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Aim and motivation The propagation of weak discon-
tinuities is investigated in an isotropic, homogenous
and elastic n-type semiconductor with defects of dis-
location. To this aim we introduce a new variable re-
lated to the surface across which the solutions or/and
some of their derivatives undergo a jump. Following
a Boillat’s methodology for quasi-linear and hyper-
bolic systems of the first order, we obtain Bernoulli’s
equation governing the propagation of weak disconti-
nuities.
Following A. Jeffrey in [2], the solution hypersurfaces
of systems of PDEs are referred to as waves because
they may be interpreted as representing propagat-
ing wavefronts. Some of the solutions present various
types of discontinuities, when some surface is crossed,
the solution or/and its derivatives undergo a jump. In
this case it is said that the solution presents a shock,
or it is a shock wave or that we are in presence of a
discontinuity waves (jumps of the first order deriva-
tives) [1, 2].

Equation governing the evolution of electronic and dis-
location fields We apply the theory developed in [3] for
a semiconductor with defects of dislocation (see Fig.1)
of n-type to a problem of a propagation of electronic-
dislocation discontinuity waves in a n-type Ge.

Equations governing the electronic and dislocation
fields evolution can reduce to the following form (see
[3]): 

ρṅ + jnk,k = ρn
τ+ − κa,

τnjnk − αna,k + ρDnn,k = −jnk ,
ȧ + Vk,k = 0

τaV̇k + Daa,k − αυn,k = −Vk.
where the superimposed dot denotes partial time
derivative, the interaction between the electron and
dislocation fluxes is disregarded and αn = αn(a), αυ =
αυ(n) are coupling functions reflecting some new cross-
kinetic effects during electronic-dislocation interac-
tions. Furthermore, τ+ denotes the life time of elec-
trons, τn is the relaxation time of electrons, Dn and
Da are the diffusion coefficients on electrons and dis-
locations, respectively, τa denotes the relaxation time
of dislocations, k is the recombination constant due
to dislocations and the recombination function gn has
the form depending on the dislocation field. More-
over, we consider the relaxation semiconductor, so
that τ+ = τn, αn and αυ are constant

One-dimensional case Now, we consider the one-
dimensional case and we apply Boillat metodology for
quasi-linear and hyperbolic systems of the first order,
we obtain Bernoulli’s equation governing the prop-
agation of weak discontinuities. Assuming that the
electronic-dislocation discontinuity wave propagation
is along the x axis, the involved quantities depend on
x1, denoted by x, x2 = x3 = 0, we have:
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where αn = αn(a) and αv = αv(n). From the above system
we have
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Then, the remained system reads
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In our case, being n = (n1, 0, 0), An(U) = An1 having
the form
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with
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They are linearly independent, so the system Ut +
A(U)Ux = B(U) is hyperbolic. The discontinuity waves

which are propagating with the velocity given by λ
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and λ
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2 are not exceptional waves in the sense of Lax-

Boillat [1], because
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We fix our attention on λ = λ
(+)
2 , which corresponds to

a progressive fast wave traveling to the right. Analo-
gous results are valid for the waves propagating with
the other velocities.
The eigenvectors left and right l = l
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The characteristic rays are
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Now, we consider an uniform unperturbed state in
which U0, solution of the system Ut + A(U)Ux = B(U),
has the form U0 = (n0, 0, a0, 0), with n0 and a0 constants.
In U0 we have(
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where the symbol “ 0 ′′ indicates that the quantities are
calculated in U0. The radial velocity along the charac-
teristic rays is
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By integration of the characteristic rays one obtain

x0 = σ = t, x = (x)0 + λ
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l
(+)
2 · r(+)

2

)
0

{
dπ

dσ
+ (|ϕx|)0

(
∇λ(+)

2 · r(+)
2

)
0
π2
}

= c0 π,

where
c0 =

[
∇
(
l
(+)
2 ·B

)
· r(+)

2

]
0

Taking into account that

l
(+)
2 ·B =

ρλ
(+)
2

n1

(
n

τn
− κa

ρ

)
−
jn1
τn

+
V1R

2αvτnτa
,

∇
(
l
(+)
2 ·B

)
=

∂
(
l
(+)
2 ·B

)
∂n

,
∂
(
l
(+)
2 ·B

)
∂j

,
∂
(
l
(+)
2 ·B

)
∂a

,
∂
(
l
(+)
2 ·B

)
∂V

 ,

where

∂
(
l
(+)
2 ·B

)
∂n

=
ραn
G

∂αv
∂n

 1

2λ
(+)
2 n1

(
n

τn
− κa

ρ

)
+
V1

αv


+
ρλ

n1τn
+
V1R

2α2
vτ
nτa

∂αv
∂n

,

∂
(
l
(+)
2 ·B

)
∂j

= − 1

τn
,

∂
(
l
(+)
2 ·B

)
∂a

=
ραv

2n1λ
(+)
2 G

∂αn
∂a

(
n

τn
− κa

ρ

)
− λ(+)

2
κ

n1
+
ρV1

G

∂αn
∂a

,

∂
(
l
(+)
2 ·B

)
∂V

=
R

2αvτnτa
.

From the above results we obtain
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Relation above gives
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In the case in which there exists a critical time σc
where Φ(σc) = 0, then π →∞, and this may correspond
to a shock wave [1].
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