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Abstract

Some relations among Pythagorean triples are established. The

main tool is a fundamental characterization of the Pythagorean triples

through a chatetus which allows to determine relationships with Pythagorean

triples having the same chatetus raised to an integer power.

1 Introduction

Let x, y and z be positive integers satisfying

x2 + y2 = z2.

Such a triple (x, y, z) is called Pythagorean triple and if, in addition, x, y
and z are co-prime, it is called primitive Pythagorean triple. First, let us
recall a recent novel formula that allows to obtain all Pythagorean triples as
follows.

Theorem 1.1. (x, y, z) is a Pythagorean triple if and only if there exists

d ∈ C(x) such that

x = x, y =
x2

2d
−

d

2
, z =

x2

2d
+

d

2
, (1.1)
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with x positive integer, x ≥ 1, and where

C(x) =







D(x), if x is odd,

D(x) ∩ P (x), if x is even,

with

D(x) =
{

d ∈ N such that d ≤ x and d divisor of x2
}

,

and if x is even with x = 2nk, n ∈ N and k ≥ 1 odd fixed, with

P (x) =
{

d ∈ N such that d = 2sl, with l divisor of x2 and s ∈ {1, 2, . . . , n− 1}
}

.

We want to find relations between the primitive Pythagorean triple (x, y, z)
generated by any predetermined x positive odd integer using (1.1) and the
primitive Pythagorean triple generated by xm with m ∈ N and m ≥ 2. In
this paper we take care of relations only for the case in which the primitive
triple (x, y, z) is generated with d ∈ C(x) only with d = 1 and the primitive
triple (xm, y′, z′) is generated with dm ∈ C(xm) only with dm = 1 obtaining
formulas that give us y′ and z′ directly from x, y, z. This is the first step to
investigate on other relations between Pythagorean triples.

2 Results

The following theorem holds.

Theorem 2.1. Let (x, y, z) be the primitive Pythagorean triple generated by

any predetermined positive odd integer x ≥ 1 using (1.1) with z − y = d = 1
and let (xm, y′, z′) be the primitive Pythagorean triple generated by xm, m ∈
N, m ≥ 2, using (1.1) with z′ − y′ = dm = 1, we have the following formulas

y′ = y

[

1 +

m−1
∑

p=1

x2p

]

,

(2.1)

z′ = y

[

1 +
m−1
∑

p=1

x2p

]

+ 1 ,

for every m ∈ N and m ≥ 2.
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Moreover we have

z

[

(−1)m−1 +

m−1
∑

p=1

(−1)m−1−px2p

]

=

{

y′ if m is even,

z′ if m is odd,
(2.2)

and

z

[

(−1)m−1 +

m−1
∑

p=1

(−1)m−1−px2p

]

+ (−1)m−2 =

{

z′ if m is even,

y′ if m is odd.
(2.3)

Proof. Let x be a positive odd integer that we consider as x = 2n+1, n ∈ N,
so that using (1.1) with d = z − y = 1 it gives the primitive Pythagorean
triple

x = 2n+ 1, y = 2n2 + 2n, z = 2n2 + 2n+ 1, (2.4)

while considering xm, m ∈ N, m ≥ 2, using (1.1) with dm = z′ − y′ = 1 it
gives the primitive Pythagorean triple

xm, y′ =
x2m − 1

2
, z′ =

x2m + 1

2
. (2.5)

Comparing (2.4) and (2.5) we obtain

y′ =
(2n+ 1)2m − 1

2
=

[(2n+ 1)2 − 1]

2

[

(2n+ 1)2(m−1) + (2n+ 1)2(m−2) + . . .+ 1
]

=
(4n2 + 4n)

2

[

1 +
m−1
∑

p=1

(2n + 1)2p

]

= (2n2 + 2n)

[

1 +
m−1
∑

p=1

(2n+ 1)2p

]

= y

[

1 +
m−1
∑

p=1

x2p

]

,

which is the first part of (2.1), and because dm = z′ − y′ = 1 we also obtain

z′ = y

[

1 +

m−1
∑

p=1

x2p

]

+ 1 ,

which is the second of (2.1).
Moreover, if m is odd, using (2.4) and (2.5) we obtain

z′ =
(2n+ 1)2m + 1

2
=

[(2n+ 1)2 + 1]

2

[

(2n+ 1)2(m−1) − (2n+ 1)2(m−2) + . . .− (2n+ 1)2 + 1
]

= (2n2 + 2n+ 1)

[

1 +
m−1
∑

p=1

(−1)m−1−p(2n+ 1)2p

]

= z

[

1 +
m−1
∑

p=1

(−1)m−1−px2p

]

,
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which is the second case of (2.2), and because dm = z′ − y′ = 1 we obtain
also

y′ = z

[

1 +
m−1
∑

p=1

(−1)m−1−px2p

]

− 1 ,

which is the second case of (2.3).
Finally, if m is even, we prove that

y′ = z

[

−1 +
m−1
∑

p=1

(−1)m−1−px2p

]

, (2.6)

which is the first case of (2.2) and because dm = z′ − y′ = 1 we also obtain

z′ = z

[

−1 +

m−1−p
∑

p=1

(−1)m−1−px2p

]

+ 1 ,

which is the first case of (2.3).
To do that we use (2.4) and (2.5) to write

(2n+ 1)2m − 1

2
= (2n2 + 2n+ 1)

[

−1 +

m−1
∑

p=1

(−1)m−1−p(2n + 1)2p

]

, (2.7)

and we prove that (2.7) is an identity. In fact

(2n+ 1)2m − 1 = (4n2 + 4n+ 2)

[

−1 +
m−1
∑

p=1

(−1)m−1−p(2n+ 1)2p

]

,

(2n+ 1)2m − 1 =
[

(2n+ 1)2 + 1)
]

[

−1 +
m−1
∑

p=1

(−1)m−1−p(2n+ 1)2p

]

,

(2n+1)2m = −(2n+1)2+

m−1
∑

p=1

(−1)m−1−p(2n+1)2(p+1)+

m−1
∑

p=1

(−1)m−1−p(2n+1)2p ,

(2n+ 1)2m = −(2n + 1)2 +
[

(−1)m−2(2n+ 1)4 + (−1)m−3(2n+ 1)6

+(−1)m−4(2n+ 1)8 + . . .− (2n+ 1)2(m−1) + (2n+ 1)2m
]

+
[

(−1)m−2(2n+ 1)2 + (−1)m−3(2n+ 1)4 + (−1)m−4(2n+ 1)6

+(−1)m−5(2n+ 1)8 + . . .− (2n+ 1)2(m−2) + (2n+ 1)2(m−1)
]

, (2.8)
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and, because m is even, after simplifying (2.8) we get

(2n− 1)2m = (2n− 1)2m ,

so we proved that (2.7) is an identity. Therefore, (2.6) holds. Consequently,
formulas (2.1), (2.2) and (2.3) have thus been proved.

Obviously, because z−y = d = 1, we can also obtain other relations between
(x, y, z) and (xm, y′, z′); for example, (2.1) is equivalent to

y′ = z + y

m−1
∑

p=1

x2p − 1 ,

z′ = z + y

m−1
∑

p=1

x2p .

Similarly, we can obtain other relations from (2.2) and (2.3).

We illustrate formulas (2.1), (2.2) and (2.3) by the following example.

Example 2.1. We give the following table that can be extended for each
primitive triples x, y, z, and xs, y′, z′ with x− y = 1 and x′ − y′ = 1.

Using (2.1) we obtain

x = 3 y = 4 z = 5
x =
32

y′ = 4(1 + 32) = 40 z′ = 41

x =
33

y′ = 4(1 + 32 + 34) = 364 z′ = 365

x =
34

y′ = 4(1 + 32 + 34 + 36) = 3280 z′ = 3281

x =
35

y′ = 4(1 + 32 + 34 + 36 + 38) = 29524 z′ = 29525

x =
36

y′ = 4(1 + 32 + 34 + 36 + 38 + 310) =
265720

z′ =
265721

...
...

...

While using (2.2) and (2.3) we obtain
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x = 3 y = 4 z = 5
x =
32

y′ = 5(−1 + 32) = 40 z′ = 41

x =
33

z′ = 5(1− 32 + 34) = 365 y′ = 364

x =
34

y′ = 5(−1 + 32 − 34 + 36) = 3280 z′ = 3281

x =
35

z′ = 5(1− 32 + 34 − 36 + 38) = 29525 y′ = 29524

x =
36

y′ = 5(−1 + 32 − 34 + 36 − 38 + 310) =
265720

z′ =
265721

...
...

...
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