SUPPORTING INFORMATION

Electrocatalytic reduction of CO₂ over dendritic-type Cu- and Febased electrodes prepared by electrodeposition

Bhanu Chandra Marepally, Claudio Ampelli*, Chiara Genovese, Francesco Tavella, Elsje Alessandra Quadrelli, Siglinda Perathoner*, Gabriele Centi

S1. Weight, Porosity and Effective Area

Cu-CF₂

For the electrocatalysts forming leafy dendrite-like structures (as observed in the SEM view of **Figure S1**), the actual weight measured by peeling the electrode from the metal base was about 25-30 mg, indicating 50 % porosity of the electrode. The electrode surface area per geometrical electrode area (1 cm^2) is 19 cm².

Figure S1: SEM image of Cu-CF₂ and schematic depiction of the porous structure.

Figure S2 shows a SEM image of Cu-GDL_{0.5}. A schematic depiction of the truncated conical hollow structures, evidencing many intra-porous structures in the nanofoam, has also been reported. The NFs have about 84 % porosity and a surface area of about 38 cm² (per 1 cm² geometrical area).

Figure S2: SEM Image of Cu-GDL_{0.5} and schematic depiction of the porous structure.

S2. Electrocatalytic device for CO₂ reduction.

Scheme S1: Scheme of the experimental apparatus for the CO₂ electro-reduction.

S3. SEM characterization

Figure S3 shows: a) Fe-AG₂ and b) Fe-GDL_{0.5}. These samples are highly dense, evidencing very small hollow structures of 50-100 nm.

Figure S3: SEM images of a) Fe-AG₂ and b) Fe-GDL_{0.5}.

Figure S4a shows SEM image of Fe(II)-Ti, which evidence a very dense and thick dendrite structure, confirming that the Fe NFs become thicker and less porous by increasing time of electro-deposition.

Figure S4b shows SEM image of Fe(III)-Ti, which evidence a holey structure.

Figure S4: SEM images of a) Fe(II)-Ti and b) Fe(III)-Ti, both 30 s electrodeposition.

However, for longer electrodeposition time (t = 90 s), a more open and clear holey structure can be observed for Fe(III)-Ti (see **Figure S5**).

Figure S5: SEM image of Fe(III)-Ti (90 s electrodeposition time).

S4. EDX Analysis

Figure S6: EDX of different Cu- and Fe-based electrodes.

Figure S7: a) XPS wide scan survey of Cu-CF and b) high-resolution spectra of the Cu 2p doublets. The C-1s binding energy of adventitious carbon (284.9) was used as the reference.

S6. Electrocatalytic tests

Table S1: Production rates of Cu and Fe electrocatalysts in the CO_2 electro-catalytic reduction atthe applied potential of -1.5 V (vs. Ag/AgCl).

		PRODUCTS (µmol·h ⁻¹)								
CATALYSTS	Formic Acid	Acetic Acid	Methanol	Acetone	Iso- Propanol	Ethanol	CH4	СО	H_2	C-Products (NET)
Bare Substrate		,		,						
Cu Foil	12.5	0.06	0.37	0.01	0.01	0.02	2.07	2.80	264.5	17.8
Fe-Cr-Ni Foil	0.12	0.00	-	-	-	-	-	-	22.8	0.12
Al Foil	0.58	0.00	-	-	-	-	-	-	89.3	0.58
Fe Foil	0.16	0.00	-	-	-	-	-	-	57.2	0.16
With Cu or Fe										
electrodeposited										
Cu-CF ₁	1.96	0.07	-	-	-	-	-	-	97.8	2.03
Cu-CF ₂	7.87	0.28	0.03	-	0.06	0.05	2.24	11.5	1069.6	22.0
Cu-CF ₄	6.16	0.14	0.03	-	-	0.02	-	-	340.9	6.35
Cu-FCN	23.6	0.26	0.84	0.01	-	0.01	-	19.9	777.9	44.6
Cu-AG	11.0	6.43	0.29	0.01	-	0.01	-	3.30	226.6	21.1
Cu-FF	0.16	0.42	0.37	-	-	-	2.25	2.13	61.6	5.33
Fe-FCN	5.31	0.63	0.62	-	0.01	0.02	-	-	1538.0	6.59
Fe-AG	0.36	0.82	0.07	-	-	-	-	-	480.3	1.25

Figure S8: Productivity to formic acid, acetic acid, CO and H₂ for Cu-FCN.