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Abstract. Let R be a non-commutative prime ring of characteristic different from 2 with Utumi quotient
ring U and extended centroid C, L a non-central Lie ideal of R, F and G two non-zero generalized derivations
of R. If [F(u),u]G(u) = 0 for all u ∈ L, then one of the following holds: (a) there exists λ ∈ C such that
F(x) = λx, for all x ∈ R; (b) R ⊆ M2(F ), the ring of 2 × 2 matrices over a field F , and there exist a ∈ U and
λ ∈ C such that F(x) = ax + xa + λx, for all x ∈ R.

1. Introduction

Let R be a prime ring of characteristic different from 2. Throughout this paper Z(R) always denotes
the center of R, U the Utumi quotient ring of R and C = Z(U), the center of U (C is usually called the
extended centroid of R). Many results in literature indicate that the global structure of a ring R is often
tightly connected to the behaviour of additive mappings defined on R. A well known result of Posner
[31] states that if d is a derivation of R such that [d(x), x] ∈ Z(R), for any x ∈ R, then either d = 0 or R is
commutative. Later in [24] Lanski proves that if d is a nonzero derivation of R so that [d(x), x] ∈ Z(R) for all
x ∈ L, a non-central Lie ideal of R, then char(R) = 2 and R ⊆M2(F ), the ring of 2× 2 matrices over a field F .
More recently Chebotar, Lee and Wong [8] generalize the previous results in case the characteristic of R is
different from 2 or 3. More precisely they prove that if L is a non central Lie ideal of R, then the additive
subgroup S generated by {[d(x), x] : x ∈ L} contains a non central Lie ideal W of R. In particular S is not
contained in Z(R), unless d = 0. Moreover, since both the left (right) annihilator AW and the centralizer
CW of a Lie ideal W of a prime ring are trivial, that is AW = (0) and CW = Z(R), then both the left (right)
annihilator and centralizer of S are trivial and these facts in a prime ring are natural tests which evidence
that the set {[d(x), x] : x ∈ L} is rather large in R.

In [11] De Filippis considers the problems concerning the annihilator of the commutators with deriva-
tions on Lie ideals and he shows that the left annihilator of the set {[d(x), x] : x ∈ L} in R is zero if L is a
non-central Lie ideal of R. Following this study Shiue [34] prove that if d is a non-zero derivation of R, L a
non-central Lie ideal of R, a ∈ R and k ≥ 1 a fixed integer such that a[d(u),u]k = 0 for all u ∈ L then either
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a = 0 or R satisfies the standart identity s4 and char(R) = 2.

This paper follows the line of investigation of the previous ones, by replacing the derivation d with some
additive maps which generalize the concept of usual derivation on R.

An additive map G : R → R is called a generalized derivation of R if there exists a derivation d of R
such that G(xy) = G(x)y + xd(y), for all x, y ∈ R. The simplest example of generalized derivation is a map
of the form 1(x) = ax + xb, for some a, b ∈ R and for all x ∈ R: such generalized derivations are called
inner. Generalized inner derivations have been primarily studied on operator algebras. Therefore any
investigation from the algebraic point of view might be interesting (see for example [21], [28], [29]). Here
we will consider some related problems concerning identities with generalized derivations in prime rings.
More precisely, let F be a generalized derivation of R and define the following subset of R:

T = {[F(x), x] : x ∈ L},

where L is a non-central Lie ideal of R.
A first approach to the study of T is contained in [12], [13] and [33]. More precisely, the following facts hold:

• Let T , (0) and a ∈ R be such that aT = (0) (respectively Ta = (0)), then a = 0;

• Let T , (0) and a ∈ R be such that [a,T] = (0), then a ∈ Z(R),

that is both the annihilator and the centralizer of T are trivial, unless when T = (0). Thus T is rather large in R.

It seems natural to investigate what happens when the annihilating element is not fixed, but it is de-
pending on the choice of the element x ∈ L. In other words, what about the case when, for all x ∈ L there
exists ax ∈ R such that [F(x), x]ax = 0 (or similarly ax[F(x), x] = 0).

More recently in [15] a first answer to this question is given:

Theorem 1. Let R be a prime ring of characteristic different from 2, U the Utumi quotient ring of R, C = Z(U) the
extended centroid of R, L a non-central Lie ideal of R, F be a non-zero generalized derivations of R. Suppose that
[F(u),u]F(u) = 0, for all u ∈ L, then one of the following holds:

(a) there exists α ∈ C such that F(x) = αx, for all x ∈ R;
(b) R ⊆M2(F ) for some field F and there exist a ∈ U and α ∈ C, such that F(x) = ax + xa + αx, for all x ∈ R.

In this article we would like to give an answer to a more general question, considering such annihilating
condition, when two different generalized derivations act on the evaluations of a non-central Lie ideal of
R. More precisely we will prove the following:

Theorem 2. Let R be a non-commutative prime ring of characteristic different from 2 with Utumi quotient ring
U and extended centroid C, L a non-central Lie ideal of R, F and G two non-zero generalized derivations of R. If
[F(u),u]G(u) = 0 for all u ∈ L, then one of the following holds:

(a) there exists λ ∈ C such that F(x) = λx, for all x ∈ R;
(b) R ⊆M2(F ), the ring of 2×2 matrices over a fieldF , and there exist a ∈ U andλ ∈ C such that F(x) = ax+xa+λx,

for all x ∈ R.

2. The case of inner generalized derivations

In this section we will consider the generalized derivations F(x) = ax + xb and G(x) = cx + xq, induced
by suitable fixed elements a, b, c, q ∈ R.

We premit the following result (for the proof see Proposition 1 in [14]):
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Lemma 2.1. Let F be a field of char(F ) , 2, R = Mt(F ) the matrix ring over F and t ≥ 3. Denote by ei j the
usual matrix unit, with 1 in the (i, j)-entry and zero elsewhere. Let a, b be elements of R, with a =

∑t
r,s=1 arsers and

b =
∑t

r,s=1 brsers, for ars, brs ∈ F and suppose that ai jbi j = 0 for all i , j. Assume that, for any inner automorphism ϕ
of R, the following hold:

ϕ(a) =

t∑
r,s=1

a′rsers, ϕ(b) =

t∑
r,s=1

b′rsers and a′i jb
′

i j = 0.

Then either a ∈ Z(R) or b ∈ Z(R).

We begin with:

Lemma 2.2. Let F be a field of char(F ) , 2, R = Mt(F ) the algebra of t × t matrices over F with t ≥ 3, Z(R) the
center of R, L = [R,R], a, b, c, q elements of R. Assume that c ∈ Z(R). If (au2 + u(b − a)u − u2b)(cu + uq) = 0 for all
u ∈ L, then one of the following holds:

(a) c = −q ∈ Z(R);
(b) a, b ∈ Z(R).

Proof. Since c ∈ Z(R), by the assumption we have that

(au2 + u(b − a)u − u2b)u(c + q) = 0 (2.1)

for all u ∈ [R,R]. Here we denote p = c + q =
∑

prsers, a =
∑

arsers and b =
∑

brsers, for ars, brs, prs ∈ F . Let i, j, k
three different indices and choose u = eii − e j j + eik ∈ [R,R] in (2.1). Left multiplying (2.1) by ekk we get

ekka(eii + eik − e j j)p = 0. (2.2)

On the other hand, for u = eii − e j j − eik ∈ [R,R] in (2.1) and left multiplying (2.1) by ekk we also get

ekka(eii − eik − e j j)p = 0. (2.3)

Comparing (2.2) with (2.3) and right and since char(F ) , 2, it follows akipki = 0. Moreover, for any inner
automorphism ϕ of R, the elements ϕ(a) and ϕ(p) satisfy the same algebraic condition as a and p. Therefore,
by Lemma 2.1, one has that either a ∈ Z(R) or p ∈ Z(R).
In case 0 , p ∈ Z(R), the relation (2.1) reduces to (au2 + u(b − a)u − u2b)u = 0, for all u ∈ [R,R]. Thus by [6,
Theorem 4.7] we have that a, b ∈ Z(R), as required.
Assume now that a ∈ Z(R). In this case (2.1) reduces to

(ubu − u2b)u(c + q) = 0 (2.4)

for all u ∈ [R,R]. For u = eii − e j j + eik ∈ [R,R] in (2.4) and left multiplying (2.4) by e j j, since char(F ) , 2, we
get

(−e j jbeii − e j jbeik)p = 0. (2.5)

Analogously, for u = eii − e j j − eik ∈ [R,R] in (2.4) and left multiplying (2.1) by e j j we also get

−e j jb(eii − eik)p = 0. (2.6)

Hence, by comparing (2.5) with (2.6) and using char(F ) , 2 it follows

b jipir = 0, ∀r, ∀i , j. (2.7)

Let χ be the inner automorphism of R defined as χ(x) = (1 + ei j)x(1− ei j) = x + ei jx− xei j − ei jxei j, and denote
χ(b) =

∑
b′rsers, χ(p) =

∑
p′rsers, for b′rs, p′rs ∈ F . Since χ(b) and χ(p) satisfy the same algebraic condition as b

and p, then by (2.7) one has b′jip
′

ir = 0, for all r ∈ {1, . . . , t} and for any i , j. By computations it follows that
b jip ji = 0, for all i , j. Hence, by Lemma 2.1, either b ∈ Z(R) or p ∈ Z(R). If b ∈ Z(R), we are done. On the
other hand, in case p ∈ Z(R), as above the conclusion follows from [6, Theorem 4.7].
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Lemma 2.3. Let F be a field of char(F ) , 2, R = Mt(F ) the algebra of t × t matrices over F with t ≥ 3, Z(R) the
center of R, L = [R,R], a, b, c, q elements of R. Assume that b − a ∈ Z(R). If (au2 + u(b − a)u − u2b)(cu + uq) = 0 for
all u ∈ L, then one of the following holds:

(a) a, b ∈ Z(R);
(b) c = −q ∈ Z(R).

Proof. Since b − a ∈ Z(R), by the assumption we have that

[a,u2](cu + uq) = 0 (2.8)

for all u ∈ [R,R]. Let i , j, choose u = ei j − e ji ∈ [R,R] in (2.8) and multiply both on the left and on the right
(2.8) by ekk, for any k , i, j. One has

ekk(−aei j + ae ji)qekk = 0. (2.9)

In the same way, for u = ei j + e ji ∈ [R,R] in (2.8) and multiplying both on the left and on the right (2.8) by
ekk, for any k , i, j, it follows

ekk(aei j + ae ji)qekk = 0. (2.10)

Comparing (2.9) with (2.10), since char(F ) , 2, we get

akjqik = 0, ∀i , j, ∀k , i, j. (2.11)

Let ϕ′ and ϕ′′ be the inner automorphisms of R defined as

ϕ′(x) = (1 + eik)x(1 − eik) = x + eikx − xeik − eikxeik

ϕ′′(x) = (1 − eik)x(1 + eik) = x − eikx + xeik − eikxeik

and denote ϕ′(a) =
∑

a′rsers, ϕ′′(a) =
∑

a′′rsers, ϕ′(q) =
∑

q′rsers, ϕ′′(q) =
∑

q′′rsers, for a′rs, a′′rs, q′rs, q′′rs ∈ F . Since
ϕ′(a), ϕ′′(a), ϕ′(q), ϕ′′(q), satisfy the same algebraic condition as a and q, then by (2.11) one has a′kjq

′

ik = 0 and
a′′kjq

′′

ik = 0, for all i , j and for any k , i, j. By computations, the following hold simultaneously:

akj(qkk − qii − qki) = 0 (2.12)

akj(−qkk + qii − qki) = 0. (2.13)

Therefore, by comparing (2.12) with (2.13) and since one has

akjqki = 0, ∀i , j, ∀k , i, j. (2.14)

Let now χ be the inner automorphism of R defined as

χ(x) = (1 + e ji)x(1 − e ji) = x + e jix − xe ji − e jixe ji

and denote χ(a) =
∑

a′′′rs ers, χ(q) =
∑

q′′′rs ers, for a′′′rs , q′′′rs ∈ F . As above, χ(a) and χ(q) must satisfy relation
(2.14), that is a′′′kj q′′′ki = 0, for all i , j and k , i, j. It is easy to see that this implies akjqkj = 0, for all k , j.
Hence, by Lemma 2.1, either a ∈ Z(R) or q ∈ Z(R). If a ∈ Z(R) then we are done, thus we assume here that
q ∈ Z(R). Let c + q = p =

∑
prsers, with prs ∈ F . Then (2.8) reduces to

[a,u2]pu = 0 (2.15)

for all u ∈ [R,R]. Again we subsitute in (2.15) u with ei j − e ji and multiply on the left by ekk, for any i , j and
k , i, j. Then

ekk(−aeiipei j + aeiipe ji − ae j jpei j + ae j jpe ji) = 0. (2.16)
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Similarly, for u = ei j + e ji in (2.15) and left multiplying by ekk, we also have

ekk(aeiipei j + aeiipe ji + ae j jpei j + ae j jpe ji) = 0. (2.17)

Comparing (2.16) with (2.17) we get

akipi j + akjp j j = 0. (2.18)

We finally choose the following automorphism of R:

χ′(x) = (1 + e jk)x(1 − e jk) = x + e jkx − xe jk − e jkxe jk

and denote χ′(a) =
∑

aiv
rsers, χ′(p) =

∑
piv

rsers, for aiv
rs, piv

rs ∈ F . Thus, by (2.18), aiv
kip

iv
i j + aiv

k jp
iv
j j = 0 and by

computations it follows that akjpkj = 0, for any k , j.
Once again, by Lemma 2.1, either a ∈ Z(R) or p ∈ Z(R). The first case implies that b ∈∈ Z(R). Let

p = c + q ∈ Z(R). Since q ∈ Z(R) we have c ∈ Z(R). Using these facts in (2.8) we have either [a,u2]u = 0 or
p = 0. By [6, Theorem 4.7] the first case implies that a ∈ Z(R). If p = 0 we have c = −q ∈ Z(R), as required.

Lemma 2.4. Let F be a field of char(F ) , 2, R = Mt(F ) the algebra of t × t matrices over F with t ≥ 3, Z(R) the
center of R, L = [R,R], a, b, c, q elements of R. If

(au2 + u(b − a)u − u2b)(cu + uq) = 0 (2.19)

for all u ∈ L, then one of the following holds:

(a) a, b ∈ Z(R);
(b) c = −q ∈ Z(R).

Proof. Denote b − a = w =
∑

wrsers and c =
∑

crsers, with wrs, crs ∈ F . Let u = ei j ∈ [R,R] in (2.19). Therefore,
by our assumption we get ei j(b − a)ei jcei j = 0, that is w jic ji = 0, for all i , j. By Lemma 2.1, either c ∈ Z(R) or
b − a ∈ Z(R) and the conclusion follows respectively by Lemmas 2.2 and 2.3.

Lemma 2.5. Let F be a field of char(F ) , 2, R = Mt(F ) the algebra of t × t matrices over F , Z(R) the center of R,
L = [R,R], a, b, c, q elements of R. If

(au2 + u(b − a)u − u2b)(cu + uq) = 0 (2.20)

for all u ∈ L, then one of the following holds:

(a) b − a ∈ Z(R);
(b) c = −q ∈ Z(R).

Proof. Let c =
∑

crsers and q =
∑

qrsers and denote p = b − a =
∑

prsers, with crs, qrs, prs ∈ F .
For i , j and u = ei j in (2.20), we have ei jpei jcei j = 0, that is

p jic ji = 0, ∀i , j, i, j ∈ {1, 2}. (2.21)

Let now u = e12 + e21 in (2.20), then the (1, 1)-entry of the matrix (2.20) is

(p11 − p22)(c12 + q21) + (p12 − p21)(c22 + q11) = 0. (2.22)

On the other hand, for u = −e12 + e21 in (2.20), the (1, 1)-entry of the matrix (2.20) is

(p22 − p11)(c12 − q21) + (−p12 − p21)(c22 + q11) = 0. (2.23)

Subtracting (2.23) from (2.22), since char(R) , 2, it follows that

(p11 − p22)c12 + p12(c22 + q11) = 0. (2.24)
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Similarly one may obtain the following (we omit the computations for brevity):

(p22 − p11)c21 + p21(c11 + q22) = 0. (2.25)

Assume that c is not a diagonal matrix, without loss of generality we suppose c12 , 0. Thus, by (2.21),
p12 = 0 and, by (2.24), p11 = p22.
Let ϕ′ and ϕ′′ be the inner automorphisms of R defined as

ϕ′(x) = (1 + e12)x(1 − e12) = x + e12x − xe12 − e12xe12 (2.26)

and

ϕ′′(x) = (1 − e12)x(1 + e12) = x − e12x + xe12 − e12xe12 (2.27)

and denote ϕ′(p) =
∑

p′rsers, ϕ′′(p) =
∑

p′′rsers, ϕ′(c) =
∑

c′rsers, ϕ′′(c) =
∑

c′′rsers, for p′rs, p′′rs, c′rs, c′′rs ∈ F . Clearly
ϕ′(p), ϕ′′(p), ϕ′(c), ϕ′′(c) satisfy the same algebraic condition as p and c.
If c′12 , 0, then, by the previous argument, both 0 = p′12 = p22 − p11 − p21 and 0 = p′11 − p′22 = p11 + 2p21 − p22,
which imply p21 = 0. In this case p ∈ Z(R) and so we are done. Analogously, if c′′12 , 0 then p is a central
matrix.
Hence we assume that both c′12 = 0 and c′′12 = 0, that is:

c12 + c22 − c11 − c21 = 0 (2.28)

and

c12 − c22 + c11 − c21 = 0. (2.29)

By the last two relations it follows that c12 − c21 = 0, i.e. c21 = c12 , 0. Therefore, by (2.21), p21 = 0 and
p ∈ Z(R).Hence the following holds: either c is diagonal or p is central.

In the sequel we assume that p is not a central matrix. Hence c = c11e11 + c22e22, moreover ϕ(p) < Z(R),
for all ϕ ∈ Aut(R). In particular, let ϕ(x) = (1 + e21)x(1 − e21) = x + e21x − xe21 − e21xe21. Since ϕ(c) must be a
diagonal matrix, then easy computations show that c11 = c22, that is c ∈ Z(R). Hence, if denote w = c + q,
(2.20) reduces to:

[au + ub,u]uw = 0 (2.30)

for all u ∈ [R,R]. Recall that any commutator [X,Y] ∈ [M2(F ),M2(F )] is either invertible or nilpotent. In
particular we choose u = e11 − e22 in (2.30).

If [a(e11 − e22) + (e11 − e22)b, e11 − e22] is invertible, then (e11 − e22)w = 0, which implies easily that w = 0, as
required. Suppose now that w , 0 and [a(e11 − e22) + (e11 − e22)b, e11 − e22] is not invertible. We prove that a
contradiction follows. Since

M = [a(e11 − e22) + (e11 − e22)b, e11 − e22]2 = 0

we firstly notice that the (1, 1)-entry of the matrix M is 4p12p21 = 0. This means that, if c is a central matrix
then p12p21 = 0. By using the same above automorphisms (2.26) and (2.27), we have that ϕ′(c) ∈ Z(R) and
ϕ′′(c) ∈ Z(R), so that

0 = p′12p′21 = (p12 + p22 − p11 − p21)p21 = (p22 − p11 − p21)p21 (2.31)

and

0 = p′′12p′′21 = (p12 − p22 + p11 − p21)p21 = (−p22 + p11 − p21)p21. (2.32)
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By comparing (2.31) and (2.32) we get p2
21 = 0 that is p21 = 0.

Finally we consider the following automorphisms of R:

χ′(x) = (1 + e21)x(1 − e21) = x + e21x − xe21 − e21xe21

χ′′(x) = (1 − e21)x(1 + e21) = x − e21x + xe21 − e21xe21

and denote χ′(p) =
∑

q′rsers, χ′′(p) =
∑

q′′rsers, for q′rs, q′′rs ∈ F . Since χ′(c) ∈ Z(R) and χ′′(c) ∈ Z(R), then

0 = q′12q′21 = p12(p11 − p22 − p12) (2.33)

and

0 = q′′12q′′21 = p12(−p11 + p22 − p12). (2.34)

Comparing (2.33) and (2.34) one has p2
12 = 0 that is p12 = 0, which means that p is a diagonal matrix. This

argument also shows that χ′(p) must be a diagonal matrix, in particular 0 = q′21 = p11 − p22, that is p ∈ Z(R),
which is a contradiction.

The following is an easy consequence of Lemmas 2.4 and 2.5:

Corollary 2.6. Let R = Mt(F ) be the algebra of t × t matrices over a field F with t ≥ 2, Z(R) the center of R,
L = [R,R], a, c elements of R. If

[a,u]2[c,u] = 0

for all u ∈ L, then either a ∈ Z(R) or c ∈ Z(R).

Remark 2.7. If B is a basis of U over C then any element of T = U ∗C C{x1, . . . , xn}, the free product over
C of the C-algebra U and the free C-algebra C{x1, . . . , xn}, can be written in the form 1 =

∑
i αimi. In this

decomposition the coefficients αi are in C and the elements mi are B-monomials, that is mi = q0y1q1 · · · ·yhqh,
with qi ∈ B and yi ∈ {x1, . . . , xn}. In [9] it is shown that a generalized polynomial 1 =

∑
i αimi is the zero

element of T if and only if all αi are zero. Let a1, . . . , ak ∈ U be linearly independent over C and

a111(x1, . . . , xn) + . . . + ak1k(x1, . . . , xn) = 0 ∈ T,

for some 11, . . . , 1k ∈ T. If, for any i, 1i(x1, . . . , xn) =
∑n

j=1 x jh j(x1, . . . , xn) and h j(x1, . . . , xn) ∈ T, then
11(x1, . . . , xn),. . . , 1k(x1, . . . , xn) are the zero element of T. The same conclusion holds if

11(x1, . . . , xn)a1 + . . . + 1k(x1, . . . , xn)ak = 0 ∈ T,

and 1i(x1, . . . , xn) =
∑n

j=1 h j(x1, . . . , xn)x j for some h j(x1, . . . , xn) ∈ T. (We refer the reader to [2] and [9] for
more details on generalized polynomial identities).

Lemma 2.8. Let R be a prime ring of characteristic different from 2, a, b, c, q elements of R such that

Φ(x1, x2) = (a[x1, x2]2 + [x1, x2](b − a)[x1, x2] − [x1, x2]2b)(c[x1, x2] + [x1, x2]q) (2.35)

is satisfied by R. If R does not satisfy any non-trivial generalized polynomial identity, then either a, b ∈ C or
c = −q ∈ C.
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Proof. Since R and U satisfy the same generalized polynomial identities (Theorem 2 in [2]), we have that
Φ(x1, x2) is satisfied by U.

Assume first that {1, q} is linearly C-independent. By the previous Remark 2.7 and since Φ(x1, x2) is a
trivial generalized polynomial identity for U, it follows that

(a[x1, x2]2 + [x1, x2](b − a)[x1, x2] − [x1, x2]2b)[x1, x2]q = 0 ∈ T

which implies

(a[x1, x2]2 + [x1, x2](b − a)[x1, x2] − [x1, x2]2b)[x1, x2] = 0 ∈ T. (2.36)

If {1, a} is linearly C-independent, and since (2.36) is a trivial generalized identity for U, we have a[x1, x2]3 =
0 ∈ T, which gives the contradiction a = 0. On the other hand, if {1, a} is linearly C-dependent, then a ∈ C
and (2.36) reduces to

([x1, x2]b[x1, x2] − [x1, x2]2b)[x1, x2] = 0 ∈ T. (2.37)

Moreover, since (2.37) is a trivial generalized identity for U, then {1, b} is linearly C-dependent, that is b ∈ C,
and we are done.

Let now {1, q} be linearly C-dependent, i.e. q ∈ C, and denote u = c + q. Therefore by (2.35) one has that

(a[x1, x2]2 + [x1, x2](b − a)[x1, x2] − [x1, x2]2b)u[x1, x2] = 0 ∈ T. (2.38)

As above, If {1, a} is linearly C-independent, and since (2.38) is a trivial generalized identity for U, we have

a[x1, x2]2u[x1, x2] = 0 ∈ T (2.39)

implying u = 0, as required.

Finally, if {1, a} is linearly C-dependent, then a ∈ C and (2.38) reduces to

[x1, x2]
[
b, [x1, x2]

]
u[x1, x2] = 0 ∈ T. (2.40)

Since (2.40) is a trivial generalized identity for R, it is easy to see that either b ∈ C or u = 0, in any case we
get the required conclusion.

For the proof of the next result, we premit the following:

Fact 2.9. Let R be a non-commutative prime ring of characteristic different from 2, d a derivation of R, a ∈ R a
non-zero element of R. If d(r)a = 0, for all r ∈ R, then d = 0 (the proof is a classical result, for instance contained in
[4, Lemma 7]).

Fact 2.10. Let R be a non-commutative prime ring of characteristic different from 2, d a derivation of R, a ∈ R a
non-zero element of R. If [d(r), r]a = 0, for all r ∈ R, then d = 0 (it is an easy consequence of the result in [5]).

Fact 2.11. Let R be a prime ring of characteristic different from 2, d and 1 derivations of R, such that d(r)1(r) = 0, for
all r ∈ R. Then either d = 0 or 1 = 0. (It is a reduced version of [35, Theorem 3]).

Proposition 2.12. Let R be a non-commutative prime ring of characteristic different from 2, a, b, c, q elements of R
such that

Φ(x1, x2) =
[
a[x1, x2] + [x1, x2]b, [x1, x2]

]
(c[x1, x2] + [x1, x2]q) (2.41)

is satisfied by R. Then one of the following holds:
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(a) a, b ∈ C;
(b) R ⊆M2(F ), the ring of 2 × 2 over a field F and b − a ∈ C;
(c) c = −q ∈ C.

Proof. By Lemma 2.8 we may assume that Φ(x1, x2) is a non trivial generalized polynomial identity for R. By
a theorem due to Beidar (Theorem 2 in [2]) this generalized polynomial identity is also satisfied by U. LetF
be the algebraic closure of C if C is infinite and set F = C for C finite. Clearly, the map r ∈ U 7→ 1 ∈ U

⊗
C F

gives a ring embedding. So we may assume U is a subring of U
⊗

C F . By (Proposition in [26]), Φ(r1, r2)
is also a nonzero GPI of U

⊗
C F . Moreover, in view of (Theorems 2.5 and 3.5 in [18]), U

⊗
C F is a prime

ring with F as its extended centroid and both U and U
⊗

C F are centrally closed. So we may replace R
by either U or U

⊗
C F according as C is finite or infinite. Thus we may assume that R is centrally closed

over its extended centroid which is either finite or algebraically closed and Φ(r1, r2) = 0, for all r1, r2 ∈ R. By
Martindale’s theorem [30], R is a primitive ring having a non-zero socle with F as the associated division
ring. In light of Jacobson’s theorem ([20], page 75) R is isomorphic to a dense ring of linear transformations
on some vector space V over F .

Assume first that V is finite-dimensional over F . Then the density of R on V implies that R � Mm(F ),
the ring of all m ×m matrices over F . In this case the conclusion follows by Lemmas 2.4 and 2.5.

Assume next that V is infinite-dimensional over F . Since V is infinite dimensional over F then, as in
Lemma 2 in [36], the set [R,R] is dense on R and so from[

a[r1, r2] + [r1, r2]b, [r1, r2]
]
(c[r1, r2] + [r1, r2]q) = 0

for all r1, r2 ∈ R, we have

[au + ub,u](cu + uq) = 0 (2.42)

for all u ∈ R. In (2.42) we substitute u with x + 1 and apply again (2.42), then we obtain

[ax + xb, x](c + q) + [a + b, x](cx + xq) + [a + b, x](c + q) = 0 (2.43)

for all x ∈ R. Again for x = y + 1 in (2.43) and using (2.43) we get

2[a + b, y](c + q) = 0 (2.44)

for all y ∈ R. Since char(R) , 2 and by Fact 2.9, it follows that either a + b ∈ C or c + q = 0.
Suppose first that c + q , 0 and a + b = λ ∈ C, then by (2.43) it follows that [ax− xa, x](c + q) = 0, for all x ∈ R.
Applying the result in Fact 2.10, one has a ∈ C, as required.
On the other hand, if a + b < C and c + q = 0, then (2.43) reduces to [a + b, x][c, x] = 0 for all x ∈ R. Using the
result in Fact 2.11, we have c ∈ C, and we are done.
Finally consider both a + b = λ ∈ C and c + q = 0. In this case we write (2.42) as follows:

[a,u]2[c,u] = 0 (2.45)

for all u ∈ R.
By contradiction we assume that a < C and c < C. Under this assumption there exist r1, r2 ∈ R such that
ar1 , r1a and cr2 , r2c. By Litoff’s Theorem in [19] there exist e2 = e ∈ R and a positive integer k = dimF (Ve)
such that

ar1, r1a, cr2, r2c, r1, r2 ∈ eRe � Mk(F ).

In the relation (2.45) replace u with (1 − e)x(1 − e), for any x ∈ R and multiply both on the right and on the
left by e. It follows that R satisfies

ea(1 − e)x(1 − e)x(1 − e)x(1 − e)ce = 0.
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Since R is a prime ring with char(R) , 2, by [32, Theorem] the last relation implies that either ea(1− e) = 0
or (1 − e)ce = 0, that is either ea = eae or ce = ece. In any case, eRe satisfies (2.45). Following the matrix-case
argument in Lemmas 2.4 and 2.5, we have that either eae ∈ Z(eRe) or ece ∈ Z(eRe). Hence, one of the
following cases happens:

• ar1 = ear1 = eaer1 = r1eae = r1ae = r1a;

• cr2 = ecr2 = ecer2 = r2ece = r2ce = r2c.

In any case we have a contradiction and the proof is completed.

Corollary 2.13. Let R be a prime ring of characteristic different from 2, L = [R,R], a, c elements of R. If

[a,u]2cu = 0

for all u ∈ L, then either a ∈ Z(R) or c = 0.

3. The main Theorem

Firstly we need to recall some well known results:

Remark 3.1. Every derivation d of R can be uniquely extended to a derivation of U ([3], Proposition 2.5.1).

Remark 3.2. Let I be a two-sided ideal of R. Then I, R and U satisfy the same generalized polynomial
identity with coefficients in U ([9]).

Remark 3.3. We denote by Der(U) the set of all derivations on U. By a derivation word we mean an additive
map ∆ of the form ∆ = d1d2 . . . dm, with each di ∈ Der(U). Then a differential polynomial is a generalized
polynomial, with coefficients in U, of the form Φ(∆ j xi) involving non-commutative indeterminates xi on
which the derivations words ∆ j act as unary operations. The differential Φ(∆ j xi) is said to be a differential
identity on a subset T of U if it vanishes for any assignment of values from T to its indeterminates xi.
Let Dint be the C−subspace of Der(U) consisting of all inner derivations on U and let d be a non-zero
derivation on R. By Theorem 2 in [23] we have the following result (see also Theorem 1 in [27]): If
Φ(x1, . . . , xn,d x1, . . . ,d xn) is a differential identity on R, then one of the following holds:

(a) either d ∈ Dint;
(b) or R satisfies the generalized polynomial identity Φ(x1, . . . , xn, y1, . . . , yn)

Remark 3.4. Let I be a two-sided ideal of R. Then I, R and U satisfy the same differential identity.([27])

We refer to [[3], Chapter 7] for a complete and detailed description of the theory of generalized polyno-
mial identities involving derivations.

We are ready to prove the main result of the paper:

Theorem 3.5. Let R be a non-commutative prime ring of characteristic different from 2 with Utumi quotient ring
U and extended centroid C, L a non-central Lie ideal of R, F and G two non-zero generalized derivations of R. If
[F(u),u]G(u) = 0 for all u ∈ L, then one of the following holds:

(a) there exists λ ∈ C such that F(x) = λx, for all x ∈ R;
(b) R ⊆M2(F ), the ring of 2×2 matrices over a fieldF , and there exist a ∈ U andλ ∈ C such that F(x) = ax+xa+λx,

for all x ∈ R.
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Proof. By Theorem 3 in [28] every generalized derivation 1 on a dense right ideal of R can be uniquely
extended to the Utumi quotient ring U of R, and thus any generalized derivation of R can be implicitely
assumed to be defined on the whole U and assumes the form 1(x) = qx + d(x) for some q ∈ U and d a
derivation on U. In light of this we may assume that there exist a, c ∈ U and d, 1 derivations on U such that

F(x) = ax + d(x) and G(x) = cx + 1(x).

Moreover it is known that there exists a non-zero ideal I of R such that 0 , [I,R] ⊆ L or char(R) = 2 and
R ⊆M2(F ) for some field F (see [22, pp 4-5], [17, Lemma 2, Proposition 1], [25, Theorem 4]).
Since char(R) , 2, then by our assumption we have that I satisfies

Φ(x1, x2, d(x1), d(x2), 1(x1), 1(x2)) =
[
a[x1, x2] + d([x1, x2]), [x1, x2]

](
c[x1, x2] + 1([x1, x2])

)
(3.1)

that is

Φ(x1, x2, d(x1), d(x2), 1(x1), 1(x2)) =
[
a[x1, x2] + [d(x1), x2] + [x1, d(x2)], [x1, x2]

]
· c[x1, x2]

+
[
a[x1, x2] + [d(x1), x2] + [x1, d(x2)], [x1, x2]

]
· [1(x1), x2]

+
[
a[x1, x2] + [d(x1), x2] + [x1, d(x2)], [x1, x2]

]
· [x1, 1(x2)].

(3.2)

Moreover, since I and U satisfy the same generalized polynomial identities as well as the same differential
identities (see Remarks 3.2 and 3.4), then U satisfies (3.1). In light of Proposition 2.12, we assume that d and
1 are not simultaneously inner derivations.

Case 1: Assume that d and 1 are linearly C-independent modulo U-inner derivations. By Kharchenko’s
theorem in [23] and by (3.2), U satisfies

Φ(x1, x2, d(x1), d(x2), 1(x1), 1(x2)) =
[
a[x1, x2] + [y1, x2] + [x1, y2], [x1, x2]

]
· c[x1, x2]

+
[
a[x1, x2] + [y1, x2] + [x1, y2], [x1, x2]

]
· [z1, x2]

+
[
a[x1, x2] + [y1, x2] + [x1, y2], [x1, x2]

]
· [x1, z2].

(3.3)

In particular U satisfies the blended component[
[y1, x2], [x1, x2]

]
· [z1, x2] (3.4)

that is U is a prime ring satisfying a polynomial identity and hence there exists a fieldF such that U ⊆Mt(F )
with t > 1. Moreover U and Mt(F ) satisfy the same polynomial identity. Assume t ≥ 2 and choose in (3.4)
y1 = e12, x1 = e21, x2 = e22 and z1 = e12. Thus, by computations, the contradiction e12 = 0 follows. Hence
t = 1 and U is commutative, a contradiction to the non-commutativity of R.

Case 2: Assume now that d and 1 are C-dependent modulo U-inner derivations. Thus there exist α, β ∈ C
and q ∈ U such that αd(x) + β1(x) = [q, x]. In this case we prove that a number of contradictions occurs.
Assume first that α = 0, so that 1(x) = [p, x], for all x ∈ U, where p = β−1q and d is not an inner derivation (if
not we are done). If d = 0, then (3.1) reduces to[

a[x1, x2], [x1, x2]
](

(c + p)[x1, x2] − [x1, x2]p
)

= 0
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and by Proposition 2.12 we have that either p ∈ C and c = 0 (that is G = 0), or a ∈ C. In any case we are
done.
Assume d , 0, hence by (3.1) we have that U satisfies[

a[x1, x2] + [d(x1), x2] + [x1, d(x2)], [x1, x2]
]
c[x1, x2]

+
[
a[x1, x2] + [d(x1), x2] + [x1, d(x2)], [x1, x2]

][
p, [x1, x2]

]
.

(3.5)

Since d is not inner, then by Kharchenko’s theorem and (3.5), we have that U satisfies the generalized
identity

[
a[x1, x2] + [y1, x2] + [x1, y2], [x1, x2]

]
c[x1, x2]

+
[
a[x1, x2] + [y1, x2] + [x1, y2], [x1, x2]

][
p, [x1, x2]

]
.

(3.6)

In particular U satisfies[
[y1, x2] + [x1, y2], [x1, x2]

](
(c + p)[x1, x2] − [x1, x2]p

)
. (3.7)

Let u ∈ U be such that u < C and replace any yi with [u, xi] (for i = 1, 2) in (3.7). Thus it follows that U also
satisfies[

u, [x1, x2]
]

2

(
(c + p)[x1, x2] − [x1, x2]p

)
. (3.8)

Thus, application of Proposition 2.12 to (3.8) implies that c = 0 and p ∈ C, that is G = 0.
Let now β = 0, so that d(x) = [v, x], for all x ∈ U, where v = α−1q and 1 is not an inner derivation (if not we
are done). If 1 = 0, then (3.1) reduces to[

(a + v)[x1, x2] − [x1, x2]v, [x1, x2]
]
c[x1, x2] = 0

and by Proposition 2.12 it follows that either c = 0 or a, v ∈ C, that is, respectively, either G = 0 or F(x) = ax,
with a ∈ C. In any case we are finished.
Let 1 , 0, then (3.1) implies that U satisfies[

(a + v)[x1, x2] − [x1, x2]v, [x1, x2]
](

c[x1, x2] + [1(x1), x2] + [x1, 1(x2)]
)
.

By Kharchenko’s theorem U satisfies[
(a + v)[x1, x2] − [x1, x2]v, [x1, x2]

](
c[x1, x2] + [y1, x2] + [x1, y2]

)
and in particular U satisfies [

(a + v)[x1, x2] − [x1, x2]v, [x1, x2]
]
[y1, x2].

In this case, by [6, Theorem 4.7] we get U = M2(C) and a + v = −v + λ, for some fixed λ ∈ C, that is
F(x) = −vx − xv + λx, as required.
Finally we consider the case both α , 0 and β , 0 and write 1(x) = [w, x]+γd(x) for all x ∈ R, where w = β−1q
and γ = −β−1α , 0. Moreover we remark that d is not inner. Notice that, if d = 0 then (3.1) reduces to[

a[x1, x2], [x1, x2]
](

(c + w)[x1, x2] − [x1, x2]w
)

= 0.
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Therefore application of Proposition 2.12 implies that either w ∈ C and c = 0 (that is G = 0), or a ∈ C. In any
case we get the expected conclusion.
Assume d , 0, hence by (3.1), U satisfies[

a[x1, x2] + [d(x1), x2] + [x1, d(x2)], [x1, x2]
](

(c + w)[x1, x2] − [x1, x2]w
)

+ γ
[
a[x1, x2] + [d(x1), x2] + [x1, d(x2)], [x1, x2]

](
[d(x1), x2] + [x1, d(x2)]

)
.

(3.9)

By Kharchenko’s result and (3.9), U satisfies[
a[x1, x2] + [y1, x2] + [x1, y2], [x1, x2]

](
(c + w)[x1, x2] − [x1, x2]w

)
+ γ

[
a[x1, x2] + [y1, x2] + [x1, y2], [x1, x2]

](
[y1, x2] + [x1, y2]

)
.

(3.10)

In particular U satisfies[
a[x1, x2], [x1, x2]

](
(c + w)[x1, x2] − [x1, x2]w

)
. (3.11)

Again by Proposition 2.12, it follows that either w ∈ C and c = 0, or a ∈ C. Let the first case occur. Since

γ , 0, by (3.9) we have
[
a[x1, x2] + [y1, x2] + [x1, y2], [x1, x2]

](
[y1, x2] + [x1, y2]

)
= 0. In particular U satisfies

[
a[x1, x2], [x1, x2]

]
[x1, x2].

By [6, Theorem 4.7] the relation implies that either a ∈ C or [x, y]2
∈ Z(R). By the non-commutativity of R

the second case can not occur. So if w ∈ C then a ∈ c, as required. In the sequel we assume that a ∈ C. In
this final case, (3.10) reduces to[

[y1, x2] + [x1, y2], [x1, x2]
](

(c + w)[x1, x2] − [x1, x2]w
)

+ γ
[
[y1, x2] + [x1, y2], [x1, x2]

](
[y1, x2] + [x1, y2]

)
.

(3.12)

Now replace yi with [z, xi] for any i = 1, 2 and for a fixed z ∈ U such that z < C. Then by (3.12) one has that
U satisfies[

z, [x1, x2]
]

2

(
(c + w + γz)[x1, x2] − [x1, x2](w + γz)

)
. (3.13)

Since z < C and by Proposition 2.12 we get w +γz ∈ C and c = 0. Thus by (3.12) it follows that U satisfies[
[y1, x2] + [x1, y2], [x1, x2]

][
w, [x1, x2]

]
+ γ

[
[y1, x2] + [x1, y2], [x1, x2]

](
[y1, x2] + [x1, y2]

) (3.14)

and in particular U satisfies[
[x1, y2], [x1, x2]

][
w, [x1, x2]

]
+ γ

[
[x1, y2], [x1, x2]

][
x1, y2

]
. (3.15)
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Notice that, since γ , 0 and z < C, then w < C. Therefore (3.14) is a non-trivial generalized polynomial
identity for U. By Martindale’s theorem [30], U is a primitive ring having a non-zero socle with C as the
associated division ring. In light of Jacobson’s theorem ([20], page 75) R is isomorphic to a dense ring of
linear transformations on some vector space V over C. Of course we may assume dimCV ≥ 2, because U is
not commutative. Consider first the case dimCV ≥ 3. Since w < C then there exists v ∈ V such that {w,wv} is
linearly C-independent. Thus there exists v′ ∈ V such that {w,wv, v′} is linearly C-independent. Moreover,
by Jacobson Density Theorem, there exist r1, r2, s2 ∈ U such that
r1v = r2v = s2v = v and

r1(wv) = 0, r2(wv) = v′, r1v′ = v′, r2v′ = 0, s2v′ = wv

which imply

[r1, r2]v = [r1, s2]v = 0, [r1, r2](wv) = v′, [r1, r2]v′ = 0, [r1, s2]v′ = −wv.

Therefore, by (3.15), it follows the contradiction

0 =
([

[r1, s2], [r1, r2]
][

w, [r1, r2]
]

+ γ
[
[r1, s2], [r1, r2]

][
r1, s2

])
v = −v′ , 0.

Finally we study the case dimCV = 2, that is U = M2(C), the 2 × 2 matrices over C. In this case we make the
following choices in (3.15): x1 = e11, x2 = e21, y2 = e12. Thus, both left and right multiplying (3.15) by e11, it
follows that e11we21 = 0. In a similar way one obtains e22we12 = 0. It is easy to see that the previous relations
imply that w is a diagonal matrix, and standard argument forces the contradiction w ∈ C.

Corollary 3.6. Let R be a non-commutative prime ring of characteristic different from 2 with Utumi quotient ring
U and extended centroid C, L a non-central Lie ideal of R, d and 1 two derivations of R. If [d(u),u]1(u) = 0 for all
u ∈ L, then either d = 0 or 1 = 0.

We would like to conclude our paper with the following result, which is an application of the previous
one:

Theorem 3.7. Let R be a non-commutative prime ring of characteristic different from 2 with Utumi quotient ring
U and extended centroid C, I a non-zero two-sided ideal of R, F and G two non-zero generalized derivations of R. If
[F(x), x]G(x) = 0 for all x ∈ I, then there exists λ ∈ C such that F(x) = λx, for all x ∈ R.

Proof. It is known that there exist c ∈ U and 1 derivation on U such that G(x) = cx +1(x). Using the previous
Theorem, we may assume that R ⊆M2(C), the ring of 2× 2 matrices over C, and there exist a ∈ U and λ ∈ C
such that F(x) = ax + xa + λx, for all x ∈ R. Thus U satisfies

[a, x2]
(
cx + 1(x)

)
. (3.16)

Since R is a PI-ring, its Utumi quotient ring U is a finite dimensional simple central algebra and we may
consider U = M2(C), the ring of 2 × 2 matrices over C. Moreover R and U satisfies the same generalized
differential identities as well as the same polynomial identities.
Assume first that 1(x) = qx − xq, thus G(x) = bx − xq, with b = c + q. Hence U satisfies

[a, x2](bx − xq). (3.17)

Denote a =
∑

ai jei j, q =
∑

qi jei j, c =
∑

ci jei j, with ai j, qi j, ci j ∈ C. For x = e11 in (3.17) and both left and right
multiplying by e22 we get

a21q12 = 0. (3.18)

We remark that similarly one obtains

a12q21 = 0. (3.19)
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Consider now the inner automorphisms χ(x) = (1 + e21)x(1 − e21), ϕ(x) = (1 − e21)x(1 + e21) in M2(C), and
denote χ(a) =

∑
a′i jei j, χ(c) =

∑
c′i jei j, χ(q) =

∑
q′i jei j, ϕ(a) =

∑
a′′i jei j, ϕ(c) =

∑
c′′i jei j and ϕ(q) =

∑
q′′i jei j. Since

[χ(a), x2](χ(b)x − xχ(q))

and
[ϕ(a), x2](ϕ(b)x − xϕ(q))

are identities for M2(C), then, by (3.18), a′21q′12 = 0 and a′′21q′′12 = 0. By computations it follows that both
(a11 − a22 − a12)q12 = 0 and (−a11 + a22 − a12)q12 = 0, which imply that

a12q12 = 0, (a11 − a22)q12 = 0. (3.20)

Therefore, if q12 , 0, then, by (3.18) and (3.20), we get a ∈ C. Let q21 , 0. Now consider the inner
automorphisms µ(x) = (1 + e12)x(1 − e12) and σ(x)(1 − e12)x(1 + e12) in M2(C), and denote µ(a) =

∑
a′′′i j ei j,

µ(q) =
∑

q′′′i j ei j, σ(a) =
∑

aiv
i j ei j, σ(q) =

∑
qiv

i j ei j. Since

[σ(a), x2](σ(b)x − xσ(q))

and
[µ(a), x2](µ(b)x − xµ(q))

are identities for M2(C), then, by (3.19), a′′′12 q′′′21 = 0 and and aiv
12qiv

21 = 0. By computations it follows that both
(a22 − a11 − a21)q21 = 0 and (−a22 + a11 − a21)q21 = 0, which imply that a21q21 = 0 and (a22 − a11)q21 = 0. Since
q21 , 0 we get a21 = 0 and a22 = a11. By (3.19), we also have a12 = 0 which implies that a ∈ C. Consequently
if either q21 , 0 or q12 , 0, then we get a ∈ C. So if q21 = 0 and q12 = 0 then q is diagonal.
In other words, either q is diagonal or a is central. Moreover, by using the same argument in Lemma 2.5,
it follows that either q ∈ C or a ∈ C. In this last case we are done, so that in the sequel we assume q ∈ C.
Hence G(x) = cx and U satisfies

[a, x2]cx = 0. (3.21)

Replacing x with x + 1 in above relation we have [a, x2]c + 2[a, x]cx + 2[a, x] = 0. Again replacing x with x + 1
in the last relation and using char(R) , 2 we get [a, x]c = 0 for all x ∈ R. Since R is a prime ring we have
either a ∈ C or c = 0, as required.
Assume finally that 1 is not an inner derivation of R. If 1 = 0, then G(x) = cx and we conclude by the same
above argument. Let 1 , 0 be an outer derivation of R. In light of Kharchenko’s result and by (3.16)

[a, x2](cx + y) (3.22)

is a generalized polynomial identity for U. In particular U satisfies [a, x2]y and by the primeness of U, it
follows that [a, r2] = 0 for all r ∈ U. It is well known that in this case a ∈ C follows, and we are done.

The followings are easy consequences of Theorem 3.7.

Corollary 3.8. Let R be a non-commutative prime ring of characteristic different from 2 with Utumi quotient ring
U and extended centroid C, I a non-zero two-sided ideal of R, d and 1 two derivations of R. If [d(x), x]1(x) = 0 for all
x ∈ I, then either d = 0 or 1 = 0.

Corollary 3.9. Let R be a semiprime ring of characteristic different from 2 with Utumi quotient ring U and extended
centroid C, d and 1 two nonzero derivations of R. If [d([x, y]), [x, y]]1([x, y]) = 0 for all x, y ∈ R, then d or 1 map R
into Z(R).
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Proof. Since R is semiprime, U is also semiprime and C, the extended centroid of R, is a von Neumann
regular ring, so C includes idempotents elements. Let ε be the set of all idempotents of C. The elements of
ε are called central idempotents. Let B be the complete Boolean algebra of ε. We choose a maximal ideal
M of B. By [1], MU is a prime ideal of U. Moreover MU is minimal in U, which is invariant under any
derivation of U. We know that

⋂
M MU = (0) (see [[1], Lemma 1 and Theorem 1]). It is also well known

that the pair of derivations d, 1 on R can be uniquely extended to a pair of derivations on U (see [27]). Let
d, 1 be a pair of derivations on U = U/MU induced by d, 1, respectively. Therefore d and 1 satisfy the same
property of d and 1 in U = U/MU. By the hypothesis

[d([x, y]), [x, y]]1([x, y]) = 0

for all x, y ∈ R. By [[27], Theorem 2] R and U satisfy the same differential identities. Thus U satisfies

[d([x, y]), [x, y]]1([x, y]).

Furthermore, U satisfies

[d([x, y]), [x, y]]1([x, y]).

Since U is prime ring, by Corollary 3.6 we have either d(x) = 0 or 1(x) = 0 or [U,U] = (0). In any case,
we get either d(U)[U,U] ∈ MU or 1(U)[U,U] ∈ MU for all M, that is either d(U)[U,U] ∈

⋂
M MU = (0) or

1(U)[U,U] ∈
⋂

M MU = (0). In paticular either d(R)[R,R] = (0) or 1(R)[R,R] = (0). By easy calculations we
arrive at either [d(R),R] = (0) or [1(R),R] = (0). These imply that either d(R) ⊂ Z(R) or 1(R) ⊂ Z(R).
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