
DOI: 10.1478/AAPP.971A5

AAPP | Atti della Accademia Peloritana dei Pericolanti
Classe di Scienze Fisiche, Matematiche e Naturali

ISSN 1825-1242

Vol. 97, No. 1, A5 (2019)

MINIMAL RESOLUTIONS OF GRADED MODULES
OVER AN EXTERIOR ALGEBRA

LUCA AMATA a AND MARILENA CRUPI a∗

ABSTRACT. Let K be a field, E the exterior algebra of a n–dimensional K-vector space
V . We study projective and injective resolutions over E. More precisely, given a category
M of finitely generated Z-graded left and right E-modules, we give upper bounds for the
graded Betti numbers and the graded Bass numbers of classes of modules in M .

1. Introduction

Let K be a field, E = K ⟨e1, . . . ,en⟩ the exterior algebra of a K-vector space V with basis
e1, . . . ,en. We work on the category M of finitely generated Z-graded left and right E-
modules M satisfying am = (−1)degadegmma for all homogeneous elements a ∈ E, m ∈ M.
It is well–known that, even if E is not commutative, it behaves like a commutative local ring
or *local ring (Bruns and Herzog 1998) in many cases. If M ∈ M , we denote by βi, j(M) =

dimK TorE
i (M,K) j the graded Betti numbers of M and by µi, j(M) = dimK ExtiE(K,M) j the

graded Bass numbers of M. Our aim is to give upper bounds for such invariants.
Many authors were interested in the problem of giving upper bounds for the graded Betti

numbers and the graded Bass numbers of graded submodules of a finitely generated graded
free module with homogeneous basis, both in the polynomial and in the exterior algebra
context (see, for instance, Bigatti 1993; Pardue 1994; Hulett 1995; Pardue 1996; Aramova
et al. 1997; Crupi and Ferrò 2013, 2015, and references contained therein). A fundamental
tool in both contexts is the class of lexicographic submodules (Definition 2.6). Such a class
of monomial submodules has been deeply studied by Amata and Crupi (2018a,b).

The paper is organized as follows. Section 2 introduces definitions, notations and gives a
short survey on those facts which are relevant in the next sections. Section 3 analyzes the
generic initial module of a graded module M ∈ M . Generic initial modules preserve much
information of the original module and, furthermore, they are strongly stable (Definition
2.5). Therefore in many situations it is a successful strategy to pass on to the generic
initial module and then exploit the nice properties of strongly stable submodules. In
Section 4, if F =⊕r

i=1Egi is the free E-module with homogeneous basis g1, . . . ,gr, such
that degg1 ≤ degg2 ≤ ·· · ≤ deggr, we show that the lexicographic submodules give upper
bounds for the graded Betti numbers of the class of graded submodules of F with the same
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A5-2 L. AMATA AND M. CRUPI

Hilbert function (Theorem 4.8). Our techniques generalize the ones exploited by Aramova
et al. (1997, 1998). In Section 5, upper bounds for the graded Bass numbers of the class of
graded submodules of F ≃ Er with a given Hilbert function, are given. Moreover, some
remarks on the annihilator of classes of monomial submodules in F are given (Theorem
5.4). Finally, Section 6 contains our conclusions and perspectives.

2. Preliminaries and notations

Let K be a field. We denote by E = K ⟨e1, . . . ,en⟩ the exterior algebra of an n dimensional
K-vector space V with basis e1, . . . ,en. For any subset σ = {i1, . . . , id} of {1, . . . ,n} with
i1 < i2 < · · ·< id we write eσ = ei1 ∧ . . .∧ eid , and call eσ a monomial of degree d. We set
eσ = 1, if σ = /0. The set of monomials in E forms a K-basis of E of cardinality 2n.

An element f ∈ E is called homogeneous of degree j if f ∈ E j, where E j =
⋀︁ j V . An

ideal I is called graded if I is generated by homogeneous elements. If I is graded, then
I =⊕ j≥0I j, where I j is the K-vector space of all homogeneous elements f ∈ I of degree j.
We denote by indeg(I) the initial degree of I, i.e., the minimum s such that Is ̸= 0.

For any not empty subset S of E, we denote by Mon(S) the set of all monomials in S,
and we denote its cardinality by |S|.

From now on, in order to simplify the notation, we put f g = f ∧g for any two elements
f and g in E. Let eσ = ei1 · · ·eid ̸= 1 be a monomial in E. We define

supp(eσ ) = σ = {i : ei divides eσ},

and we write
m(eσ ) = max{i : i ∈ supp(eσ )}.

We set m(eσ ) = 0, if eσ = 1.

Let M be the category of finitely generated Z-graded left and right E-modules M
satisfying am = (−1)degadegmma for all homogeneous elements a ∈ E, m ∈ M. If M ∈ M ,
the function HM : Z→ Z given by HM(d) = dimK Md is called the Hilbert function of M.

If M ∈ M , then M has a unique minimal graded free resolution over E (Herzog and Hibi
2011):

F• : . . .→ F2 → F1 → F0 → M → 0,

where Fi =⊕ jE(− j)βi, j(M). The integers βi, j(M) = dimK TorE
i (M,K) j are called the graded

Betti numbers of M.
Furthermore, M has a unique minimal graded injective resolution:

I• : 0 → M → I0 → I1 → I2 → . . . ,

where Ii = ⊕ jE(n− j)µi, j(M). The integers µi, j(M) = dimK ExtiE(K,M) j are called the
graded Bass numbers of M (Bruns and Herzog 1998; Kämpf 2010).

Let M∗ be the right (left) E-module HomE(M,E). The duality between projective and
injective resolutions implies the following relation (Aramova et al. 1997, Proposition 5.2)
between the graded Bass numbers of a module and the graded Betti numbers of its dual.

Proposition 2.1. Let M ∈ M . Then

βi, j(M) = µi,n− j(M∗), for all i, j.
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Let F ∈ M be a free module with homogeneous basis g1, . . . ,gr,where deg(gi) = fi
for each i = 1, . . . ,r, with f1 ≤ f2 ≤ ·· · ≤ fr. The elements of the form eσ gi, where
eσ ∈ Mon(E), are called monomials of F , and deg(eσ gi) = deg(eσ )+deg(gi).
In particular, if F ≃ Er and ei = (0, . . . ,0,1,0, . . . ,0), where 1 appears in the i-th place, we
assume, as usual, deg(eσ gi) = deg(eσ ), i.e., deg(gi) = fi = 0.

Throughout this paper, we denote by F =⊕r
i=1Egi the free E-module with homogeneous

basis g1, . . . ,gr, where deg(gi) = fi (i = 1, . . . ,r) with f1 ≤ f2 ≤ ·· · ≤ fr. Furthermore,
when we write F ≃ Er, we mean that F =⊕r

i=1Egi is the free E-module with homogeneous
basis g1, . . . ,gr, where gi (i = 1, . . . ,r) is the r-tupla whose only non zero–entry is 1 in the
i–th position and such that deg(gi) = 0, for all i.

Definition 2.2. A graded submodule M of F is a monomial submodule if M is a submodule
generated by monomials of F, i.e., M can be written as

M =⊕r
i=1Iigi,

with Ii the monomial ideal of E generated by those monomials eσ such that eσ gi ∈ M.

Moreover, if r = 1 and f1 = 0, a monomial submodule is a monomial ideal of E.

Definition 2.3. Let I be a monomial ideal of E. I is called stable if for each monomial
eσ ∈ I and each j < m(eσ ) one has e jeσ\{m(eσ )} ∈ I. I is called strongly stable if for each
monomial eσ ∈ I and each j ∈ σ one has eieσ\{ j} ∈ I, for all i < j.

Definition 2.4. A monomial submodule M =⊕r
i=1Iigi of F is an almost (strongly) stable

submodule if Ii is a (strongly) stable ideal of E, for each i.

Definition 2.5. A monomial submodule M =⊕r
i=1Iigi of F is a (strongly) stable submodule

if Ii is a (strongly) stable ideal of E, for each i, and (e1, . . . ,en)
fi+1− fi Ii+1 ⊆ Ii, for i =

1, . . . ,r−1.

If I is a monomial ideal in E, we denote by G(I) the unique minimal set of monomial
generators of I, and by G(I)d the set of all monomials u ∈ G(I) such that deg(u) = d, d > 0.
Instead, for every monomial submodule M =⊕r

i=1Iigi of F , we set
G(M) = {ugi : u ∈ G(Ii), i = 1, . . . ,r},
G(M)d = {ugi : u ∈ G(Ii)d− fi , i = 1, . . . ,r}.

Now, order the monomials of F in the degree reverse lexicographic order, >degrevlexF , as
follows: let eσ gi and eτ g j be monomials of F , then eσ gi >degrevlexF eτ g j if

- deg(eσ gi)> deg(eτ g j), or
- deg(eσ gi) = deg(eτ g j), and either eσ >revlex eτ , or eσ = eτ and i < j;

>revlex is the usual reverse lexicographic order on E with e1 >revlex · · ·>revlex en (see, for
instance, Aramova and Herzog 2000).

Any element f of F is a unique linear combination of monomials with coefficients in
K. The largest monomial in this presentation is called the initial monomial of f and it is
denoted by in( f ). If M is a graded submodule of F then the submodule of initial terms of
M, denoted by in(M), is the submodule of F generated by the initial terms of elements of
M. Using the same arguments as in the polynomial case (Eisenbud 1995, Ch. 15; Miller
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and Sturmfels 2005, Ch. 8.3; Herzog 2002; Crupi and Restuccia 2009; see also Aramova
et al. 1997, for the rank one case), one has

HF/M = HF/ in(M) (1)

and
βi, j(F/M)≤ βi, j(F/ in(M)), for all i, j. (2)

Since in(M) is a monomial submodule of F with the same Hilbert function as M, we may
assume M itself is a monomial submodule without changing the Hilbert function.

Now, for every d ≥ 1, let Fd be the part of degree d of F =⊕r
i=1Egi, i.e., the K-vector

space of homogeneous elements of F of degree d. Denote by Mond(F) the set of all
monomials of degree d of F . We order such a set by the ordering >lexF defined as follows:
if ugi and vg j are monomials of F such that deg(ugi) = deg(vg j), then ugi >lexF vg j if i < j
or i = j and u >lex v.

Definition 2.6. Let L be a monomial submodule of F. L is a lexicographic submodule
(lex submodule, for short) if for all u,v ∈ Mond(F) with u ∈ L and v >lexF u, one has
v ∈ L , for every d ≥ 1.

The next characterization of lex submodules in F (Crupi and Ferrò 2016; Amata and
Crupi 2018b) will be useful in the sequel.

Proposition 2.7. Let L be a graded submodule of F. Then L is a lex submodule of F if
and only if

(i) L =⊕r
i=1Iigi, with Ii ⊊ E lex ideals, for i = 1, . . . ,r, and

(ii) (e1, . . . ,en)
ρi+ fi− fi−1 ⊆ Ii−1, for i = 2, . . . ,r, with ρi = indegIi.

Lexicographic submodules play a fundamental role in the classification of the Hilbert
functions of quotient of finitely generated graded free E–modules.

Let a and i be two positive integers. Then a has the unique i-th Macaulay expansion

a =

(︃
ai

i

)︃
+

(︃
ai−1

i−1

)︃
+ · · ·+

(︃
a j

j

)︃
with ai > ai−1 > · · ·a j ≥ j ≥ 1. We define

a(i) =
(︃

ai

i+1

)︃
+

(︃
ai−1

i

)︃
+ · · ·+

(︃
a j

j+1

)︃
.

We also set 0(i) = 0 for all i ≥ 1.

Now, for the reader’s convenience, we include some comments of Amata and Crupi
(2018a) on Hilbert functions of a graded E–algebra F/M, with M submodule of F .

Let us consider the graded E-module F =⊕r
i=1Egi. One can verify that

HF(d) = dimK Fd = 0, for d < f1 and d > fr +n. (3)

Hence, if M is a monomial submodule of F , from (3), it follows that

HF/M(t) =
fr+n

∑
i= f1

HF/M(i)t i,
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and we can associate to F/M the following sequence

(HF/M( f1),HF/M( f1 +1), . . . ,HF/M( fr +n)) ∈ N fr+n− f1+1
0 . (4)

For p,q ∈ Z with p < q, let us define the following set:

[p,q] = { j ∈ Z : p ≤ j ≤ q}.

The next result, which is a generalization of the well–known Kruskal–Katona theorem
(Aramova et al. 1997), can be found in the paper by Amata and Crupi (2018a). It describes
the possible Hilbert functions of quotients of free E-modules.

Theorem 2.8. Let ( f1, f2, . . . , fr) ∈ Zr be an r–tuple such that f1 ≤ f2 ≤ ·· · ≤ fr and let
(h f1 ,h f1+1, . . . ,h fr+n) be a sequence of nonnegative integers. Set

s = min{k ∈ [ f1, fr +n] : hk ̸= 0},

and
r̃ j = |{p ∈ [r] : fp = s+ j}|, for j = 0,1.

Then the following conditions are equivalent:

(a) ∑
fr+n
i=s hit i is the Hilbert series of a graded E-module F/M, with F = ⊕r

i=1Egi
finitely generated graded free E-module with the basis elements gi of degrees fi;

(b) hs ≤ r̃0, hs+1 ≤ nr̃0 + r̃1, hi = ∑
r
j=N+1

(︁ n
i− f j

)︁
+a, where a is a positive integer less

than
(︁ n

i− fN

)︁
, 0 < N ≤ r, and hi+1 ≤ ∑

r
j=N+1

(︁ n
i− f j+1

)︁
+a(i− fN), i = s+1, . . . , fr +n;

(c) there exists a unique lexicographic submodule L of a finitely generated graded
free E-module F =⊕r

i=1Egi with the basis elements gi of degrees fi and such that
∑

fr+n
i=s hit i is the Hilbert series of F/L.

Theorem 2.8 points out that if M is a graded submodule of F , then there exists a unique
lex submodule of F with the same Hilbert function as M. We will denote it by Mlex.

3. The generic initial module

In this Section, we study the generic initial module of a graded module M ∈ M . Such a
module can be defined as in the polynomial case (Pardue 1994, 1996; Aramova and Herzog
2000; Miller and Sturmfels 2005).

Let GL(n) be the group of n× n invertible matrices with entries in the field K, or
equivalently, the group of K-linear graded automorphisms of E.

If ϕ = (ai, j) ∈ GL(n), one can define the action of ϕ on E1 as follows:

ϕ(e j) =
n

∑
i=1

ai, jei, ai, j ∈ K

and

ϕ(
n

∑
i=1

aiei) =
n

∑
i=1

aiϕ(ei), ai ∈ K.

Furthermore, such an action can be extended to Ed as follow:

ϕ(eσ ) = ϕ(ei1) · · ·ϕ(eid ), for eσ = ei1 · · ·eid ∈ Mond(E).
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The automorphism ϕ induces a natural compatible action on F =⊕r
i=1Egi by

ϕ(
r

∑
i=1

figi) =
r

∑
i=1

ϕ( fi)gi, fi ∈ E.

Now, let GL(F) be the group of E-linear graded automorphism of F . An element of
GL(F) sends gi to ∑

r
j=1 fi jg j, where fi j ∈ Edi−d j . If ϕ1 ∈ GL(n) and ϕ2 ∈ GL(F), then

ϕ1ϕ2ϕ
−1
1 is an E-linear graded automorphism of F and so we have an action of GL(n)

on GL(F). Therefore, we can consider the semidirect product G = GL(n)⋊GL(F). G
acts on F through graded K-vector space automorphisms; this action takes submodules to
submodules.

Let B be the subgroup of G consisting of all automorphisms taking gi to a E-linear
combination of g1, . . . ,gi and ei to a K-linear combination of e1, . . . ,ei. B is the Borel group
of G and it is naturally realized by upper triangular matrices.

In what follows, if F =⊕r
i=1Egi is a free graded E-module of rank r we will always use

the degree reverse lexicographic order on the monomials of F defined in Section 2.

Definition 3.1. A submodule M of F is Borel-fixed if ϕ(M) = M, for every ϕ ∈ B.

The following result is the analogue of a general result of Galligo’s theorem (Eisenbud
1995) on generic initial ideals proved by Pardue (1994). Since its proof is quite similar to
the one on submodules of a finitely generated graded free module on a polynomial ring, we
omit its proof (see also Aramova et al. 1997, Theorem 1.6, for the rank one case).

Proposition 3.2. Assume the base field K is infinite and let G and B as above. Then for
each graded submodule M of F there exists a nonempty open subset U ⊆ G such that

(1) there is a monomial submodule N of F such that N = in(ϕ(M)) for all ϕ ∈U;
(2) N is a Borel-fixed submodule of F, that is ϕ(N) = N for all ϕ ∈ B.

The monomial submodule N = in(ϕ(M)) of F is denoted by Gin(M) and called the
generic initial module of M.

Proposition 3.3. Let K be infinite and let M be a graded submodule of F. Then Gin(M) is
a strongly stable submodule of F with the same Hilbert function as M.

Proof. Since E is noetherian (see, for instance, Kämpf 2010), using the same arguments as
in the paper by Hulett (1993, Lemmas 14, 15), we may assume that M = I1g1 ⊕·· ·⊕ Irgr,
is a monomial submodule of F such that (e1, . . . ,en)

fi+1− fi Ii+1 ⊆ Ii (i = 1, . . . ,r−1), where
fi = deg(gi), for all i, without changing the Hilbert function. Moreover, since in(P) in(Q)⊂
in(PQ), with P,Q graded ideals of E, one has that (e1, . . . ,en)

fi+1− fi in(ϕ(Ii+1))⊆ in(ϕ(Ii)),
for all ϕ ∈ B.

Hence, Gin(M) = ⊕r
i=1Jigi, with Ji monomial ideal of E, for all i, and such that

(e1, . . . ,en)
fi+1− fiJi+1 ⊆ Ji, for i = 1, . . . ,r−1.

Now, we prove that every Ji (i = 1, . . . ,r) is a strongly stable ideal of E.
Assume there exists an integer i ∈ {1, . . . ,r} such that Ji is not a strongly stable ideal of

E. Hence, there exist a monomial eσ ∈ Ji and a pair (h, j) of positive integers with h < j,
j ∈ supp(eσ ), such that eheσ\{ j} /∈ Ji. Let ϕ ∈ GL(n) with ϕ(e j) = e j + eh and ϕ(ek) = ek
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for k ̸= j. Then, ϕ(eσ ) = eσ + eheσ\{ j} and consequently ϕ(Ji)⊈ Ji. Therefore, ϕ(eσ )gi
does not belong to Gin(M). A contradiction.

Finally, from Eq. (1) Gin(M) is a strongly stable submodule of F with the same Hilbert
function as M. □

From now on, we will assume that the base field K is infinite.

4. Maximal Betti numbers

In this Section we generalize the “higher” Kruskal–Katona Theorem (Aramova et al.
1997, Theorem 4.4). We show that if H is a class of graded submodules of the free E
–module F = ⊕r

i=1Egi with a given Hilbert function H, then the unique lex submodule
belonging to H (Theorem 2.8) gives upper bounds for the graded Betti numbers of any
graded submodule in H .

For a monomial eσ gi of F =⊕r
i=1Egi, setting

mF(eσ gi) = m(eσ ), 1 ≤ i ≤ r,

define
G(M : j) = {eσ gi ∈ G(M) : mF(eσ gi) = j},

and

mF
j (M) = |G(M : j)|, 1 ≤ j ≤ n, mF

≤t(M) =
t

∑
j=1

mF
j (M), 1 ≤ t ≤ n.

One can observe that mF
≤n(M) = |G(M)|.

If M = ⊕r
i=1Iigi is an (almost) stable submodule of F , then we can use the Aramova-

Herzog-Hibi formula (Aramova et al. 1997, Corollary 3.3) for computing the graded Betti
numbers of M:

βk,k+ℓ(M) =
r

∑
i=1

βk,k+ℓ(Iigi) = ∑
u∈G(M)ℓ

(︃
mF(u)+ k−1

mF(u)−1

)︃
, for all k. (5)

Indeed, one can easily observe that

∑
u∈G(M)ℓ

(︃
mF(u)+ k−1

mF(u)−1

)︃
=

r

∑
i=1

⎡⎣ ∑
u∈G(Ii)ℓ− fℓ

(︃
m(u)+ k−1

m(u)−1

)︃⎤⎦ . (6)

As in the case when ideals of a polynomial ring are considered (Aramova et al. 1998,
Lemma 3.6), next characterization of an almost strongly stable submodule of F easily
follows.

Lemma 4.1. Let M be a monomial submodule of F. Assume M = M′+M′′, with M′ =
⊕r

i=1I′i gi, M′′ = ⊕r
i=1I′′i engi and I′i , I′′i ideals of the exterior algebra ˜︁E = K⟨e1, . . . ,en−1⟩

i = 1, . . . ,r. Set ˜︁M′′ =⊕r
i=1I′′i gi. Then the following conditions are equivalent:

(i) M is an almost strongly stable submodule;
(ii) M′, ˜︁M′′ are almost strongly stable submodules, and I′′i (e1, . . . ,en−1)⊂ I′i , for all i.
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A5-8 L. AMATA AND M. CRUPI

Remark 4.2. One can quickly verify that if M is a strongly stable submodule of F, then M
admits a decomposition of the type defined in Lemma 4.1 with M′ strongly stable submodule
of M, too; whereas ˜︁M′′ could not be a strongly stable submodule.

Example 4.3. Let

M = (e1e2,e1e3,e1e4,e2e3)g1 ⊕ (e1e2e3,e1e2e4,e1e3e4,e2e3e4)g2

be a strongly stable submodule of E2, with E = K⟨e1, . . . ,e4⟩. We can write M as follows

M = M′+M′′,

where M′ = (e1e2,e1e3,e2e3)g1 ⊕ (e1e2e3)g2 and M′′ = (e1)e4g1 ⊕ (e1e2,e1e3,e2e3)e4g2.
One can observe that M′ is a strongly stable submodule, whereas ˜︁M′′ = (e1)g1 ⊕

(e1e2,e1e3,e2e3)g2 is an almost strongly stable submodule, which is not strongly stable.

Remark 4.4. One can observe that if I is a strongly stable ideal of the exterior algebra ˜︁E =
K⟨e1, . . . ,en−1⟩, then I is a strongly stable ideal of the exterior algebra E = K⟨e1, . . . ,en⟩;
whereas, one can easily find a monomial ideal I which is lex in the exterior algebra˜︁E = K⟨e1, . . . ,en−1⟩, but not in E.

Following Aramova et al. (1998), the following map can be defined

α : Mond(E)→ Mond(E),

with
- α(eσ ) = eσ , if n /∈ supp(eσ );
- α(eσ ) = (−1)α(σ , j)e jeσ\{n}, if n ∈ supp(eσ ) and j is the largest integer < n which

does not belong to supp(eσ ), α(σ , j) = |{t ∈ σ : t < j}|.
Such a map is order preserving (Aramova et al. 1998), i.e., if eσ ,eτ ∈ Mond(E) and
eσ ≥lex eτ , then α(eσ )≥lex α(eτ). The map α can be extended to Mond(F) as follows:

αF : Mond(F)→ Mond(F), αF(eσ gi) = α(eσ )gi, 1 ≤ i ≤ r.

The map αF is order preserving too.
Let eσ gi,eτ g j ∈ Mond(F) with eσ gi ≥lexF eτ g j. We distinguish two cases: i = j, i ̸= j.
Let i = j. If eσ gi ≥lexF eτ gi, then eσ ≥lex eτ . Since αF(eσ gi) = α(eσ )gi, αF(eτ gi) =

α(eτ)gi and α is order preserving, then αF(eσ gi)≥lexF αF(eτ gi).
Let i ̸= j. If eσ gi ≥lexF eτ g j, then i < j. Hence, αF(eσ gi) = α(eσ )gi ≥lexF α(eτ)g j =

αF(eτ g j).

For a non empty subset M of Mon(F), let us denote by min(M) the smallest monomial
of M with respect to ≤lexF .

Lemma 4.5. Let M = ⊕r
i=1Iigi = M′+M′′ be an almost strongly stable submodule of F,

with M′ =⊕r
i=1I′i gi, M′′ =⊕r

i=1I′′i engi and I′i , I′′i (i = 1, . . . ,r) ideals of ˜︁E = K⟨e1, . . . ,en−1⟩.
Then αF(min(G(M)) = αF(min(G(M′)).

Proof. Since min(G(M′)) ≥lex min(G(M)), then min(G(M′)) = αF(min(G(M′)) ≥lexF

αF(min(G(M)). On the other hand, since M is almost strongly stable, then αF(min(G(M))∈
G(M′) and min(G(M′))≤lexF αF(min(G(M)). □
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Theorem 4.6. Let M and L be monomial submodules of F generated in degree s. Assume
(1) M is an almost strongly stable submodule,
(2) L is a lex submodule, and
(3) dimK Ls ≤ dimK Ms.

Then
mF

≤i(L)≤ mF
≤i(M) (7)

for all i.

Proof. Set ˜︁E = K⟨e1, . . . ,en−1⟩. We proceed by induction on n = dimK E1. By hypotheses,
mF

≤n(L) = dimK Ls ≤ dimK Ms = mF
≤n(M). In order to prove the inequality in (7) for i < n,

we write M and L as follows:

M =⊕r
i=1Iigi = M′+M′′,

with M′ = ⊕r
i=1I′i gi, M′′ = ⊕r

i=1I′′i engi, and I′i , I′′i (i = 1, . . . ,r) ideals of E generated by
monomials in e1, . . . ,en−1, i.e., monomial ideals of ˜︁E, and

L =⊕r
i=1Jigi = L′+L′′,

with L′ =⊕r
i=1J′i gi, L′′ =⊕r

i=1J′′i engi and J′i , J′′i monomial ideals of ˜︁E.
It is clear that M′ is an almost strongly stable submodule and that L′ is a lex submodule.
Hence, if we prove that dimK L′

s ≤ dimK M′
s, from the inductive hypothesis the assertion

will follows.
Set ˜︁M′′ =⊕r

i=1I′′i gi. We can assume that M′ and ˜︁M′′ are lex submodules.
Indeed, let ˜︁M =⊕r

i=1
˜︁Iigi (˜︁L =⊕r

i=1
˜︁Jigi, respectively) be the lex submodules of F gen-

erated by those monomials ugi with u monomial of ˜︁E and such that dimK ˜︁Ms = dimK M′
s

(dimK ˜︁Ls−1 = dimK ˜︁M′′
s−1, respectively).

Let N = ˜︁M + ˜︁L = ⊕r
i=1

˜︁Iigi +⊕r
i=1

˜︁Jigi. We prove that N is an almost strongly stable
submodule.

First of all note that ˜︁Ii, ˜︁Ji are lex ideals and so strongly stable ideals, for all i. On the
other hand, following Aramova et al. (1998, Lemma 3.7, Theorem 3.9), one can verify that˜︁Ji(e1, . . . ,en−1)⊂ ˜︁Ii, for all i. Hence, N is an almost strongly stable submodule.

Now, we are in the following situation:

M =⊕r
i=1I′i gi +⊕r

i=1I′′i engi, L =⊕r
i=1J′i gi +⊕r

i=1J′′i engi

where M is an almost strongly stable submodule and L is a lex submodule, and in addition
M′ =⊕r

i=1I′i gi, ˜︁M′′ =⊕r
i=1I′′i gi are lex submodules. Assuming that dimK Ls ≤ dimK Ms we

want to prove that
dimK L′

s ≤ dimK M′
s. (8)

Thanks to Lemma 4.5 we have

min(G(M′)) = αF(min(G(M))≤lexF min(G(L′)) = αF(min(G(L′)).

Since the submodules L′ and M′ are lex, the inequality (4) holds. Hence, by the inductive
hypothesis, the required inequality (7) follows. □

By using combinatorial arguments one can quickly verify the following lemma.
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Lemma 4.7. Let M be an almost strongly stable submodule of F generated in degree d. If
M⟨d+1⟩ is the submodule of F generated by the elements of Md+1, then

mi(M⟨d+1⟩) = m≤i−1(M)

for all i.

If M is a set of monomials of degree d < n of F , we denote by M{e1, . . . ,en} the
following set of monomials of degree d +1 of F (Crupi and Ferrò 2015; Amata and Crupi
2018b):

M{e1, . . . ,en}= {(−1)α(σ , j)e jeσ gi : eσ gi ∈ M, j /∈ supp(eσ ), j = 1, . . . ,n, i = 1, . . .r},

α(σ , j) = |{r ∈ σ : r < j}|. Such a set is usually called the shadow of M.

Theorem 4.6 and Lemma 4.7 yield the following result.

Theorem 4.8. Let M be a graded submodule of F. Then

βi, j(M)≤ βi, j(Mlex),

for all i, j.

Proof. The proof is quite similar to that given by Amata and Crupi (2018b, Theorem 4).
Due to (2), from Proposition 3.3, we may assume that M is a strongly stable submodule.

From (5) we have:

βi,i+ j(M) = ∑
u∈G(M) j

(︃
mF(u)+ i−1

mF(u)−1

)︃
, (9)

for i ≥ 1.
Since G(M) j = G(M⟨ j⟩)−G(M⟨ j−1⟩){e1, . . . ,en}, the above sum can be written as a

difference βi,i+ j(M) =C−D, with

C = ∑
u∈G(M⟨ j⟩)

(︃
mF(u)+ i−1

mF(u)−1

)︃

=
n

∑
t=1

∑
u∈G(M⟨ j⟩;t)

(︃
t + i−1

t −1

)︃
=

n

∑
t=1

mt(M⟨ j⟩)

(︃
t + i−1

t −1

)︃

=
n

∑
t=1

(m≤t(M⟨ j⟩)−m≤t−1(M⟨ j⟩))

(︃
t + i−1

t −1

)︃
= m≤n(M⟨ j⟩)

(︃
n+ i−1

n−1

)︃
+

n−1

∑
t=1

m≤t(M⟨ j⟩)

[︃(︃
t + i−1

t −1

)︃
−
(︃

t +1+ i−1
t

)︃]︃
= m≤n(M⟨ j⟩)

(︃
n+ i−1

n−1

)︃
−

n−1

∑
t= j

m≤t(M⟨ j⟩)

(︃
t + i−1

t

)︃
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and

D = ∑
u∈G(M⟨ j−1⟩){e1,...,en}

(︃
mF(u)+ i−1

mF(u)−1

)︃

=
n

∑
t=2

m≤t−1(M⟨ j−1⟩)

(︃
t + i−1

t −1

)︃
,

from Lemma 4.7. On the other hand, since the number of generators of M⟨d⟩ and Mlex
⟨d⟩ are

equal for all d, we have m≤n(M⟨d⟩) = m≤n(Mlex
⟨d⟩). Hence, from Theorem 4.6, m≤i(Mlex

⟨d⟩) ≤
m≤i(M⟨d⟩) for 1 ≤ i ≤ n, and consequently:

βi,i+ j(M) = m≤n(M⟨ j⟩)

(︃
n+ i−1

n−1

)︃
−

n−1

∑
t= j

m≤t(M⟨ j⟩)

(︃
t + i−1

t

)︃
−

n

∑
t=2

m≤t−1(M⟨ j−1⟩)

(︃
t + i−1

t −1

)︃
≤

≤ m≤n(Mlex
⟨ j⟩)

(︃
n+ i−1

n−1

)︃
−

n−1

∑
t= j

m≤t(Mlex
⟨ j⟩)

(︃
t + i−1

t

)︃
−

n

∑
t=2

m≤t−1(Mlex
⟨ j−1⟩)

(︃
t + i−1

t −1

)︃
= βi,i+ j(Mlex).

□

5. Graded Bass numbers

In this section we analyze the graded Bass numbers of graded submodules of F . We are
interested in determining upper bounds for such invariants. For the reader’s convenience,
we recall some notions and results provided by Aramova et al. (1997) and Kämpf (2010).
Let M ∈ M and let M∗ be the right (left) E-module HomE(M,E). We quote next a result
from the article by Aramova et al. (1997, Proposition 5.1).

Lemma 5.1. Let M ∈ M . Then

dimK M∗
i = dimK Mn−i, for all i.

Let us consider the dual module HomE(F/M,E), where M is a graded submodule of F .
If rankF = 1 with f1 = 0, i.e., F = E and M = I is a graded ideal of E, then

HomE(E/I,E)≃ 0 : I, (10)

where 0 : I is the annihilator of I, i.e., the set of all elements b ∈ E such that ba = 0, for all
a ∈ I. Moreover, from Lemma 5.1 (see also Aramova et al. 1997, Corollary 5.3):

dimK(E/I)i = dimk(0 : I)n−i for all i. (11)

Remark 5.2. The ideal 0 : I is spanned as K-vector space by all monomials eσ̄ such that
eσ /∈ I, where σ̄ is the complement of σ in the set {1, . . . ,n} (see Aramova et al. 1997,
Proposition 5.7, proof). Furthermore, if I is a lex ideal in E, then 0 : I is a lex ideal in E,
too.
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Note that 0 : I is the exterior version of the Alexander dual of a squarefree monomial
ideal in a polynomial ring.

The next example will be useful for describing our strategy in Theorem 5.4.

Example 5.3. Let E = K⟨e1,e2,e3,e4⟩ and F = E3. Let us consider the lex submodule of
F (Amata and Crupi 2018c; Grayson and Stillman 2018):

L = (e1e2,e1e3,e1e4,e2e3e4)g1 ⊕ (e1e2e3,e1e2e4,e1e3e4,e2e3e4)g2 ⊕ (e1e2e3e4)g3.

Setting I1 =(e1e2,e1e3,e1e4,e2e3e4), I2 =(e1e2e3,e1e2e4,e1e3e4,e2e3e4) and I3 =(e1e2e3e4),
one has

0 : I1 = (e1e2,e1e3,e1e4,e2e3e4),

0 : I2 = (e1e2,e1e3,e1e4,e2e3,e2e4,e3e4),

0 : I3 = (e1,e2,e3,e4).

Even though the annihilators above are lex ideals, the submodule N =⊕r
t=1(0 : It)gt is not

a lex submodule of F (see for instance Proposition 2.7). Indeed, the monomial e2e4 /∈ 0 : I1.
Equivalently, e2e4g1 >lexF e2e4g2, but e2e4g2 ∈ N, whereas e2e4g1 ∈ F \N. Conversely,˜︁N = (0 : I3)g1 ⊕ (0 : I2)g2 ⊕ (0 : I1)g3

is a lex submodule in F . Note that (F/L)∗ ≃ N ≃ ˜︁N as E–graded modules (see (10)) and
HF/N = (3,8,3,0,0) = HF/˜︁N .

Theorem 5.4. Let M be a graded submodule of Er, r ≥ 1. Then

µi, j(Er/M)≤ µi, j(Er/Mlex), for all i, j.

Proof. Set F = Er. The case r = 1 has been proved by Aramova et al. (1997, Corollary
5.8). Assume r > 1.

From Proposition 2.1 and Theorem 4.8, one has

µi, j(F/M) = βi,n− j(HomE(F/M,E))≤ βi,n− j((HomE(F/M,E))lex). (12)

Let us consider the lex submodule Mlex. It is Mlex =⊕r
t=1Jtgt , with each Jt lex ideal in

E and (e1, . . . ,en)
indegJt ⊆ Jt−1, for t = 2, . . . ,r. Moreover, from (10),

µi, j(F/Mlex) = βi,n− j(⊕r
t=1(0 : Jt)gt).

Now, consider the submodule ⊕r
t=1(0 : Jt)gt of F . It is not a lex submodule in general

(see for instance Example 5.3), nevertheless the behavior of the ideals Jt , together with the
fact that deggt = 0 for all t, assures that ⊕r

t=1(0 : Jr−t−1)gt is a lex submodule of F (see
also Remark 5.2).

Moreover, it is clear that ⊕r
t=1(0 : Jt)gt ≃⊕r

t=1(0 : Jr−t−1)gt . Hence

µi, j(F/Mlex) = βi,n− j(⊕r
t=1(0 : Jr−t−1)gt). (13)

Claim. The graded E–modules (HomE(F/M,E))lex and ⊕r
t=1(0 : Jr−t−1)gt have the same

Hilbert function.
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Set P = (HomE(F/M,E))lex and Q = ⊕r
t=1(0 : Jr−t−1)gt . From Lemma 5.1 and (11),

we have

dimK Pi = dimK ((HomE(F/M,E))lex)i = dimK (HomE(F/M,E))i

= dimK(F/M)n−i = dimK(F/Mlex)n−i

=
r

∑
t=1

dimK(0 : Jt)i =
r

∑
t=1

dimK(0 : Jr−t−1)i

= dimK Qi.

The claim follows.
Therefore, since P and Q are lex submodules of F with the same Hilbert function, then

they coincide. Finally, from (12) and (13),

µi, j(F/M)≤ βi,n− j(P) = βi,n− j(Q) = µi, j(F/Mlex),

for all i, j. □

We close this Section discussing the annihilator of a submodule of F . The next proposi-
tion generalizes some results obtained by Aramova et al. (1997, Remark 5.2).

Proposition 5.5. Let M be a graded submodule of F.

(1) If M is a (strongly) stable submodule, then 0 : M is a strongly stable ideal in E.
(2) If M is a lex submodule, then 0 : M is a lex ideal in E.

Proof. (1). Since M =⊕r
i=1Iigi is a monomial submodule of F , then

0 : M = ∩r
i=1(0 : Iigi) = ∩r

i=1(0 : Ii),

and each ideal 0 : Ii is strongly stable (Crupi and Ferrò 2013, Lemma 4.1). The definition of
a strongly stable submodule assures us that the ideal 0 : M is not null and strongly stable.

Similarly, one can verify that (2) holds. □

If I is a graded ideal of E, then 0 : Ilex = (0 : I)lex (Aramova et al. 1997, Proposition 5.7).
The next example shows that such a property does not hold if I is a graded submodule of F .

Example 5.6. Let E = K⟨e1,e2,e3,e4,e5⟩ and F = E2. Consider the following submodules
of F (Amata and Crupi 2018c; Grayson and Stillman 2018):

M = (e1e2,e1e3,e1e4e5,e2e3e4,e2e4e5,e3e4e5)g1 ⊕ (e1e2,e2e3e4)g2,

Mlex =(e1e2,e1e3,e1e4,e2e3e4,e2e3e5,e2e4e5,e3e4e5)g1⊕(e1e2e3,e1e2e4,e1e2e5,e1e3e4e5)g2.

One has

0 : M = (e1e4,e1e2e3,e1e2e5,e1e3e5,e2e3e4,e2e3e5),

(0 : M)lex = (e1e2,e1e3e4,e1e3e5,e1e4e5,e2e3e4,e2e3e5),

0 : Mlex = (e1e2e3,e1e2e4,e1e2e5,e1e3e4,e1e3e5,e1e4e5,e2e3e4).

Hence, 0 : Mlex ̸= (0 : M)lex.
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6. Conclusions and perspectives

In this paper, we have given upper bounds for the graded Bass numbers of E–modules of
the type Er/M, r ≥ 1. It would be nice to verify the inequality in Theorem 5.4 for quotients
of the type F/M, with F = ⊕r

i=1Egi, when the basis elements g1, . . . ,gr have different
degrees. We believe that such a statement should be proved by using a different approach,
as next example illustrates.

Example 6.1. Let E = K⟨e1,e2,e3,e4⟩ and F = ⊕r
i=1Egi with degg1 = degg2 = −2,

degg3 =−1. Let us consider the lex submodule of F

L = (e1e2,e1e3,e1e4,e2e3e4)g1 ⊕ (e1e2e3,e1e2e4,e1e3e4)g2 ⊕ (e1e2e3)g3,

Setting I1 = (e1e2,e1e3,e1e4,e2e3e4), I2 = (e1e2e3,e1e2e4,e1e3e4), I3 = (e1e2e3), one has

0 : I1 = (e1e4,e1e3,e1e2,e2e3e4),

0 : I2 = (e1,e2e3,e2e4,e3e4),

0 : I3 = (e1,e2,e3),

and N =⊕r
t=1(0 : It)gt is not a lex submodule of F . Proceeding as in Example 5.3, let us

consider the module ˜︁N = (0 : I3)g1 ⊕ (0 : I2)g2 ⊕ (0 : I1)g3.

It is not a lex submodule of F (e4 /∈ 0 : I3).
Consider F∗ = HomE(F,E). By using Macaulay2 (Grayson and Stillman 2018), it

is F∗ = ⊕r
i=1E˜︁gi, with deg˜︁g1 = 1, deg˜︁g2 = deg˜︁g3 = 2 and one can quickly verify that

N = (0 : I3)˜︁g1 ⊕ (0 : I2)˜︁g2 ⊕ (0 : I1)˜︁g3 is a lex submodule of F∗. Note that, F ≃ F∗ as
E–modules, but not as graded E–modules. Indeed, HF ̸= HF∗ .

Hence, the arguments given in Theorem 5.4 do not work in the case of quotients of a
free module with basis elements with different degrees.
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