019, 8, 7 23 of 24

21. Ferreira, D.; Corista, P.; Gião, J.; Ghimire, S.; Sarraipa, J.; Jardim-Gonçalves, R. Towards smart agriculture
using FIWARE enablers. In Proceedings of the 2017 International Conference on Engineering, Technology
and Innovation (ICE/ITMC), Funchal, Portugal, 27–29 June 2017; pp. 1544–1551.

22. Corista, P.; Ferreira, D.; Gião, J.; Sarraipa, J.; Gonçalves, R.J. An IoT Agriculture System Using FIWARE.
In Proceedings of the 2018 IEEE International Conference on Engineering, Technology and Innovation
(ICE/ITMC), Stuttgart, Germany, 17–20 June 2018; pp. 1–6.

23. Andriani, P.; Briguglio, L.; Lombardo, L.; Nigrelli, M.; Pellegrino, D.; Torres, J.S.; Voulkidis, A. FIWARE
generic enablers as building blocks of a marketplace for energy. In Proceedings of the eChallenges e-2015
Conference, Vilnius, Lithuania, 25–26 November 2015; pp. 1–10.

24. Barreto, L.; Celesti, A.; Villari, M.; Fazio, M.; Puliafito, A. Identity management in IoT Clouds: A FIWARE
case of study. In Proceedings of the 2015 IEEE Conference on Communications and Network Security (CNS),
Florence, Italy, 28–30 September 2015; pp. 680–684.

25. Oliveira, C.T.; Moreira, R.; de Oliveira Silva, F.; Miani, R.S.; Rosa, P.F. Improving Security on IoT Applications
Based on the FIWARE Platform. In Proceedings of the 2018 IEEE 32nd International Conference on Advanced
Information Networking and Applications (AINA), Krakow, Poland, 16–18 May 2018; pp. 686–693.

26. Omosebi, O.; Sotiriadis, S.; Bessis, N. An Openstack Based Accounting and Billing Service for Future Internet
Applications. In Proceedings of the 2016 IEEE 30th International Conference on Advanced Information
Networking and Applications (AINA), Crans-Montana, Switzerland, 23–25 March 2016; pp. 618–623.

27. Oh, S.; Kim, Y. Development of IoT security component for interoperability. In Proceedings of the 2017 13th
International Computer Engineering Conference (ICENCO), Cairo, Egypt, 27–28 December 2017; pp. 41–44.

28. Preventis, A.; Stravoskoufos, K.; Sotiriadis, S.; Petrakis, E.G.M. Personalized Motion Sensor Driven Gesture
Recognition in the FIWARE Cloud Platform. In Proceedings of the 2015 14th International Symposium on
Parallel and Distributed Computing, Limassol, Cyprus, 29 June–2 July 2015; pp. 19–26.

29. Omosebi, O.; Sotiriadis, S.; Asimakopoulou, E.; Bessis, N.; Trovati, M.; Hill, R. Designing a Subscription
Service for Earthquake Big Data Analysis from Multiple Sources. In Proceedings of the 2015 10th International
Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), Krakow, Poland, 4–6 November
2015; pp. 601–604.

30. Sotiriadis, S.; Vakanas, L.; Petrakis, E.; Zampognaro, P.; Bessis, N. Automatic Migration and Deployment
of Cloud Services for Healthcare Application Development in FIWARE. In Proceedings of the 2016 30th
International Conference on Advanced Information Networking and Applications Workshops (WAINA),
Crans-Montana, Switzerland, 23–25 March 2016; pp. 416–419.

31. The Future Internet CHallenge eHealth (FICHe) Acelerator Project. Available online: http://www.f6s.com/
fiche (accessed on 30 September 2015).

32. Fazio, M.; Celesti, A.; Márquez, F.G.; Glikson, A.; Villari, M. Exploiting the FIWARE cloud platform to
develop a remote patient monitoring system. In Proceedings of the 2015 IEEE Symposium on Computers
and Communication (ISCC), Larnaca, Cyprus, 6–9 July 2015; pp. 264–270.

33. Europe Targets U.S. Web Firms. Available online: http://www.wsj.com/articles/french-german-officials-
call-for-fresh-look-at-internet-giants-1417110508 (accessed on 30 Novembre 2018).

34. OpenStack Open Source Cloud Computing Software. Available online: www.openstack.org (accessed on
1 October 2018).

35. Surridge, M.; Alvarez, F.; Carrillo, M.; Salvadori, E.; Hierro, J.; Bohnert, T. Trade-offs and responsibilities in
phases 2 and 3 of the FI-PPP Program. In Proceedings of the Invited presentation at the FI-PPP Phase II
Information Day, European Commission, Brussels, Belgium, 11–12 September 2012.

36. Mulfari, D.; Celesti, A.; Puliafito, A.; Villari, M. How Cloud Computing Can Support On-demand Assistive
Services. In Proceedings of the 10th International Cross-Disciplinary Conference on Web Accessibility,
Rio de Janeiro, Brazil, 13–15 May 2013; pp. 27:1–27:4.

37. Persico, V.; Pescapé, A.; Picariello, A.; Sperlí, G. Benchmarking big data architectures for social networks
data processing using public cloud platforms. Future Gener. Comput. Syst. 2018, 89, 98–109. [CrossRef]

38. Fazio, M.; Bramanti, A.; Celesti, A.; Bramanti, P.; Villari, M. A Hybrid Storage Service for the Management of
Big e-Health Data: A Tele-Rehabilitation Case of Study. In Proceedings of the 12th ACM Symposium on QoS
and Security for Wireless and Mobile Networks, Floriana, Malta, 13–17 November 2016; ACM: New York,
NY, USA, 2016; pp. 1–8.

 http://www.f6s.com/fiche
 http://www.f6s.com/fiche
http://www.wsj.com/articles/french-german-officials-call-for-fresh-look-at-internet-giants-1417110508
http://www.wsj.com/articles/french-german-officials-call-for-fresh-look-at-internet-giants-1417110508
www.openstack.org
http://dx.doi.org/10.1016/j.future.2018.05.068

J. Sens. Actuator Netw. 2019, 8, 7 24 of 24

39. OMA. NGSI Context Management v1.0. 2012. Available online: http://www.openmobilealliance.org/
release/NGSI/V1_0-20120529-A/OMA-TS-NGSI_Context_Management-V1_0-20120529-A.pdf (accessed on
1 October 2018).

40. Galan, F. Orion Context Broker: Introduction to Context Management (I). 2015. Available online: http:
//www.fiware.org/2015/02/19/orion-context-broker-introduction-to-context-management-i/ (accessed on
1 October 2018).

41. FIWARE. FIWARE NGSIv2 Specification. 2018. Available online: http://fiware.github.io/specifications/
ngsiv2/stable (accessed on 1 October 2018).

42. OASIS. Security Assertion Markup Language (SAML). Available online: http://saml.xml.org/saml-
specifications(accessed on 1 October 2018).

43. OASIS. eXtensible Access Control Markup Language (XACML). Available online: https://www.oasis-open.
org/committees/xacml (accessed on 1 October 2018).

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

 http://www.openmobilealliance.org/release/NGSI/V1_0-20120529-A/OMA-TS-NGSI_Context_Management-V1_0-20120529-A.pdf
 http://www.openmobilealliance.org/release/NGSI/V1_0-20120529-A/OMA-TS-NGSI_Context_Management-V1_0-20120529-A.pdf
http://www.fiware.org/2015/02/19/orion-context-broker-introduction-to-context-management-i/
http://www.fiware.org/2015/02/19/orion-context-broker-introduction-to-context-management-i/
http://fiware.github.io/specifications/ngsiv2/stable
http://fiware.github.io/specifications/ngsiv2/stable
http://saml.xml.org/saml-specifications
http://saml.xml.org/saml-specifications
https://www.oasis-open.org/committees/xacml
https://www.oasis-open.org/committees/xacml
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	System and Software Architecture
	FIWARE Platform and Software Components Overview
	Case Study: An e-Health System for Remote Patient Monitoring (RPM)
	Design Steps

	Results
	How to Setup RPM Devices at Patients' Home
	How to Collect Data Over the Cloud
	How to Permanently Store Data
	How to Instantiate New Software Components in the FIWARE infrastructure
	How to Develop Application Front-End
	How to Address Security Issues
	FIWARE-Based RPM Architecture

	Discussion and Conclusions
	References

