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Simple Summary: A lack of adequate refuge, even in the absence of predators, can alter the 

metabolism, levels of corticosteroids, growth and behavior in various groups of animals. Even 

though some of those processes (higher metabolic rates and activation of the stress response of the 

hypothalamic–pituitary–adrenal axis) in animals can result in enhanced reactive species (RS) 

production and oxidative stress, there is no study examining the effects of shelter on oxidative stress 

parameters. The results from this study showed that in crested newt larvae the absence of refuges 

altered their oxidative/antioxidative status and movement, but did not affect their 

aggressivity/injuries rate. Higher values of catalase, glutathione peroxidase, glutathione S-

transferase and glutathione can indicate increased production of hydrogen peroxide in individuals 

without an adequate hiding place. This boosted antioxidant defense has a certain physiological cost 

that can be expressed in terms of the consumption of energy needed to maintain it as upregulated. 

Abstract: Shelters are important for animal survival. Provision of adequate hiding places allow 

animals to express their natural sheltering behavior and it can have different positive effects on 

cortisol levels, physiological processes and mental performance. Although the absence of a refuge 

activates some stress response, its effect on oxidative stress has not been adequately examined. This 

study investigated whether the presence/absence of a shelter modifies the oxidative status (the 

antioxidant system and oxidative damage) and aggressive behavior of crested newt larvae (Triturus 

macedonicus and its hybrid with T. ivanbureschi). Our results show that individuals reared with 

shelters had lower values of the tested antioxidant parameters (catalase, glutathione peroxidase, 

glutathione S-transferase and glutathione), indicating a lower production of reactive species than 

individuals reared without shelter. The same pattern was observed in both T. macedonicus and its 

hybrid. Contrary to the activation of some physiological pathways, shelter availability did not 

significantly affect the rate of intraspecific aggressive behavior. The physiological benefits of shelter 

use can be manifested as a lower requirement for investment in the energy necessary for the 

maintenance of the upregulated antioxidant defenses, activation of repair systems and synthesis of 
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endogenous antioxidants. This study highlights the importance of shelter provision, which may be 

valuable in habitat restoration and animal conservation studies. 

Keywords: amphibian larvae; antioxidant system; oxidative stress; hybrid; refuge 

 

1. Introduction 

The existence of shelters has been shown to be of great importance for the survival of animals 

that remain hidden for significant amounts of time during different processes (e.g., rest, sleep, 

digestion, reproduction) [1–3]. Shelters provide several benefits, such as protection from other 

animals to avoiding adverse environmental conditions [4–6]. For example, shelter nest-box use in 

birds reduce their thermoregulatory costs, allowing for the allocation of stored resources to egg 

production [7]. For animals that need to hide from predators, shelters provide safety and enable the 

saving of energy necessary for camouflage or vigilance. Abandonment of shelters or a lack thereof 

exposes individuals to challenging and sometimes hostile abiotic and biotic factors [4,5,8]. Under the 

latter scenario, individuals are forced to move to avoid adverse environmental factors, which can 

affect other animal activities. Exposed individuals are in constant preparation for explosive and/or 

prolonged physical activities (e.g., swimming, running), increased mental alertness and maintenance 

of all senses at a level for a fast reaction [9,10]. All of these activities are metabolically demanding and 

can alter the energy budget, behavior and physiological processes [2,6,11,12]. It was shown that the 

lack of shelter elevated the basal corticosterone level in snakes [2], while in the Atlantic salmon Salmo 

salar no access to shelter increased their basal plasma cortisol levels, standard metabolic rates and 

overall metabolism [6,11]. 

Even though higher metabolic rates and activation of the stress response of the hypothalamic–

pituitary–adrenal (HPA) axis [13,14] in animals devoid of adequate hiding places result in enhanced 

reactive species (RS) production and oxidative stress, to our knowledge there is no study examining 

the effects of shelter on oxidative stress parameters. Managing RS production is a pivotal 

physiological process, as unquenched RS can wreak havoc on cell components (lipids, proteins and 

DNA) and structures, and negatively affect individual fitness [15]. The antioxidant defense (AOS) 

machinery plays an important role in this process. The system consists of a complex of enzymatic and 

non-enzymatic components, which together are involved in the lowering and removal of RS and/or 

transforming them into less reactive compounds. They also eliminate intermediate derivatives of 

oxidative damage (hydroperoxides) from the organism [16]. 

Amphibian populations are in decline worldwide and more than 40% of all known amphibian 

species are marked as threatened by extinction [17]. Several factors (habitat modification, 

environmental pollution, climate change, invasive species and pathogens) and their synergic effects 

have been suggested as responsible for this situation [17]. Habitat modification is among the most 

important causes of many declines, highlighting the importance of shelter presence [18]. Even though 

all life stages are affected by these factors, the development of larvae and their metamorphosis can 

be additionally sensitive to unpredictable and variable conditions that can significantly affect 

individual survival and fitness (body condition, length of the development period, morphology and 

behavior) [19–23]. The putative carry-over effects of having a poorer performance/physiological 

status at the early stages are not well understood yet, and compensatory responses might leave 

negative consequences on the life history of an individual in the long run. 

Other than habitat deterioration, amphibian larvae are also vulnerable to predation by fish and 

aquatic invertebrates. For newts, the presence of fish was shown to be particularly detrimental. 

Several studies have demonstrated that appropriate hiding places can mitigate these threats. It was 

suggested that supporting the aquatic vegetation should be favored as one of the effective 

conservation measures for newts [24]. Refuge availability has been found to increase the survival rate 

of two newt species’ (Lissotriton helveticus and Ichthyosaura alpestris) larvae by more than twofold 

when the predator (brown trout Salmo trutta) was present [25]. A complex habitat reduces the 
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predator–prey encounter rate, important in antipredator behavior in the presence of visually oriented 

predators such as fish [26]. The positive effect of shelter provision on amphibian larvae fitness was 

also reported for the red-eyed treefrog (Agalychnis callidryas). Larvae kept in a shelter showed signs 

of reduced stress and metamorphosed having significantly larger body sizes and did so at a later time 

than individuals reared either without shelter or only with shade [12]. 

Alongside the threat of predation, intraspecific aggression represents another major source of 

mortality for newt larvae [27]. Conspecific attacks often result in injuries of the tail, gills or limbs 

[28,29], and cannibalism is also common [28]. This aggressive behavior lowers intraspecific 

competition as the competitive ability or survival of injured larvae is reduced when compared to that 

of uninjured organisms [29]. It was suggested that intraspecific aggression tends to decrease when 

larvae face stressful environments/conditions, such as drying environments and the presence of 

predators [28,30]. The challenges that newt larvae face during development (predation, interspecific 

aggression and habitat modification) make them a suitable model organism for studying the effects 

of environmental changes. Their ability to hybridize provides an additional possibility to examine 

potential differences between parental species and hybrids in response to those changes. In general, 

data on the biochemical and physiological parameters of newts are scarce. A better understanding of 

these parameters could facilitate an explanation of species interactions in natural populations. 

The main objective of the present study was to investigate the possible effects of the 

presence/absence of shelter on the oxidative status (antioxidant defense system and oxidative 

damage) of crested newt larvae (Triturus macedonicus and its hybrid with T. ivanbureschi). We also 

wanted to investigate the possible effects of shelter on the behavior (movement and aggression) of 

the larvae. Our overall expectation was that the presence of a shelter would benefit newt larvae and 

that the sense of safety would positively affect their oxidative status (lower oxidative stress) on the 

one hand, while the more shelter-devoid larvae would display higher levels of intraspecific 

aggression (a greater number of injuries) on the other, as a result of competition for shelter. 

2. Materials and Methods 

2.1. Experimental Design 

Newts of the genus Triturus belong to a monophyletic group of nine species widely distributed 

across western Eurasia, which occupy a range of different habitats and make several hybrid zones 

[31–34]. Larvae used in this study were obtained from breeding T. macedonicus and T. ivanbureschi 

parental individuals from natural populations outside the hybrid zone with known genetics [31–34]. 

The breeding took place in March 2018 after a period of hibernation in a cold chamber at a constant 

temperature (4 °C). The larvae, having reached developmental stage 62, were randomly chosen and 

sequestered into one of two experimental groups: (i) no shelter or (ii) with shelter. Twelve 10 L 

aquariums (30 × 20 × 20 cm) were used, six with shelters and six without. We placed 12 individuals 

in each aquarium—144 individuals in total. Larvae density was chosen according to the natural 

densities range of closely related newt species [35] in order to obtain the optimal frequency of 

individual interactions. Developmental stage 62 was recognized according to the formation of the 

fifth digit on the hindlimb, which marks a fully formed extremity and complete tail development 

[36]. From stage 62 onwards, larvae only increase in size until the end of metamorphosis. Differences 

in larval tail shape and size between parental species and hybrids raised in experimental conditions 

were observed at this stage [37]. 

For shelter provision, we used PVC tubes of 12.5 mm in diameter. The tubes were cut in 10 cm-

long sections (total length of 1.5 m) and were placed in shelter aquariums. The tubes were bundled 

together, forming structures of 3 × 3 and 3 × 2 tubes. The structures covered about one-third of the 

aquarium floor area, leaving enough open and hiding space for the individuals (Supplementary 

Figure S1). 

The larvae were reared in aerated dechlorinated tap water under an ambient photoperiod. The 

water temperature was kept stable (18–19 °C). Every second day, the larvae were fed with Tubifex sp. 

The water in the aquariums was changed and the tubes were cleaned two or three times a week. The 
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experiment lasted 30 days. During the experiment we followed shelter use and movement activity, 

while the injuries/aggressive behavior and oxidative status of the individuals were obtained after. 

To determine the snout-vent length (SVL) and to visualize the number of possible injuries 

(Figure S2), all larvae were photographed at the end of the experiment using a Sony DSC-F828 digital 

camera (24-bit color and 3264 × 2448 pixel resolution, MP; Sony Corp., Tokyo, Japan). Larval length 

was calculated as the distance from the snout tip to the outer edge of the cloaca using the 

TMorphGen6 program from the IMP package [38]. In order to check if larvae used the provided 

shelters, we recorded the number of individuals in shelters twice every day at the same time. A larva 

was marked as in shelter if its entire body was inside the tube. 

To test the activity of the larvae, we placed randomly chosen individuals in a plastic tank (size 

18 cm × 10 cm) and calculated the number of lines crossed, defined by the entire body and tail 

crossings of the line as in Crane et al. [39]. Below the tank, a paper with a drawn network of 9 cm × 5 

cm squares was laid. A larva was left to acclimate for 5 min and during the next 2 min the numbers 

of crosses were quantified. This test was performed twice and in duplicate, always at the same time 

of day, in the evening between 8 and 10 p.m. when the newts were usually active. In this test, we 

included six randomly chosen individuals from each of the 12 aquariums (72 larvae in total). The 

activity test was performed in the last week of the experiment, in order to obtain the maximal effects 

of shelter absence/provision on the studied performance. 

At the end of the experiment, the larvae were killed by placing them in liquid nitrogen and were 

kept at −80 °C until further analyses [40,41]. 

The collecting of animals for the experiment was approved by the Ministry of Energy, 

Development and Environmental Protection of the Republic of Serbia (permit no. 353-01-75/2014-08) 

and the Environmental Protection Agency of Montenegro (permit no. UPI-328/4). The experimental 

procedure was approved by the Animal Ethical Committee of the Institute for Biological Research 

“Siniša Stanković”, University of Belgrade (decision no. 03-03/16). 

2.2. Sample Processing 

Whole bodies of larvae were first finely chopped and mixed to obtain material that was as 

homogenous as possible. After that, a part was taken for the determination of thiobarbituric acid-

reactive substance (TBARS) concentration (lipid peroxidation (LPO)), while the rest was used for the 

antioxidant parameters and protein carbonylation (PC) determination [42]. The larvae were 

homogenized (Ultra Turrax homogenizer T-18, IKA-Werk, Germany) in a 1:5 ratio in an ice-cold 25 

mM sucrose buffer (pH 7.4) containing 10 mM Tris-HCl and 5 mM EDTA to disrupt the cell 

membranes and to release the cytosolic fraction [42]. Thereafter, the homogenates were sonicated 

with an ultrasonic homogenizer (Sonopuls HD 2070, Bandelin electronic, Germany) for 30 s at 10 kHz 

on ice to break the subcellular structures. One part of each sonicate was centrifuged at 5000 × g for 10 

min in 10% sulfosalicylic acid and the resulting supernatants were used for determination of GSH, 

while the rest was placed in tubes and centrifuged in a L7-55 ultracentrifuge (Beckman, USA) at 

100,000 × g at 4 °C for 90 min [43]. The supernatants obtained after the ultracentrifugation process 

were used for measuring all other AOS parameters. 

2.3. Biochemical Analyses 

The protein concentrations in the samples were recorded using the method described by Lowry 

et al. [44]. Superoxide dismutase (SOD) activity was determined by autoxidation of adrenaline to 

adrenochrome, as described by Misra and Fridovich [45]. The rate of hydrogen peroxide (H2O2) 

decomposition was used to measure catalase (CAT) activity [46]. The method by Tamura et al. [47] 

was applied for glutathione peroxidase (GSH-Px) activity, by tracking the reduction of t-butyl 

hydroperoxide with nicotinamide adenine dinucleotide phosphate (NADPH). Measurement of 

glutathione reductase (GR) activity was based on the reduction of glutathione disulfide (GSSG) to 

reduced GSH using NADPH as a substrate [48]. The reaction of the -SH group of GSH with 1-chloro-
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2,4-dinitrobenzene (CDNB) was used for determination of glutathione S-transferase (GST) activity 

[49]. The activities of all enzymes were expressed as U/mg protein. 

For measuring GSH, we used the method described by Griffith [50]. The concentration of GSH 

was determined after oxidation of GSH using 5,5´-dithiobis-(2-nitrobenzoic acid) (DTNB) and 

reduction by NADPH in the presence of GR. The concentrations of the total -SH groups were assayed 

according to Ellman’s method [51]. For measurement of the non-protein -SH groups, proteins were 

precipitated by sulfosalicylic acid. Protein SH groups were calculated as the differences between the 

total and non-protein -SH group concentrations. The level of LPO and the carbonyl content of the 

proteins served as markers of oxidative damages. The concentration of TBARS was measured after 

treating the samples with cold thiobarbituric acid reagent (10% trichloroacetic acid, 0.6% 

thiobarbituric acid) and heating at 100 °C [52]. The level of protein carbonylation (PC) was 

determined according to the 2,4-dinitrophenylhydrazine (DNPH) alkaline method [53]. More 

information about the biochemical analyses are given in the Supplementary Material. 

All measurements were performed at 19 °C with a Shimadzu UV 1800 UV–VIS 

spectrophotometer with a temperature-controlled cuvette holder. Wavelengths for biochemical 

analyses were as follows: for SOD—480 nm; for CAT—240 nm; for GSH-Px, GR and GST—340 nm; 

for GSH and SH groups—412 nm; for TBARS/LPO—532 nm; and for PC—450 nm. 

2.4. Statistical Analyses 

Possible outliers, the distribution of the data and the homogeneity of variance were checked by 

Grubb, Kolmogorov–Smirnov and Levine tests, respectively. All data for the oxidative stress 

parameters met the assumption of homogeneity of variance and had a normal distribution. 

Generalized linear models (GLMs) were used to assess the relationships between each oxidative 

parameter and the variables “species” (T. macedonicus and its hybrid) and treatment (shelter and no 

shelter), as well as their interaction (the term “species” was used for easier presentation of the results). 

A normal error function and an identity-link function were applied. The preliminary analyses 

did not reveal any significant differences between aquariums for each treatment for each oxidative 

stress parameter analyzed (p ≥ 0.11, Supplementary Table S1); thus, this factor was not retained in the 

analyses in order to minimize the number of variables that were included in the model [54]. Outcomes 

with the aquarium as a factor were similar to the given one. 

The post-hoc Tukey's HSD test was performed to test the effects of the treatments (shelter and 

no shelter) for T. macedonicus and the hybrid. Nonparametric tests were applied for analyses of shelter 

use and the number of injuries (Fisher exact test), as well as for activity (Mann–Whitney U test). In 

order to determine the possible relationship/correlations between the individual’s SVL and the 

number of injuries, Spearman rank correlations were applied. In all tests, p < 0.05 was chosen as the 

criterion for statistical significance. To investigate the variation in AOS parameters within and 

between the examined groups, we used canonical discriminant analysis (CDA). All analyses were 

done in STATISTICA 8.0 [55]. 

3. Results 

3.1. Oxidative Stress 

Average snout-vent lengths (SVL) ± standard deviations and the SVL minimum and maximum 

values for the individuals under each treatment were as follows: T. macedonicus/no shelter—2.45 ± 

0.19 cm (SVL min. 2.10 and max. 2.86); T. macedonicus/shelter—2.46 ± 0.22 cm (1.95 and 2.84); 

hybrid/no shelter—2.64 ± 0.15 cm (2.16 and 2.91); and hybrid/shelter—2.70 ± 0.19 cm (2.01 and 2.97). 

The GLMs revealed significant differences between T. macedonicus and the hybrid, between 

individuals reared in shelter vs. no-shelter conditions, as well as their interaction (Table 1). The 

parameters that differed both between species and between treatments were CAT, GSH-Px, GST and 

GSH. The between-species comparison also showed significant differences in SVL, -SH group 
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concentrations and GR activity, while between treatments LPO concentrations differed. A significant 

interaction, species × treatments, was only reported for the activity of GR. 

Table 1. General linear models used to detect the significant differences in body size (snout-vent 

length—SVL) and oxidative status parameters between “species” (T. macedonicus and its hybrid) and 

treatments (shelter vs. no shelter). Significant p-values (p < 0.05) are given in boldface. SOD—

superoxide dismutase; CAT—catalase; GSH-Px—glutathione peroxidase; GST—glutathione S-

transferase; GR—glutathione reductase; GSH—glutathione; SH—sulfhydryl groups; LPO—lipid 

peroxides; PC—protein carbonylation. 

Variable  Factor Wald p 

SVL 

Species 39.12 <0.001 

Treatments 1.40 0.236 

Species × 

treatments 
0.92 0.338 

SOD 

Species 4.97 0.025 

Treatments 0.07 0.781 

Species × 

treatments 
0.02 0.886 

CAT 

Species 157.44 <0.001 

Treatments 44.23 <0.001 

Species × 

treatments 
1.76 0.184 

GSH-Px 

Species 46.23 <0.001 

Treatments 59.78 <0.001 

Species × 

treatments 
0.54 0.461 

GST 

Species 22.30 <0.001 

Treatments 10.96 0.001 

Species × 

treatments 
0.30 0.576 

GR 

Species 19.12 <0.001 

Treatments 2.69 0.101 

Species × 

treatments 
7.55 0.006 

GSH 

Species 113.72 <0.001 

Treatments 35.40 <0.001 

Species × 

treatments 
0.31 0.575 

SH 

Species 61.26 <0.001 

Treatments 0.26 0.609 

Species × 

treatments 
3.15 0.075 

LPO 

Species 0.11 0.743 

Treatments 5.25 0.022 

Species × 

treatments 
0.01 0.926 

PC 

Species 2.23 0.135 

Treatments 0.06 0.800 

Species × 

treatments 
0.12 0.730 
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As the main aim of this study was to examine the possible effects of shelter on the chosen 

oxidative stress parameters, we focused on the differences between the treatments for each species 

separately (T. macedonicus and its hybrid: Figures 1 and 2). In T. macedonicus individuals with shelter, 

we found significantly lower activities of CAT (p < 0.001), GSH-Px (p < 0.001) and GST (p = 0.044), and 

a lower concentration of GSH (p < 0.001) in comparison to those from no-shelter conditions. For 

hybrid individuals, the presence of shelter led to lower activities of CAT (p < 0.001), GSH-Px (p < 

0.001), GST (p = 0.011) and GR (p = 0.004), and to a lower concentration of GSH (p = 0.005). We did not 

observe significant differences between individuals reared in no-shelter and shelter conditions for 

oxidative damage parameters, e.g., concentrations of LPO (T. macedonicus p = 0.159; hybrid p = 0.081) 

and protein carbonyls (T. macedonicus p = 0.661; hybrid p = 0.951). No differences were also found for 

SOD activity (T. macedonicus p = 0.928; hybrid p = 0.771) and -SH group (T. macedonicus p = 0.092; 

hybrid p = 0.349) concentrations in the examined species. 

 

Figure 1. Antioxidant system parameters (SOD, CAT, GSH-Px, GST, GR and GSH) in treatments 

(shelter and no-shelter conditions) for T. macedonicus and hybrid individuals. All data are presented 
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as the mean ± standard error. Significant differences (p < 0.05) between individuals from the shelter 

and no-shelter experiments are marked with “#”. SOD—superoxide dismutase; CAT—catalase; GSH-

Px—glutathione peroxidase; GST—glutathione S-transferase; GR—glutathione reductase; GSH—

glutathione. 

 

Figure 2. The protein -SH group concentrations and oxidative damage parameters (TBARS and PC) 

in treatments (shelter vs. no shelter) for T. macedonicus and hybrid individuals. All data are presented 

as the mean ± standard error. Significant differences (p < 0.05) between individuals from the shelter 

and no-shelter conditions are marked with “#”. SH—sulfhydryl groups; LPO—lipid peroxide; PC—

protein carbonylation. 

Based on CDA, we observed a clear separation only along Root 1. The separation emerged 

between the examined species (T. macedonicus vs. hybrid individuals), and the parameters that 

contributed most to this separation were CAT, GSH and GR (Figure 3 and Supplementary Material 

Table S2). 
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Figure 3. Canonical discriminant analyses of the antioxidant parameters (SOD, CAT, GSH-Px, GST, 

GR and GSH) for the examined groups. SOD—superoxide dismutase; CAT—catalase; GSH-Px—

glutathione peroxidase; GST—glutathione S-transferase; GR—glutathione reductase; GSH—

glutathione. 

3.2. Shelter Use, Movement and Aggressive Behavior 

Data about the numbers of individuals using shelter revealed that during the experiment, on 

average 44.1% of the T. macedonicus individuals and 30.8% of the hybrid individuals were hidden. 

Most of the remaining individuals of both species remained near the shelters. Comparison between 

species showed that T. macedonicus individuals tended to use shelter more often than the hybrids (p 

= 0.035). 

The percentages, i.e., ratios of individuals with injuries in different experimental groups, were 

as follow: sheltered T. macedonicus, 41.6%; without shelter T. macedonicus, 55.5%; sheltered hybrids, 

94.4%; and without shelter hybrids, 86.1%. Within the species, the differences in numbers of injured 

individuals between treatments were not significant (for T. macedonicus p = 0.181; hybrid p = 0.213). 

Comparison of the numbers of individuals with injuries between the species for each treatment 

showed significant differences (for shelter p < 0.000 and for no shelter p = 0.004). The hybrids 

contained a greater number of injured individuals. When the number of injuries was correlated with 

body length for all the examined individuals a significant correlation was observed (r = 0.26, p = 0.01); 

however, further analyses did not show significant correlations with the body length and injuries of 

the larvae within treatments (T. macedonicus shelter r = −0.04, p = 0.846; T. macedonicus without shelter 

r = −0.29, p = 0.169; hybrid shelter r = −0.340, p = 0.104; hybrid without shelter r = −0.328, p = 0.126). We 

also examined which parts of the body were injured in each group, e.g., tail, limbs and gills. The 

results are presented in Figure 4 and Table S3. 
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Figure 4. The number of body regions injured (gills, tail and limbs) in different treatments (shelter vs. 

no shelter) and between T. macedonicus and hybrid individuals given as percentages. A # mark 

statistical difference. 

The percentages of individuals that crossed lines during the activity test were as follows: for 

sheltered T. macedonicus—61.1%; no shelter T. macedonicus—69.4%; sheltered hybrids—80.5%; no-

shelter hybrids—100%. The differences in the numbers of crosses between treatments were significant 

only for the hybrid species. A significant difference could be observed also between the species for 

each treatment (Table 2). 

Table 2. Median number of lines crossed during the activity test. Significant p-values (p < 0.05) are 

given in boldface. 

 Group Median p 

T. macedonicus 
Shelter 1.73 

0.578 
No shelter 2.75 

Hybrid 
Shelter 5.00 

<0.001 
No shelter 12.25 

Shelter 
T. macedonicus 1.73 

0.048 
Hybrid 5.00 

No shelter 
T. macedonicus 2.75 

<0.001 
Hybrid 12.25 

4. Discussion 

Newt larvae primarily use shelters to thermoregulate and to avoid predators [24]. In general, 

they spend a significant amount of time resting in or near shelters. In the presence of predators, this 

time increases to the point that it can affect normal feeding behavior and growth tempo [30]. In the 

present study between one-third and one-half of all the individuals were hiding in shelters during 

the check, which is in concordance with results from other studies [56,57]. This finding confirmed 

that shelter availability can be marked as one of the favorable factors for normal newt development 

[25]. 

Evidence has been presented showing that a lack of adequate refuge, even in the absence of 

predators, can alter metabolism, the levels of corticosteroids, growth, behavior and, as we assumed, 

the oxidative status in various groups of animals (fish, snakes, birds and amphibians) [11,12,26]. 

Alternations in oxidative stress reported in this study were observed through changes in the 
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antioxidant system rather than through direct oxidative damage. Newts that developed in no-shelter 

conditions had higher values of AOS components (GSH, CAT, GSH-Px and GST). The same pattern 

was confirmed for both the T. macedonicus and hybrid individuals. The boosted first line of the AOS 

(CAT and GSH-Px) was involved in the suppression or prevention of RS formation, and the second 

line of defense (GSH), which removes radicals, inhibits the initiation and propagation reactions, 

implying that individuals reared without shelters can exhibit increased production of RS [16]. Based 

on the main function of CAT and GSH-Px, we can mark hydrogen peroxide as the RS that contributed 

most to the obtained results. In the process of removal of H2O2, GSH can be also included as a cofactor 

for GSH-Px activity, while GST plays a role in the defense against oxidative damage and peroxidation 

of DNA and lipids [58]. In the case of hybrid individuals, the GSH system was enhanced, including 

increased activity of GR, which maintains higher levels of GSH. A higher RS concentration in no-

shelter-reared newts can be linked with higher corticosterone levels and metabolic rates caused by 

shelter absence. 

The relationship between shelter and metabolism has already been documented for some fish 

species [6,59,60]. Fish without shelter had an average 30% increase in metabolic costs and on average 

two to three times higher basal levels of plasma cortisol than fish from the enrichment treatments 

[11]. The shelter also had a major influence on the cortisol response to stress in silver catfish (Rhamdia 

quelen) [61]. Corticosterone increase was also observed in snakes without shelter [2]. Provision of the 

opportunity to shelter as a naturally preferred behavior can lead to physiological relaxation or a 

calming effect. Distress is often associated with a lower predation risk and decreased vigilance (a 

heightened state of body awareness in response to predation), which may in turn elevate opercular 

ventilation and ultimately metabolism [6]. 

The higher activity of AOS in order to sustain RS seen in individuals without shelters can also 

have its costs. The physiological cost can be expressed in terms of the consumption of energy needed 

to maintain the upregulated antioxidant defenses, to activate the repair systems, to synthesize 

endogenous antioxidants (such as GSH) as well as to increase the dietary intake of exogenous 

antioxidants [15,62]. The required energy can be diverted from other processes and can further affect 

the animal’s fitness [63–66]. This can be more pronounced in natural conditions under which the 

animals are potentially limited by the available feeding time, food availability, capacity to process 

energy, predation and other abiotic and biotic factors. 

Our second expectation was that shelters would affect the behavior (aggression and movement) 

of crested newt larvae. Previous studies showed that conspecific aggressive behavior of newt larvae 

can decrease significantly when they are challenged with unfavorable conditions [28,30]. Larvae tend 

to lower intraspecific aggression under such circumstances, and this led us to the assumption that 

physiologically relaxed shelter individuals would display higher levels of aggressive behavior, e.g., 

a higher number of injuries, which can be accompanied by increased competition for shelter use. 

Shelter presence or absence in this study did not significantly affect the number of injuries, indicating 

that shelter as such does not modify the intraspecific competition of newt larvae. On the other hand, 

the activity test revealed that individuals reared without shelter tended to be more active when 

placed in a new environment in comparison to those reared with shelter. Lower movement levels can 

be the result of sheltering behavior developed in individuals that were provided with shelter. Lower 

movement in some amphibian larvae is also considered as an antipredator response [39]. The 

comparison of T. macedonicus and its hybrid revealed that hybrid individuals were significantly more 

aggressive and active in both treatments. They also tended to use less shelter. Thus, we found 

indications for more intense competition among hybrid individuals. The reasons for these differences 

could be found in differences in metabolic rates. Our previous study on the same hybrid suggested 

that hybrid individuals can have a higher metabolic rate compared to their parental species due to 

mitonuclear mismatch [66]. Higher metabolic rates in hybrid newts were also reported by Gvoždík 

[67]. According to the “increased intake hypothesis”, individuals with higher standard metabolic 

rates have greater needs for energy, are exposed to greater competition (dominance and 

aggressiveness), attain larger body sizes, but also exhibit higher foraging rates and activity levels [68]. 

In this study, hybrid individuals had significantly higher values of SVL in comparison to T. 
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macedonicus individuals. Hybrid individuals also displayed more injuries, mostly in the gills and tail 

region. The reason for the higher number of tail injuries can be due to the tail filament that hybrid 

individuals have in comparison to T. macedonicus [37], which may lure other individuals to attack it 

more frequently [69]. Injured larvae can be more susceptible to infections, cannibalism or predation 

as a result of the compromised function of the injured body parts (locomotion and respiration) and 

the energy invested in their regeneration [30]. 

5. Conclusions 

We believe that this investigation is an important addition to experimental studies that have 

been carried out on different groups of organisms (fish, snakes and amphibians) that point to the 

negative effects of shelter absence and its association with increased stress levels. The absence of 

refuges for crested newt larvae altered their oxidative/antioxidative status and movement but was 

not related to their aggressivity/injury rates. All these results indicate that shelter should be included 

as one of the crucial factors in habitat assessment and restoration, animal welfare and field 

management, in both captivity experiments and conservation studies. 

The questions that remain to be clarified in future studies are how the shelter absence or presence 

affect the oxidative stress of larvae in harsher and more dynamic natural conditions; the possible 

long-term or delayed adverse effects of increased investment in the AOS on newts fitness; and the 

effects on the whole hybrid complex. 
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