

A note on Pythagorean Triples

Roberto Amato

Department of Engineering University of Messina 98166 Messina, Italy

email: ramato@unime.it

(Received November 17, 2019, Accepted December 9, 2019)

Abstract

Some relations among Pythagorean triples are established. The main tool is a fundamental characterization of the Pythagorean triples through a chatetus which allows to determine relationships with Pythagorean triples having the same chatetus raised to an integer power.

1 Introduction

Let x, y and z be positive integers satisfying

$$x^2 + y^2 = z^2.$$

Such a triple (x, y, z) is called Pythagorean triple and if, in addition, x, y and z are co-prime, it is called primitive Pythagorean triple. First, let us recall a recent novel formula that allows to obtain all Pythagorean triples as follows.

Theorem 1.1. (x, y, z) is a Pythagorean triple if and only if there exists $d \in C(x)$ such that

$$x = x$$
, $y = \frac{x^2}{2d} - \frac{d}{2}$, $z = \frac{x^2}{2d} + \frac{d}{2}$, (1.1)

Key words and phrases: Pythagorean triples, Diophantine equations.

AMS (MOS) Subject Classification: 11D61.

ISSN 1814-0432, 2020, http://ijmcs.future-in-tech.net

with x positive integer, $x \ge 1$, and where

$$C(x) = \begin{cases} D(x), & \text{if } x \text{ is odd,} \\ D(x) \cap P(x), & \text{if } x \text{ is even,} \end{cases}$$

with

$$D(x) = \{d \in \mathbb{N} \mid such \ that \ d \leq x \ and \ d \ divisor \ of \ x^2\},$$

and if x is even with $x = 2^n k$, $n \in \mathbb{N}$ and $k \ge 1$ odd fixed, with

$$P(x) = \left\{ d \in \mathbb{N} \quad \text{such that } d = 2^s l, \text{ with } l \text{ divisor of } x^2 \text{ and } s \in \{1, 2, \dots, n-1\} \right\}.$$

We want to find relations between the primitive Pythagorean triple (x, y, z) generated by any predetermined x positive odd integer using (1.1) and the primitive Pythagorean triple generated by x^m with $m \in \mathbb{N}$ and $m \geq 2$. In this paper we take care of relations only for the case in which the primitive triple (x, y, z) is generated with $d \in C(x)$ only with d = 1 and the primitive triple (x^m, y', z') is generated with $d_m \in C(x^m)$ only with $d_m = 1$ obtaining formulas that give us y' and z' directly from x, y, z. This is the first step to investigate on other relations between Pythagorean triples.

2 Results

The following theorem holds.

Theorem 2.1. Let (x, y, z) be the primitive Pythagorean triple generated by any predetermined positive odd integer $x \ge 1$ using (1.1) with z - y = d = 1 and let (x^m, y', z') be the primitive Pythagorean triple generated by x^m , $m \in \mathbb{N}$, $m \ge 2$, using (1.1) with $z' - y' = d_m = 1$, we have the following formulas

$$y' = y \left[1 + \sum_{p=1}^{m-1} x^{2p} \right],$$

$$z' = y \left[1 + \sum_{p=1}^{m-1} x^{2p} \right] + 1,$$
(2.1)

for every $m \in \mathbb{N}$ and $m \geq 2$.

Moreover we have

$$z\left[(-1)^{m-1} + \sum_{p=1}^{m-1} (-1)^{m-1-p} x^{2p} \right] = \begin{cases} y' & \text{if } m \text{ is even,} \\ z' & \text{if } m \text{ is odd,} \end{cases}$$
 (2.2)

and

$$z\left[(-1)^{m-1} + \sum_{p=1}^{m-1} (-1)^{m-1-p} x^{2p}\right] + (-1)^{m-2} = \begin{cases} z' & \text{if } m \text{ is even,} \\ y' & \text{if } m \text{ is odd.} \end{cases} (2.3)$$

Proof. Let x be a positive odd integer that we consider as x = 2n + 1, $n \in \mathbb{N}$, so that using (1.1) with d = z - y = 1 it gives the primitive Pythagorean triple

$$x = 2n + 1, \quad y = 2n^2 + 2n, \quad z = 2n^2 + 2n + 1,$$
 (2.4)

while considering x^m , $m \in \mathbb{N}$, $m \geq 2$, using (1.1) with $d_m = z' - y' = 1$ it gives the primitive Pythagorean triple

$$x^{m}$$
, $y' = \frac{x^{2m} - 1}{2}$, $z' = \frac{x^{2m} + 1}{2}$. (2.5)

Comparing (2.4) and (2.5) we obtain

$$y' = \frac{(2n+1)^{2m} - 1}{2} = \frac{[(2n+1)^2 - 1]}{2} \left[(2n+1)^{2(m-1)} + (2n+1)^{2(m-2)} + \dots + 1 \right]$$
$$= \frac{(4n^2 + 4n)}{2} \left[1 + \sum_{p=1}^{m-1} (2n+1)^{2p} \right] = (2n^2 + 2n) \left[1 + \sum_{p=1}^{m-1} (2n+1)^{2p} \right] = y \left[1 + \sum_{p=1}^{m-1} x^{2p} \right],$$

which is the first part of (2.1), and because $d_m = z' - y' = 1$ we also obtain

$$z' = y \left[1 + \sum_{p=1}^{m-1} x^{2p} \right] + 1,$$

which is the second of (2.1).

Moreover, if m is odd, using (2.4) and (2.5) we obtain

$$z' = \frac{(2n+1)^{2m}+1}{2} = \frac{[(2n+1)^2+1]}{2} \left[(2n+1)^{2(m-1)} - (2n+1)^{2(m-2)} + \dots - (2n+1)^2 + 1 \right]$$
$$= (2n^2+2n+1) \left[1 + \sum_{p=1}^{m-1} (-1)^{m-1-p} (2n+1)^{2p} \right] = z \left[1 + \sum_{p=1}^{m-1} (-1)^{m-1-p} x^{2p} \right],$$

488 R. Amato

which is the second case of (2.2), and because $d_m = z' - y' = 1$ we obtain also

$$y' = z \left[1 + \sum_{p=1}^{m-1} (-1)^{m-1-p} x^{2p} \right] - 1,$$

which is the second case of (2.3).

Finally, if m is even, we prove that

$$y' = z \left[-1 + \sum_{p=1}^{m-1} (-1)^{m-1-p} x^{2p} \right], \qquad (2.6)$$

which is the first case of (2.2) and because $d_m = z' - y' = 1$ we also obtain

$$z' = z \left[-1 + \sum_{p=1}^{m-1-p} (-1)^{m-1-p} x^{2p} \right] + 1,$$

which is the first case of (2.3).

To do that we use (2.4) and (2.5) to write

$$\frac{(2n+1)^{2m}-1}{2} = (2n^2+2n+1)\left[-1 + \sum_{p=1}^{m-1} (-1)^{m-1-p} (2n+1)^{2p}\right], \quad (2.7)$$

and we prove that (2.7) is an identity. In fact

$$(2n+1)^{2m} - 1 = (4n^2 + 4n + 2) \left[-1 + \sum_{p=1}^{m-1} (-1)^{m-1-p} (2n+1)^{2p} \right],$$

$$(2n+1)^{2m} - 1 = \left[(2n+1)^2 + 1 \right] \left[-1 + \sum_{p=1}^{m-1} (-1)^{m-1-p} (2n+1)^{2p} \right],$$

$$(2n+1)^{2m} = -(2n+1)^2 + \sum_{n=1}^{m-1} (-1)^{m-1-p} (2n+1)^{2(p+1)} + \sum_{n=1}^{m-1} (-1)^{m-1-p} (2n+1)^{2p} ,$$

$$(2n+1)^{2m} = -(2n+1)^2 + \left[(-1)^{m-2}(2n+1)^4 + (-1)^{m-3}(2n+1)^6 + (-1)^{m-4}(2n+1)^8 + \dots - (2n+1)^{2(m-1)} + (2n+1)^{2m} \right]$$

$$+ \left[(-1)^{m-2}(2n+1)^2 + (-1)^{m-3}(2n+1)^4 + (-1)^{m-4}(2n+1)^6 + (-1)^{m-5}(2n+1)^8 + \dots - (2n+1)^{2(m-2)} + (2n+1)^{2(m-1)} \right], \quad (2.8)$$

and, because m is even, after simplifying (2.8) we get

$$(2n-1)^{2m} = (2n-1)^{2m},$$

so we proved that (2.7) is an identity. Therefore, (2.6) holds. Consequently, formulas (2.1), (2.2) and (2.3) have thus been proved.

Obviously, because z - y = d = 1, we can also obtain other relations between (x, y, z) and (x^m, y', z') ; for example, (2.1) is equivalent to

$$y' = z + y \sum_{p=1}^{m-1} x^{2p} - 1$$
,

$$z' = z + y \sum_{p=1}^{m-1} x^{2p}.$$

Similarly, we can obtain other relations from (2.2) and (2.3).

We illustrate formulas (2.1), (2.2) and (2.3) by the following example.

Example 2.1. We give the following table that can be extended for each primitive triples x, y, z, and x^s , y', z' with x - y = 1 and x' - y' = 1. Using (2.1) we obtain

$$\begin{vmatrix} x = 3 \\ x & = \\ y' = 4(1+3^2) = 40 \\ x & = \\ y' = 4(1+3^2+3^4) = 364 \\ x & = \\ y' = 4(1+3^2+3^4+3^6) = 3280 \\ x & = \\ y' = 4(1+3^2+3^4+3^6+3^8) = 29524 \\ x & = \\ y' = 4(1+3^2+3^4+3^6+3^8) = 29524 \\ x & = \\ y' = 4(1+3^2+3^4+3^6+3^8+3^{10}) = \\ x & = \\ 265720 \\ \vdots & \vdots$$

While using (2.2) and (2.3) we obtain

490 R. Amato

References

- [1] R. Amato, A characterization of pythagorean triples, JP Journal of Algebra, Number Theory and Applications, 39, (2017), 221–230
- [2] W. Sierpinski, *Elementary theory of numbers*, PWN-Polish Scientific Publishers, 1988.