Weak discontinuity waves in n-type semiconductors with

Aim and motivation The propagation of weak discon-
tinuities is investigated in an isotropic, homogenous
and elastic n-type semiconductor with defects of dis-
location. To this aim we introduce a new variable re-
lated to the surface across which the solutions or/and
some of their derivatives undergo a jump. Following
a Boillat’s methodology for quasi-linear and hyper-
bolic systems of the first order, we obtain Bernoulli’s
equation governing the propagation of weak disconti-
nuities.

Following A. Jeffrey in [2], the solution hypersurfaces
of systems of PDEs are referred to as waves because
they may be interpreted as representing propagat-
ing wavefronts. Some of the solutions present various
types of discontinuities, when some surface is crossed,
the solution or/and its derivatives undergo a jump. In
this case it is said that the solution presents a shock,
or it is a shock wave or that we are in presence of a
discontinuity waves (jumps of the first order deriva-

tives) [1,2].

Equation governing the evolution of electronic and dis-
location fields We apply the theory developed in [3] for
a semiconductor with defects of dislocation (see Fig.1)
of n-type to a problem of a propagation of electronic-
dislocation discontinuity waves in a n-type Ge.

Equations governing the electronic and dislocation
fields evolution can reduce to the following form (see
3)):

[ pit g = -
T"j; — ana .+ pDpn . = —j;!,
a + ijk =0

Tavk + Daa j, — ayn , = —Vy.

KaQ,

\
where the superimposed dot denotes partial time
derivative, the interaction between the electron and
dislocation fluxes is disregarded and o, = ap(a), ay =
ay(n) are coupling functions reflecting some new cross-
kinetic effects during electronic-dislocation interac-
tions. Furthermore, 77 denotes the life time of elec-
trons, 7" is the relaxation time of electrons, D, and
D, are the diffusion coefficients on electrons and dis-
locations, respectively, 7* denotes the relaxation time
of dislocations, k is the recombination constant due
to dislocations and the recombination function ¢" has
the form depending on the dislocation field. More-
over, we consider the relaxation semiconductor, so
that 77 = 7", a,, and o, are constant

One-dimensional case Now, we consider the one-
dimensional case and we apply Boillat metodology for
quasi-linear and hyperbolic systems of the first order,
we obtain Bernoulli’s equation governing the prop-
agation of weak discontinuities. Assuming that the
electronic-dislocation discontinuity wave propagation
is along the r axis, the involved quantities depend on
r1, denoted by x, xr9 = r3 =0, we have:
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where o, = ap(a) and ay = ay(n). From the above system

we have
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Then, the remained system reads
U;+ A(U)U, = B(U)

where U = (n, j', a, V)1, and
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In our case, being n = (n,0,0), A,(U) = An; having

the form
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The matrix An; admits the following simple eigenval-
ues:
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The eigenvalues )\gi> are real when the condition
oDy + pDgem" — G > 0 is valid, i.e. apoy < DpD,. The
eigenvalues A;ﬂ
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are always real. The left eigenvectors
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, and the right eigenvectors r," ", ry ' corre-

sponding, to eigenvalues )\gi), )\;i), have the form
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They are linearly independent, so the system U; +

A(U)U,; = B(U) is hyperbolic. The discontinuity waves
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which are propagating with the velocity given by A,

and Aéﬂ are not exceptional waves in the sense of Lax-
Boillat [1], because
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We fix our attention on A = A, ’, which corresponds to
a progressive fast wave traveling to the right. Analo-
gous results are valid for the waves propagating with
the other velocities.
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The eigenvectors left and right 1 =1, " and r =1, /,
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corresponding to A, ’ satisty the following relation
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The characteristic rays are
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Now, we consider an uniform unperturbed state in

which U, solution of the system U; + A(U)U, = B(U),

has the form U" = (nY,0,4",0), with n” and " constants.
In UY we have
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where the symbol “"” indicates that the quantities are

calculated in U'. The radial velocity along the charac-
teristic rays is
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By integration of the characteristic rays one obtain
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and the wave front in the first approximation is
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The amplitude 7(x,t) satisfies the following equation:
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From the above results we obtain
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Relation above gives
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In the case in which there exists a critical time o,
where ®(o.) = 0, then m — 0o, and this may correspond
to a shock wave [1].

References

1] Boillat, G., La propagation des ondes, Gauthier-Villars,
Paris, 1965.

2] Jeffrey, A., Quasilinear hyperbolic systems and waves, Pit-
man, London, 1976.

3] L.Restuccia and B.Maruszewski, " Interactions between
electronic field and dislocations in a deformable semiconduc-
tor”, Int. Journal of Applied FElectromagnetics and Me-
chanics, 6, 139-153 (1995).

) }2\'4] M.P. Mazzeo, L. Restuccia, "Thermodynamics of ex-
0 trinsic semiconductors with dislocations”, Communication to

(+) 2 2 2
<r2 ) — |~ 07,0 1, 0 ’ 0
0 0 nlﬁo n1£0 L

"SIMAI Congress, ISSN: 1827-9015, DOI: 10.1685/CSC06113,
ISSN: 1970-4429 (2006).

0 0
—ayr"SY (8&?]) +2p%(adr™)? (%)

dr.




