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ON DIELECTRIC RELAXATION EQUATION
FOR ANISOTROPIC POLARIZABLE

REACTING FLUID MIXTURES

LILIANA RESTUCCIA a ∗ , LIDIA PALESE b AND ARCANGELO LABIANCA b

ABSTRACT. In this paper a linear theory for dielectric relaxation phenomena in polari-
zable reacting fluid mixtures is developed, in the frame of thermodynamics of irreversible
processes with internal variables. The microscopic irreversible phenomena giving rise to
dielectric relaxation are described splitting the total specific polarization in two irreversible
parts and introducing one of these partial specific polarizations as internal variable in the
thermodynamic state vector. The phenomenological equations for these fluid mixtures
are derived and, in the linear case, a generalized Debye equation for dielectric relaxation
phenomena is derived. Special cases are also treated. Linear theories for polarizable
continuous media with dielectric relaxation phenomena were derived in the same frame of
non-equilibrium thermodynamics with internal variables in previous papers by one of the
authors (LR). A phenomenological theory for these phenomena was developed by Maugin
for complex materials, using microscopic considerations and introducing particular partial
polarizations per unit mass. The obtained results in this paper have applications in several
fields of applied sciences, as, for instance, in medicine and biology, where complex fluids
presenting dielectric relaxation, are constitued by different types of molecules, with own
dielectric susceptibility and relaxation time.

1. Introduction

In Kluitenberg (1973, 1977, 1981), Restuccia and Kluitenberg (1987, 1988, 1990),
Restuccia and Turrisi (1990), Ciancio and Restuccia (1990), Ciancio et al. (1990), Restuccia
and Kluitenberg (1992, 1995), dielectric relaxation phenomena in polarizable media were
studied using the standard methods of irreversible thermodynamics with internal variables
(Prigogine 1947; MacDougall 1951; Meixner and Reik 1959; Prigogine 1961; De Groot
and Mazur 1962; Kluitenberg 1984; Muschik and Restuccia 2006; Jou et al. 2010; Jou and
Restuccia 2011). In particular, in Kluitenberg (1973), assuming that polarization PPP is given
by the sum of one reversible part PPP(0) and one irreversible part PPP(1), Kluitenberg derived
in the linear approximation, for polarizable isotropic media, the following classical Debye
equation (Debye 1945)

χ(0)
(EP)EEE +

dEEE
dt

= χ(0)
(PE)PPP+χ(1)

(PE)
dPPP
dt

, (1)

http://dx.doi.org/10.1478/AAPP.97S2A3
http://dx.doi.org/10.1478/18251242


A3-2 L. RESTUCCIA ET AL.

where χ(0)
(EP), χ(0)

(PE) and χ(1)
(PE) are constant quantities, algebraic functions of the coefficients

occurring in the phenomenological equations and in the equations of state. Subsequently,
Kluitenberg (1977), assuming that the total polarization PPP is composed of two irreversible
parts, i. e. PPP =PPP(0)+PPP(1), obtained the following dielectric relaxation equation

χ(0)
(EP)EEE +

dEEE
dt

= χ(0)
(PE)PPP+χ(1)

(PE)
dPPP
dt

+χ(2)
(PE)

d2PPP
dt2 , (2)

where χ(0)
(EP) and χ(k)

(PE) (k = 0,1,2) are constant quantities, algebraic functions of the co-
efficients occurring in the phenomenological equations and in the equations of state. In
Restuccia and Kluitenberg (1988) it was assumed assumed that an arbitrary number n of
microscopic phenomena give rise to the polarization vector PPP and that this vector can be
split in n+1 parts, i.e.

PPP =PPP(0)+
n

∑
k=1

PPP(k), (3)

where PPP(0) and PPP(0)(k = 1, ...,n) have irreversible character. In the isotropic case the
following generalized Debye equation (Debye 1945) for dielectric relaxation phenomena
was obtained, having the form of a linear relation among the electric field EEE, the first n time
derivatives of this field, the total polarization PPP and the first n+1 time derivatives of PPP

χ(0)
(EP)EEE +χ(1)

(EP)
dEEE
dt

+ . . .+χ(n−1)
(EP)

dn−1EEE
dtn−1 +

dnEEE
dtn =

χ(0)
(PE)MMM+χ(1)

(PE)
dPPP
dt

+ . . .+χ(n)
(PE)

dnPPP
dtn +χ(n+1)

(PE)
dn+1PPP
dtn+1 , (4)

where n is the number of phenomena that give rise to the polarization PPP and χ(k)
(EP), k =

0,1, ...,n−1, and χ(k)
(PE), k = 0,1, ...,n+1, are constant quantities, algebraic functions of the

coefficients occurring in the phenomenological equations and in the equations of state. Here,
we consider anisotropic polarizable reacting fluid mixtures, where irreversible microscopic
phenomena give rise to dielectric relaxation, and these phenomena are described splitting the
total polarization in two irreversible parts and introducing one of these partial polarizations
as internal variable in the thermodynamic state vector, see Restuccia and Kluitenberg (1987),
where magnetizable and polarizable reacting fluid mixtures were studied. In Sections 2
and 3, the model of the considered media and the governing equations all the processes
inside them are presented, and the entropy balance equation is derived. In Sections 4, 5
and 6 the phenomenological equations, the Onsager-Casimir relations and the linear laws
of state, with respect to a considered reference state, are obtained. In Section 7, in the
linear case, a generalized Debye equation for dielectric relaxation phenomena in polarizable
reacting fluid mixtures is derived. Finally, in Section 8 particular cases are treated. The
obtained results have applications in several fields of applied sciences, as, for instance, in
medicine and biology, where complex fluids are taken into consideration, in which different
types of molecules, having different dielectric susceptibilities and relaxation tims, present
dielectric relaxation phenomena and contribute to the total polarization. In Maugin (1976,
1977a,b, 1980, 1988) a phenomenological description of relaxation phenomena was given
for polarizable continuous media with n different ionic species, by means of microscopic
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considerations and introducing partial polarizations per unit mass. The continuum theory
for polarizable bodies developed by Maugin gives an explanation to internal mechanisms in
polarizable bodies with internal variables. In Restuccia et al. (2016) an analogous magnetic
relaxation equation for anisotropic magnetizable reacting fluid mixtures was derived.

2. Fundamental equations

The Galilean approximation all the processes occurring inside polarizable fluid mixtures,
consisting of n chemical components, among which r chemical reactions are possible,
are governed by the balance equations and by Maxwell equations. The deformations and
rotations of the considered media are supposed small from a kinematical point of view.
The standard Cartesian tensor notation in a rectangular coordinate system is used and the
equations governing the behaviour of these polarizable media are considered in a current
configuration Kt (De Groot and Mazur 1962; Restuccia and Kluitenberg 1987).

First, we consider the mass conservation balance law
∂ρ

∂ t
=−div(ρvvv), (5)

where ρ is the total mass density given by

ρ =
n

∑
k=1

ρ
(k), (6)

with ρ(k) the mass density of chemical component k and vvv the barycentric velocity defined
by

vvv =
1
ρ

n

∑
k=1

ρ
(k)vvv(k), (7)

being vvv(k) the velocity of component k. By virtue of (7), Eq. (5) takes the following form

∂ρ

∂ t
=−div

(︄
n

∑
k=1

ρ
(k)vvv(k)

)︄
. (8)

We define the mass fractions c(k) (or concentrations of n components) by

c(k) =
ρ(k)

ρ
, k = 1, . . . ,n, (9)

from which, using Eq. (6), one has
n

∑
k=1

c(k) = 1. (10)

We introduce the diffusion flow JJJ(k)
(di f f ) of substance k with respect to the barycentric

motion by
JJJ(k)
(di f f ) = ρ

(k)(vvvk −vvv), k = 1, . . . ,n, (11)

from which, by virtue of (6) and (7), we derive
n

∑
k=1

JJJ(k)
(di f f ) = 0, (12)
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i. e. only n−1 of the n diffusion flows are independent.
We have the following balance equations for c(k)

ρ
dc(k)

dt
=−divJJJ(k)

(di f f )+
r

∑
h=1

ν
(kh)J(h)

(chem)
, k = 1, . . . ,n, (13)

where the quantity ν(kh), divided by the molecular mass M(k) of component k, is proportional
to the stoichiometric coefficient with which the component k appears in the chemical reaction
h, J(h)

(chem)
is the chemical reaction rate of reaction h, and ν(kh)J(h)

(chem)
is the production of

component k per unit volume and unit time arising from the h-th chemical reaction.
Maxwell’s equations (in the rationalized Gauss system) for polarizable media read⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

rotHHH − 1
c

∂DDD
∂ t

=
1
c

III,

divDDD = ρ(el),

rotEEE +
1
c

∂HHH
∂ t

= 0,

divHHH = 0,

(14)

where c is the speed of light, EEE is the electric field, DDD and HHH are the electric and magnetic
displacement vectors, ρ(el) is the electric charge per unit volume (electric charge density), III
is the density of the total electric current.

Introducing the total charge e per unit of mass of the system, given by

e =
1
ρ

n

∑
k=1

ρ
(k)e(k) =

n

∑
k=1

c(k)e(k), (15)

with e(k) the charge per unit of mass of component k, where Eq. (9) was used, in (14)2 we
define ρ(el) by the expression

ρ
(el) = ρe =

n

∑
k=1

ρ
(k)e(k), (16)

which satisfies the law of conservation of charge

∂ρ(el)

∂ t
=−divIII. (17)

In Eqs. (14)1 and (17) III is defined by

III =
n

∑
k=1

ρ
(k)e(k)vvv(k). (18)

Using the definition (11) and Eq. (16), Eq. (18) can take the form

III = ρ
(el)vvv+

n

∑
k=1

e(k)JJJ(k)
(di f f ), (19)
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where ρ(el)vvv is the electric current due to convection and
n

∑
k=1

e(k)JJJ(k)
(di f f ) represents the electric

current due to relative motion of the various components, called conduction current

jjj(el) =
n

∑
k=1

e(k)JJJ(k)
(di f f ). (20)

Let us define the polarization vector PPP by

PPP =DDD−EEE, (21)

and the specific polarization vector ppp by

ppp =
1
ρ

PPP. (22)

The first law of thermodynamics for polarizable fluid mixtures in an electromagnetic
field, in Galilean approximation, reads

ρ
du
dt

=−divJJJ(q)+ ταβ

dεαβ

dt
+ jjj(el) ·EEE +ρEEE · dppp

dt
, (23)

where u is the specific internal energy of the system, JJJ(q) is the heat flow density, ταβ is the
mechanical stress tensor and εαβ is the small strain tensor.

If we suppose that the deformations and the rotations of the medium are small from a

kinematical point of view, in a first approximation
dεαβ

dt
is given by

dεαβ

dt
=

1
2
(︁
vα,β + vβ ,α

)︁
, α,β = 1,2,3. (24)

In Eq. (23) all the quantities are per unit of volume and per unit of time. On the right
hand side of Eq. (23) the first term is the heat supply, the second term is the work done by

mechanical stress, the third term is the Joule heat, ρEEE · dppp
dt

is the work done by the electric
field to change the polarization.

Let us introduce A∗(h), the chemical affinity of the reaction h, and µ(k), the thermody-
namic or chemical potential of component k, by the relation

A∗(h) =
n

∑
k=1

µ
(k)

ν
(kh), h = 1, . . . ,r. (25)

From Eq. (13) we obtain

ρ

T

n

∑
k=1

µ
(k) dc(k)

dt
=−div

(︄
n

∑
k=1

µ
(k)JJJ(k)

(di f f )

)︄

+
n

∑
k=1

JJJ(k)
(di f f ) ·grad

(︄
µ(k)

T

)︄
− 1

T

r

∑
h=1

A(h)J(h)
(chem)

, (26)

where
A(h) =−A∗(h), h = 1, . . . ,r. (27)

Atti Accad. Pelorit. Pericol. Cl. Sci. Fis. Mat. Nat., Vol. 97, No. S2, A3 (2019) [20 pages]



A3-6 L. RESTUCCIA ET AL.

By virtue of (20) the internal energy balance (23) reads

ρ
du
dt

=−divJJJ(q)+ ταβ

dεαβ

dt
+

n

∑
k=1

e(k)JJJ(k)
(di f f ) ·EEE +ρEEE · dppp

dt
. (28)

3. Entropy balance equation

Let us introduce the physical assumption that the total specific polarization is additevely
composed of two irreversible parts, i.e.

ppp = ppp(0)+ ppp(1),

with ppp(0) and ppp(1) two partial specific polarizations describing irreversible microscopic
phenomena, giving rise to dielectric relaxation. Furthermore, let us assume that the specific
entropy s (i.e. the entropy per unit of mass) depends not only on the specific internal energy
u, the small strain tensor εαβ , the concentrations c(k) of the n fluid components, k = 1, . . . ,n,
and the specific polarization ppp, but also on ppp(1), which represents an internal variable,
describing the dielectric relaxation phenomena. Hence, it is assumed

s = s
(︂

u,εαβ ,ppp,ppp
(1),c(1), . . . ,c(n)

)︂
. (29)

Following the general philosophy of classical irreversible thermodynamics, dissipative
fluxes, gradients and time derivatives of the physical fields are not included in the state
space and for the system the local equilibrium hypotesis is assumed: out equilibrium each
point of the system is considered as a thermodynamic cell of elementary volume, where the
reversible thermodynamics is applicable. According to the reversible thermodynamics, we
shall define the equilibrium temperature T (absolute temperature), the equilibrium stress
tensor τ

(eq)
αβ

, the equilibrium electric field EEE(eq), the vectorial thermodynamic affinity EEE(1),

conjugate to the internal variable ppp(1), and the thermodynamic or chemical potential µ(k) of
the component k, respectively, by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T−1 =
∂

∂u
s
(︂

u,εαβ ,ppp,ppp(1),c(1), . . . ,c(n)
)︂
,

τ
(eq)
αβ

=−ρT
∂

∂εαβ

s
(︂

u,εαβ ,ppp,ppp(1),c(1), . . . ,c(n)
)︂
,

EEE(eq) =−T
∂

∂ ppp
s
(︂

u,εαβ ,ppp,ppp(1),c(1), . . . ,c(n)
)︂
,

EEE(1) = T
∂

∂ p(1)
s
(︂

u,εαβ ,ppp,ppp(1),c(1), . . . ,c(n)
)︂
,

µ(k) =−T
∂

∂c(k)
s
(︂

u,εαβ ,ppp,ppp(1),c(1), . . . ,c(n)
)︂
, k = 1, . . . ,n.

(30)

Considering very small deviations with respect to a thermodynamic equilibrium state,
we expand the entropy (29) into Taylor’s series with respect to this state, and confining our
considerations to the liner terms, we obtain the differential of the entropy s in the following
form

T ds = du− 1
ρ

τ
(eq)
αβ

dεαβ −EEE(eq) ·dppp+EEE(1) ·dppp(1)−
n

∑
k=1

µ
(k)dc(k), (31)
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where we have used Eqs. (30). Eq. (31) is called Gibbs relation.
Let us introduce the definitions of viscous stress tensor, τ

(vi)
αβ

, by

τ
(vi)
αβ

= ταβ − τ
(eq)
αβ

, (32)

irreversible electric field, EEE(ir), by

EEE(ir) =EEE −EEE(ir), (33)

and entropy flux, JJJ(s), by

JJJ(s) =
1
T

(︄
JJJ(q) =−

n

∑
k=1

µ
(k)JJJ(k)

(di f f )

)︄
. (34)

In (34) JJJ(s) is the entropy flux which is additively composed of two parts: the "reduced"

heat flux
JJJ(q)

T
and the part connected with the diffusion flows JJJ(k)

(di f f ), k = 1, . . . ,n. By
eliminating the internal energy u from (23) and (31), using (26), (32)-(34), we obtain the
following entropy balance equation

ρ
ds
dt

=−divJJJ(s)+
1
T

(︄
− 1

T
JJJ(q) ·gradT + τ

(vi)
αβ

dεαβ

dt
+ρEEE(ir) · dppp

dt

+ρEEE(1) · dppp(1)

dt
+

r

∑
h=1

A(h)J(h)
(chem)

)︄
−

n

∑
k=1

JJJ(k)
(di f f ) ·grad

(︄
µ(k)

T

)︄
+

1
T

jjj(el) ·EEE.
(35)

Let us introduce the thermodynamic force χχχ(k), conjugate to JJJ(k)
(di f f ), by

χχχ
(k) =−

[︄
T grad

(︄
µ(k)

T

)︄
− e(k)EEE

]︄
, k = 1,2, ...,n, (36)

and we write the following expression, obtained with the aid of Eqs. (12) and (20)

−
n

∑
k=1

JJJ(k)
(di f f ) ·grad

(︄
µ(k)

T

)︄
+

1
T

jjj(el) ·EEE =
1
T

n

∑
k=1

JJJ(k)
(di f f ) ·χχχ

(k)

=
1
T

n−1

∑
k=1

JJJ(k)
(di f f ) ·

(︂
χχχ
(k)−χχχ

(n)
)︂
=

1
T

n−1

∑
k=1

JJJ(k)
(di f f ) ·XXX

(k), (37)

where we have called

XXX (k) = χχχ
(k)−χχχ

(n), k = 1, . . . ,n−1. (38)

By virtue of (37), Eq. (35) takes the form

ρ
ds
dt

=−divJJJ(s)+σ
(s), (39)

where σ (s) is given by

σ
(s) =

1
T

(︄
− 1

T
JJJ(q) ·gradT + τ

(vi)
αβ

dεαβ

dt
+ρEEE(ir) · dppp

dt
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+ρEEE(1) · dppp(1)

dt
+

r

∑
h=1

A(h)J(h)
(chem)

+
n−1

∑
k=1

JJJ(k)
(di f f ) ·XXX

(k)

)︄
. (40)

In (40) the entropy production σ (s) (a non-negative quantity) is zero if the system is
in thermodynamic equilibrium. From (40) it is seen that the quantity contained in the
brackets in σ (s) is additively composed of six contributions: the first term arises from heat
conduction, the second is connected with the gradient of the velocity field giving rise to

viscous effects, the terms with
dppp
dt

and
dppp(1)

dt
are connected with entropy production due

to dielectric relaxation, the last two terms are due to chemical reactions and diffusion of
matter, respectively.

4. Phenomenological equations

From (40) it is seen that the expression contained in the brackets in σ (s) is a bilinear
form composed of a sum of terms, where each term is the inner product of two factors of
which one is a flux and the other is the thermodynamic force or "affinity" conjugate to the
flux. Following the usual procedures of non-equilibrium thermodynamics (Prigogine 1947;
MacDougall 1951; Meixner and Reik 1959; Prigogine 1961; De Groot and Mazur 1962;
Kluitenberg 1984; Muschik and Restuccia 2006; Jou et al. 2010) we have for polarizable
reacting fluid mixtures the following phenomenological equations in which the irreversible
fluxes are linear functions of thermodynamic forces

E(ir)
α = ρL(0,0)

(P)αβ

d pβ

dt
+ρL(0,1)

(P)αβ
E(1)

β
− 1

T
L(0,q)
(P)αβ

T,β +
n−1

∑
k=1

L(0,k)
(PD)αβ X (k)

β

+
r

∑
h=1

L(0,h)
(PC)α A(h)+L(0,vi)

(P)αβγ

dεβγ

dt
, (41)

ρ
d p(1)α

dt
= ρL(1,0)

(P)αβ

d pβ

dt
+L(1,1)

(P)α β
E(1)

β
− 1

T
L(1,q)
(P)αβ

T,β +
n−1

∑
k=1

L(1,k)
(PD)αβ X (k)

β

+
r

∑
h=1

L(1,h)
(PC)α A(h)+L(1,vi)

(P)αβγ

dεβγ

dt
, (42)

J(q)α = ρL(q,0)
(P)αβ

d pβ

dt
+L(q,1)

(P)αβ
E(1)

β
− 1

T
L(q,q)

αβ
T,β +

n−1

∑
k=1

L(q,k)
(D)αβ

X (k)
β

+
r

∑
h=1

L(0,h)
(PC)α

+L(1,vi)
(P)αβγ

dεβγ

dt
, (43)

J( j)
(di f f )α = ρL( j,0)

(DP)αβ

d pβ

dt
+L( j,1)

(DP)αβ E(1)
β

− 1
T

L( j,q)
(D)αβ

T,β +
n−1

∑
k=1

L( j,k)
(DD)αβ X (k)

β

+
r

∑
h=1

L( j,h)
(DC)α A(h)+L( j,vi)

(D)αβγ

dεβγ

dt
, j = 1, . . . ,n−1, (44)
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ON DIELECTRIC RELAXATION EQUATION FOR . . . A3-9

J(l)
(chem)

= ρL(l,0)
(CP)β

d pβ

dt
+L(l,1)

(CP)β E(1)
β

− 1
T

L(l,q)
(C)β

T,β +
n−1

∑
k=1

L(l,k)
(CD)β X (k)

β

+
r

∑
h=1

L(l,h)
(CC)A

(h)+L(l,vi)
(C)βγ

dεβγ

dt
, l = 1, . . . ,r, (45)

τ
(vi)
αβ

= ρL(vi,0)
(P)αβγ

d pγ

dt
+L(vi,1)

(P)αβγ
E(1)

γ − 1
T

L(vi,q)
αβγ

T,γ +
n−1

∑
k=1

L(vi,k)
(D)αβγ

X (k)
γ

+
r

∑
h=1

L(vi,h)
(C)αβ

A(h)+L(vi,vi)
αβγδ

dεγδ

dt
. (46)

In Eqs. (41) and (42) T,β =
∂T
∂xβ

and α,β ,γ = 1,2,3.

Eqs. (41) and (42) are connected with irreversible changes in the polarization. Eqs. (43)-
(45) describe the irreversible processes of heat flow, diffusion flow and chemical reactions.
Eq. (46) is a generalization of Newton’s law for viscous fluid flow.

The quantities L(0,0)
(P)αβ

,L(0,1)
(P)αβ

,L(0,q)
(P)αβ

, . . . which occur in (41)-(46) are called phenomeno-

logical tensors. For instance, L(q,q)
αβ

is the thermal tensor, L(vi,vi)
(P)αβγδ

is the viscosity tensor,

L( j,k)
(DD)αβ ( j,k = 1,2, . . . ,n−1) is a polar tensor of order two connected with the diffusion

flow of substance k, L(l,h)
(CC) is a scalar connected with the chemical affinity of the reaction

h (l,h = 1,2, . . . ,r), L(vi,0)
(P)αβγ

is a polar tensor of order three connected with the influence
of the viscous flow on the dielectric relaxation. In principle, all irreversible phenomena
described by (41)-(46) can influence each other. For instance, the third, fourth, fifth and
sixth term on the right-hand sides of (41) and (42) describe the influences of heat flow,
diffusion flow, chemical reactions and viscous flow on dielectric relaxation. Phenomena of
this type are called cross effects. The strain tensor εαβ is symmetric, then the equilibrium

stress tensor τ
(eq)
αβ

is also symmetric (see (30)2). Hence, it follows that the viscous stress

τ
(vi)
αβ

is also a symmetric tensor (see (32)).

Because of the symmetry of εαβ and τ
(vi)
αβ

one has

L(0,vi)
(P)αβγ

= L(0,vi)
(P)αγβ

, L(1,vi)
(P)αβγ

= L(1,vi)
(P)αγβ

, L(q,vi)
(P)αβγ

= L(q,vi)
(P)αγβ

,

L(vi,1)
(P)αβγ

= L(vi,1)
(P)βαγ

, L(vi,q)
αβγ

= L(vi,q)
βαγ

, L(vi,0)
(P)αβγ

= L(vi,0)
(P)βαγ

,

L(l,vi)
(C)αβ

= L(l,vi)
(C)βα

, L(vi,h)
(C)αβ

= L(vi,h)
(C)βα

(l,h = 1,2, . . . ,r), (47)

L( j,vi)
(D)αβγ

= L( j,vi)
(D)αγβ

, L(vi,k)
(D)αβγ

= L(vi,k)
(D)βαγ

( j,k = 1,2 . . . ,n−1),

L(vi,vi)
αβγδ

= L(vi,vi)
αβδγ

= L(vi,vi)
βαγδ

= L(vi,vi)
βαδγ

.

Furthermore, EEE(ir), EEE(i), A(h) (h = 1,2, . . . ,r), T−1 gradT , XXX (k) (k = 1,2, . . . ,n− 1),

τ
(vi)
αβ

are even functions of the microscopic particle velocities, while ρ
dppp
dt

, ρ
dppp(1)

dt
, JJJ(q),

Atti Accad. Pelorit. Pericol. Cl. Sci. Fis. Mat. Nat., Vol. 97, No. S2, A3 (2019) [20 pages]



A3-10 L. RESTUCCIA ET AL.

JJJ(k)
(di f f ) (k = 1, ,2, . . . ,n−1), J(l) (l = 1,2, . . . ,r),

dεαβ

dt
are odd functions of these velocities.

Hence, according to the usual procedure of non-equilibrium thermodynamics, we have for
the phenomenological tensors, which occur in (41)-(46), the following Onsager-Casimir
reciprocity relations

L(0,0)
(P)αβ

= L(0,0)
(P)βα

, L(1,1)
(P)αβ

= L(1,1)
(P)βα

, L(q,q)
(P)αβ

= L(q,q)
(P)βα

,

L(0,1)
(P)αβ

=−L(1,0)
(P)βα

L(0,q)
(P)αβ

=−L(0,q)
(P)βα

,

L(0,k)
(PD)αβ =−L(k,0)

(DP)βα , L( j,k)
(DD)αβ = L(k, j)

(DD)βα ( j,k = 1,2, . . . ,n−1),

L(0,h)
(PC)α =−L(h,0)

(CP)α , L( j,h)
(DC)α = L(h, j)

(CD)α ( j = 1,2, . . . ,n−1; h = 1,2, . . . ,r),

L(1,k)
(PD)αβ = L(k,1)

(DP)αβ , L(k,vi)
(D)αβγ

=−L(vi,k)
(D)βγα

(k = 1,2, . . . ,n−1),

L(1,q)
(P)αβ

= L(q,1)
(P)βα

, L(q,k)
(D)αβ

= L(q,k)
(D)βα

(k = 1,2, . . . ,n−1),

L(1,h)
(PC)α

= L(h,1)
(CP)α , L(l,h)

(CC)
= L(h,l)

(CC)
(l,h = 1,2, . . . ,r),

L(q,h)
(C)α

= L(h,q)
(C)α

, L(h,vi)
(C)αβ

=−L(vi,h)
(C)βα

(l,h = 1,2, . . . ,r),

L(0,vi)
(P)αβγ

= L(vi,0)
(P)βγα

, L(1,vi)
(P)αβγ

=−L(vi,1)
(P)βγα

L(0,vi)
(P)αβγ

= L(vi,0)
(P)βγα

, L(1,vi)
(P)αβγ

=−L(vi,1)
(P)βγα

,

L(q,vi)
αβγ

=−L(vi,q)
βγα

, L(vi,vi)
αβγδ

= L(vi,vi)
γδαβ

. (48)

The relations (47) and (48) reduce the number of independent components of the phe-
nomenological coefficients.

If one substitutes the phenomenological laws (41) - (46) in the expression (40) for the
entropy production, taking into account (47) and (48), one derives for the entropy production
a form, that is a positive definite quadratic form, and from its positive definite character
several inequalities may be derived for the components of the phenomenological coefficients.
For instance we obtain

L(0,0)
(P)αα

≥ 0, L(1,1)
(P)αα

≥ 0, L( j j)
(DD)

( j = 1,2, . . . ,n−1)≥ 0, (49)

L(q,q)
αα ≥ 0, L(hh)

(CC)
(h = 1,2, . . . ,r)≥ 0, L(vi,vi)

αβαβ
≥ 0.

Also, by virtue of symmetry and Onsager-Casimir relations we have

L(vi,vi)
αββα

≥ 0, L(vi,vi)
βααβ

≥ 0, L(vi,vi)
βαβα

≥ 0. (50)

In the following, we will assume that in the phenomenological equations (41)-(46), all
cross effects are neglected, except for possible cross effects among the different types of
dieletric relaxation phenomena, and, then, we have

E(ir)
α = L(0,0)

(P)αβ

dPβ

dt
+L(0,1)

(P)αβ
E(1)

β
, (51)

dP(1)
α

dt
= L(1,0)

(P)αβ

dPβ

dt
+L(1,1)

(P)αβ
E(1)

β
, (52)
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ON DIELECTRIC RELAXATION EQUATION FOR . . . A3-11

τ
(vi)
αβ

= L(vi,vi)
αβγζ

dεγζ

dt
, (53)

J(q)α =− 1
T

L(q,q)
αβ

T,β , (54)

J( j)
(diff)α =

n−1

∑
k=1

L( j,k)
(DD)αβ X (k)

β
(55)

( j = 1, . . . ,n−1),

J(l)
(chem)

=
r

∑
h=1

L(l,h)
(CC)A

(h) (56)

(l = 1, . . . ,r).

Eq. (54) is Fourier’s law for the heat flux.

5. Reference state and thermodynamic equilibrium state

Now, let us consider a reference state of the medium (indicated by the symbol ”(0)”), and
we require that it is also a state of thermodynamic equilibrium. Let us suppose that in this
reference state we have an arbitrary (but fixed) uniform temperature T(0), the concentrations

c(k), k = 1, . . . ,n, of the components of the fluid mixtures assume the fixed values c(k)
(0)

and the mechanical stress tensor ταβ and the electric field EEE vanish in the medium. We

notice that τ
(eq)
αβ

, EEE(eq) and EEE(1) are functions of the temperature T(0), of the strain tensor

εαβ , the polarizations ppp and ppp(1) and the concentrations c(k)
(0). We require that in this state

the value ε(0)αβ for the strain tensor and the values ppp(0) and ppp(1)
(0) for the polarization

vectors are such that

τ
(eq)
αβ

(︂
T(0),ε(0)αβ ,ppp(0),ppp

(1)
(0),c

(1)
(0), . . . ,c

(n)
(0)

)︂
= 0, (57)

EEE(eq)
(︂

T(0),ε(0)αβ ,ppp(0),ppp
(1)
(0),c

(1)
(0), . . . ,c

(n)
(0)

)︂
= 0, (58)

EEE(1)
(︂

T(0),ε(0)αβ ,ppp(0),ppp
(1)
(0),c

(1)
(0), . . . ,c

(n)
(0)

)︂
= 0, (59)

µ
(k)
(︂

T(0),ε(0)αβ ,ppp(0),ppp
(1)
(0),c

(1)
(0), . . . ,c

(n)
(0)

)︂
= 0,

k = 1, . . . ,n. (60)

Being the tensor τ
(eq)
αβ

symmetric, Eqs. (57)-(60) form a set of 12+n equations for the
values of the 6 independent components of the symmetric strain tensor ε(0)αβ , the values of

the 6 components of the vectors ppp(0) and ppp(1)
(0) and the n concentrations c(k)0 (k = 1,2, ...,n).

We choose the tensor εαβ and the vectors ppp, ppp(1), so that they vanish in the reference state.

Thus, ε(0)αβ = 0, p(0)α = p(1)
(0)α = 0 . Furthermore, we choose
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τ
(eq)
αβ

= 0, EEE(eq) = 0, EEE(1) = 0, µ
(k) = 0 (k = 1, . . . ,n),

for T = T(0), ε(0)αβ = 0, p(0)α = p(1)
(0)α = 0, c(k) = c(k)

(0) (k = 1, . . . ,n). (61)

A medium is in a state of thermodynamic equilibrium if the entropy production (40)
vanishes. It follows that the reference state is a state of thermodynamic equilibrium, provided
that εαβ and the vectors ppp(0) and ppp(1) (determined by (57)-(59)) are kept constant. In our
case they are chosen equal to zero. Moreover, the electric field must be kept vanishing
in this state of thermodynamic equilibrium (see 36) where we assume that there are not
chemical reactions. By virtue of phenomenological equation (46), the viscous stress tensor
τ
(vi)
αβ

vanishes in the thermodynamic equilibrium and hence ταβ = τ
(eq)
αβ

. Finally, because in
the reference state the medium has uniform temperature T(0) , the term grad T vanishes in
this state.

6. Linear equations of state for anisotropic polarizable reacting fluid mixtures

Let us introduce the specific free energy f , defined by f = u−T s. Using Gibbs relation
(31), we obtain the following expression for the differential of f ,

d f =−sdT + vτ
(eq)
αβ

dεαβ +EEE(eq) ·dppp−EEE(1) ·dppp(1)+
n

∑
k=1

µ
(k)dc(k). (62)

The following definitions are valid

s =− ∂

∂T
f
(︂

T,εαβ ,ppp,ppp
(1),c(1), . . . ,c(n)

)︂
, (63)

τ
(eq)
αβ

= ρ
∂

∂εαβ

f
(︂

T,εαβ ,ppp,ppp
(1),c(1), . . . ,c(n)

)︂
, (64)

EEE(eq) =
∂

∂ ppp
f
(︂

T,εαβ ,ppp,ppp
(1),c(1), . . . ,c(n)

)︂
, (65)

EEE(1) =− ∂

∂ ppp(1)
f
(︂

T,εαβ ,ppp,ppp
(1),c(1), . . . ,c(n)

)︂
, (66)

µ
(k) =

∂

∂c(k)
f
(︂

T,εαβ ,ppp,ppp
(1),c(1), . . . ,c(n)

)︂
(67)

(k = 1,2, . . . ,n).

Now, we postulate the following form for the specific free energy f for polarizable
anisotropic reacting fluid mixtures

f = f (1)+ f (2), (68)

where

f (1) = v(0)

{︄
1
2

aαβγζ εαβ εγζ +aαβ εαβ (T −T(0))
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+
n

∑
k=1

b(k)
(︂

c(k)− c(k)
(0)

)︂
(T −T(0))+

n

∑
k=1

b(k)
αβ

(︂
c(k)− c(k)

(0)

)︂
εαβ

+
1
2

n

∑
i,k=1

b(i,k)
(︂

c(i)− c(i)
(0)

)︂(︂
c(k)− c(k)

(0)

)︂}︄
−ϕ(T ), (69)

f (2) =
1
2

ρ(0)

{︂
a(0,0)
(P)αβ

pα

(︂
pβ −2p(1)

β

)︂
+a(1,1)

(P)αβ
p(1)α p(1)

β

}︂
+(T −T(0))

(︂
a(0)
(P)α pα −a(1)

(P)α p(1)α

)︂
+

n

∑
k=1

(︂
c(k)− c(k)

(0)

)︂(︂
b(0,k)
(P)α pα −b(1,k)

(P)α p(1)α

)︂
. (70)

In (69) v(0) is the specific volume in the reference state, given by v(0) =
1

ρ(0)
, supposed

constant, and in the following indicated by v =
1
ρ

, ϕ(T ) is some function of the temperature,

b(k) are supposed to be constants and also aαβγζ , aαβ , b(k)
αβ

, b(i,k) are supposed to be
constants and they may be chosen so that they satisfy the following symmetry relations

aαβγζ = aβαγζ = aαβζ γ = aβαζ γ = aγζ αβ = aγζ βα = aζ γαβ = aζ γβα ,

aαβ = aβα , b(k)
αβ

= b(k)
βα

b(i,k) = b(k,i) (i,k = 1,2, . . . ,n). (71)

In (70) the vectors a(0)
(P)α , a(1)

(P)α , b(0,k)
(P)α and b(1,k)

(P)α (k = 1,2, . . . ,n) are supposed to be

constants and also the tensors a(0,0)
(P)αβ

, a(1,1)
(P)αβ

are supposed to be constants and they may be
chosen so that they satisfy the following symmetry relations

a(0,0)
(P)αβ

= a(0,0)
(P)βα

, a(1,1)
(P)αβ

= a(1,1)
(P)βα

. (72)

The tensors present in (71) and (72) are determined by the physical properties of the medium
in the reference state. From (63) and (68) - (72) the specific entropy takes the form

s =−

{︄
a(0)
(P)α pα −a(1)

(P)α p(1)α +
n

∑
k=1

b(k)
(︂

c(k)− c(k)
(0)

)︂}︄
− vaαβ εαβ +

dϕ

dT
. (73)

From (64) and (68)-(71) we obtain for the equilibrium stress tensor the expression

τ
(eq)
αβ

= aαβγζ εαβ +aαβ (T −T(0))+
n

∑
k=1

b(k)
αβ

(︂
c(k)− c(k)

(0)

)︂
. (74)

Now, we define the fields PPP(0) and PPP(1) by

PPP(0) = ρppp(0) and PPP(1) = ρppp(1). (75)

Finally, from (65), (66) and (68)-(72) we have the following equations of state

E(eq)
α = a(0,0)

(P)αβ

(︂
Pβ −P(1)

β

)︂
+a(0)

(P)α(T −T0)+
n

∑
k=1

b(0,k)
(P)α

(︂
c(k)− c(k)

(0)

)︂
, (76)

E(1)
α = a(0,0)

(P)αβ
Pβ −a(1,1)

(P)αβ
P(1)

β
+a(1)

(P)α(T −T(0))+
n

∑
k=1

b(1,k)
(P)α

(︂
c(k)− c(k)

(0)

)︂
, (77)
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µ
(k) = v

{︄
b(k)(T −T(0))+b(k)

αβ
εαβ +

n

∑
i=1

b(i,k)
(︂

c(i)− c(i)
(0)

)︂
+b(0,k)

(P)αβ
Pα −b(1,k)

(P)α P(1)
α

}︄
, k = 1, . . . ,n. (78)

7. Generalized Debye equation for anisotropic reacting fluid mixtures

Taking into account Eqs. (33), (76) and (77), Eqs. (51) and (52) may be written,
respectively, in the form

c(1)
αβ

P(1)
β

= Q(1)
(0,0)α , (79)

and
dP(1)

β

dt
+hβγ P(1)

γ = Q(1,0)β . (80)

In Eq. (79) we have
c(1)

αβ
= a(0,0)

(P)αβ
+L(0,1)

(P)αγ
a(1,1)
(P)γβ

, (81)

Q(1)
(0,0)α =

(︂
a(0,0)
(P)αβ

+L(0,1)
(P)αγ

a(0,0)
(P)γβ

)︂
Pβ +L(0,0)

(P)αβ

dPβ

dt
−Eα +

(︂
a(0)
(P)α

+ L(0,1)
(P)αβ

a(1)
(P)β

)︂
(T −T(0))+

n

∑
k=1

(︂
b(0,k)
(P)α +L(0,1)

(P)αβ
b(1,k)
(P)β

)︂(︂
c(k)− c(k)

(0)

)︂
. (82)

In Eq. (80) we have
hβγ = L(1,1)

(P)βη
a(1,1)
(P)ηγ

+L(1,0)
(P)βγ

(83)

and

Q(1,0)β = L(1,1)
(P)βη

a(0,0)
(P)ηγ

Pγ +L(1,0)
(P)βγ

dPγ

dt

+L(1,1)
(P)βγ

a(1)
(P)γ(T −T(0))+

n

∑
k=1

L(1,1)
(P)βγ

b(1,k)
(P)βη

(︂
c(k)− c(k)

(0)

)︂
. (84)

Assuming that the coefficients in (79) and (80) are constant, it follows from (79) that

c(1)
αβ

dP(1)
β

dt
=

dQ(1)
(0,0)α

dt
(85)

provided that all derivatives exist in (85). Multiplying both sides of Eq. (80) by c(1)
αβ

and
summing over β , with the aid of (79), we obtain

c(1)
αβ

hβγ P(1)
γ = c(1)

αβ
Q(1,0)β −

dQ(1)
(0,0)α

dt
(86)

Assuming that it is possible to define the inverse matrix
(︂

c(1)
αβ

)︂−1
, such that

(︂
c(1)

αβ

)︂−1
c(1)

βγ
=

c(1)
αβ

(︂
c(1)

βγ

)︂−1
= δ αγ , using the expression for PPP(1), given by (79), in (86), i.e.

P(1)
α =

(︂
c(1)

αβ

)︂−1
Q(1)
(0,0)β , (87)
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we get the following dielectric relaxation equation

χ(0)
(EP)αβ Eβ +

dEα

dt
= χ(0)

(PE)αβ Pβ
χ(1)
(PE)αβ

dPβ

dt

+χ(2)
(PE)αβ

d2Pβ

dt2 +χ(0)
(T)α(T −T(0))+χ(1)

(T)α

dT
dt

+
n

∑
k=1

χ
(0,k)
(C)α

(︂
c(k)− c(k)

(0)

)︂
+

d
dt

n

∑
k=1

χ
(1,k)
(C)α

(︂
c(k)− c(k)

(0)

)︂
, (88)

where

χ
(0)
(EP)αβ

= c(1)αγ hγζ

(︂
c(1)

ζ β

)︂−1
,

χ(0)
(PE)αβ = c(1)αγ

{︃
hγζ

(︂
c(1)

ζ η

)︂−1(︂
a(0,0)
(P)ηβ

+L(0,1)
(P)ηµ

a(0,0)
(P)µβ

)︂
−L(1,1)

(P)γµ
a(0,0)
(P)µβ

}︃
, (89)

χ(1)
(PE)αβ = c(1)αγ

{︃
hγζ

(︂
c(1)

ζ η

)︂−1
L(0,0)
(P)ηβ

−L(1,0)
(P)γβ

}︃
+a(0,0)

(P)αβ
+L(0,1)

(P)αη
a(0,0)
(P)ηβ

(90)

χ
(2)
(PE)αβ

= L0,0
(P)αβ

χ
(0)
(T )α = c(1)αγ

{︃
hγζ

(︂
c(1)

ζ η

)︂−1(︂
a(0)
(P)η +L(0,1)

(P)ηβ
a(1)
(P)β

)︂
−L(1,1)

(P)γβ
a(1)
(P)β

}︃
, (91)

χ
(1)
(T )α = a(0)

(P)α +L(0,1)
(P)αβ

a(1)
(P)β ,

χ
(0,k)
(C)α

= c(1)αγ

{︃
hγζ

(︂
c(1)

ζ η

)︂−1(︂
b(0,k)
(P)η +L(0,1)

(P)ηβ
b(1,k)
(P)β

)︂
−L(1,1)

(P)γβ
b(1,k)
(P)β

}︃
, (92)

χ
(1,k)
(C)α

= b(0,k)
(P)α +L(0,1)

(P)αβ
b(1,k)
(P)β

Hence, it is seen that the linearization of the theory leads to a relaxation equation for
anisotropic polarizable reacting fluid mixtures which has the form of a linear relation among
the temperature, the concentrations of the n chemical components, the electric field, the
total polarization, the first time derivatives of the temperature, the n concentrations, the
electric field and of the total polarization, and the second derivative with respect to time of
this last vector.

8. Particular cases

In this Section we derive two special cases, that for isotropic polarizable one compo-
nent fluid reduce to Debye relaxation equation and De Groot-Mazur relaxation equation,
respectively.

Atti Accad. Pelorit. Pericol. Cl. Sci. Fis. Mat. Nat., Vol. 97, No. S2, A3 (2019) [20 pages]



A3-16 L. RESTUCCIA ET AL.

8.1. Special case: EEE =EEE(eq). In the special case where EEE =EEE(eq), then EEE(ir) vanishes, and
from (51) one gets

L(0,0)
(P)αβ

= 0, and L(0,1)
(P)αβ

=−L(1,0)
(P)βα

= 0. (93)

Hence, the dielectric relaxation equation (88) becomes

χ(0)
(EP)αβ Eβ +

dEα

dt
= χ(0)

(PE)αβ Pβ +χ(1)
(PE)αβ

dPβ

dt
+χ(0)

(T)α(T −T(0))

+χ(1)
(T)α

dT
dt

+
n

∑
k=1

χ
(0,k)
(C)α

(︂
c(k)− c(k)

(0)

)︂
+

d
dt

n

∑
k=1

χ
(1,k)
(C)α

(︂
c(k)− c(k)

(0)

)︂
, (94)

where

χ
(0)
(EP)αβ

= a(0,0)
(P)αγ

L(1,1)
(P)γη

a(1,1)
(P)ηζ

(︂
a(0,0)
(P)ζ β

)︂−1
, (95)

χ
(0)
(PE)αβ

= a(0,0)
(P)αη

L(1,1)
(P)ηγ

(︂
a(1,1)
(P)γβ

−a(0,0)
(P)γβ

)︂
, χ(1)

(PE)αβ = a(0,0)
(P)αβ

, (96)

χ
(0)
(T )α = a(0,0)

(P)αβ
L(1,1)
(P)βγ

{︃
a(1,1)
(P)γη

(︂
a(0,0)
(P)ηζ

)︂−1
a(0)
(P)ζ −a(1)

(P)γ

}︃
, (97)

χ(1)
(T)α = a(0)

(P)α , (98)

χ
(0,k)
(C)α

= a(0,0)
(P)αβ

L(1,1)
(P)βγ

{︃
a(1,1)
(P)γη

(︂
a(0,0)
(P)ηζ

)︂−1
b(0,k)
(P)ζ −b(1,k)

(P)γ

}︃
, (99)

χ
(1,k)
(C)α

= b(0,k)
(P)α

In the case where we have only a polarizable one component fluid (i. e. the n concentra-
tions ck(k = 1,2, ...n) are not present as independent variables in the thermodynamic state
vector), Eq. (94) reduces to Debye relaxation equation for an anisotropic medium

χ(0)
(EP)αβ Eβ +

dEα

dt
= χ(0)

(PE)αβ Pβ +χ(1)
(PE)αβ

dPβ

dt
+χ(0)

(T)α(T −T(0))+χ(1)
(T)α

dT
dt

, (100)

where χ(0)
(EP)αβ , χ(0)

(PE)αβ , χ(1)
(PE)αβ , χ(0)

(T)α , χ(1)
(T)α are given by (95)-(98). Eq. (100) in the

isotropic case, when the tensors χχχ , describing the properties of the system, have the form
χαβ = χδαβ and χα = 0, takes the form (1) (see Kluitenberg 1973).

In this case the polarization vector PPP is composed of two parts PPP =PPP(0)+PPP(1), where the
contribution PPP(0) has reversible character and the contribution PPP(1) has irreversible character.
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8.2. Special case: PPP(1) = 0. In the special case where

L(1,1)
(P)αβ

= 0, and L(1,0)
(P)αβ

=−L(0,1)
(P)βα

= 0, (101)

Eqs. (51) and (52) become

E(ir)
α = L(0,0)

(P)αβ

dPβ

dt
, and

dP(1)
α

dt
= 0. (102)

It is seen that PPP(1) is constant and it can be supposed that PPP(1) = 000 (i.e. there is no
internal variable). Equation (88) reduces to a generalized dielectric relaxation equation for
De Groot-Mazur media (see Kluitenberg 1973, 1977, 1981);

Eα = χ(1)
(PE)αβ Pβ +χ(2)

(PE)αβ

dPβ

dt
+χ(1)

(T)α T +
n

∑
k=1

χ
(1,k)
(C)α

(︂
c(k)− c(k)

(0)

)︂
, (103)

where
χ
(1)
(PE)αβ

= a(0,0)
(P)αβ

, χ
(2)
(PE)αβ

= L(0,0)
(P)αβ

,

χ
(1)
(T )α = a(0)

(P)α , χ
(1,k)
(C)α

= b(0,k)
(P)α . (104)

In the case where we have only a polarizable one component fluid, Eq. (94) reduces to
De Groot-Mazur relaxation equation for an anisotropic medium

Eα = χ(1)
(PE)αβ Pβ +χ(2)

(PE)αβ

dPβ

dt
+χ(1)

(T)α T, (105)

where χ(1)
(PE)αβ , χ(2)

(PE)αβ , χ(1)
(T)α are given by (104). In the isotropic case, when the tensors

χχχ , describing the properties of the system, have the form χαβ = χδαβ and χα = 0, Eq.
(105) takes the form of the classical De Groot-Mazur dielectric equation

Eα = χ(1)
(PE)Pα +χ(2)

(PE)
dPα

dt
. (106)

9. Conclusions

The paper deals with anisotropic polarizable reacting fluid mixtures, where different
types of irreversible microscopic phenomena give rise to dielectric relaxation. The obtained
results can be applied in several physical situations, in medicine and biology and other
different fields of applied sciences, where complex media are used. A phenomenological
approach to describe relaxation phenomena in polarizable continuous media with n different
ionic species was given by Maugin, by means of microscopic considerations and introducing
partial polarizations per unit mass. In this paper the standard procedures of irreversible
thermodynamics with internal variables are used. The total specific polarization is assumed
composed of two irreversible parts, the phenomenological equations are derived, and,
linearizing the theory, the dielectric relaxation equation for these polarizable anisotropic
media is derived. The obtained results are applied to two special cases, that, in the isotropic
case, and for a polarizable one-component fluid, reduce to Debye and De Groot-Mazur
dielectric relaxation equations.
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