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GENERALIZED GALILEAN TRANSFORMATIONS OF TENSORS AND
COTENSORS WITH APPLICATION TO GENERAL FLUID MOTION

PETER VÁN abc∗ , VINCENZO CIANCIO d AND LILIANA RESTUCCIA d

ABSTRACT. Galilean transformation properties of different physical quantities are inves-
tigated from the point of view of four dimensional Galilean relativistic (non-relativistic)
space-time. The objectivity of balance equations of general heat conducting fluids and of
the related physical quantities is treated as an application.

1. Introduction

Inertial reference frames play a fundamental role in non-relativistic physics (Lange 2014;
Pfister 2014; Pfister and King 2015). One expects that the physical content of spatiotemporal
field theories are the same for different inertial observers, and also for some noninertial ones.
This has several practical, structural consequences for theory construction and development
(Brenner 2005; Noll 1974; Noll and Seguin 2010; Speziale 1987). The distinguished
role of inertial frames can be understood considering that they are true reflections of the
mathematical structure of the flat, Galilean relativistic space-time (Friedman 1983; Matolcsi
1993; Weyl 1918). When a particular form of a physical quantity in a given Galilean
inertial reference frame is expressed by the components of that quantity given in an other
Galilean inertial reference frame, we have a Galilean transformation. In a four dimensional
representation particular components of the physical quantity are called as timelike and
spacelike parts, concepts that require further explanations.

In non-relativistic physics time passes uniformly in any reference frame, it is absolute.
The basic formula of Galilean transformation is related to both time and position:

t̂ = t, x̂ = x−vt. (1)

Here, t is the time, x is the position in an inertial reference frame K, x̂ is the position in an
other inertial reference frame K̂ and v is the relative velocity of K and K̂ (see Figure 1). The
coordinates are not important parts of the reference frame, but there is a three dimensional
Euclidean mathematical structure in both K and K̂. We can see from the transformation
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A25-2 P. VÁN ET AL.

FIGURE 1. Inertial reference frames K̂ and K.

rule that time is absolute, it is the same in different inertial frames and position is relative,
it is velocity dependent, the corresponding physical quantity changes when changing the
reference frame.

In special relativity both space and time are relative, they are different for different inertial
observers. There, time and space are not separate concepts, therefore, the natural physical
quantities of four dimensional space-time are four-tensors. In non-relativistic physics one
may think that due to absolute time, space is separated from time, and the transformation
rules influence only three dimensional tensors. However, we will see, that several physical
quantities are covectors (Von Westenholz 1981), and for them not the spacelike, but the one
dimensional timelike component is different in different inertial frames.

Inertial reference frames seem to be distinguished for treating conceptual questions.
However, it was recognized long time ago, that inertial reference frames are too special
for continuum mechanics, basic equations are expected to be independent of the more
general motion of rigid bodies, therefore objectivity requirements of physical quantities are
formulated with transformation properties regarding changes of rotating reference frames
(Noll 1958; Truesdell and Noll 1965).

One may expect more: objective reality is expected to be independent of any external
observer. Therefore physical theories – the most objective models of reality – are expected
to be independent of reference frames. This is the ultimate reason, why we are investigating
transformation rules. One may distinguish between three aspects of these investigations

Atti Accad. Pelorit. Pericol. Cl. Sci. Fis. Mat. Nat., Vol. 97, No. S1, A25 (2019) [16 pages]



GENERALIZED GALILEAN TRANSFORMATIONS . . . A25-3

(Hermann et al. 2004; I. S. Liu and Sampaio 2014; Muschik 1998, 2012; Muschik and
Restuccia 2002, 2008; Svendsen and Bertram 1999):

(1) The first is the reference frame dependence or independence of physical quantities.
This is the question of objectivity.

(2) The second is the reference frame dependence or independence of laws of physics,
in particular the objectivity of evolution equations and time derivatives. This can
be called the problem of objective evolution.

(3) The third is the reference frame dependence or independence of material properties.
This is the question of material frame indifference.

These aspects are not independent. One may expect that a frame independent representa-
tion of space-time automatically fulfils the above mentioned aspects (Murdoch 2003; Noll
and Seguin 2010). A realization of these ideas is given by the precise space-time models of
Matolcsi (Matolcsi 1984, 1993). In this paper we mostly analyse the first question, the ob-
jectivity of physical quantities and also pay attention to the second one and shortly mention
the objectivity of evolution equations, in particular the basic balances of continua. In this
work we do not develop a completely frame independent formalism as it was accomplished
for Galilean relativistic fluids in Ván (2017). Our devices are inertial reference frames
in Galilean relativistic space-time. In the first section we argue that physical quantities
in non-relativistic physics are best considered as Galilean relativistic four-tensors, and
their space- and timelike components cannot be separated. Here, our basic observation
is that four-vectors and four-covectors transform differently. Then, we focus on Galilean
transformations and derive the transformation rules of different four tensors, and provide
some physical examples. The obtained transformation rules are similar to the ones obtained
by Ruggeri assuming Galilean invariance of the systems of balances in Rational Extended
Thermodynamics (Müller and Ruggeri 1998; Ruggeri 1989; Ruggeri and Sugiyama 2015).
Finally, we discuss the results.

2. Four-quantities in Galilean relativistic space-time: vectors and covectors

In relativistic physics, both in special and general relativity, one introduces four-vectors
and four-tensors, genuine four dimensional physical quantities, because there both time and
space depend on the motion of the observer. The reference frame independent, absolute time
of non-relativistic physics is exchanged to absolute propagation speed of electromagnetic
radiation. The observer is that splits the objective spacetime to relative time and relative
space. The relative velocity of the observer and the spacetime event plays a particular role,
as it is clear from the transformation rules of Lorentz between the times and spaces of two
observers:

t̂ = γ(t +v ·x), x̂ = x+ γ

(
−vt +

γ

γ +1
(v ·x)v

)
(2)

Here the instant t̂ and position x̂ of an event with respect to an inertial observer is related of
the instant t and position x of the same event respect to a different inertial observer. The two
observers move with relative velocity v with respect to each other. γ = 1√

1−v2
is the Lorentz

factor, and (2) is expressed in natural units, where the speed of the light c = 1. One can see
that the transformation rule is not simple, also its derivation requires a careful argumentation
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(e.g. the usual simple figure of coordinate systems with parallel axes is misleading: there is
no parallelism concept ahead of transformation rules (Matolcsi 1993; Möller 1972)). This
is one of the reasons why textbooks do not give the complete formula. One can see that
both space and time are transformed, therefore it is easy to accept that a covariant, objective
treatment is based on spacetime vectors and tensors. Four-quantities are far more practical
treating fundamental questions in relativistic situations.

With the reference frame independent absolute time of the Galilei transformation (1) one
may have the impression that four-quantities are unnecessary in non-relativistic physics.
Their use may be a mathematical convenience, but they are not necessary for physical
considerations. On the other hand one can recognize physical relation of four-dimensional
spacetime quantities without any knowledge of special relativity, for that purpose Galilean
transformations are sufficient.

The most important evolution equations of classical continua are the balance equations of
extensive physical quantities. The basic fields of a balance are the density, a, and the current
density, a, of the corresponding physical quantity. The density is a scalar, the current density
is a three dimensional spacial vector. It is easy to see that its Galilean transformation rule is
â = a+av, where the current density in a given reference frame is different that in an other
one. The difference is the convective part of the total current density, av, where v is the
relative velocity of the inertial frames. Densities and current densities are transforming like
time and position, there is a complete Galilean transformation of a four vector, analogous to
(1):

â = a, â = a+av. (3)

Therefore a and a are components of a four vector in the Galilean relativistic spacetime. At
this point it is worth to introduce a different, more convenient notation with indices. Writing
Galilean transformation in a tensorial form

x̂0 = x0, x̂i = xi + vix0, (4)

with x̂0 = t̂ and x0 = t and i = 1,2,3, we have also a matrix form(
x̂0

x̂i

)
=

(
x0

xi + x0vi

)
=

(
1 0 j

vi δ
j
j

)(
x0

x j

)
, (5)

or equivalently, with a four-index notation, x̂µ = A µ

b xν , where the indices are µ = (0, i)
and ν = (0, j) and

A µ

b =

(
A 0

0 A 0
j

A i
0 A i

j

)
=

(
1 0 j
vi δ i

j

)
. (6)

In the following Greek indices take the values 0,1,2,3 and Latin indices take the values
1,2,3. From tensor calculus for a four-dimensional vector Aµ we have the following
transformation law

Âµ = Aν ∂ x̂µ

∂xν
, or Âµ = Fµ

b Aν , being Fµ

b =
∂ x̂µ

∂xν
. (7)

Because of Galilean transformation is linear we have

A µ

b = Fµ

b =

(
1 0 j

vi δ
j
j

)
, (8)
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and therefore Fµ

ν is the Jacobian of this transformation. Following the above formula one
can see that (3) is the transformation rule for âµ = (â0, âi). Here the three-vector a in (3) has
to be denoted by ai. We will use the following letters analogously, i, j,k = 1,2,3. Therefore
the Galilean transformation rule above can be written equivalently as

â0 = a0, âi = ai +a0vi. (9)

with aν = (a0,ai)
We will denote the four-vectors with four indices. For example the time-position four-

vector of an event is xµ and the density-current four-vector is Aµ , where we have introduced
the abstract four-indices µ,ν ,σ ∈ {0,1,2,3}. Let us emphasize again, that both the three
and the four indices do not refer to particular coordinates, they are abstract in the Penrose
sense (Penrose 2004; Wald 1984), as it is customary in relativistic theories.

A four-vector has its timelike and spacelike components Aµ = (a0,ai) in one reference
frame and a different representation in a different inertial reference frame is denoted by
Âµ = (â0, âi). The interested reader may find the exact mathematical representation of
Galilean-relativistic spacetimes e.g. in Matolcsi (1993) and a developed index notation in
Ván (2017).

A scalar valued linear mapping of a vector is a four-covector, an element of the dual
of the original linear space. One can calculate the transformation rule of a four-covector
from this defining property. Denoting the covector with a lower index, as Bµ and its time-
and spacelike components as Bµ = (b0,bi) the duality mapping is written as Bµ Aµ . This
product is a scalar, must be invariant, therefore

Bµ Aµ = B̂µ Âµ , (10)

with B̂µ = (b̂0, b̂i). Then from the first of (7) follows(
B̂µ −Bν

∂xν

∂ x̂µ

)
Âµ = 0, (11)

and so

B̂µ = Bν

∂xν

∂ x̂µ
, or B̂µ = Gν

µ Bν , being Gν
µ =

∂xν

∂ x̂µ
= (F−1)ν

µ . (12)

That is, according to the transformation rule of the four-vector:

Bµ Aµ =
(
b0,bi

)(a0

ai

)
= a0b0 +biai = B̂µ Âµ = â0b̂0 + b̂iâi = (13)

a0b̂0 + b̂i(ai +a0vi) = a0(b̂0 + b̂ivi)+ b̂iai.

Comparing the too sides one obtains the transformation rule of a covector:

b̂0 = b0 − vibi, b̂i = bi. (14)

That is the spacelike part of a covector does not transform, but the timelike part transforms.
An example of four-covector is the four-derivative operator. That can be demonstrated

by the differentiation of a scalar field, a scalar valued space-time function, f (t,xi). If
this function represents a physical quantity, its value must be the same before and after a

Atti Accad. Pelorit. Pericol. Cl. Sci. Fis. Mat. Nat., Vol. 97, No. S1, A25 (2019) [16 pages]



A25-6 P. VÁN ET AL.

Galilean transformation, that is f (t̂, x̂i) = f (t,xi). Applying the derivative operators ∂t and
∂i to f , and taking into account the inverse of the transformations (4), we obtain

∂ f
∂ x̂i =

∂ f
∂xi , and

∂ f
∂ t̂

=

(
−vi ∂

∂xi +
∂

∂ t

)
f , (15)

where ∂

∂ t̂ is the sustantial time derivative. Therefore the four-derivative is a covector operator,
because it transforms, according to the covector transformation rule (14), that is ∂̂µ = Gν

µ ∂ν ,
where Gν

µ = (F−1)ν
µ is

Gν
µ =

(
G0

0 G j
0

G0
i G j

i

)
=

(
1 −v j

0i δ
j

i

)
, (16)

and ∂̂µ = ( ∂

∂ t̂ ,
∂

∂ x̂i ), ∂µ = ( ∂

∂ t ,
∂

∂xi ).
A vector balance is a contracted mapping of the spacetime derivative on a four vector (or

tensor). It would be a four-divergence in an Euclidean space but that is not necessary from a
mathematical point of view. We will write it in the following form:

∂ν Aν = σ . (17)

Here the source density term, σ , is an invariant scalar, and the time- and spacelike com-
ponents of the four-derivation are ∂ν = (∂t ,∂i). The four derivation is a covector. An
application of these transformation rules for both components of a four divergence gives

∂̂µ Âµ =
(
∂̂t , ∂̂

i
)(â0

âi

)
= ∂̂ta0 +∂iâi = (∂t − vi

∂i)a0 +∂i(ai +a0vi) =

∂ta0 +a0
∂ivi +∂iai = σ . (18)

Let be the comoving reference frame where the quantities are denoted without hat and a
local inertial frame is denoted with hat. Then, one can recognize that ∂t = ∂̂t + vi∂i is the
substantial time derivative and âi = ai + a0vi is the total current density of a0, which is
decomposed in conductive current density, ai, and the convective current density +a0vi, as
usual. The later one is sometiems called the flux of a0, (see e.g. Gyarmati (1970)). The
relation between the substantial and partial derivatives is the Galilean transformation of a
timelike covector component.

Therefore, in treating Galilean transformations one cannot restrict himself to scalar
looking timelike and Galilean transforming three dimensional spacial components: trans-
formation rules of vectors and covectors are entirely different. In special relativity the
transformation rules of vectors and covectors look like are almost the same, both time-
and spacelike components are velocity dependent. In Galilean relativity the four-vector
formalism is enforced by the different vector-covector transformations. A mathematical
analysis of the physical observations reveals, that unlike the special relativity where the
Lorenz-form is a pseoudeeuclidean structure on spacetime level, in Galilean relativity only
a linear structure is required by physical considerations: time and space are not connected
by any metric structure (Friedman 1983; Matolcsi 1984, 1993).

It is straightforward to summarize the transformation formulas in a four matrix notation.
The Galilean transformation rule of a vector is
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Âµ =

(
â0

âi

)
=

(
a0

ai +a0vi

)
=

(
1 0 j
vi δ i

j

)(
a0

a j

)
= Fµ

ν Aν . (19)

The transformation rule of a covector is (see (12)):

B̂µ =
(
b̂0 b̂i

)
=
(
b0 −b jv j bi

)
=
(
b0 b j

)( 1 0i

−v j δ
j

i

)
= Bν Gν

µ . (20)

Let us observe, that the second order four-tensors of the Galilean transformation are mixed,
they have both contravariant and covariant components.

3. Galilean transformation of second order tensors, cotensors and mixed tensors

The Galilean transformation rules of four-vectors and four-covectors in a Galilean
relativistic spacetime lead to the Galilean transformation rules of higher order tensors and
cotensors.

3.1. Second order four-tensors. The timelike component of a second order four-tensor
T µν will be a four-vector, tµ (µ,ν = 0,1,2,3), as well as the timelike component of its
transpose tµ . The time-timelike component of the four-tensor is a scalar, identical with the
timelike component of tµ and tµ and it is denoted by t. The space-spacelike component is a
second order three-tensor, t i j (i, j = 1,2,3), with t j the time-spacelike component of T µν

and t i the space-time component of T µν . Therefore T µν is represented by the following
matrix form:

T µν =

(
t t j

t i t i j

)
. (21)

Here we have used the following notation for the vector components: tµ = (t, t j) and
tµ = (t, t i). In section 5 we have also used the following formalism

T µν =

(
T 00 T 0 j

T i0 T i j

)
, T̂ µν =

(
T̂ 00 T̂ 0 j

T̂ i0 T̂ i j

)
. (22)

With our four-index notation the Galilean transformation of a second order tensor is
T̂ µν = Fµ

α Fν

β
T αβ = Fµ

α T αβ Fν

β
. Here the transpose of the tensor Fν

α is denoted by changing
the left-right order of the indices: (F∗)ν

α = Fν
α . Therefore, using the time and spacelike

components one obtains a formula that can be calculated according to the rules of matrix
multiplication

T̂ µν =

(
t̂ t̂ j

t̂ i t̂ i j

)
=

(
1 0l

v j δ
j

l

)(
1 0k
vi δ i

k

)(
t t l

tk tkl

)
=

(
1 0k
vi δ i

k

)(
t t l

tk tkl

)(
1 v j

0l δ
j

l

)
=

(
t t j + tv j

t i + tvi t i j + vit j + t iv j + tviv j

)
. (23)
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3.2. Second order cotensors. The timelike component of a second order four-cotensor
Rµν seems to be a four-covector, rµ , as well as the timelike component of its transpose rµ ,
however it is not true. It is best seen by the different the Galilean transformation properties.
The time-timelike component of the four-cotensor is identical with the timelike component
of rµ and rµ and it is denoted by r. The space-spacelike component is a second order
three-cotensor, ri j. Therefore Rµν may be represented by the following matrix forms:

Rµν =

(
r r j
ri ri j

)
=

(
R00 R0 j
Ri0 Ri j

)
. (24)

With our four-index notation the Galilean transformation of a second order cotensor
is analogous to the second order four-tensor and is the following R̂µν = Gα

µ Gβ

ν Rαβ =

Gα
µ Rαβ Gβ

ν . Therefore, using the time and spacelike components one obtains a formula that
can be calculated according to the rules of matrix multiplication

R̂µν =

(
r̂ r̂ j
r̂i r̂i j

)
=

(
R̂00 R̂0 j
R̂i0 R̂i j

)
=

(
1 −vk

0i δ k
i

)(
r rl
rk rkl

)(
1 0 j

−vl δ l
j

)
=

(
r− rkvk − rlvl + vkvlrkl r j − vkrk j

ri − rilvl ri j

)
. (25)

One can see that the time-timelike component of a four-cotensor is one dimensional, but it
transforms with Galilean transformation, therefore it is not a scalar quantity if invariance is
expected. It transforms differently than the timelike component of a covector. Remarkable
that space-spacelike component of a cotensor does not transform by Galilean transformation.

3.3. Second order mixed tensors. The Galilean transformation rules of second order
mixed four-tensors are different from the ones for four-tensors or four-cotensors. In this
subsection we calculate only the case when the first index is contravariant and the second
index is covariant. We will see that the timelike component of Qµ

ν is not a four-vector
regarding its transformation rules, but qµ , the timelike component of its transpose is a
four-cotensor in this sense. The time-timelike component and the second order mixed
three-cotensor space-spacelike component are denoted by q and qi

j, respectively. The time-
spacelike and space-timelike components are qi and q j. Therefore Qµ

ν may be represented
by the following matrix form:

Qµ

ν =

(
q q j
qi qi

j

)
=

(
Q0

0 Q0
j

Qi
0 Qi

j.

)
. (26)

The transformation formula is the combination of vector and covector transformation
and can be written with the help of our four-index notation in the following form Q̂µ

ν =
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Fµ

α Gβ

ν Qα

β
= Fµ

α Qα

β
Gβ

ν . With the rules of matrix multiplication it is presented as

Q̂µ

ν =

(
q̂ q̂ j
q̂i q̂i

j

)
=

(
Q̂0

0 Q̂0
j

Q̂i
0 Q̂i

j.

)

=

(
1 0k
vi δ i

k

)(
q ql
qk qk

l

)(
1 0 j

−vl δ l
j

)
=

(
q−qkvk q j

qi +qvi −qi
lv

l −qlvlqi qi
j + viq j

)
(27)

4. Galilean transformation of third order tensors, 1-2 and 2-1 mixed tensors and
cotensors

The previous methodology with matrix multiplication becomes more clumsy for higher
order tensors. Nevertheless, with the transformation matrices one can easily find the
transformation formulas of the different terms one by one.

4.1. Third order (3,0) tensor. A third order contravariant tensor, Zµνσ , can be represented
as a hypermatrix of its time- and spacelike components as follows:

Zµνσ =
(
Z0νσ Ziνσ

)
=

((
Z000 Z00k

Z0 j0 Z0 jk

) (
Zi00 Zi0k

Zi j0 Zi jk

))
, (28)

where we may write also

Zµνσ =

(
Z0νσ

Ziνσ

)
=

(
Zµ0σ

Zµ jσ

)
=

(
Zµν0

Zµνk

)
. (29)

We introduce a notation of the components of (1,3) representation of four-tensors separt-
ing the time and spacelike parts of the first component: F0

0 = 0,F0
j = 0 j,F i

0 = vi,F i
j = δ i

j.
In matrix form it is represented as

Fµ

ν =

(
F0

0 F0
j

F i
0 F i

j

)
=

(
1 0 j

vi δ
j
j

)
, (30)

(see (8)). The transformation formula is the following:

Ẑµνσ = Fµ

α Fν

β
Fσ

γ Zαβγ . (31)

Therefore the components of Ẑµνσ can be given one by one, by using the component
index notation, µ = (0, i), ν = (0, j), σ = (0,k), α = (0, l), β = (0,m) and γ = (0,n). Here
0 denotes the timelike component and the latin indices i, j,k, l,m,n are for the spacelike
ones. One can realize that the previous matrix representations (28) or (29) require special
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attention for calculations. It is better to perform an automatic direct calculation:

Ẑ000 = F0
0 F0

0 F0
0 Z000 +F0

0 F0
0 F0

n Z00n +F0
0 F0

mF0
0 Z0m0 +F0

0 F0
mF0

n Z0mn+

F0
l F0

0 F0
0 Zl00 +F0

l F0
0 F0

n Zl0n +F0
l F0

mF0
0 Zlm0 +F0

l F0
mF0

n Zlmn

=Z000,

Ẑi00 = viZ000 +Zi00, Ẑ0 j0 = v jZ000 +Z0 j0, Ẑ00k = vkZ000 +Z00k,

Ẑi j0 = Zi j0 + viZ0 j0 + v jZi00 + viv jZ000,

Ẑi0k = Zi0k + viZ00k + vkZi00 + vivkZ000,

Ẑ0 jk = Z0 jk + v jZ00k + vkZ0 j0 + v jvkZ000,

Ẑi jk = Zi jk + viZ0 jk + v jZi0k + vkZi j0 + viv jZ00k + vivkZ0 j0 + v jvkZi00+

viv jvkZ000. (32)

4.2. (2,1) tensor. In this case the transformation rule is the following:

Ŷ νσ
µ = Gα

µ Fν

β
Fσ

γ Y βγ

α . (33)

Then, we need also the transformation formula of covectors, where

Gν
µ =

(
G0

0 G j
0

G0
i G j

i

)
=

(
1 −v j

0i δ
j

i

)
. (34)

Therefore, the components of Ŷ νσ
µ are given one by one as follows

Ŷ 00
0 =G0

0F0
0 F0

0 Y 00
0 +G0

0F0
0 F0

n Y 0n
0 +G0

0F0
mF0

0 Y m0
0 +G0

0F0
mF0

n Y mn
0 +

Gl
0F0

0 F0
0 Y 00

l +Gl
0F0

0 F0
n Y 0n

l +Gl
0F0

mF0
0 Y m0

l +Gl
0F0

mF0
n Y mn

l

=Y 00
0 − vlY 00

l ,

Ŷ 00
i = Y 00

i ,

Ŷ j0
0 = v jY 00

0 +Y j0
0 − vlv jY 00

l − vlY j0
l ,

Ŷ 0k
0 = vkY 00

0 +Y 0k
0 − vlvkY 00

l − vlY 0k
l ,

Ŷ jk
0 = v jvkY 00

0 + vkY j0
0 + v jY 0k

0 +Y jk
0 − vlv jvkY 00

l − vlv jY 0k
l −

vlvkY j0
l − vlY jk

l ,

Ŷ j0
i = v jY 00

i +Y j0
i , Ŷ 0k

i = vkY 00
i +Y 0k

i ,

Ŷ jk
i = vkv jY 00

i + v jY 0k
i + vkY j0

i +Y jk
i . (35)

4.3. (1,2) tensor. In this case the transformation formula is the following:

X̂ µ

νσ = Fµ

α Gβ

ν Gγ

σ Xα

βγ
(36)

Then we use the transformation matrices for vectors and covectors again.
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Therefore the components of X̂ µ

νσ are given one by one as follows

X̂0
00 =F0

0 G0
0G0

0X0
00 +F0

0 G0
0Gn

0X0
0n +F0

0 Gm
0 G0

0X0
m0 +F0

0 Gm
0 Gn

0X0
mn+

F0
l G0

0G0
0X l

00 +F0
l G0

0Gn
0X l

0n +F0
l Gm

0 G0
0X l

m0 +F0
l Gm

0 Gn
0X l

mn

=X0
00 − vnX0

0n − vmX0
m0 + vmvnX0

mn,

X̂ i
00 = viX0

00 − vivnX0
0n − vivmX0

m0 + vivmvnX0
mn +X i

00 − vnX i
0n−

vmX i
m0 + vmvnX i

mn,

X̂0
j0 = X0

j0 + vnX0
jn, X̂0

0k = X0
0k + vmX0

mk,

X̂0
jk = X0

jk,

X̂ i
j0 = viX0

j0 − vivnX0
jn +X i

j0 − vnX i
jn,

X̂ i
0k = viX0

0k − vivmX0
mk +X i

0k − vmX i
mk,

X̂ i
jk = viX0

jk +X i
jk. (37)

4.4. Third order cotensor. Finally we can give the following transformation rule of a
third order cotensor:

Ŵµνσ = Gα
µ Gβ

ν Gγ

σWαβγ (38)

Then we use the proper combination of transformation formulas for vectors and covectors
again. Therefore the components of Ŵµνσ are given one by one as follows

Ŵ000 =G0
0G0

0G0
0W000 +G0

0G0
0Gn

0W00n +G0
0Gm

0 G0
0W0m0 +G0

0Gm
0 Gn

0W0mn+

Gl
0G0

0G0
0Wl00 +Gl

0G0
0Gn

0Wl0n +Gl
0Gm

0 G0
0Wlm0 +Gl

0Gm
0 Gn

0Wlmn,

=W000 − vnW00n − vmW0m0 + vmvnW0mn − vlWl00+

vlvnWl0n + vlvmWlm0 − vlvmvnWlmn,

Ŵi00 =Wi00 − vnWi0n − vmWim0 + vmvnWimn,

Ŵ0 j0 =W0 j0 − vnW0 jn − vlWl j0 + vlvnWl jn,

Ŵ00k =W00k − vmW0mk − vlW0lk + vlvmWlmk,

Ŵi j0 =Wi j0 − vnWi jn, Ŵi0k =Wi0k − vmWimk, Ŵ0 jk =W0 jk − vlWl jk,

Ŵi jk =Wi jk. (39)

5. Balances and identification of physical quantities

Galilean transformation properties of higher order tensors are not frequently treated in the
literature of continuum physics. According to the common knowledge for non-kinematic
physical quantities the transformation properties are postulated (I. S. Liu and Sampaio
2014). In Rational Extended Thermodynamics the transformation properties of the fields
are calculated with the requirement of Galilean invariance of the system of basic balances
(Müller and Ruggeri 1998; Ruggeri 1989).
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Here, our simple and basic assumption is that the four divergence of a third order tensor
field Zµνσ , gives the system of basic balances. The physical justification is given with the
help of the calculated transformation rules.

Because the four-divergence of a third order tensor field is a second order tensor, we also
introduce the corresponding source term, as follows:

∂̂µ Ẑµνσ = T̂ νσ . (40)

Here and in the following we assume that Zµνσ is symmetric in the last two indices:
Zµνσ = Zµσν . In a time/spacelike decomposition one obtains easily the following system
of balances taking into account expressions (15), (21) and (22):

∂̂t Ẑ000 +∂iẐi00 = T̂ 00,

∂̂t Ẑ0 j0 +∂iẐi j0 = T̂ j0,

∂̂t Ẑ0 jk +∂iẐi jk = T̂ jk. (41)

With the help of the previously calculated transformation rules follows that

∂tZ000 +Z000
∂ivi +∂iZi00 = T 00, (42)

∂t(Z0 j0 + v jZ000)+(Z0 j0 + v jZ000)∂ivi +∂i(Zi j0 + v jZi00 + v jZi00 + viv jZ000) =

T j0 + v jT 00, (43)

∂t(Z0 jk + v jZ00k + vkZ0 j0 + v jvkZ000)+

(Z0 jk + v jZ00k + vkZ0 j0 + v jvkZ000)∂ivi +∂i(Zi jk + v jZi0k + vkZi j0 + v jvkZi00)

= T jk + v jT 0k + vkT j0 + v jvkT 00. (44)

There one may introduce the following notation: ρ = Z000, ji = Zi00, σ = T 00 and we
denote the substantial time derivative ∂t by an overdot. Then (42) is apparently the balance
of mass, the well know equation of continuity in a local form, where ρ is the mass density
and vi is the local velocity field:

ρ̇ +ρ∂ivi +∂i ji = σ . (45)

Here ji is a conductive mass flux, a (self) diffusion term. Usually one assumes, that ji and
also the source term σ is zero. In Öttinger, Struchtrup, and M. Liu (2009) and Ván, Pavelka,
and Grmela (2017) conditions are given when it may happen. Booster conservation, the
existence of local center of mass motion excludes nonzero (self) diffusion.

The new components of Zµνσ in the second equation, (42), will be denoted as p j = Z0 j0,
Pi j = Zi j0 and f j = T j0. Then it can be written in the following form

(p j +ρv j )̇+ (p j +ρv j)∂ivi +∂i(Pi j + vi p j + v j ji + viv j
ρ) = f j + v j

σ (46)

Here we can see, that if p j and j j are zero, then one obtains a simplified form:

(ρv j )̇+ρv j
∂ivi +∂i(Pi j + viv j

ρ) = f j (47)

We can recognise the balance of momentum, with Pi j as pressure tensor and f j as force
density. p j is the density of the momentum, the part that does not flow with the fluid.
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Finally, let us take the trace of the second order tensor equation (45) and introduce the
following notations: Z0 j j = 2e, Zi j j = 2qi and also T j j = 2Σ. Then

(e+v j p j +
ρ

2
v jv j )̇+ (e+ v j p j +

ρ

2
v jv j)∂ivi +∂i(qi + vkPik +

1
2

v jv j ji) =

Σ+ v j f j + v jv j σ

2
, (48)

where e is the internal energy density and qi is the heat flux vector. Beyond the previous
assumptions we consider the special case when the basic source term Σ is zero and finally
obtain, that

(e+
ρ

2
v jv j )̇+ (e+

ρ

2
v jv j)∂ivi +∂i(qi + vkPik) = v j f j. (49)

Here, we recognize the balance of total energy.
With the above notation, and applying the symmetry of Z, the transformation rules (32)

reduce to the following form:

ρ̂ = ρ,

ĵi = ji + vi
ρ, p̂ j = p j + v j

ρ,

P̂i j = Pi j + vi p j + v j ji + viv j
ρ,

ê = e+ vk pk + v2 ρ

2
,

q̂i = qi + viê+ vkPik + jiv2 ρ

2
. (50)

In these formulas we have taken into account the transformation rules for Z0i j and Zi j j.
It is worth to observe that without the mentioned simplifying assumptions pi = 0, ji = 0,
the transformed form of the current densities Pi j and qi are the usual total form compared
to the convective and convective ones. On the other hand, we can see that the conditions
pi = 0 and ji = 0 can be considered as defining special reference frames, moving together
with the mass and the momentum. It is hard to recognize the transformation rules without
these annulled terms. It is remarkable that the kinetic energy represents a part of the
transformation rule of the energy.

6. Summary and discussion

In this paper we have calculated the Galilean transformation rules of the basic second
and third order four-tensors in Galilean relativistic spacetime. Then these transformation
rules – with a local interpretation, of non-constant transformation velocity – were fitted
into the balances in order to realize the physical meaning and relevance of the component
physical quantities more easily.

According to the present work the basic balances of continua have the same meaning
in inertial reference frames. The mass, momentum and energy balances in the presented
form are not invariant but transform according to Galilean transformations. The particular
transformation rules are derived and we have obtained the same formulas as one can obtain
in Rational Extended Thermodynamics. There the derivation is based on the Galilean
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invariance of the whole system of balances. Here the transformation rules reveal a four-
tensor structure of the basic physical quantities of classical fluid mechanics.

It is also remarkable that the treated laws of physics are not invariant when changing
inertial reference frames, however, they transform according to proper transformation rules.
The concept of objectivity and objective evolution are the same, a simple four-dimensional
representation proves this identity. One may realize that our demonstration here is applicable
to general fluid motions, with generalized Galilean transformations, where vi is the relative
velocity of the fluid, and an inertial observer, therefore it is not necessarily constant. An
other instructive example is given in Matolcsi and Ván (2006) for Euclidean transformations
and with inertial forces.

Some of these components are considered as zero in the classical treatments. The
physical existence and nonexistence of the conductive mass flux ji was recently discussed
in the literature (Bedeaux, Kjelstrup, and Öttinger 2006; Brenner 2005; Öttinger, Struchtrup,
and M. Liu 2009; Ván, Pavelka, and Grmela 2017). The (self) momentum density pi

does not appear in case of fluids. Their common zero value means that the mass and the
momentum of the fluid flow together, an assumption that seems to be evidently true in case
of massive pointlike, classical particles.

This treatment is a particular case of a completely reference and flow-frame independent
approach, more general but less transparent from the presented Galilean transformations
based treatment (Ván 2017).

Our presented approach is admittedly Pythagorean, where the mathematical form pre-
cedes the physical representations.
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