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Abstract
Given a multifunction F : [a, b] × Rn × Rn → 2R and a function h : X → R (with
X ⊆ Rn), we consider the following implicit two-point problem: find
u ∈ W2,p([a, b], Rn) such that

{ h(u′′ (t)) ∈ F(t, u(t), u′(t)) a.e. in [a, b],
u(a) = u(b) = 0Rn . We prove an existence theorem

where, for each t ∈ [a, b], the multifunction F(t, ·, ·) can fail to be lower semicontinuous
even at all points (x, y) ∈ Rn × Rn. The function h is assumed to be continuous and
locally nonconstant.
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1 Introduction
Let [a, b] be a compact interval. Given a multifunction F : [a, b] × Rn × Rn → R and a
function h : X → R (with X ⊆ Rn), we are interested in the following implicit two-point
problem: find u ∈ W ,p([a, b], Rn) such that

⎧
⎨

⎩
h(u′′(t)) ∈ F(t, u(t), u′(t)) a.e. in [a, b],
u(a) = u(b) = Rn .

()

As usual, W ,p([a, b], Rn) denotes the space of all functions u ∈ C([a, b], Rn) such that u′

is absolutely continuous in [a, b] and u′′ ∈ Lp([a, b], Rn).
Very recently, in [], the explicit form of problem () has been considered, and some new

results have been proved for both the multivalued problem
⎧
⎨

⎩
u′′(t) ∈ F(t, u(t), u′(t)) a.e. in [a, b],
u(a) = u(b) = Rn

()

and the single-valued problem
⎧
⎨

⎩
u′′(t) = f (t, u(t), u′(t)) a.e. in [a, b],
u(a) = u(b) = Rn ,

()
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where F : [a, b]×Rn ×Rn → Rn is a multifunction and f : [a, b]×Rn ×Rn → Rn is a given
single-valued map.

The main peculiarity of the results proved in [] resides in the light regularity which
is required for F and f . In particular, if the multifunction F satisfies the assumptions of
Theorem . of [], then for all t ∈ [a, b] the multifunction F(t, ·, ·) can fail to be lower
semicontinuous even at all points (x, y) ∈ Rn × Rn. Similarly, if a function f satisfies the
assumptions of Theorem . of [], then for all t ∈ [a, b] the function f (t, ·, ·) can be dis-
continuous even at all points (x, y) ∈ Rn × Rn. Moreover, the single-valued case allows to
impose less stringent requirements of measurability on f . For a more detailed discussion
and examples, as well as for comparison with the existing literature, we refer to [] and to
the references therein.

The aim of this short note is simply to show how the results of [], together with a deep
result of B Ricceri on inductively open functions, can be put together in order to solve the
implicit vector problem (). More specifically, our aim is to prove the following existence
theorem, which is in the same spirit of the results of [] (in the sequel, if n ∈ N and i ∈
{, . . . , n}, Pi : Rn → R will denote the projection from Rn over the ith axis; moreover,
we shall denote by B(Rn), L([a, b]) and m the Borel family of Rn, the family of all Lebesgue
measurable subsets of [a, b], and the -dimensional Lebesgue measure on the real line,
respectively).

Theorem . Let X ⊆ Rn be a nonempty, closed, connected, and locally connected subset
of Rn, and let h : X → R be a continuous function.

Let F : [a, b] × Rn × Rn → R be a given multifunction, p ∈ [, +∞[, α : [a, b] → Rn and
β ∈ Lp([a, b], Rn) two given functions. Assume that there exist a multifunction G : [a, b] ×
Rn × Rn → R and sets E, . . . , En ⊆ Rn, with m(Pi(Ei)) =  for all i = , . . . , n, such that:

(i) G is L([a, b]) ⊗ B(Rn) ⊗ B(Rn)-measurable with nonempty closed values;
(ii) for a.e. t ∈ [a, b], one has

{
(x, y) ∈ Rn × Rn : G(t, ·, ·) is not lower semicontinuous at (x, y)

}

∪
{

(x, y) ∈ Rn × Rn : G(t, x, y) ! F(t, x, y)
}

⊆
n⋃

i=
Ei;

(iii) intX(h–(t)) = ∅, for all t ∈ intR(h(X));
(iv) for a.e. t ∈ [a, b] and for all (x, y) ∈ Rn × Rn, one has

G(t, x, y) ⊆ h(X),  < αi(t) ≤ βi(t) for all i = , . . . , n

and

h–(G(t, x, y)
)
⊆

n∏

i=

[
αi(t),βi(t)

]

(where αi(t) and βi(t) denote the ith components of the vectors α(t) and β(t),
respectively).
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Then there exists u ∈ W ,p([a, b], Rn) such that
⎧
⎨

⎩
h(u′′(t)) ∈ F(t, u(t), u′(t)) for a.e. t ∈ [a, b],
u(a) = u(b) = Rn .

It is immediate to check, by very simple examples, that if a multifunction F satisfies the
assumptions of Theorem ., then for all t ∈ [a, b] the multifunction F(t, ·, ·) can fail to be
lower semicontinuous even at all points (x, y) ∈ Rn × Rn. In particular, when F is single
valued, the function F(t, ·, ·) can be discontinuous at all points (x, y) ∈ Rn × Rn. In the next
section, two simple examples are provided in order to illustrate these circumstances. In
this connection, Theorem . can be compared with Theorem . of [] (and with the
references therein), where the same problem is studied (in the single-valued case, and
under the same assumptions on h) by assuming the continuity of F .

For the definitions and basic facts as regards multifunctions, the reader is referred to [].

2 The proof of Theorem 1.1
Without loss of generality we can assume that assumptions (ii) and (iv) are satisfied for all
t ∈ [a, b]. Moreover, let

E :=
n⋃

i=
Ei.

Now, observe that by assumption (iii) and Theorem . of [] the function h is induc-
tively open. That is, there exists a set Y ⊆ X such that the function

h|Y : Y → h(X)

is open and h(Y ) = h(X). It follows that the multifunction T : h(X) → Y defined by
putting, for each s ∈ h(X),

T(s) = h–(s) ∩ Y

is lower semicontinuous in h(X) with nonempty values. To see this, fix any set # ⊆ Y ,
with # open in the relative topology of Y . We get

T–(#) :=
{

s ∈ h(X) : T(s) ∩ # ≠ ∅
}

=
{

s ∈ h(X) : h–(s) ∩ Y ∩ # ≠ ∅
}

=
{

s ∈ h(X) : h–(s) ∩ # ≠ ∅
}

= h(#).

Since the function h|Y : Y → h(X) is open, the set h(#) is open in h(X). It follows that the
set T–(#) is open in h(X), hence T is lower semicontinuous in h(X), as claimed.

Let $ : [a, b] × Rn × Rn → Y be defined by

$(t, x, y) := T
(
G(t, x, y)

)
= h–(G(t, x, y)

)
∩ Y
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(note that $ is well defined since G(t, x, y) ⊆ h(X) for all (t, x, y) ∈ [a, b] × Rn × Rn). We
observe the following facts:

(a) the multifunction $ is L([a, b]) ⊗ B(Rn) ⊗ B(Rn)-weakly measurable; that is, for
each set # ⊆ Y , with # open in the relative topology of Y , the set

$–(#) :=
{

(t, x, y) ∈ [a, b] × Rn × Rn : $(t, x) ∩ # ≠ ∅
}

belongs to L([a, b]) ⊗ B(Rn) ⊗ B(Rn) (this follows from Proposition .. of [],
since G is L([a, b]) ⊗ B(Rn) ⊗ B(Rn)-measurable and T is lower semicontinuous);

(b) $ has nonempty values and for all t ∈ [a, b] one has

{
(x, y) ∈ Rn × Rn : $(t, ·, ·) is not lower semicontinuous at (x, y)

}
⊆ E.

Indeed, if t ∈ [a, b] and (x, y) ∈ (Rn × Rn) \ E are fixed, then the multifunction G(t, ·, ·) is
lower semicontinuous at (x, y), hence (by the lower semicontinuity of T ) the multifunction

(x, y) ∈ Rn × Rn → $(t, x, y) = T
(
G(t, x, y)

)

is lower semicontinuous at (x, y), as claimed.
Now, let $ : [a, b] × Rn × Rn → Rn be defined by

$(t, x, y) := $(t, x, y).

It follows by assumption (iv) and by construction that

$(t, x, y) ⊆
n∏

i=

[
αi(t),βi(t)

]
for all (t, x, y) ∈ [a, b] × Rn × Rn. ()

By Proposition . and Theorem . of [], the multifunction $ is L([a, b]) ⊗ B(Rn) ⊗
B(Rn)-measurable with nonempty values. Moreover, for all t ∈ [a, b] one has

{
(x, y) ∈ Rn × Rn : $(t, ·, ·) is not l.s.c. at (x, y)

}
⊆ E.

At this point, let us apply Theorem . of [] to the multifunction $ , choosing k = n, T =
[a, b], Xi = R for all i = , . . . , n, S = Rn (all the spaces are considered with their Euclidean
distance and with the usual Lebesgue measure over their Borel family), and, as above,

E :=
n⋃

i=
Ei ⊆ Rn.

We find that there exist Q, . . . , Qn ⊆ R, with Qi ∈ B(R) and m(Qi) =  for all i = , . . . , n,
and a function φ : [a, b] × Rn × Rn → Rn, such that

(i)′ φ(t, x, y) ∈ $(t, x, y) for all (t, x, y) ∈ [a, b] × Rn × Rn;
(ii)′ for all (x, y) ∈ (Rn × Rn) \ [⋃n

i=(P–
i (Qi) ∪ Ei)], the function φ(·, x, y) is L([a, b])-

measurable;
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(iii)′ for a.e. t ∈ [a, b], one has

{
(x, y) ∈ Rn × Rn : φ(t, ·, ·) is discontinuous at (x, y)

}
⊆

n⋃

i=

(
Ei ∪ P–

i (Qi)
)
.

Of course, for all i = , . . . , n, one has m(Pi(Ei ∪ P–
i (Qi))) = .

Now, let us apply Theorem . of [] with f = g = φ, taking into account that for a.e.
t ∈ [a, b] and for all (x, y) ∈ Rn × Rn one has

φ(t, x, y) ∈ $(t, x, y) ⊆
n∏

i=

[
αi(t),βi(t)

]
.

We find that there exist u ∈ W ,p([a, b], Rn) and a set U ∈ L([a, b]), with m(U) = , such
that

⎧
⎨

⎩
u′′(t) = φ(t, u(t), u′(t)) for all t ∈ [a, b] \ U,
u(a) = u(b) = Rn ,

and also

(
u(t), u′(t)

)
/∈

n⋃

i=

(
Ei ∪ P–

i (Qi)
)

for all t ∈ [a, b] \ U.

In particular, by assumption (ii) we get

G
(
t, u(t), u′(t)

)
⊆ F

(
t, u(t), u′(t)

)
for all t ∈ [a, b] \ U.

Consequently, taking into account the continuity of h and the closedness of X, for all t ∈
[a, b] \ U we get

u′′(t) = φ
(
t, u(t), u′(t)

)
∈ $

(
t, u(t), u′(t)

)
⊆ h–(G

(
t, u(t), u′(t)

))
.

In particular, we get

h
(
u′′(t)

)
∈ G

(
t, u(t), u′(t)

)
⊆ F

(
t, u(t), u′(t)

)

for all t ∈ [a, b] \ U and hence the function u satisfies our conclusion. The proof is now
complete.

Remark We now give two simple examples of application of Theorem .. The first exam-
ple concerns with the scalar single-valued case, while the second one deals with the vector
multivalued case.

Example . Let n =  and let [a, b] be any compact interval. Let us consider the problem
⎧
⎨

⎩
cos(u′′(t)) = F(t, u(t), u′(t)) for a.e. t ∈ [a, b],
u(a) = u(b) = ,

()
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where F : [a, b] × R × R → R is the (single-valued) function defined by putting, for each
(x, y) ∈ R,

F(t, x, y) =

⎧
⎨

⎩
 if x ∈ Q or y ∈ Q,
 otherwise.

Of course, such a function F (which does not depend on t explicitly) is discontinuous at
all points (x, y) ∈ R. We observe that Theorem . can easily be applied by choosing, for
any p ∈ [, +∞[,

G : [a, b] × R × R → R, G(t, x, y) ≡ ,

E = Q × R, E = R × Q, X = [π , π ], α(t) ≡ π , β(t) ≡ π , h(t) = cos(t) (restricted to
the interval [π , π ]). Indeed, such a function G is L([a, b]) ⊗ B(R) ⊗ B(R)-measurable,
P(E) = P(E) = Q, and for all t ∈ [a, b] one has

{
(x, y) ∈ R : G(t, ·, ·) is discontinuous at (x, y)

}

∪
{

(x, y) ∈ R : G(t, x, y) ≠ F(t, x, y)
}

= E ∪ E.

Moreover, for all (t, x, y) ∈ [a, b] × R × R we have

G(t, x, y) =  ∈ h(X) and h–(G(t, x, y)
)

= h–() ⊆ [π , π ] =
[
α(t),β(t)

]
.

Finally, observe that assumption (iii) is satisfied since for all t ∈ intR(h(X)) = ] – , [ the set
h–(t) contains only two points.

Consequently, by Theorem ., problem () has a solution in u ∈ W ,p([a, b], R). Such
a solution u also satisfies the condition u′′(t) ∈ [π , π ] for a.e. t ∈ [a, b], hence we get
u ∈ W ,∞([a, b], R).

Moreover, observe that Theorem . can be applied in analogous way also by taking
X = [π + kπ , π + kπ ] and α(t) ≡ π + kπ , β(t) ≡ π + kπ , with k ∈ N. Then, for
each k ∈ N, we get the existence of a solution uk ∈ W ,∞([a, b], R) such that u′′

k (t) ∈ [π +
kπ , π + kπ ] for a.e. t ∈ [a, b]. Hence, problem () has infinitely many solutions. Finally,
we note that problem () does not admit the trivial solution u(t) ≡ , since F(t, x, ) = 
for all (t, x) ∈ [a, b] × R and cos() = .

Example . Let n = , and let ψ : R → R be defined by ψ(v, z) = v + z. In what follows,
we denote vectors of R by the notations x := (x, x) and y := (y, y). Let E ⊆ R be the set
of vectors such that at least one component is rational, that is,

E :=
{

(x, y) ∈ R : at least one of x, x, y, y is rational
}

.

Let F : [, ] × R × R → R be defined by

F(t, x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

 if (x, y) ∈ E,
[ + t,  + t] if (x, y) /∈ E and x < ,
[ + t,  + t] if (x, y) /∈ E and x > .
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Of course, for any fixed t ∈ [, ], the multifunction F(t, ·, ·) is not lower semicontinuous
at any point (x, y) ∈ R. By Theorem ., it is easily seen that for any fixed p ∈ [, +∞[ the
problem

⎧
⎨

⎩
ψ(u′′(t)) ∈ F(t, u(t), u′(t)) a.e. in [, ],
u() = u() = R

()

has a solution u ∈ W ,p([, ], R). To this aim, choose X = [, ] × [, ], h := ψ |X , α(t) ≡
(, ), β(t) ≡ (, ), G : [, ] × R × R → R, with

G(t, x, y) =

⎧
⎨

⎩
[ + t,  + t] if x ≤ ,
[ + t,  + t] if x > 

and

E := Q × R × R × R, E := R × Q × R × R,

E := R × R × Q × R, E := R × R × R × Q.

Of course, such a multifunction G is L([, ])⊗B(R)⊗B(R)-measurable with nonempty
closed values. Moreover, if one fix any t ∈ [, ], then the multifunction G(t, ·, ·) is lower
semicontinuous at each point (x, y) ∈ R, with x ≠ . Consequently, for all t ∈ [, ] we
have

{
(x, y) ∈ R × R : G(t, ·, ·) is not lower semicontinuous at (x, y)

}

∪
{

(x, y) ∈ R × R : G(t, x, y) ! F(t, x, y)
}

=
⋃

i=
Ei = E.

Clearly, for all i = , , , , one has Pi(Ei) = Q. Now, observe that for all (t, x, y) ∈ [, ] ×
R × R we have

G(t, x, y) ⊆ [, ] ⊆ h(X) = [, ]

and

h–(G(t, x, y)
)
⊆ X = [, ] × [, ] =

[
α(t),β(t)

]
×

[
α(t),β(t)

]
.

Finally, let us show that for all s ∈ intR(h(X)) = ], [, we have intX(h–(s)) = ∅ (though
this fact is quite intuitive - since h is never locally constant - we shall provide an explicit
proof ). To this aim, fix s ∈ intR(h(X)), and let (v, z) ∈ h–(s). Therefore, (v, z) ∈ X and
h(v, z) = v + z = s. Let # be an open set in X such that (v, z) ∈ #. Of course, one can
find r >  such that

(
[v – r, v + r] × [z – r, z + r]

)
∩ X ⊆ #.



Cubiotti and Yao Boundary Value Problems  ( 2015)  2015:93 Page 8 of 8

Let v be any point in [v – r, v + r] ∩ [, ], with v ≠ v. We have

(v, z) ∈ #

and

h(v, z) = v + z ≠ v + z = s.

Hence, the set h–(s) has empty interior in X, as claimed. Thus, all the assumptions of The-
orem . are satisfied. Consequently, problem () has at least a solution u ∈ W ,p([, ], R).

As a matter of fact, since u′′(t) ∈ X for a.e. t ∈ [, ], we get u ∈ W ,∞([, ], R). As before,
we note that problem () does not admit the trivial solution u(t) ≡ R .
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