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MONOTONE NORMALITY AND RELATED PROPERTIES
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AND MARIA VITTORIA CUZZUPÈ a

ABSTRACT. In this paper monotone versions of some results on normality and on property
(a) are investigated.

1. Introduction

By a space we mean a topological space. Assume all spaces to be T1. If A ⊆ X and U
is a collection of subsets of X , then St(A,U ) =

⋃
{U ∈ U : U ∩A ̸= /0}. A cover V of a

space X refines another cover U of the same space if for every V ∈ V there exists a U ∈ U
such that V ⊂U . We say that a cover V of a space X is a star refinement of another cover
U of the same space if for every V ∈ V there exists a U ∈ U such that St(V,V )⊂U .

Recall that a space X is monotonically normal if for each pair (H,K) of disjoint closed
subsets of X , one can assign an open set r(H,K) such that

(1) H ⊂ r(H,K)⊂ r(H,K)⊂ X \K
(2) if H1 ⊂ H2 and K1 ⊃ K2 then r(H1,K1)⊂ r(H2,K2).

The function r is called a monotone normality operator for X . All linearly ordered and
generalized ordered spaces are monotonically normal and monotonically normal spaces are
countably paracompact and collectionwise normal (Gruenhage 1984).

Monotone normality was first examined by Borges (1973) and later widely studied in
several papers (see, for example, Heath et al. 1973; Moody and Roscoe 1992; Gartside 1993;
Rudin 1993). We are interested in monotone versions of two characterizations of normality:
the Urysohn’s Lemma (Engelking 1989) that gives a characterization of normality in terms
of functions and the following characterization of normality in terms of stars:

Theorem 1. (Engelking 1989) The following conditions are equivalent for a topological
space X

(1) X is normal;
(2) Every two-element open cover of X has an open star-refinement;
(3) Every finite open cover of X has a finite open star-refinement.
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A2-2 F. A. BASILE ET AL.

In Section 2 we prove a monotone version of Urysohn’s Lemma (this result was first
mentioned without proof by Borges (1973)), and give a partial solution about finding a
monotone version of Theorem 3.

The style of the definition of monotone normality was adapted and applied to other kinds
of properties. Hart (1993) described a process for obtaining a monotone version of any
well-known covering property: “by requiring that there is an operator, r, assigning to every
open cover a refinement in such a way that r(V ) refines r(U ) whenever V refines U ”.
Monotone versions of covering properties have been studied in literature (see Gartside and
Moody 1993; Bennett et al. 2005; Levy and Matveev 2008; Popvassilev 2009; Bennett et al.
2010; Bonanzinga et al. 2011).

Matveev (1997) introduced the following covering property: A space X has X has
property (a) if for every open cover U of X and every dense D ⊂ X there is a closed in
X and discrete F ⊂ D such that St(F,U ) = X . Rudin et al. (1997) proved that “every
monotonically normal space has property (a)”. It is natural to ask if it is possible to define a
monotone version of property (a) in order to prove a monotone version of the previous result.
In Section 3 we consider all possible monotone versions of property (a) and give a negative
answer to that problem. We also consider monotone versions of covering properties strictly
related to property (a).

2. Around monotone normality

Recall the following definition due to P. Zenor:

Definition 2. (Zenor 1970) A space X is monotonically normal if for every closed set
F ⊂ X and every neighborhood U ⊃ F , one can find a neighborhood r(U,F) such that

(1) F ⊂ r(U,F)⊂ r(U,F)⊂U
(2) if F1 ⊂ F2 and U1 ⊂U2 then r(F1,U1)⊂ r(F2,U2).

Equivalently (see Heath et al. 1973), a space X is monotonically normal iff one can
assign to every x ∈ X and every neighborhood U ∋ x a neighborhood H(x,U) so that:

(1) if H(x,U)∩H(y,V ) ̸= /0 then either x ∈V or y ∈U ;
(2) if x ∈U ⊂W then H(x,U)⊂ H(x,W ).

We will give a characterization of monotone normality in terms of functions. Recall that,
by Urysohn’s Lemma (see Engelking 1989), X is normal iff for every pair of disjoint non
empty closed sets F and H there is an f ∈C(X , I) such that f (x) = 0 for every x ∈ F and
f (x) = 1 for every x ∈ H.

Theorem 3. A space X is monotonically normal iff one can assign to every pair of disjoint
non empty closed sets F and H a function fF,H ∈C(X , I) so that

(1) fF,H(x) = 0 for every x ∈ F and fF,H(x) = 1 for every x ∈ H;
(2) fF2,H2 ≤ fF1,H1 whenever F1 ⊂ F2 and H1 ⊃ H2.

Proof. Suppose that the function fF,H such as in the theorem is given. Define

r(F,H) = f−1
F,H([0,1/2)).
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Assume that we have two pairs of disjoint closed sets F1,H1 and F2,H2 such that F1 ⊂ F2
and H2 ⊂ H1. Then if p ∈ r(F1,H1) we have fF1,H1(p) < 1/2. It means that fF2,H2(p) ≤
fF1,H1(p)< 1/2, i.e., p ∈ r(F2,H2).

For the other one, fix an enumeration {qn : n ∈ N} of Q = Q∩ [0,1]; we assume that
all qn are different and moreover that q1 = 0 and q2 = 1. Let F and H be arbitrary disjoint
closed subsets of X . As in the standard proof of Urysohn’s Lemma, we will construct for
every n ∈ N an open subset Vqn of X such that

(1) V qn ⊂Vqm whenever qn < qm,
(2) F ⊂Vq1 and H ⊂ X \Vq1 .

We put Vq1 = r(F,H) and Vq2 = X \H. Then (1) and (2) are clearly satisfied. Let n > 2 and
assume that Vqi are defined for all i < n. Put

r = max{qi : i < n,qi < qn} and s = min{qi : i < n,qn < qi}.

Then by our inductive hypothesis we have V r ⊆ Vs. Put Vqn = r(V r,X \Vs). Then our
inductive hypotheses are clearly satisfied. We now define, as in the proof of Urysohn’s
Lemma, the function fF,H by the formula:

fF,H(x) =

{
inf{qn ∈ Q : x ∈Vqn} if x ∈Vq2 ,

1 if x /∈Vq2 .

Then fF,H is continuous.
To prove that this assignment of functions is ‘monotone’, consider two pairs of disjoint

closed sets F1,H1 and F2,H2 such that F1 ⊂ F2 and H2 ⊂ H1. For F1,H1 we use the above
notation Vqn , and for F2,H2 we use the notation Wqn . Observe that Vq1 = r(F1,H1) and
Vq2 = X \H1. Moreover, Wq1 = r(F2,H2) and Wq2 = X \H2. Observe that

Vq1 ⊂Wq1 andVq2 ⊂Wq2 .

Claim. For every n ∈ N, Vqn ⊂Wqn .
For n = 1,2 there is nothing to prove. Let n > 2 and assume that we have what we want

for all i < n. In the above inductive construction, we put

r = max{qi : i < n,qi < qn} and s = min{qi : i < n,qn < qi},

and Vqn = r(V r,X \Vs) and Wqn = r(W r,X \Ws). By our inductive hypothesis we have

Vr ⊂Wr andVs ⊂Ws,

hence
V r ⊂W r andX \Ws ⊂ X \Vr,

and so
Vqn = r(V r,X \Vs)⊂ r(W r,X \Ws) =Wqn .

This completes the proof of the claim.
Now assume that x ∈ X . We want to prove that fF2,H2(x)≤ fF1,H1(x). Assume first that

fF1,H1(x) < 1. If x ̸∈ Vq2 , then fF1,H1(x) = 1, which is impossible. Hence x ∈ Vq2 and so
x ∈Wq2 . For every qn such that x ∈Vqn we also have that x ∈Wqn . From this we see that

{qn ∈ Q : x ∈Vqn} ⊂ {qn ∈ Q : x ∈Wqn},
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and so

fF2,H2(x) = inf{qn ∈ Q : x ∈Wqn} ≤ inf{qn ∈ Q : x ∈Vqn}= fF1,H1(x).

If fF1,H1(x) = 1, then there is nothing to prove and so we are done. □

There are a lot of properties that can be defined or characterized in terms of stars.
Theorem 3 gives a star-characterization of normality. It is natural to ask if it is possible to
give a monotone version of Theorem 3. In this section we give a partial solution to this
problem.

The following definitions give monotone versions of (2) and (3) in Theorem 1, respec-
tively.

Definition 4. A space X is 2-monotonically star-normal if there exists an operator that
assigns to every two-element open cover U an open star refinement r(U ) so that r(U )
refines r(V ) whenever U refines V . The function r is called 2-monotone star-normality
operator for X .

Definition 5. A space X is finitely-monotonically star-normal if there exists an operator
that assigns to every finite open cover U a finite open star refinement r(U ) so that r(U )
refines r(V ) whenever U refines V . The function r is called finite-monotone star-normality
operator for X .

Note that both the previous definitions are weak forms of monotone paracompactness.
Recall that a space X is monotonically paracompact if there exists a function r which
assigns to every open cover U an open star-refinement r(U ) such that if U refines V then
r(U ) refines r(V ) (Popvassilev and Porter 2014).

Introduce the following useful definition. For a cover A of a set X , let A b = {St(x,A ) :
x ∈ X}.

Definition 6. A space X satisfies property (∗) if for each binary open cover U of X , there
is an open cover r(U ) of X such that r(U )b refines U (i.e., r(U ) is a “barycentric” open
refinement of U ), and r(V ) refines r(U ) whenever V refines U . The function r is called
(∗)-operator for X .

The following fact is obvious.

Proposition 7. A 2-monotonically star-normal space has property (∗).

Proposition 8. A space with property (∗) is monotonically normal.

Proof. Let X be a space having property (∗) and let r be a (∗)-operator for X . For a point
x ∈ X and an open neighborhood U of x, consider the binary open cover U (x,U) = {U,X \
{x}}. Let H(x,U) = St(x,r(U (x,U))). Obviously x ∈ H(x,U) ⊂ U . Let U be an open
neighborhood of x∈X and let V be an open neighborhood of y∈X . Assume y /∈U and x /∈V .
We show H(x,U)∩H(y,V ) = /0. Consider the binary open cover W = {X \{x},X \{y}}.
Since both U (x,U) and U (y,V ) are refinements of W , both r(U (x,U)) and r(U (y,V ))
are refinements of r(W ). Hence, we have H(x,U)∩H(y,V )⊂ St(x,r(W ))∩St(y,r(W )).
Assume that there is a point z ∈ St(x,r(W ))∩St(y,r(W )). Then there are some W0,W1 ∈
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r(W ) such that {x,z} ⊂ W0 and {y,z} ⊂ W1. Since r(W ) is a barycentric refinement
of W , St(z,r(W )) is contained in X \ {x}, or X \ {y}. This is a contradiction, because
{x,y} ⊂ St(z,r(W )). □

Corollary 9. A 2-monotonically star-normal space is monotonically normal.

Question 10. Does monotone normality imply property (∗)?

By propositions 7 and 8, a negative answer to Question 10 permits to prove that monotone
normality and 2-monotone star-normality are not equivalent conditions.

Now introduce the following useful definition:

Definition 11. A space X has property (∗∗) if for each finite open cover U of X , there is
an open cover r(U ) of X such that r(U )b refines U , and r(V ) refines r(U ) whenever V
refines U .

The following fact is obvious.

Proposition 12. A finite-monotonically star-normal space has property (∗∗).

Also recall the following property which is stronger than monotone normality.

Definition 13. (Moody and Roscoe 1992) A space X is acyclically monotonically normal
if it has a monotonically normal operator r such that for distinct points x0, ...,xn−1 in X and
xn = x0,

⋂n−1
t=0 r(xt ,X \{xt+1}) = /0.

Proposition 14. A space with property (∗∗) is acyclically monotonically normal.

Proof. Similar to the proof of Proposition 14. □

Since Rudin (1993) constructed a monotonically normal space which is not acyclically
monotonically normal, monotone normality does not imply property (∗∗) (hence finite
monotone star normality).

Then, monotone normality and finite-monotone star-normality are not equivalent condi-
tions.

Question 15. Are 2-monotone star-normality and finite-monotone star-normality equivalent
conditions?

Question 16. Which properties imply the finite-monotonically star-normal property? In
particular, is every LOTS a finite-monotonically star-normal space?

3. Monotone versions of property (a) and related spaces

Matveev (1997) gave the following definition:

Definition 17. (Matveev 1997) A space X is an (a)-space, or has property (a) if for every
open cover U and every dense D ⊂ X there is a closed in X and discrete F ⊂ D such that
St(F,U ) = X .

Matveev asked if monotonically normal spaces have property (a). Rudin et al. (1997)
answered in the affirmative to this question.

Theorem 18. (Rudin et al. 1997) Monotonically normal spaces satisfy property (a).
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Motived by the previous result it is natural to pose the following question

Question 19. Is it possible to define a monotone version of property (a) in order to prove
that monotone normality implies such a property?

Logically there are four ways to give the definition of the monotone version of the
property (a). The following two results shows that two of them are trivial.

Proposition 20. Let X be a space. If there exists a function r that assigns to every open
cover U of X and every dense D ⊂ X a closed in X and discrete r(U ,D) ⊂ D such that
St(r(U ,D),U ) = X and if U refines V then r(U ,D)⊆ r(V ,D), then X is discrete.

Proof. Let X be a space, D a dense subset of X and r the same as in the hypothesis. Let
U = {X} be the trivial cover of X and F = r(U ,D) be the closed in X and discrete such
that St(F,U ) = X .

Claim: X = F .
Assume the contrary and fix a ∈ X \F . Put V = X \ {a} and U = X \F . Clearly, the

sets U and V are open in X and C = {U,V} covers X . Since C refines U , we have E ⊂ F ,
where E = r(C ,D). Therefore, St(E,C ) ̸= X , since St(E,C ) does not contain the point a;
a contradiction. □

Corollary 21. Let X be a space. If there exists a function r that assigns to every open
cover U of X and every dense D ⊂ X a closed in X and discrete r(U ,D) ⊂ D such that
St(r(U ,D),U ) = X and if U refines V and D ⊆ E then r(U ,D) ⊆ r(V ,E), then X is
discrete.

The following two monotone versions of property (a) are less exceptional.

Definition 22. A space X is:
•: sm(a) or has strongly monotone property (a) if there exists a function r that assigns

to every open cover U of X and every dense D ⊂ X a closed in X and discrete
r(U ,D)⊂ D such that St(r(U ,D),U ) = X and if U refines V and D ⊆ E then
r(U ,D)⊇ r(V ,E). The function r is called sm(a) operator for X .

•: m(a) or has monotone property (a) if there exists a function r that assigns to every
open cover U of X and every dense D ⊂ X a closed in X and discrete r(U ,D)⊂ D
such that St(r(U ,D),U ) = X and if U refines V then r(U ,D)⊇ r(V ,D). The
function r is called m(a) operator for X . A space having property m(a) is called
m(a)−space.

Clearly, sm(a)⇒ m(a). Also every m(a) space has property (a) but an (a)-space need
not be a m(a) space: consider ω1 (see Example 31).

Recall that a space X is non-Archimedean if it has an open base which is a tree under
reverse inclusion. Bennett et al. (2002) called a space monotonically ultraparacompact if
there is a monotonically ultraparacompact operator m assigning to every open cover U of
the space an open disjoint refinement m(U ) that is also an open cover of the space and such
that if U ≺ V then m(U )≺ m(V ).

Theorem 23. (see Popvassilev and Porter 2014) Monotonically ultraparacompact spaces
concide with non-Archimedean spaces.
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Theorem 24. Every monotonically ultraparacompact space is (ma).

Proof. Well-order X = {xα : α < k}. For every open cover U of X , every dense subset D
of X and every open subset U of X let x(U) be the minimal element of U ∩D with respect to
the above well-order. Let s(U ,D) = {x(U) : U ∈ m(U )}. It is easy to prove that s(U ,D)
is a closed and discrete subset of D, St(s(U ,D),U ) = X and s is a m(a)-operator. □

Example 25. A m(a) space which is not sm(a).

Let Q⊂R be the set of rational numbers with the topology induced by the usual topology
on R. By Example 26 (see below) Q is not sm(a). Since Q is a metrizable second countable
zero-dimensional space it is non-Archimedean (see Nyikos 1999) hence it is monotonically
ultraparacompact and then, by Theorem 24, m(a).

By examples 26 and 31 (see below), we answer in the negative to Question 19.

Example 26. A monotonically normal space which is not sm(a).

Let E =Q⊂ R be the set of rational numbers with the topology induced by the usual
topology on R. Suppose E be a sm(a) space, and r be a sm(a) operator for E. Let
V = {Q}, then there exists a closed in Q and discrete r(V ,E) ⊂ E. Let U = {Q} and
let D = Q \ r(V ,E). Clearly D is dense in Q and then there exists a closed in Q and
discrete r(U ,D)⊂ D. Therefore, since D ⊆ E, by hypothesis we have r(U ,D)⊃ r(V ,E);
a contradiction since r(U ,D)⊂ D =Q\ r(V ,E).2

Recall the following definition:

Definition 27. (Popvassilev and Porter 2014) A space X is monotonically star closed-
and-discrete if there exists an operator r which assigns to each open cover U a subspace
r(U )⊆ X such that r(U ) is closed and discrete in X , St(r(U ),U ) = X and if U refines
V , then r(U )⊇ r(V ).

Matveev (1997) noted that every space is star closed-and-discrete. Recall that a space
X is star closed-and-discrete if for every open cover U of X there is a closed and discrete
subset F ⊆ X such that St(F,U ) = X . However, monotone version of star closed-and-
discrete property turns out to be interesting. Recall that a space X is protometrizable if it is
a paracompact space with an othobase; Gartside and Moody (1993) showed that a space
is protometrizable if and only if it ia monotone paracompact. Also every protometrizable
space is monotonically star closed-and-discrete (Popvassilev and Porter 2014).

It is easy to show that

Proposition 28. Every m(a)-space is monotonically star closed-and-discrete.

Corollary 29. (Popvassilev and Porter 2014) Every monotonically ultraparacompact space
is monotonically star closed-and-discrete.

The following is open

Question 30. Does exist a monotonically star closed-and-discrete space not m(a)?

We have the following example

Atti Accad. Pelorit. Pericol. Cl. Sci. Fis. Mat. Nat., Vol. 96, No. 2, A2 (2018) [10 pages]



A2-8 F. A. BASILE ET AL.

Example 31. A monotonically normal space which is not a m(a).

Proof. The ordinal space ω1 is a GO-space, then a monotonically normal space. Since
every monotonically star closed-and-discrete GO-space is paracompact (Popvassilev and
Porter 2014) and ω1 is not paracompact, by Proposition 28 it is not m(a). □

Recall the following monotone version of countable compactness.

Definition 32. (Popvassilev 2009) A space X is monotonically countably compact (briefly
mcc) if there is a function r, called mcc operator, that assigns to every countable open cover
U of X a finite open cover r(U ) which refines U in such a way that r(U ) refines r(V )
whenever U refines V .

Recall that (see Matveev 1997) in the class of Hausdorff spaces countable compactness
is equivalent to star-compactness (a space X is star-compact if for every cover U of X there
exists a finite subset F ⊂ X such that St(F,U ) = X).

The following definition of monotonically star-compact space was introduced by Pop-
vassilev and Porter (2014) and called monotonically star-finite space.

Definition 33. (Popvassilev and Porter 2014) A space X is monotonically star-compact
(briefly msc) if there exists a function r that assigns to every open cover U of X a finite subset
r(U ) of X such that St(r(U ),U ) = X and such that if U refines V then r(U )⊇ r(V ).

It is natural to pose the following question

Question 34. Is monotone countable compactness equivalent to monotone star-compactness
in the class of Hausdorff spaces?

Note that ω1 is not monotonically star compact (see Example 26) neither monotonically
countably compact (Popvassilev 2009).

A countable compact space X which is not monotonically star-compact is given by
Popvassilev and Porter (2014, Example 21). If such a space X is mcc then this example
permits to give a negative answer to Question 34.

For sake of completness, note that another possible monotone version of star-compactness
could be given requireing that:

(2) there exists a function r, called 2-operator, that assigns to every open cover U of X a
finite subset of X r(U ) such that St(r(U ),U ) = X and if U refines V then r(U )⊆ r(V ).

However the following result proves the absurdness of the previous definition:

Theorem 35. Every space X having property (2) is finite.

Proof. Let X be a space having property (2) and r be the 2-operator. Let U = {X} be the
trivial cover of X . Put F = r(U ).

Claim: X = F .
Assume the contrary, and fix a ∈ X \F . Put V = X \{a} and U = X \F . Clearly, the sets

U and V are open in X and C = {U,V} covers X . Since X has property 2 and C refines
U , we have E ⊂ F , where E = r(C ). Therefore, St(E,C ) ̸= X , since St(E,C ) does not
contain the point a; a contradiction. □

Property (a) is strictly related to the following property:
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Definition 36. (see Matveev 1997) A space X is absolutely countably compact (briefly acc),
or has acc property, if for every open cover U of X and every dense D ⊂ X there exists a
finite subset F of X such that St(F,U ) = X .

Recall that:

Theorem 37. In the class of Hausdorff space, property acc is equivalent to property (a)
plus countable compactness.

In order to give a monotone version of the previous theorem, we introduce the following
monotone version of acc property:

Definition 38. A space X has property monotone acc if there exists a function r that assigns
to every open cover U of X and every dense D ⊂ X a finite subset of X r(U ,D)⊂ D such
that St(r(U ,D),U ) = X and such that if U refines V then r(U ,D)⊇ r(V ,D). A space
having property macc is called macc space.

The following proposition gives a monotone version of Theorem 37

Proposition 39. In the class of Hausdorff space, property macc is equivalent to property
m(a) + monotone countable compactness.

Proof. ⇒) By hypothesis, there exists an operator r that assigns to every open cover U of
X and every dense subset D ⊂ X , a finite set r(U ,D)⊂ D such that St(r(U ,D),U ) = X
and if U refines V , then r(U ,D) ⊇ r(V ,D). By Hausdorfness, r(U ,D) is closed and
discrete and then X is an m(a)−space.

⇐) Let X be a countable compact m(a)−space. Then there exists an operator r that
assigns to every open cover U of X and every dense D ⊂ X a closed in X and discrete
r(U ,D)⊂ D such that St(r(U ,D),U ) = X and if U refines V then r(U ,D)⊇ r(V ,D).
Since X is mcc, hence countable compact, every closed and discrete is finite and hence it is
macc. □

Obviously every macc space is an acc space. The converse is not true:

Example 40. ω1 is acc but not a mcc (Popvassilev 2009), hence not macc.
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