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ABSTRACT. In recent years the development of novel approaches for the production of
nano-formulations (nanocarriers) for efficient transport of drug molecules in living systems
offers a wide range of biotechnology applications. However, despite the remarkable devel-
opments of recent synthetic methodologies, most of all nanocarrier’s action is associated
with a number of unwanted side effects that diminish their efficient use in nanomedicine.
This highlights some critical issues in the design and engineering of nanocarrier systems for
biotechnology applications, arising from the complex environment and multiform interac-
tions established within the specific biological media. Many questions still remain open
for what concerns the way to deal with the complexity of the biological processes involved.
What is the minimal number of key parameters (and their related key factors) required
to describe behavior of nanomaterials without sacrificing the complexity of the identified
process? In other words, what is the “minimum level of complexity” to assume in the
theoretical and experimental models that may satisfactorily describe the nanocarriers (and
nanomaterials) interaction with biological systems. Herein, we analyze relevant open ques-
tions with the aim of offering possible perspectives for the development of next-generation
nanomaterials that are able to overcome the critical issues during their action in complex
biological media.

1. Introduction

Complex biological systems (and humans in particular) have emerged from billions
years of evolution and result from the long adaptation process to their specific environ-
ment. During their evolution time, they naturally developed different strategies to create
(nano)materials with high structural complexity and high level of functionality. In contrast,
the development of synthetic nanomaterials with controlled properties are limited by our
current understanding of the biology of living systems. The development of nanocarriers
technology for the efficient delivery of therapeutic drugs has experienced considerable
expansion in recent years (Bozzuto and Molinari 2015; Chen et al. 2016). The design and
engineer of novel functional nanomaterials has generated a variety of smart nano-carriers
for the encapsulation and controlled delivery of therapeutics (Ishida et al. 2001, 2002; Lom-
bardo et al. 2016a). More specifically, a variety of strategies developed in the last decades
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employ engineered nano-carriers with desired physico-chemical properties that, exploiting
a combination of a number of suitable soft interactions (Kiselev et al. 2013; Lombardo
et al. 2019a), facilitate the transit through the natural barriers of biological systems from
the point of administration up to the site of action the therapeutic drug (Ceresa et al. 2013;
Bourgaux and Couvreur 2014; Lombardo et al. 2018). However, the intrinsic complexity of
biological environments strongly influences the functionality of nanomaterial, and often
complicates the effective use of nanocarriers (and nanomaterials) for therapeutic treatment
(Allen and Cullis 2013; Chow and Ho 2013). This means that to a precision of the synthesis
protocols very often do not correspond to a precision in the specific tasks to be performed.
Furthermore, the understanding of nanocarriers interaction in complex biological systems
still represent a big challenge in the research field of nanotechnology (Lombardo 2014; Lee
et al. 2015; Alibakhshi et al. 2016). Theoretical and experimental investigations of real
nanocarriers adopt interpretation models of that present a minimal complexity that often
look unrealistic if compared with the complex environments of biological systems. This
represent a critical issue in the design and engineering of functional materials in the field of
biotechnology and nanomedicine.

Herein, we analyze some open questions with the aim of offering possible perspectives
for the development of next-generation nanomaterials that are able to overcame the critical
issues during their action in complex biological media.

2. Nanocarriers in nanomedicine and biotechnology applications: Achievements and
critical issues

Recently, the design and fabrication of nanoparticle-based materials (or nanodevices)
with integrated and enhanced properties have gradually gained a strategic importance
in the field of biotechnology. One of the biggest challenges for the use of nanocarriers
(and nanomaterials) for therapeutic treatment consists in the enhanced performance in
diseased tissues and in the potential reduction of the side effects (Bozzuto and Molinari
2015). Various nanomaterials provide important benefits and new opportunities for the
smart nanocarriers, including micelles, liposomes, dendrimers, solid nanoparticles, nano-
emulsions and large variety of other nanostructured materials that are able to interact with
cells and biological systems thus offering a great versatility in designing different functional
(and targeting) concepts.

More specifically smart vehicles like lipid-based (Sackmann 1995; Lombardo et al.
2016b; D’Angelo et al. 2017) and synthetic polymer-based nanoparticles (Kopecek and
Yang 2007; Hruby et al. 2015; Zhou et al. 2018), carbon-based (Bianco et al. 2005) materials
and metallic nanoparticles (Adeyemi and Sulaiman 2015)have great potential in altering
biological functions, as well as for drug delivery, gene transfection and (in vitro and in
vivo) imaging applications. Finally, mesoporous silica nanoparticles (MSNPs), with their
high surface area and the ability to modify pore size and surface chemistry, represent a
new generation of “smart nanomaterials" for the development of innovative prototypes for
the delivery of a variety of drugs combinations and other cargos to cells (Bonaccorsi et al.
2009; Li et al. 2012; Pasqua et al. 2016). Moreover the noncovalent interactions (such
as the electrostatic, van der Waals, and hydrogen-bonding interactions) of the drugs with
the nanocarrier’s internal surface cause preferential adsorption of cargo to the MSNP, with
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FIGURE 1. Sketch of the main nanocarriers systems for smart application in
biotechnology.

Name Treatment Drug Formulation

Doxil Breast cancer, Ovarian cancer,
AIDS-related Kaposi’s sarcoma, Myeloma PEGylated liposomal DOX

DaunoXome HIV-associated Kaposi’s DaunoXome

AmBisome Visceral leishmaniasis, Fungal infection,
Cryptococcal Meningitis Liposomal amphotericin B

Myocet Metastatic breast cancer Non-PEGylated liposomal DOX
Marqibo Acute lymphoblastic leukaemia Liposomal vincristine

TABLE 1. Some liposome based nanocarriers approved by the U.S. Food
& Drug Administration FDA.

loading capacities exceeding those of other more common drug delivery carriers (such as
liposomes or polymer based conjugates)(Aiello et al. 2002; Morelli et al. 2011; Watermann
and Brieger 2017). A sketch of the main nanocarriers employed for smart nanomedicine and
biotechnology application is reported in Figure 1. Although recent development of novel
nanocarrier systems with longer blood circulation time, only a limited number of them have
been translated into clinics for applications (Anselmo and Mitragotri 2016; Liu et al. 2016).
In 1995 the United States Food & Drug Administration (FDA) approved the first formulation
(Doxil) encapsulating the cancer drug doxorubicin within a lipid-based nanocarrier. After
more than 20 years the FDA in U.S. and the European Medicines Agency (EMA) in the
European Union have approved in clinic several other nano-carriers formulations including
liposomes, nano-suspension, polymer nanoparticles, nanocapsule, micelles, etc.. These
approved formulations have been adequately evaluated and deeply optimized over the years.
However, some critical issues connected with low efficiency and biocompatibility restrict
the translation of many other proposed nano-carriers based medical approaches into the
clinic (Liu et al. 2016). In table 1 some of the most important liposome based nanocarriers
approved by FDA are reported.
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3. Clearance process of nanocarriers and strategies to overcome biological barriers

It is known that although a main portion of nanocarriers have preferential accumulation
in the tumor area, due to the EPR effect, the presence of biological (or physical) barriers in
the body can affect the accumulation of therapeutic nanoparticles into the tumour tissues.
Therefore a question arises in the scientific debate: how effectively current nanoparticles
target drugs to diseased tissues ?. In this respect, a recent paper reviewed the literature about
the nanoparticle drug delivery from the past decade and estimated that the median delivery
efficiency is low - only 0.7% of an injected dose of nanoparticles ends up in a tumor (Wilhelm
et al. 2016). Interaction of nanocarriers with blood proteins plays a crucial role in the
tissue distribution and clearance process of intravenously injected liposomes. Nanocarrier
clearance process involves, in fact, the absorption on the surface of naocarrier of the
plasma opsonins proteins (that include various protein such as immunoglobulin, fibronectin,
lipoproteins) and their recognition by the MPS, followed by excretion of the cargo at the
hepatic level and its subsequent metabolism by Kupffer cells. In a second alternative way,
liposome nanocarriers are metabolized by splenic macrophages, and after their accumulation,
they are metabolized and eliminated by the target tissues. Size, surface charge and colloidal
stability (Ishida et al. 2001, 2002) are the main factors affecting clearance process (by
the MPS) via proteins opsonization. Generally, large negatively charged liposomes are
eliminated more rapidly than small, positive (or neutral) charged nanocarriers (Bozzuto and
Molinari 2015). A second clearance process, involved in liposome-based nanocarriers, is
based on the action of the high-density lipoproteins (HDLs) and low-density lipoproteins
(LDLs) contained in the blood. These lipoproteins interact with liposomes nanocarriers and
causes lipid transfers (lipid depletion) and changes on the structure of liposomes surface
and reduction of their colloidal stability, which is followed by the liposome destruction and
release of the cargo to the plasma (Ishida et al. 2001, 2002). In order to hinder the clearance
process caused the interaction of nanocarriers with blood proteins, antifouling surface
(protein resistant) ligands such as poly(ethylene glycol) (PEG) and zwitterionic molecules
are widely employed for to avoid nonspecific protein adsorption and cell adhesion before
nanocarries reach the tumour sites. The aforementioned processes identify the key role
of the physico-chemical properties of nanocarriers during the clearance processes. In this
respect the design and engineering of the physico-chemical properties of novel nanocarriers
allow a proper control over the structure-function relationship thus minimizing the RES
sequestration of therapeutic compounds and unwanted side effects during drug delivery
processes.

4. Modes of interactions of nanocarriers with biological systems

Upon their insertion in biological fluids nanomaterials undergo transformation that may
profoundly alters their structure and properties. The main interactions of nano-materials
with biological systems can be classified into three basic modes: chemical, mechanical, and
electronic.

Inclusion of nanomaterials in biological environments often creates non-equilibrium
systems that may lead to high chemical reactivity (chemical interaction) and adsorption
capacities that may lead to phase transformations that include oxide formation, sulfidation,
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degradation, and dissolution (driven by oxidation or hydrolysis) (Wang et al. 2016). Particu-
larly important are the oxidative and reductive dissolution processes that cause the release
of soluble ionic species that are often the primary drivers of adverse biological responses.
Chemical interactions between nanocarriers surfaces and biological fluid phases include
chemical adsorption of ions, small molecules, proteins and ligand exchange. Biomolecular
adsorption, including protein corona formation, is expected to be particularly important.
The subsequent physical transformations such as aggregation, dispersion, and deposition are
also important. Among the possible transformations, dissolution is particularly significant
for the biological response, since soluble dissolution products that co-exist with the solid
phase have been implicated in the toxic responses for many nanomaterials (Wang et al.
2016).

Physical and mechanical interactions between nano-materials and soft biological struc-
tures are of special importance for high-aspect-ratio nanostructures, which can mechanically
perturb soft cellular substructures such as plasma and lysosomal membranes. For example,
long nanotubes have been implicated in adverse biological responses associated with cyto-
toxicity and frustrated cellular uptake (Wang et al. 2016). The presence of sharp edges can
cause spontaneous penetration of cell membranes with low energy barriers and can lead to
lipid extraction and membrane damage. Low-dimensional materials may cause mechanical
stress, deformation, and damage when cells attempt to package large, stiff plate-like or
fibrous structures into soft spherical lysosomes during cellular uptake.

Finally, nanomaterials can perturb biological process through electronic and surface
redox interactions. Electronic and redox surface reactions can alter the electronic, optical,
and magnetic properties of molecules and their ensembles by adding or removing electrons.
Within a naonocarrier system those processes can be exploited if they are associated
with correlated molecular reorganization processes such as assembly/disassembly (Fukino
et al. 2017), transformation of ensembles, geometric changes, and molecular motions
that are designed to be redox-responsive. In those cases, the permissive electron (or H)
transfers between material surfaces and biomolecular redox couples in cells and tissues
can perturb some essential biochemical pathways (or initiate new pathways) that lead to
adverse outcomes (mediated by reactive oxygen and nitrogen species). One of the great
advantages of redox-responsive devices and nanocarriers and nanomaterials is that they
have the potential to be readily integrated into existing electronic technologies.

In Figure 2, the modes of interaction between nano-carriers and biological systems is
reported. The arrows highlight the bi-directionality of the interactions, as the nanocarriers
(and/or their nanostructure transformation) products induce biological responses while the
biological environment induces chemical or physical material transformations.

5. Strategies to improve nanocarrier colloidal stability and circulation time

When injected into the blood circulation nanocarriers rapidly interact with the complex
biological environment encountered. The clearance of circulating nanocarriers from the
bloodstream, coupled with their high uptake by the MPS, represent an obstacle to any
attempt at targeting to tumors. In order to preserve the optimal nanocarriers efficiency,
the organism defenses must be circumvented by avoiding the nanocarrier recognition and
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FIGURE 2. Modes of the synergistic interaction between nano-carriers and bio-
logical systems.

the consequent neutralization and elimination of the invading active drugs. The physico-
chemical properties of nanocarriers, such as size (and morphology), surface functionality
(charge typology, stiffness), are the main parameters that can affect their biological clearance
(Moore et al. 2015). Different strategies has been adopted to prolong the circulation time,
while the relevant mechanisms of stabilization can be exploited to improve colloidal stability
in the biological media (Lombardo et al. 2004a; Casadonte et al. 2010; Pasqua et al. 2019).

A first approach to prolong the release rate of entrapped drugs consists in the choice of
drugs with enhanced hydrophobic character or by incorporating cholesterol lipids (Geng
et al. 2014; Bozzuto and Molinari 2015). Due to its hydrophobic character, cholesterol pref-
erentially interacts with the core region of the neutral membrane of liposomes nanocarriers,
thus inducing a dense packing of phospholipids. (bilayer-tightening effect). This causes a
reduction of their permeability and increases in vivo and in vitro stability, thus inhibiting
their transfer to high-density lipoprotein (HDLs) and low-density lipoprotein (LDLs).

A second approach to stabilize liposome nanocarriers in solution consists in the inclusion
of charged components that create a sensitive electrostatic surface charge (ζ -potential)
that promote the interaction of liposomes with cells and prevents their aggregation and
flocculation in solution. Some investigations indicate that negatively charged liposomes
are less stable than neutral and positive liposomes when injected into the blood circulation,
as they rapidly interact with the biological system subsequently to their opsonization with
circulating proteins, thus inducing a rapid uptake by the MPS and possible toxic effects
(Bozzuto and Molinari 2015).

Another important approach for the improvement of circulation times consists in conju-
gation to the surface of the liposome nanocarrier of natural (e.g. dextran, alginate, chitosan)
or synthetic (e.g. poly(ethylene glycol) PEG; poly(vinyl alcohol), PVA; poly(vinyl pyrroli-
done), PVP) polymers (Allen and Cullis 2013). This approach allows to overcome most of
the challenges in drug delivery processes such as the low blood circulation half-life, toxicity,
interception by the immune system, biocompatibility and antigenicity issues. Among the
hydrophilic polymers, PEG represents the most widely used polymer conjugate (Jain 2010).
PEG creates, in fact, a concentration of highly hydrated polymer brushes (hydration shell)
around the nanocarriers surface with extended crosslink (Caccamo et al. 2017; Caccamo
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and Magazù 2017). This process sterically inhibits both hydrophobic and electrostatic
interactions with plasma proteins or cells, thus reducing liposomal uptake process by the
MPS. PEGylated nanocarriers are not opsonized and are able to escape the capture by the
cells phagocytic systems (so called “stealth liposomes” effect). Many studies demonstrated
that PEGylated liposomes were able to improve the stability and blood-circulation time,
together with low plasma clearance and low volume of distribution (with minimal interaction
with non-tumoral tissues) (Jain 2010).

Finally, the enhancement of the colloidal stability of nanocarriers in solution may be
obtained by the inclusion of charged components that confer a net electrostatic repulsive
forces (Bozzuto and Molinari 2015; Lombardo et al. 2016a). It is worth stressing that
combined steric and electrostatic interaction generated by drugs inclusion may induce phase
transitions in liposomes that strongly influences the structural stability of the nanocarriers
as demonstrated by different studies (Kiselev et al. 2008; Kohlbrecher 2016; Yang 2016).
A detailed study of the interactions occurring between drug nanocarriers and biological
systems should become a prominent task of the design and characterization of new drug
delivery systems. Moreover different scattering techniques can be applied by employing
artificial membranes as simplified models for cell membranes (Katsaras and Gutberlet
2000; Wanderlingh et al. 2014; Kiselev and Lombardo 2017). Those studies have given
a strong input to the understanding of the complex combination of soft interactions that a
biomolecule can develop toward biological systems.

6. Engineering nanocarriers interactions and colloidal stability in complex biological
environments

The experimental assessment of the colloidal stability of nanocarriers is a complex task
due to the complex biological environment of pathological tissues. When nanocarriers
are delivered into diseased tissues, in fact, their properties are strongly influenced by the
high ionic content within the biological environment encountered (blood components,
cytoplasm, nucleus, intracellular membranes and their enclosed structures). Moreover,
possible ion complexation can modify the ionic strength and pH of the biological media thus
influencing nanocarriers structural properties and their related functions. This circumstance
is complicated by the fact that real biological systems exhibit heterogeneity, polydispersity
and variations in surface properties within the different biological media, thus making the
assumption of (idealized) model nanocarriers of identical nanoparticles unrealistic (Bozzuto
and Molinari 2015). Finally the combination of self-assembly processes and synergistic
effects can generate a structural and dynamic complex behavior of material systems at the
nanoscale (Calandra et al. 2015a).

In Figure 3, the potential of the main soft interaction expressed by a nanocarrier (drug
delivery) system is reported. The presence of an energy barrier resulting from the balance
between repulsive and attractive forces prevents that two nanocarriers adhering together
while approaching one another. In presence of additional charge screened effect that attenu-
ate the electrostatic (ES) repulsion (or in case of particles collision with sufficient energy)
nanocarriers are able to overcome that barrier thus favoring a decrease of their colloidal
stability, followed by an aggregation of the nanocarriers. Control over the nanocarriers soft
interactions represent, then, a crucial step for the engineering of the colloidal stability and
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FIGURE 3. Example of the main soft interaction expressed by a nanocarrier (drug
delivery) system.

biocompatibility of the therapeutic compounds, that are able to overcome obstacles and
biological barriers to cellular and tissue uptake, and improving (both in vitro and in vivo)
biodistribution of compounds to target sites (Ferrari 2015).

7. Supramolecular self-assembly and theranostic approach: Future perspectives and
critical issues

Recent discoveries in nanoscience and nanotechnology highlight the powerful methods
of supramolecular approaches for the construction of novel functional materials, with
enhanced and emergent properties compared to those of the individual components (Ma
and Zhao 2015). Molecular and supramolecular self-assembly are processes in which
molecules (or basic building blocks) spontaneously self-assemble to form ordered aggregates
(or macromolecules) usually in equilibrium states. Those nanostructures are based on
the complex combinations of different non covalent forces acting at the molecular and
supramolecular levels, and are able to create highly functional materials and devices with
remarkable properties. Supramolecular self-assembly allows the fabrication of a large
variety nanomaterials with emerging properties (Longo et al. 2006; Calandra et al. 2010) and
various architectures (e.g. quantum dots, polymers, nano-stars, nanorods, nanodisks, nano-
cages, Janus particles), chemical composition (organic/inorganic), and surface properties
(e.g. decoration with specific ligands and charges).

Through the appropriate manipulation of specific interactions it has been possible to
design supramolecular nanostructured materials such as supramolecular receptors effecting
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molecular recognition, signal processing and transport processes encountered in biological
systems (Ferrari 2015). Chemical-physics investigation of complex associating properties
highlight the preminet role of the interaction patterns (hydrogen bonding arrays, sequences
of donor and acceptor groups, ion coordination sites, etc.), in the creation of more and more
complex topology, architectures, structural transitions (Mallamace et al. 2001; Bonaccorsi
et al. 2013a,b; Calandra et al. 2015b; Liveri et al. 2018; Lombardo et al. 2019b).

7.1. Stimuli-responsive nanocarriers and targeted drug delivery: perspectives and
critical issues. The design of smart nanocarriers that can specifically respond to the tumour
microenvironment is significant to reduce the side effect to healthy tissues (Allen and Cullis
2013; Dai et al. 2017). For example, it is known that the tumour region presents a complex
microenvironment which is quite different from normal tissues, as it is characterized by
unevenness of blood flow, hypoxia and acidic pH (Mura et al. 2013; Dai et al. 2017).
Owing to these specific characteristics it is possible to exploit the physiology of diseased
tissues for the development of stimulus-responsive therapeutic nanoparticles that are able to
modulate their therapeutic action in response to an internal stimulus (Mura et al. 2013). For
example the acidic pH microenvironment can be utilized to selectively trigger nanovehicles
for enhanced cancer therapy efficacy. Different pH responsive (inorganic and organic)
nanocarriers have been developed during the last decades, in order to modulate the tumour
extracellular pH and combat these effects (Mura et al. 2013; Dai et al. 2017). It is worth
noticing that exposure to electromagnetic fields may cause sensitive alteration on cell
membrane components (Thakur and Sahu 2016; Calabró and Magazú 2018). For example,
even to exposure to extremely low electromagnetic fields cause sensitive unfolding process
in cell membrane proteins (Calabró et al. 2013). It has been demonstrated that shielding
action of disaccharides may provide an interesting approach for the development of effective
strategies to preserve proteins from electromagnetic fields (Magazú et al. 2013, 2016, 2018).
In conclusion, the study of relevant model systems can be adopted as simplified models
that mimic the relevant processes encountered in real cell membranes (Micali et al. 1998;
Lombardo et al. 2004b). Those studies have given a strong input to the understanding
of the complex processes driven by the interactions that a nanostructured material can
develop toward biological systems. Furthermore, chemical-physics investigation of complex
associating properties in nanomaterials highlight the prominent role of the interaction
patterns in the creation of more and more complex topology, architectures and structural
transitions.

8. Conclusions and future perspectives

In the past 20 years, the development of nanocarrier-based platform has led to significant
progress in biotechnology and nanomedicine applications. Although these drugs show
good performance against specific diseases, it cannot be ignored their inherent drawbacks,
mainly connected with the limited absorption and request of frequent injection for patients.
In this paper we provide an overview on some fascinating developments in the area of
nanomedical research by addressing some relevant open questions and critical issues arising
in the investigation of the interaction of nanomaterials (and nanocarriers in particular) with
biological systems. Our aim is to offer some indications for the design of more efficient
nanocarriers. As a matter of fact the complex microenvironment in living systems strongly
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affect the functionality of nanomaterials. The interactions and structural changes induced in
presence complex biological media may compromise the design goals (e.g. degradability of
materials and biocompatibility issues). Therefore, a deeper knowledge and understanding of
the real interactions involved in the diseased tissues is fundamental for the development of
novel therapeutic approaches and protocols based on the employment of smart nanocarriers.
However, many questions still remain open for what concerns the way to deal with the
complexity of the biological processes involved. What is the minimal number of key
parameters (and their related key factors) required to describe behavior of nanomaterials
without sacrificing the complexity of the identified process? In other words, what is the

“minimum level of complexity” to assume in the theoretical and experimental models that
may satisfactorily describe the nanocarriers (and nanomaterials) interaction with biological
systems. In our opinion, the investigation of a multiplicity of simultaneous factors and
biological functionality may be replaced with the systematic study the effect few parameters
at a time (such as surface charge density and/or nanoparticle size/topology). Finally, the
difficulty to predict the behavior and responses of nanoparticles-based drug delivery systems
is connected with the difficulty to fully describe (by mathematical equations) the complex
structural and dynamic processes involved in biological systems. The identification of the
key factors for the design of efficient nanocarriers represent then the fundamental (initial)
step to channel, in the right direction, the research efforts of decipher the complexity
involved in complex biological processes.
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