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HIGHER-ORDER RELAXATION MAGNETIC PHENOMENA
AND A HIERARCHY OF FIRST-ORDER RELAXATION VARIABLES

DAVID JOU a b AND LILIANA RESTUCCIA c ∗

ABSTRACT. In previous papers one of us (LR) has studied thermodynamic theories for
magnetic relaxation phenomena due to several internal variables. In particular, she has
obtained equations involving time derivatives of the magnetic field B up to the n-th order,
and time derivatives of the magnetization M up to (n + 1)-th order. Such kind of equations
generalize other kinds of physical phenomena, such as stresses τ as a function of small
strains ε , and electrical polarizations P as a function of the electric field E. The aim of the
present work is to provide a particular illustration of the theory, relating the mentioned n-th
order relaxation equation to a hierarchy of first-order relaxation equations. Though this is
only a simple situation, it may be helpful to relate the general equation to the microscopic
structure of the system. Furthermore, we study in detail the form of the entropy and its
consequences on the hierarchy of relaxation equations.

1. Introduction

The selection of the state space of independent variables is a relevant step in the formula-
tion of nonequilibrium thermodynamics (Meixner and Reik 1959; Prigogine 1961; De Groot
and Mazur 1962; Dormann et al. 1967; Kluitenberg 1984; Muschik 1989, 1993; Maugin
and Muschik 1994; Luzzi et al. 1998; Maugin 1999; Luzzi et al. 2001; Öttinger 2005;
Lebon et al. 2008; Jou et al. 2010; Min et al. 2012; Vignesh et al. 2018) and it depends not
only on the system but also on the time scales and lenght scales accessible to observation.
Here, we illustrate some aspects of this general problem in the concrete case of magnetic
relaxation. A theory for magnetic relaxation phenomena was developed by Restuccia and
Kluitenberg (1989) (see also Restuccia 2010, 2014) in the framework of thermodynamics
of irreversible processes with internal variables (Kluitenberg 1984; Muschik 1989, 1993;
Maugin and Muschik 1994; Maugin 1999; Öttinger 2005). It was shown that if n different
types of microscopic irreversible phenomena give rise to magnetic relaxation, it is possible
to describe these microscopic phenomena introducing n macroscopic axial vectorial internal
variables in the expression of the entropy. The total specific magnetization m is split in n+1
parts m(k) (k = 1, ...,n) , i.e.

m = m(0)+
n

∑
k=1

m(k). (1)
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The following set C of independent variables was assumed

C =C
(︂

u,εαβ ,m,m(1), ...,m(n)
)︂
, (2)

where u is the specific internal energy and εαβ is the strain tensor. Using the same procedure
applied in Meixner and Reik (1959), by eliminating the internal variables the following
relaxation equation generalizing Snoek equation was obtained

χ
(0)
BMB+χ

(1)
BM

dB
dt

+ ...+χ
(n−1)
BM

dn−1B
dtn−1 +

dnB
dtn =

χ
(0)
MBM+χ

(1)
MB

dM
dt

+ ...+χ
(n)
MB

dnM
dtn +χ

(n+1)
MB

dn+1M
dtn+1 , (3)

where M is the magnetization vector, defined by M = ρ m, with ρ the density mass
of the considered body, and χ

(m)
BM (m = 0,1, ...,n − 1) and χ

(m)
MB (m = 0,1, ...,n + 1)

are characteristic phenomenological constants of the particular material, describing the
dynamical features of the relation between the time-varying magnetic field B. This magnetic
relaxation relation has the same mathematical structure of the following stress-strain relation
for mechanical distortional phenomena in isotropic media, derived by Kluitenberg (1968),
assuming that n microscopic phenomena give rise to inelastic strains (slip, dislocations, etc.)
and the total strain tensor εαβ is split in n+1 parts, ε

(0)
αβ

and ε
(k)
αβ

(k = 1, ...,n) ,

R(τ)
(d)0τ̃αβ +R(τ)

(d)1

dτ̃αβ

dt
+ ...+R(τ)

(d)n−1

dn−1τ̃αβ

dtn−1 +
dnτ̃αβ

dtn =

R(ε)
(d)0ε̃αβ +R(ε)

(d)1

dε̃αβ

dt
+ ...+R(ε)

(d)n

dnε̃αβ

dtn +R(ε)
(d)n+1

dn+1ε̃αβ

dtn+1 . (4)

R(τ)
(d)m (m = 0,1, ...,n− 1), R(ε)

(d)m (m = 0,1, ...,n+ 1) are material constants and τ̃αβ and
ε̃αβ are the deviators of the stress tensor and of the strain tensor, respectively.

If n arbitrary microscopic phenomena give rise to the total polarization vector, by
introducing n partial polarization vectors as n macroscopic vectorial internal variables in
the expression of the entropy, the following dielectric relaxation equation was obtained by
Restuccia and Kluitenberg (1988) in the isotropic case (see also Kluitenberg 1973, 1977,
1981; Restuccia and Kluitenberg 1990)

χ
(0)
EP E+χ

(1)
EP

dE
dt

+ ...+χ
(n−1)
EP

dn−1E
dtn−1 +

dnE
dtn =

χ
(0)
PE P+χ

(1)
PE

dP
dt

+ ...+χ
(n)
PE

dnP
dtn +χ

(n+1)
PE

dn+1P
dtn+1 , (5)

where E and P are the electric strength field and the polarization vector, respectively, and
χ
(k)
EP (k = 0,1, ...,n−1) and χ

(k)
PE (k = 0,1, ...,n+1) are constant quantities.

The aim of the present work is to relate the n-th order relaxation equation (1) (involving
time derivatives of the magnetic field B up to the n-th order, and time derivatives of the
magnetization M up to (n + 1)-th order) to a hierarchy of first-order relaxation equations. In
this way we relate the general equation to the microscopic structure of the system.
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From the practical point of view, such general equations are necessary in view of the
wide diversity of materials involving clusters of atoms in a macromolecule, as clusters of
molecules, as aggregating magneto-particles, in a material.

The new techniques in nanotechnology and the possibilities of faster measurements have
made possible the detailed experimental analysis of both the dynamical and the structural
aspects of these physical phenomena.

Finally, we obtain the form of the entropy and its consequences on the hierarchy of
relaxation equations. We try the paper to be as simple and pedagogical as possible, with a
minimum of physical complexity related to the mathematical structure of the equations.

2. Description of the model: a dynamical hierarchy

In the model to be considered we focus our attention on a magnetic system composed of
n sets of spins (i = 1,2, ...,n), such that there are N(i) magnetic particles of the kind i, each
of them having mass mi, radius ri, spin Si, and so on. These spins may refer to nuclear spins,
molecular spins, nanoparticle spins as molecular aggregate spins, with different masses,
which imply different relaxation times. Thus, their inertia, relaxation time, magnetization
and susceptibility will be different for each set of particles. These differences will show up
especially in dynamical phenomena.

Here, we will discuss a simple situation in which the time scales, τi (i = 1,2, ...,n), of
the several variables M(i), the magnetizations of the i-th set, are sufficiently separated to be
considered as a hierarchy of equations with minimal couplings amongst them. We propose
the following hierarchy of dynamical equations

dM(1)

dt
+

1
τ1

M(1) =
χ1

τ1
B+β1 M(2),

dM(2)

dt
+

1
τ2

M(2) =
χ2

τ2
B+ γ1 M(1)+β2 M(3),

............................

dM(i)

dt
+

1
τi

M(i) =
χi

τi
B+ γ(i−1) M(i−1)+βi M(i+1),

............................

dM(n)

dt
+

1
τn

M(n) =
χn

τn
B+ γ(n−1) M(n−1). (6)

We have assumed that τ1 > τ2 > τ3 > ... > τn. We will denote χi
2 χ(i−1) τi

≡ γi. In these
equations χi is the magnetic susceptibility of particles i, τi the magnetic relaxation time,
βi a coefficient that couples variables i and i + 1, and γi a coefficient coupling variables i
to i−1. This coupling may be physically realized, for instance, through the magnetization
of the slower of the couple of the variables i and i− 1, namely i− 1, which adds to the
external applied magnetic field B acting on M(i). Since M(i−1) is much slower than M(i),
the value of M(i−1) will not appreciably change during the relaxation of M(i). On the other
side, since M(i+1) is much faster than M(i), M(i+1) will relax in a very short time and
will also keep practically constant in its final relaxed value during the relaxation on M(i).
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Differentiating equation (6)1, using (6)2 for the time derivative of M(2), and using (6)1

to express M(2) in terms of M(1), dM(1)

dt and B, one gets

d2M(1)

dt2 + ξ
(11)
M

dM(1)

dt
+ξ

(01)
M M(1) = ξ

(11)
B

dB
dt

+ξ
(01)
B B + β1 β2 M(3),

with the coefficients
ξ
(11)
M ≡ 1

τ1
+

1
τ2
,

ξ
(01)
M ≡ 1

τ1τ2
−β1γ1,

ξ
(11)
M ≡ χ1

τ1
,

ξ
(01)
B ≡ χ1

τ1τ2
+β1

χ2

τ2
. (7)

We now differentiate equation (7)1, use the corresponding evolution equation of hierarchy
(6) for dM(3)

dt , and use (6)1 and (6)2 to express M(2) and M(3) in terms of M(1), dM(1)

dt and B,
and we get

d3M(1)

dt3 + ξ
(22)
M

d2M(1)

dt2 + ξ
(12)
M

dM(1)

dt
+ξ

(02)
M M(1) =

ξ
(22)
B

d2B
dt2 + ξ

(12)
B

dB
dt

+ξ
(02)
B B + β1β2β3 M(4). (8)

Note that ξ
(ab)
M is the coefficient multiplying the a-th derivative of M(1) in the equation

corresponding to the b-th order of approximation, and analogously for ξ
(ab)
B , but for the

a-th derivative of the magnetic field B. The corresponding coefficients are given by

ξ
(22)
M ≡ ξ

(11)
M +

1
τ3
,

ξ
(12)
M ≡ ξ

(01)
M + γ2β2 +

1
τ1τ3

+
1

τ2τ3
,

ξ
(02)
M ≡ γ2β2

τ1
+

1
τ1τ2τ3

,

ξ
(22)
B ≡ ξ

(11)
B ,

ξ
(12)
B ≡ ξ

(01)
B +

χ1

τ1τ3
,

ξ
(02)
B ≡ γ2β2χ1

τ1
+

β1β2χ3

τ3
+

χ1

τ1τ2τ3
. (9)

In principle, one may obtain a series of recurrence relations for the coefficients cor-
responding to higher-order equations. Here, we stop our calculations, which become
increasingly lengthy and cumbersome, as they already illustrate the basic concept that
hierarchy (6) may be written in the form of higher-order relation equation of the form we
are considering. It is also useful to express the hierarchy (6) in the Fourier space, in order to
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study the frequency-dependent behaviour of the system, which is more easily observable
than its time evolution. This leads to the hierarchy

(1+ iωτi)M̃
(i)

+ γi M̃(i−1)
+ βi M̃(i+1)

= M̃(i)
(ω) + χi B. (10)

From here, for instance, an effective frequency-dependent susceptibility χ(ω) may be
obtained, having the structure of a continued-fraction expansion, which is a well-known
and powerful mathematical technique with an underlying physical basis for the descrip-
tion of many physical quantities, as for instance time-correlation functions, and transport
coefficients (Mori 1965; Nagano et al. 1980; Madureira et al. 1998; Alvarez and Jou 2007).

3. Thermodynamic formalisms

The hierarchy (6) is relatively intuitive. When dM(i)

dt = 0 (steady state) and for vanishing
couplings of the variables of different orders, the sum of the equations yields M = χB ,
with M being the total magnetization (the sum of all M(i)), and χ being the sum of the
several magnetic susceptibilities. The terms in the temporal derivatives dM(i)

dt are classical
in relaxation theory; the terms in βi and γi establish a connection between M(i) and the slow
magnetization M(i+1) and the fast magnetization M(i−1). Here, we want to reexamine the
hierarchy (6) from a thermodynamic perspective, by illustrating the informations obtained
from the second law of thermodynamics. We consider that the entropy S of the system is a
function of internal energy U , volume V , and all the M(i), which are independent variables.
Thus, we assume

S = S
(︂

U,V, M(1),M(2), ...,M(n)
)︂
. (11)

Though we have written the volume V , for the sake of formal completeness, we will not
consider here effects related to the change of volume, because we are interested on other
physical aspects. We will consider that the entropy s per unit mass has the form

ρs = ρu− α1M(1) ·
[︂
M(1)−α1,2M(2)

]︂
− α2M(2) ·

[︂
M(2)−α2,3M(3)

]︂
− ...

− αiM(i) ·
[︂
M(i)−αi,i+1M(i+1)

]︂
− ...−αnM(n). (12)

The terms in M(i) ·M(i) are obvious; besides them, we have also included couplings between
i and i+1, as it has been done in the dynamical hierarchy (6). When one takes into account
that ρdu/dt = B · (dM/dt) one has

ρ
ds
dt

=
dM(1)

dt
·
[︂
θ
−1B−2 α1M(1)−α1α2M(2)

]︂
+

dM(2)

dt
·
[︂
θ
−1B−2 α2M(2)− α1M(1)−α2α2,3M(3)

]︂
+ ...

+
dM(i)

dt
·
[︂
θ
−1B−2αi+1M(i+1)− αiM(i)−αiαi,i+1M(i+1)

]︂
+ ...

+
dM(n)

dt
·
[︂
θ
−1B−αnM(n)

]︂
. (13)
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From here, in the linear approximation, between fluxes dM(i)

dt and their corresponding
conjugate thermodynamic forces according to (13), follow evolution equations of the form

dM(i)

dt
= ki

[︂
θ
−1B−2 αiM(i)−αi−1 M(i−1)−αi αi, i+1M(i+1)

]︂
, (14)

with ki positive material constants. Note that further terms coupling dM(i)

dt to the forces

conjugate to dM(i)

dt could have also been considered. These laws have the form of the
hierarchy (6), provided the following identifications are made

ki ≡ χi θ

τi
, α ≡ 1

2 χi θ
, αi, i+1 ≡ −2 τi βi. (15)

This leads to

dM(i)

dt
+

1
τi

M(i) =
χi

τi
B− χi

2 χi−1τi
M(i−1) + βi M(i+1), (16)

which is indeed the general form (6) characterizing the hierarchy of equations (6). We see
that the thermodynamic requirements lead to equation (16) - namely, (6)3 -. Otherwise, one
could have taken as zero the coefficient γi ≡ χi/(2 χi−1τi−1). A further information given
by non-equilibrium thermodynamics stems from the Onsager-Casimir reciprocity relations.
By writing, for instance,

dM(1)

dt
= − 1

τ1
M(1) + β1 M(2), (17)

dM(2)

dt
= γ1 M(1) − 1

τ2
M(2), (18)

it follows that β1 = γ1.

4. Conclusions

We have presented a hierarchy of n first-order relaxation equations (6) for variables
M(1), M(2), ...,M(i), ...,M(n), leading to an n-th order relaxation equation for the evolution
of M(1) as a function of the time derivatives of B in (8). The different variables have been
assumed to describe the contribution of particles of different masses (and therefore different
inertia) to the magnetization of the system. Here, we have ordered the M(i) according to
decreasing relaxation times, namely τ1 > τ2 > ... > τn (for instance, one could consider
a power law distribution of the relaxation times as τi = τnr(n−i), with r a number r > 1).
The observed dynamics of the system will depend on the range of observable times. If, for
instance, the observational times are such that tobs > τ3, the description of the system will
be based on M(1), M(2) and M(3). In this case, the relaxation of the remaining variables
M(4), M(5), ...,M(n) will be too fast to be observable and they will act as a Markovian noise
in the equations for M(1), M(2) and M(3).

We have outlined that non-equilibrium thermodynamics yields non-trivial information
on the coupling terms between variables i and i−1 and i+1 in the equations of state (12).
These information could be wider if we had assumed couplings between a wider range of
variables, as for instance i−2, i−1, i, i+1, i+2 in (12). The range of couplings amongst
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the variables will depend on the separation of their corresponding time scales: if they are
sufficiently separated, only the next-neighbouring variables in the hierarchy will be coupled.
Note that the generalized relaxation equation (3) comes from the dynamical hierarchy (13),
but the reciprocal is not true. The latter may be useful as a particular model from which (13)
may be obtained. Let us, eventually, note that one could generalize the hierarchy proposed
here by incorporating non-local terms, which would be useful to describe the different
ranges of spatial separation of different kinds of particles.
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