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WEAK DISCONTINUITY WAVES IN N-TYPE SEMICONDUCTORS
WITH DEFECTS OF DISLOCATION

MARIA PAOLA MAZZEO a AND LILIANA RESTUCCIA a ∗

ABSTRACT. In this paper a Boillat’s methodology is applied to investigate discontinuity
waves of a system of quasi-linear hyperbolic partial differential equations (PDEs), describ-
ing the interactions between the electronic and dislocation fields in extrinsic semiconductors
with defects of dislocation. The thermodynamic model for the semiconductors under
consideration was deduced in previous papers, in the frame of extended irreversible thermo-
dynamics with internal variables, but here it is assumed that these semiconductors are not
polarized. The solutions of the PDEs system considered are looked for in an approximate
form, presenting a jump in the first order derivatives crossing the associated wave fronts.
In particular, in the one-dimensional case, we study the propagation of one solution into a
uniform unperturbed state, deriving the expression of the velocity along the characteristic
rays, the associated wave front equation in the first approximation and Bernoulli’s equation
governing the propagation of the discontinuity amplitude.

1. Introduction

The theoretical interest in nonlinear waves was manifest as early as the years ’50 and ’60
of the last century and a lot of applications to various branches of physics were worked out
(Lax 1954; Jeffrey 1963a,b; Jeffrey and Taniuti 1964; Boillat 1965; Choquet-Bruhat 1968;
Boillat 1976; Jeffrey 1976; Boillat and Ruggeri 1979; Restuccia 1979; Donato 1980; Hunter
and Keller 1983; Lax 1983; Donato and Greco 1986; Famà and Restuccia 2019). In Jeffrey
(1976), the solution hypersurfaces of systems of PDEs are referred to as waves because
they may be interpreted as representing propagating wavefronts. When physical problems
are associated with such interpretation the solution on the side of the wavefront towards
which propagation takes place may then regarded as being the undisturbed solution ahead
of the wavefront, whilst the solution on the other side may be regarded as a propagating
disturbance wave which is entering a region occupied by the undisturbed solution. Some
of the solutions present various types of discontinuities, some others not. In the first case,
the solution or/and its derivatives undergo a jump crossing the associated wave front. In
this case it is said that the solution presents a shock, or it is a shock wave or that we
are in presence of a discontinuity wave (jump of the first order derivatives)(see Jeffrey
and Taniuti 1964; Boillat 1965; Jeffrey 1976; Boillat and Ruggeri 1979). In the second
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case, instead of the jump we have smooth solutions of the non linear PDEs, that present a
steep variation in the normal direction to the associated wavefront and these solutions are
called asymptotic waves (see Choquet-Bruhat 1968; Boillat 1976; Ciancio and Restuccia
1985a,b; Donato and Greco 1986; Ciancio and Restuccia 1987; Georgescu and Restuccia
2006; Restuccia and Georgescu 2008; Georgescu and Restuccia 2010, 2011; Mazzeo and
Restuccia 2011a; Georgescu and Restuccia 2017; Restuccia 2018). Both these types of
solutions are called nonlinear waves because they satisfy nonlinear PDEs and they are
investigated because the closed-form solutions of nonlinear PDEs are rare. These solutions
are looked for in approximated form, where a new variable is present related to the surface
across which the solutions or/and some of their derivatives undergo a jump. In this paper
the propagation of weak discontinuities in an elastic and isotropic n-type semiconductor
with defects of dislocation is studied, taking into account a thermodynamic model (see
Restuccia and Maruszewski 1995, and also Mazzeo and Restuccia 2009, Mazzeo and
Restuccia 2011a and Restuccia 2019) developed in the frame of the extended irreversible
thermodynamics with internal variables (Prigogine 1961; De Groot and Mazur 1962; Lax
1983; Kluitenberg 1984; Muschik 1993; Lebon et al. 2008; Jou and Restuccia 2011;
Maugin 2015; Berezovski and Ván 2017), but here it is assumed that the semiconductor
is not polarized. The system of non-linear PDEs that we consider is confined only to the
electronic and dislocation fields (see Mazzeo and Restuccia 2011a). In Section 2 extrinsic
semiconductors of n and p type without polarization are considered and a dislocation
tensor is introduced, that describes the dislocation lines as a network of infinitesimally
thin channels. In Section 3 the fundamental equations governing the behaviour of these
media are presented. In Sections 4 and 5 the model, confined only to the electronic
and dislocation fields, is illustrated as a non-linear PDEs system, and the methodology
established by Boillat (1965) for weak discontinuity waves of quasi-linear and hyperbolic
systems of the first order is illustrated. In Section 6 in a one-dimensional case, we study the
propagation of a solution into an uniform unperturbed state and we obtain the velocity along
the characteristic rays, the associated wave front in the first approximation and Bernoulli’s
equation governing the evolution equation of the amplitude of the weak discontinuity. The
models for extrinsic semiconductors defective by dislocations and their solutions may have
relevance in many fundamental technological sectors: in applied computer science, in the
technology for integrated circuits VLSI (Very Large Scale Integration), in the realization
of thin dielectric films in order to construct ”fixed memories”, in electronic microscopy, in
nanotechnology and in other fields of applied sciences. Furthermore, dislocations reduce
electrical conductivity in some range of dislocation densities (106cm−2 −1010cm−2). This
makes that "dislocation engineering" is becoming increasingly useful in the optimization of
semiconductor devices.

2. Extrinsic semiconductors with defects of dislocation

Semiconductor crystals, as germanium and silicon, are tetravalent elements with electrical
conductivity in between that of a conductor and that of an insulator (Kireev 1975; Kittel
2005). They have a behavior of an insulator at a temperature of 0◦K, but at room temperature,
300◦K, electrons of the crystal can gain enough thermal energy to jump to the conduction
band, creating holes (positive charges not neutralized) in their covalent bonds. To modify
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the electrical properties of intrinsic semiconductors, impurity atoms adding one electron
or one hole are introduced inside semiconductor crystals, using different techniques of
"doping". In this last case the semiconductors are called extrinsic semiconductors. By
dopant pentavalent impurities, as antimony, a n-type extrinsic semiconductor is obtained,
having more free electrons that may flow. Using dopant tetravalent impurities, as indium, a
p-type extrinsic semiconductor crystal is obtained, having more holes that may flow freely.
Furthermore, the defects acquired during the process of fabrication can cause a premature
fracture because they can self propagate because of surrounding changed conditions. In
this paper we will consider extrinsic semiconductors with defects of dislocation, whose
structure resembles a network of infinitesimally thin pores or capillary tubes and disturbs
the interatomic distances inside the crystal (see Nabarro 1967; Mataré 1971).

In Mazzeo and Restuccia (2011a) to describe the dislocation lines the authors used
a dislocation core tensor à la Maruszewski (1991) as internal variable. Here, we use a
dislocation tensor that describes the local structure of these dislocation defects, introduced
by Jou and Restuccia (2018b) (see also Jou and Restuccia 2018a). The trace of this tensor
is the dislocation density ρD (total length of dislocation lines per unit volume, which has
units of (length)−2), which is the simplest variable in the description of dislocations. The
dislocation lines have their intrinsic orientation, which means, among other things, that
two dislocations of opposite signs annihilate when lines critically approach to each other.
Thus, let us consider a representative elementary volume of a semiconductor where the
dislocations resemble a network of infinitesimally thin channels, large enough to provide a
representation of all the statistical properties of this volume. All the microscopic quantities
are described with respect to the coordinates ξi (i = 1,2,3), describing the position along a
given dislocation line, while the macroscopic quantities are described with respect to the xi
coordinates (i=1,2,3).

Thus, the dislocation lines density, ρD, is given by the average length of dislocation
lines per unit volume ρD = 1

Ω

∫︁
dl, where dl is the elementary lenght element along the

dislocation lines and the integration is carried out over the position ξξξ along the corresponding
dislocation line, and over all dislocation lines present in a elementary local volume Ω at x.

The dislocation field is described by the microscopic tensor

a(ξ )≡ n(ξ )⊗n(ξ ), (1)

where n(ξ ) is the tangent unit vector along the dislocation line at position ξ and the
integration runs along all dislocation lines which are in the chosen integration volume Ω

at x. We define the macroscopic dislocation tensor a(x) as the local average of a(ξ ) in the
following way

ai j(x) = ⟨a(ξ )⟩= 1
Ω

∫︂
Ω

ni(ξ )n j(ξ )dl, (2)

where ⟨...⟩ represents the average calculated on the ensemble of vortex lines inside the
elementary volume Ω, and the integration runs along all dislocation lines inside Ω at x. ai j

is called dislocation tensor, models the anisotropy of the dislocation lines and has unit m−2,
because it is related to dl

Ω
namely, length/(length)3 =length−2. Also in Jou and Restuccia

(2018b) a macroscopic variable was introduced, the polarity vector ai(x), defining the
direction and the orientation of dislocation lines by means the average of the microscopic
tangent vectors n(ξ ) along the dislocation lines inside the elementary volume Ω, and, then,
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the integration is carried out over the position ξ along the corresponding dislocation line,
and over all dislocation lines present in the elementary volume Ω at x, ai(x) = 1

ΩL
∫︁

ni(ξ )dl.

3. Foundamental equations

In this Section we present a model for an isotropic, elastic semiconductor of n and
p type with defects of dislocation, deduced in Restuccia and Maruszewski (1995) (see
also Mazzeo and Restuccia 2011a,b), in the framework of extended thermodynamics with
internal variables (Prigogine 1961; De Groot and Mazur 1962; Lax 1983; Kluitenberg 1984;
Muschik 1993; Lebon et al. 2008; Jou and Restuccia 2011; Berezovski and Ván 2017),
where it was assumed that the following fields interact with each other: the elastic field
described by the nonsymmetric stress tensor τi j and the small-strain tensor εi j; the thermal
field described by the temperature T , its gradient and the heat flux qi; the electromagnetic
field described by the electric field Ei referred to as an element of matter at time t (in the
comoving frame) and the magnetic induction Bi; the charge carrier field described by the
density of electrons n, its gradient and its flux jn

i , the hole field p, its gradient and its flux
jp
i ; the dislocation field described by the dislocation density tensor ai j, the internal variable

describing the defects, its gradient ai j,k and its dislocation flux Vi jk.
The set of the independent variables is therefore

C =
{︁
Ei,Bi, |εi j,n, p,T,ai j, |n,i, p,i,T,i,ai j,k, | jn

i , jp
i ,qi,Vi jk

}︁
. (3)

The fluxes jn
i , jp

i ,qi and Vi jk are considered as independent variables to take into account
the relaxation properties of the fields n, p,T and ai j. The gradients of these fields take into
consideration non-local effects. In Restuccia and Maruszewski (1995) (see also Mazzeo
and Restuccia 2011a,b) the thermodynamic model was formulated for a polarized semicon-
ductor, but, here, we will assume that the dielectric properties of the semiconductor may be
disregarded (see also Restuccia 2019), so that the polarization of the body is null, and it was
assumed that the physical processes occurring in the above-defined situation are governed
by the following fundamental laws:
Maxwell’s equations describing the electromagnetic field, which, in the Galilean approxi-
mation, have the form

εi jkEk, j +
∂Bi

∂ t
= 0, Di,i −ρZ = 0, (4)

εi jkHk, j − jZ
i −

∂Di

∂ t
= 0, Bi,i = 0, (5)

with

Hi =
1
µ0

Bi, Ei =
1
ε0

Di, (6)

being ε0 and µ0 the permittivity and permeability of vacuum, respectively, and E, B, D
and H denote the electric field, the magnetic induction, the electric displacement and the
magnetic field per unit volume, respectively. The concentration of the total charge Z and
the density of the total electric current jZ are defined as follows

Z = n+ p, (7)
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jZ
i = ρZvi + jn

i + jp
i , (8)

where ρ denotes the mass density, n (n < 0) is the concentration of the negative electric
charge density (coming from the density of the free electrons given by doping the semicon-
ductor by pentavalent impurities and the density of the intrinsic semiconductor base free
electrons ), p (p > 0) is the concentration of total positive electric charge (coming from the
concentration of the holes produced by doping the semiconductor by trivalent impurities
and the concentration of the intrinsic semiconductor base holes), jZ is the density of the
total electric current, vi is the velocity of the body. The sum of jn

i and jp
i gives the the

conduction electric current, whereas ρZvi is the electric current due to convection.
The charge conservation laws are

ρ ṅ+ jn
i,i = gn, ρ ṗ+ jp

i,i = gp, gn +gp = 0, (9)

where the dot over a quantity indicates the material time derivative, gn and gp are source
terms of charge carriers, and Eq. (9)3 describes the recombination of electrons and holes.

The continuity equation is given by

ρ̇ +ρvi,i = 0, (10)

(in the following we assume that ρ is constant) ;
the momentum balance has the form

ρ v̇i = τ ji, j +ρZEi + εi jk

(︂
jn

j + jp
j

)︂
Bk + fi, (11)

where on the right-hand side εi jk is the Levi-Civita pseudo-tensor and the terms describe,
respectively, the elastic force, the electric force, the magnetic force and the external body
force;
and the energy balance is

ρU̇ =−qi,i + τ ji
dεi j

dt
+
(︂

jn
j + jp

j

)︂
E j +ρr, (12)

where U is the internal energy density, εi j = 1/2(ui, j +u j,i) is the small strain tensor, with
u the displacement field, and on the right-hand side the terms correspond, respectively, to
the heat exchange, the mechanical work, the electric work and the heat source.

The last group of laws concerns the transport equations, which in our case are expressed
as the rate equations for charges flux, heat flux, defects field and defects flux. In the following
the hole field p and its flux jp will be disregarded. These laws are chosen in the form

∗
j
n

i = Jn
i (C),

∗
qi= Qi(C),

∗
ai j=−Vi jk,k +Ai j(C),

∗
V i jk=Vi jk(C), (13)

where C refers to the whole set of variables given in (3), excluding the hole field and its flux,
and the superimposed asterisk indicates the Zaremba-Jaumann derivative (see Truesdell and

Toupin 1960; Hermann et al. 2004), i.e.
∗
j
n

i = j̇n
i −Ωik jn

k ,
∗
qi= q̇i −Ωikqk,

∗
ai j= ȧi j−Ωikak j−Ω jkaik,

∗
V i jk= V̇ i jk−ΩilVl jk−Ω jlVilk−ΩklVi jl , with Ωi j =

1
2 (vi, j−

v j,i) the antisymmetric part of the velocity gradient vi, j and vi the velocity field of body.
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Furthermore, in (13) Jn
i (C), Qi(C), Ai j(C) and Vi jk(C) are the sources of the fluxes of

carriers, heat, defects and defects flux. The fluxes of electrons, heat and defects fluxes are
not taken into consideration, because we have to obtain a balanced system of equations,
where the number of equations is equal to the number of variables.

All the admissible solutions of the proposed evolution equations should be restricted by
the following entropy inequality:

ρ Ṡ+ JS
k,k −

ρr
θ

≥ 0, (14)

where S denotes the entropy per unit mass and JS is the entropy flux associated with the
fields of the set C. In Restuccia and Maruszewski (1995) (see also Mazzeo and Restuccia
2009, 2011a; Restuccia 2019) the entropy inequality was analyzed by Liu’s theorem (see
(Liu 1972)), where all balance and evolution equations of the problem are considered as
mathematical constraints for its physical validity, and, using the obtained results, by the
help of Smith’s theorem (Smith 1971), the constitutive theory was obtained. Here, the
constitutive functions (dependent variables) τi j, U, gn, Jn

i , Qi, Ai j, Vi jk, S, φi, µn, πi j ,
with µn the electrochemical potential for the electrons and πi j a similar potential for the
defects field, are expressed in terms of isotropic polynomial representations of suitable
functions satisfying the objectivity and material frame indifference principles (see Truesdell
and Toupin 1960; Muschik and Restuccia 2002; Hermann et al. 2004).

Assuming for the dislocation field, its flux and their sources the form

ai j = aδi j, Ai j = Aδi j, Vi jk = Vkδi j, Vi jk =Vkδi j, (15)

we derive, in a first approximation, the rate equations in the following form
∗
j
n

k= δ
1
n Ek +δ

2
n a,k +δ

3
n n,k +δ

4
n θ,k +δ

5
n Vk +δ

6
n jn

k +δ
7
n qk, (16)

∗
qk= δ

1
q Ek +δ

2
q a,k +δ

3
q n,k +δ

4
q T,k +δ

5
q Vk +δ

6
q jn

k +δ
7
q qk, (17)

∗
V k= δ

1
υEk +δ

2
υ a,k +δ

3
υ n,k +δ

4
υ θ,k +δ

5
υVk +δ

6
υ jn

k +δ
7
υ qk, (18)

where δ
η
n , δ

η
q , δ

η

υ (η = 1,2, ...,7) can depend on suitable invariants built on appropriate
variables of the set C (see Eq. (3), excluding the hole field and its flux),

∗
a +Vk,k = δ

1
a n+δ

2
a a+δ

3
a θ +δ

4
a εkk. (19)

Also, we work out gn (see Eq. (9)1) as objective function, having, in a first approximation,
the following expression

gn = β
1
gnn+β

2
gn p+β

2
gna+β

3
gnθ +β

4
gnεkk. (20)

In (19) and (20) δ ε
a and β ε

gn (ε = 1,2,3,4) can depend on suitable invariants built on
appropriate variables of the set C (excluding the hole field and its flux). The laws (16)-(19)
are very general, but it is possible to treat special problems describing the physical reality in
several situations by some simplifications. These rate equations allow finite speeds for the
disturbances and describe fast phenomena, whose relaxation time is comparable or higher
than the relaxation time of the media under consideration. The equations (19) and (18) for
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the defects density and its flux are new, but the equation (16) is the generalized Ohm’s law
and equation (17) is the generalized Vernotte-Cattaneo relation.

4. Equation governing the evolution of electronic and dislocation coupling fields

In this Section we apply the results obtained to a problem of propagation of electronic-
dislocation discontinuity waves in a n-type Ge, supposed at rest. Then, confining ourselves
only to the electronic and dislocation fields and their fluxes, and assuming that the values of
concentration of electrons n and the dislocation density a are low, i.e. the semiconductor
is not degenerated and the influence of dislocations on the conductivity is relatively small
Nabarro 1967), we can assume the equations governing the evolution of the electronic
and dislocation fields and their fluxes (see (9), (20), (16), (19) and (18)) having the form
(Mazzeo and Restuccia 2011a):⎧⎪⎪⎨⎪⎪⎩

ρ ṅ+ jn
k,k =

ρn
τ+

−κa,
τn j̇n

k −αna,k +ρDnn,k =− jn
k ,

ȧ+Vk,k = 0
τaV̇ k +Daa,k −αυ n,k =−Vk.

(21)

where, here, the superimposed dot denotes partial time derivative, the mass density ρ is
constant, the interaction between the electronic and dislocation fluxes is disregarded and
αn = αn(a), αυ = αυ(n) are coupling functions. Furthermore, τ+ denotes the life time of
electrons, τn is the relaxation time of electrons, Dn and Da are the diffusion coefficients
of electrons and dislocations, respectively, τa denotes the relaxation time of dislocations
and k is the recombination constant due to dislocations. Moreover, we assume that τ+ = τn

(see Kireev 1975). In Restuccia and Maruszewski 1995 the system (21) was considered in
linear form with αn and αυ constant and the dispersion relation of the electronic-dislocation
harmonic waves was studied, estimating the coefficients present in the system (21) following
Nabarro (1967) and Mataré (1971) (see Table 1).

Coefficient Measure unit Value Name
ρ Kgm−3 5.3×103 mass density

Dn m2s−1 10−2 electron diffusion coefficient
Da m2s−1 2.43×10−2 dislocation diffusion coefficient
τn s < 10−5 electron relaxation time
τa s 0.3×10−8 dislocation relaxation time
αn Cms−1 < 1.8 cross-effects function
αv Kg C−1s−1 < 70 cross-effects function
κ Cm−1s−1 < 1.9×10−4 recombination constant
cn ms−1 103

√︁
Dn/τn

ca ms−1 2846
√︁

Da/τa

TABLE 1. The estimated coefficients, after Restuccia and Maruszewski (1995).
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It is easy to see how the above mentioned system of equations takes the following matrix
form:

Aα(U)Uα = B(U) (α = 0,1,2,3). (22)

where x0 = t (time), x1,x2,x3 are the space coordinates, Uα = ∂U
∂xα , U is the vector of the

unknown function (which depends on xα )

U = (n, jn
1, jn

2, jn
3,a,V1,V2,V3)

T , (23)

B =
(︂

ρn
τn −κa,− jn

1,− jn
2,− jn

3,0,−V1,−V2,−V3

)︂T
, (24)

A0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ 0 0 0 0 0 0 0
0 τn 0 0 0 0 0 0
0 0 τn 0 0 0 0 0
0 0 0 τn 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 τa 0 0
0 0 0 0 0 0 τa 0
0 0 0 0 0 0 0 τa

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(25)

and Ai (i = 1,2,3) are the following square matrices 8×8

A1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0
ρDn 0 0 0 −αn 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0

−αv 0 0 0 Da 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (26)

A2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0

ρDn 0 0 0 −αn 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0

−αv 0 0 0 Da 0 0 0
0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (27)

A3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

ρDn 0 0 0 −αn 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

−αv 0 0 0 Da 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (28)
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In (23) and (24) the symbol (...)T means that U and B are column vectors. Equations
(22) are semilinear (the highest order derivatives Ut and Uα occur linearly) and, since
Aα = Aα(U), the PDEs system (22) is a quasi-linear system. We suppose that the system
admits a known solution in the uniform unperturbed state U0, that satisfies the following
condition

Aα(U0)U0
α = B(U0) (α = 0,1,2,3). (29)

Moreover, we admit that the system (22) describes a perturbation propagating into a
state characterized by the vector U0 and ϕ(xα) = 0 is the surface, called wavefront, that
separates the region perturbed, ϕ(xα) = 0+, from the unperturbed, ϕ(xα) = 0−, and moves
in the Euclidean space E3+1 (when the time flows).

Remind that the wavefront ϕ(xα) = 0 is still an unknown function. In order to determine
it, we recall that along the wavefront we have dϕ

dt = 0, implying

∂ϕ

∂ t
+v ·gradϕ = 0,

or, equivalently,
∂ϕ

∂ t
|gradϕ|

+v · gradϕ

|gradϕ|
= 0.

with (grad)i =
∂

∂xi

Obviously,
gradϕ

|gradϕ|
= n, (30)

such that the previous equality reads
∂ϕ

∂ t
|gradϕ|

+v ·n = 0. (31)

Introduce the notation

λ =−
∂ϕ

∂ t
|gradϕ|

, (32)

so that
λ (U,n) = v ·n, (33)

where λ is called the velocity normal to the progressive wave, being n = (n1,n2,n3) the
unit vector normal to the wave front.

We suppose that the function U(xα) is piecewise continuous and presents a discontinuity
across the surface ϕ(xα) = 0, i.e. the first derivatives of U present a jump across the front
wave ϕ(xα) = 0 (the first derivatives are continue in the one and the other part of the wave
front but they tend to two different limits).

Introducing the function ϕ = ϕ(xα) as new variable, continuous together with its first
and second derivatives, we have

Uα = Uϕ ϕα , (34)

where Uϕ = ∂U
∂ϕ

and ϕα = ∂ϕ

∂xα .
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A8-10 M. P. MAZZEO AND L. RESTUCCIA

Moreover, we introduce the symbol denoting the jump

[ ] = lim
ϕ→0+

( )− lim
ϕ→0−

( ), (35)

given by the difference between the value of a quantity assumed in the perturbed state
and that one assumed in the unperturbed state, calculated on the surface ϕ(xα) = 0. Then,
denoting by Π the jump of the normal derivative Uϕ , we have

[U] = 0, Π =
[︁
Uϕ

]︁
= lim

ϕ→0+
(Uϕ)− lim

ϕ→0−
(Uϕ). (36)

From Eq.s (22), (29) and (34) we obtain the following relations:

Aα(U)ϕα Uϕ = B(U), and Aα(U0)U0
ϕ ϕα = B(U0). (37)

Subtracting Eq. (37)2 from Eq. (37)1 and by computing on the surface ϕ(xα) = 0, where
U = U0 and Aα(U0) = (Aα)0(U0), we get

(Aα)0ϕα

[︁
Uϕ

]︁
= 0, i.e. (Aα)0ϕα Π = 0 (38)

where the symbol "( )0" indicates that the quantities are calculated in U0, (Aα)0ϕα rep-
resents a 8x8 matrix and Eq. (38)2 is a homogeneous system in the 8 components of
Π.

Introducing the quantities λ and n, defined in Eq.s (30) and (32), the system (38)2 takes
the form (︁

Aini −λA0)︁
Π = 0. (39)

In order to have a solution different from the zero solution, we have to impose

Det∥An −λA0∥= 0, (40)

with An = Aini. Eq. (39) shows that Π can be taken as equal to the right-eigenvector r of
An, corresponding to some eigenvalue λ . It follows that Π has the form

Π = πr. (41)

Then, in order to determine Π we have to determine the function π = π(xα). Since A0 is a
non-singular matrix, the system (22) can be written in the form

Ut +(A0)−1AiUi = (A0)−1B(U) (i = 1,2,3), (42)

where

(A0)−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
ρ

0 0 0 0 0 0 0
0 1

τn 0 0 0 0 0 0
0 0 1

τn 0 0 0 0 0
0 0 0 1

τn 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1

τa 0 0
0 0 0 0 0 0 1

τa 0
0 0 0 0 0 0 0 1

τa

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(43)

is the inverse matrix of A0.
In the following we continue to call Ai the matrices (A0)−1Ai, and B the vector (A0)−1B.

Then, the system assumes the following form

Ut +AiUi = B(U) (i = 1,2,3), (44)
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with

Ut =
∂U
∂ t

, Ui =
∂U
∂xi (i = 1,2,3). (45)

From eq. (40) we have the following eigenvalues problem

Det∥An −λ I∥= 0, (46)

with An = Aini (i = 1,2,3).

5. First approximation of wave front

In this section we show how the wave front ϕ(t,x1,x2,x3) = 0 can be determined.
Following the general theory (see Boillat 1976) we introduce the quantity

Ψ(U,Φα) = ϕt + |gradϕ|λ (U,n), (47)

with Φα = ϕα = ∂ϕ

∂xα (α = 0,1,2,3), that, by virtue of the relations (30) and (32), becomes
zero on the wavefront having velocity λ = λ 0, i.e.

Ψ(U0,Φα) = ϕt + |gradϕ|λ 0(U0,n0) = Ψ
0 = 0. (48)

To solve the above partial differential equation the characteristic rays are introduced, called
characteristic curves of the system (22), given by the following differential equations

dxα

dσ
=

∂Ψ0

∂Φα

(α = 0,1,2,3), (49)

dΦα

dσ
=−∂Ψ0

∂xα
(α = 0,1,2,3), (50)

where σ is the time along the characteristic rays.
From Eq. (50), considering the propagation in a uniform state U0, we have ∂Ψ0

∂xα = 0
and, then, Φα are constants along the characteristic rays.

Furthermore, Eq. (49) gives the components of a speed, called radial velocity Λ and
defined by

Λi(U,n)≡ dxi

dσ
=

∂Ψ

∂ϕi
= λni +

∂λ

∂ni
−
(︃

n · ∂λ

∂n

)︃
ni (i = 1,2,3). (51)

From Eq. (51) we have
Λini = λ . (52)

i.e. the velocity of propagation of the wavefront λ is the component of radial velocity Λ

along the normal to the wavefront. By integration of Eq. (49) we obtain

x0 = t = σ , (53)

xi = (xi)0 +Λ
0
i (U

0,n0)t (i = 1,2,3), (54)

with
(xi)0 = (xi)t=0 (i = 1,2,3). (55)
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If we denote by ϕ0 the given initial surface, we have (ϕ)t=0 = ϕ0((xi)0) and n0 represents
the unit normal vector to the wavefront at the point (xi)0 defined by

n0 =

(︃
gradϕ

|gradϕ|

)︃
t=0

=
grad0ϕ0

|grad0ϕ0|
, (56)

where

(grad0)i ≡
∂

∂ (xi)0 (i = 1,2,3). (57)

Thus, x = x|t=0 +Λ
0t and since the Jacobian J of the transformation x → x|t=0 is nonvan-

ishing, i.e.

J = det
⃓⃓⃓⃓
t

∂Λ0
k

∂ (xi)0 +δik

⃓⃓⃓⃓
̸= 0 (i,k = 1,2,3), (58)

(xi)0 can be deduced from (53) and (54), and ϕ in the first approximation takes the following
form

ϕ(t,xi) = ϕ
0(xi −Λ

0
i t). (59)

Taking into account the initial conditions, we can deduce the phase ϕ(x, t) of the con-
sidered wave. Then, developing by Taylor’s formula the vector U up to first order in a
neighborhood of the wavefront ϕ(xα) = 0 we have

U = (U)
ϕ=0+ +

(︃
∂U
∂ϕ

)︃
ϕ=0+

+O(ϕ2), (60)

U0 =
(︁
U0)︁

ϕ=0− +

(︃
∂U0

∂ϕ

)︃
ϕ=0−

+O(ϕ2). (61)

Operating the difference between (60) and (61) we obtain

U = U0 +ϕΠ+O(ϕ2), (62)

where O(ϕ2) is the Landau’s notation and represents infinitesimals of higher order respect
to ϕ .

In (62), following Boillat (1965), the amplitude of discontinuity π satisfies Bernoulli
equation having the form(︁

l0 · r0)︁{︃ dπ

dσ
+(∇Ψ · r)0 π

2 +
d
dt

ln
√

J
}︃
= c0

π, (63)

where
(∇Ψ · r)0 = (|gradϕ|)0 (∇λ · r)0 , c0 = (∇(l ·B) · r)0 , (64)

∇ ≡
(︃

∂

∂n
,

∂

∂ jn
1
,

∂

∂ jn
2
,

∂

∂ jn
3
,

∂

∂a
,

∂

∂V1
,

∂

∂V2
,

∂

∂V3

)︃
(65)

and r0 is the right eigenvector corresponding to the eigenvalue λ 0. Eq.s (63), (49), (50) and
(41) determine the discontinuity.

In Boillat (1965) it was seen that

π =
h(σ)

Φ(σ)
, where h(σ) = h0exp

[︃∫︂
σ

0
− c0

(l · r)0
dτ

]︃
, with h0 = h(0) = π(0), (66)

Atti Accad. Pelorit. Pericol. Cl. Sci. Fis. Mat. Nat., Vol. 97, No. S2, A8 (2019) [21 pages]



WEAK DISCONTINUITY WAVES IN . . . A8-13

Φ(σ) = 1+
∫︂

σ

0

(∇Ψ · r)0√
J

hdτ. (67)

From (66)1 it follows that if there exists a time σc where Φ(σc) = 0, then π → ∞, and this
may correspond to a shock wave (Boillat 1965).

6. One-dimensional case

Now, we consider the one-dimensional case. Assuming that the electronic-dislocation
discontinuity wave propagation is along the x axis, the involved quantities depend on x1,
denoted by x, x2 = x3 = 0, the system (21) takes the following form:

∂n
∂ t

+
1
ρ

∂ jn
1

∂x
=

n
τn − κa

ρ
, (68)

∂ jn
1

∂ t
− αn

τn
∂a
∂x

+
ρDn

τn
∂n
∂x

=−
jn
1

τn , (69)

∂ jn
2

∂ t
=−

jn
2

τn , (70)

∂ jn
3

∂ t
=−

jn
3

τn , (71)

∂a
∂ t

+
∂V1

∂x
= 0 (72)

∂V1

∂ t
+

Da

τa
∂a
∂x

− αυ

τa
∂n
∂x

=−V1

τa , (73)

∂V2

∂ t
=−V2

τa , (74)

∂V3

∂ t
=−V3

τa . (75)

where αn = αn(a) and αv = αv(n).
From the above system we have

jn
2 = jn

2
0(x)e−

1
τn t , jn

3 = jn
3

0(x)e−
1

τn t ,

V2 = V 0
2 (x)e−

1
τa , V3 = V 0

3 (x)e−
1

τa .

Then, we obtain

Ut +A(U)Ux = B(U), (76)

where

U = (n, jn
1,a,V1)

T , (77)

B =

(︃
n
τn − κa

ρ
,−

jn
1

τn ,0,−
V1

τa ,

)︃T

(78)
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and

A =

⎛⎜⎜⎝
0 1

ρ
0 0

ρDn
τn 0 −αn

τn 0
0 0 0 1

−αv
τa 0 Da

τa 0

⎞⎟⎟⎠ . (79)

Then, in Eq. (39) An(U) = An1 has the form

An(U) = An1 =

⎛⎜⎜⎝
0 1

ρ
n1 0 0

ρDn
τn n1 0 −αn

τn n1 0
0 0 0 n1

−αv
τa n1 0 Da

τa n1 0

⎞⎟⎟⎠ , (80)

being n1 = 1.
The matrix A admits the following simple eigenvalues:

λ
(±)
1 =± 1√

2

√︄
ρDnτa +ρDaτn −G

ρτnτa , (81)

λ
(±)
2 =± 1√

2

√︄
ρDnτa +ρDaτn +G

ρτnτa , (82)

where

G =

√︂
(ρDnτa −ρDaτn)2 +4ραnαvτnτa. (83)

The eigenvalues λ
(±)
2 are always real, whereas the eigenvalues λ

(±)
1 are real when the

condition ρDnτa +ρDaτn −G ≥ 0 is valid, i.e. for αnαv ≤ ρDnDa. In the case where we
consider only

ρDnτ
a +ρDaτ

n −G > 0, (84)

that is valid for αnαv < ρDnDa, we have the propagation of discontinuty waves having
normal velocities different than zero, represented by the obtained eigenvalues. Furthermore,
G is different than zero, because from its definition (83) the relation (ρDnτa −ρDaτn)2 ̸=
−4ραnαvτnτa is always verified. This leads to the result λ

(±)
1 ̸= λ

(±)
2 .

The left eigenvectors l(±)
1 , l(±)

2 , and the right eigenvectors r(±)
1 , r(±)

2 , corresponding to
eigenvalues λ

(±)
1 , λ

(±)
2 , have the form

l(±)
1 =

(︄
λ
(±)
1 R

2αnτa ,
R

2ραnτa ,λ
(±)
1 ,1

)︄
, l(±)

2 =

(︄
λ
(±)
2 S

2αnτa ,
S

2ραnτa ,λ
(±)
2 ,1

)︄
, (85)

r(±)
1 =

(︄
2αn(τ

n)2λ
(±)
1

C
,−αnτaP

τnC
,

λ
(±)
1 τaS

C
,1

)︄T

, (86)

r(±)
2 =

(︄
2αn(τ

n)2λ
(±)
2

L
,−αnτaQ

τnL
,

λ
(±)
2 τaR

L
,1

)︄T

, (87)
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with

R = ρDaτ
n −ρDnτ

a +G, S = ρDaτ
n −ρDnτ

a −G, (88)

P = ρDaτ
n +ρDnτ

a −G, Q = ρDaτ
n +ρDnτ

a +G, (89)

C = Da (ρDnτ
a +G)−ρD2

aτ
n −2αnαν τ

a, (90)

L = Da (ρDnτ
a −G)−ρD2

aτ
n −2αnαν τ

a, (91)

where C , L are supposed different than zero and this assumption leads to the condition
αnαv ̸= ρDnDa, compatible with the result (84).

The discontinuity waves which are propagating with the velocity given by λ
(±)
1 and λ

(±)
2

are not exceptional waves in the sense of Lax-Boillat (Boillat 1965), when

∇λ
(±)
1 · r(±)

1 =∓ τa

2GC

[︃
2ρα

2
n τ

a ∂αν

∂n
+ανS

∂αn

∂a

]︃
̸= 0, (92)

∇λ
(±)
2 · r(±)

2 =± τa

2GL

[︃
2ρα

2
n τ

a ∂αν

∂n
+ανR

∂αn

∂a

]︃
̸= 0, (93)

with

∇ ≡
(︃

∂

∂n
,

∂

∂ jn
1
,

∂

∂a
,

∂

∂V1

)︃
.

Under this assumption, we fix our attention on λ = λ
(+)
2 , which corresponds to a progressive

fast wave traveling to the right. Analogous results are valid for the waves propagating with
the other velocities.

The eigenvectors left and right l = l(+)
2 and r = r(+)

2 , corresponding to λ
(+)
2 , satisfy the

following relation

l(+)
2 · r(+)

2 = 1+
Q(3ρDaτn −3ρDnτa −G)

2ρτnL
, (94)

whose value is supposed different than zero and this assumption ensures the hyperbolicity
of the system (44) and the propagation of the weak discontinuity waves (see (63)).

The characteristic rays are (see (51), (53) and (54))

dt
dσ

= 1
dx
dσ

=
(︂

λ
(+)
2

)︂
0
. (95)

Now, we consider an uniform unperturbed state in which U0, solution of the system (76),
has the form

U0 = (n0,0,a0,0), (96)

with n0 and a0 constants.
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In U0 we have

dx
dσ

=

√︄
ρDaτn +ρDnτa +G0

2ρτnτa , (97)

(︂
l(+)
2

)︂
0
=

⎛⎝
(︂

λ
(+)
2

)︂
0
S 0

2α0
n τa ,

S 0

2ρα0
n τa ,

(︂
λ
(+)
2

)︂
0
,1

⎞⎠ , (98)

(︂
r(+)

2

)︂
0
=

⎛⎝2α0
n (τ

n)2
(︂

λ
(+)
2

)︂
0

L 0 ,−α0
n τaQ0

τnL 0 ,

(︂
λ
(+)
2

)︂
0

τaR0

L 0 ,1

⎞⎠ , (99)

(︂
l(+)
2 · r(+)

2

)︂
0
= 1+

Q0(3ρDaτn −3ρDnτa −G0)

2ρτnL 0 , (100)

and (︂
∇λ

(+)
2 · r(+)

2

)︂
0
=

τa

2G0L 0

[︄
2ρ(α0

n )
2
τ

a
(︃

∂αν

∂n

)︃0

+α
0
a R0

(︃
∂αn

∂a

)︃0
]︄
, (101)

where the symbol “ 0 ′′ indicates that the quantities are calculated in U0.
The radial velocity along the characteristic rays is

Λ
0(U0,n0) =

(︂
λ
(+)
2

)︂
0

n0 =

(︄
1√
2

√︄
ρDnτa +ρDaτn +G0

ρτnτa ,0,0

)︄
. (102)

By integration of (95)1 one obtains

x0 = σ = t, x = (x)0 +λ
(+)
2 (U0)t, (103)

and the wave front in the first approximation is

ϕ(t,x) = ϕ
0
(︂

x(t)−
(︂

λ
(+)
2

)︂
0

t
)︂
, (104)

The amplitude π(x, t) satisfies the following equation (see Eq. (63) with J = 1):(︂
l(+)
2 · r(+)

2

)︂
0

{︃
dπ

dσ
+ |ϕx|0

(︂
∇λ

(+)
2 · r(+)

2

)︂
0

π
2
}︃
= c0

π, (105)

where |ϕx|0 = 1 (see (104)) and

c0 =
[︂
∇

(︂
l(+)
2 ·B

)︂
· r(+)

2

]︂
0
. (106)

Taking into account that

l(+)
2 ·B =

λ
(+)
2 S

2αnτa

(︃
n
τn − κa

ρ

)︃
−

jn
1S

2ραnτnτa − V1

τa , (107)

we have

∇

(︂
l(+)
2 ·B

)︂
=

⎛⎝∂

(︂
l(+)
2 ·B

)︂
∂n

,
∂

(︂
l(+)
2 ·B

)︂
∂ jn

1
,

∂

(︂
l(+)
2 ·B

)︂
∂a

,
∂

(︂
l(+)
2 ·B

)︂
∂V1

⎞⎠ , (108)
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where

∂

(︂
l(+)
2 ·B

)︂
∂n

=

⎡⎢⎣S −4ρτnτa
(︂

λ
(+)
2

)︂2

4τaGλ
(+)
2

(︃
n
τn − κa

ρ

)︃
+

jn
1

G

⎤⎥⎦ ∂αv

∂n
+

λ
(+)
2 S

2α2
n τnτa , (109)

∂

(︂
l(+)
2 ·B

)︂
∂ jn

1
=− S

2ραnτnτa , (110)

∂

(︂
l(+)
2 ·B

)︂
∂a

=

(︃
n
τn − κa

ρ

)︃(︄
ανS

4αnτaGλ
(+)
2

+
jn
1 −ρτnλ

(+)
2

αnG
αν −

λ
(+)
2 S

αn

−
jn
1S

2ρα2
n τaτn

)︃
∂αn

∂a
−

λ
(+)
2 κS

2ραnτa ,

(111)

∂

(︂
l(+)
2 ·B

)︂
∂V1

=− 1
τa . (112)

Furthermore, from expression (106) we obtain

c =
2αn(τ

n)2λ
(+)
2

L

{︄[︄
S −4ρτnτaλ

(+)2
2

4τaGλ
(+)
2

(︄
n
τn − κa

ρ

)︄
+

jn
1

G
∂αν

∂n

]︄

+
λ
(+)
2 L

2(αn)2 τnτa

}︄
− QS

2ρτnL (τn)2 +
λ
(+)
2 τaR

L

[︄(︄
n
τn − κa

ρ

)︄

×

(︄
ανS

4αnτa Gλ
(+)
2

+
jn
1 −ρτnλ

(+)
2

αnG
αν −

λ
(+)
2 S

αn

−
jn
1S

2ρ (αn)2 τaτn

)︄(︄
∂αn

∂a

)︄
−

λ
(+)
2 κS

2ρ αnτa

]︄
− 1

τa .

(113)

Finally, we obtain π = h(σ)
Φ(σ) , being

h(σ) = π
0exp

⎡⎣∫︂ σ

0
− c0(︂

l(+)
2 · r(+)

2

)︂
0

dτ

⎤⎦ , (114)

Φ(σ) = 1+
∫︂

σ

0
|ϕx|0

(︂
∇λ

(+)
2 · r(+)

2

)︂
0

hdτ, (115)

where Eqs. (66) and (67) and the results (100), (101), (64), J = 1 and |ϕx|0 = 1 have been
taken into consideration. Relation (115) gives

Φ(σ) = 1+
∫︂

σ

0

τa|ϕx|0h
2G0L 0

[︄
2ρ(α0

n )
2
τ

a
(︃

∂αν

∂n

)︃0

+α
0
a R0

(︃
∂αn

∂a

)︃0
]︄

dτ. (116)
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In the case where there exists a critical time σc in which Φ(σc) = 0, then π → ∞, and this
may correspond to a shock wave (Boillat 1965).

7. Conclusions

In this article we have presented, in the frame of extended irreversible thermodynamics
with internal variables, a model describing an elastic extrinsic semiconductor with defects of
dislocation, mass density constant and without polarization. Considering only the electronic
and dislocation fields, we have derived a quasi-linear hyperbolic PDEs system. Since a
thermodynamical model has an added value if possible solutions of the derived theory
are found, and because the closed-form solutions of nonlinear PDEs are rare, we have
investigated the propagation of weak discontinuities, as approximated solutions. To this
aim we have introduced a new variable related to the surface across which the solutions
or/and some of their derivatives undergo a jump, and following a Boillat’s methodology
for quasi-linear and hyperbolic systems of the first order, we obtained Bernoulli’s equation
governing the propagation of the amplitude of one of these approximated solutions in the
one-dimesional case.
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