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Abstract: Soft Sensors (SSs) are inferential models used in many industrial fields. They allow for
real-time estimation of hard-to-measure variables as a function of available data obtained from
online sensors. SSs are generally built using industries historical databases through data-driven
approaches. A critical issue in SS design concerns the selection of input variables, among those
available in a candidate dataset. In the case of industrial processes, candidate inputs can reach great
numbers, making the design computationally demanding and leading to poorly performing models.
An input selection procedure is then necessary. Most used input selection approaches for SS design
are addressed in this work and classified with their benefits and drawbacks to guide the designer
through this step.
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1. Introduction

When dealing with industrial processes, many variables are monitored through online sensors.
Some of these variables can be very hard to measure though or can be measured only sporadically
due to high cost sensors or lack of the latter. In some cases, variables are measured with high delays
because of slow hardware sensors or laboratory analysis, leading to the impossibility of real-time
monitoring of the process. Inferential models can then be created to estimate these hard-to-measure
variables on the basis of online measured ones. Such models are referred to as Soft Sensors (SSs),
or Virtual Sensors [1,2]. Their working principle is summarized in Figure 1.

Figure 1. Basic working principle of a Soft Sensor (SS).

SSs were originally exploited in the science of chemometrics, a discipline that studies how to
extract information from data sets of chemical systems by using multivariate statistics, mathematics and
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computer science [3,4]. Chemometrics solves prediction problems by learning models from data
and exploiting machine learning, system identification, artificial intelligence and statistical learning
theory [1,2,5].

SSs’ industrial use ranges over a number of different types of processes, such as refineries [6–11],
chemical plants [12], cement kilns [13,14], power plants [15,16], pulp and paper mills [17,18],
food processing [2,19], nuclear plants [20,21], pollution monitoring [22], polymerization processes [23–25] or
wastewater treatment systems [26–29], just to mention a few. In Figure 2, a distillation column process
from a refinery is shown through its control software: displayed online measurements are collected in
a historical database for future use.

Figure 2. Control software of a real distillation column from a refinery, displaying a part of the available
easy-to-measure variables measured by online sensors.

SSs’ real-time estimation capability allows developing tight control policies and since they
represent a low-cost alternative to expensive hardware devices, SSs allow the realization of more
comprehensive monitoring networks. The real-time estimation obtained by the SS can be used
by a controller, while the corresponding delayed measurements allow the model to be improved,
by avoiding an error propagation effect. Besides their use for plant control, they are used to approach
a number of other different problems as well, such as measuring system back-up, what-if analysis,
sensor validation and fault diagnosis [7,30–41].

The back-up of measuring instrumentation consists of substituting unavailable measuring
equipment, to avoid degradation of plant performance and rises in costs. This can become necessary
since measuring devices, and their data transmission systems, generally face harsh working
environments that impose periodic maintenance procedures or lead to faults. Therefore, when a
maintenance intervention is performed, measuring hardware needs to be turned off and suitably
substituted throughout the entire process.

What-if analysis consists of using the model to perform simulations of the system dynamics with
respect to types of input that are of interest, for a given time span, with the aim of both achieving a
deeper understanding of the system behavior or designing suitable control policies.

SSs allow to reduce the need for measuring devices as well, improving system reliability and
decreasing sensors acquisition and maintenance costs. They can eventually work in parallel with
hardware sensors, giving this way useful information for fault detection tasks and they can be easily
implemented on existing hardware and retuned when system parameters change. The main goals
of fault detection are to perform early detection of faults providing as much information as possible
about it, to provide a support system for scheduled maintenance interventions, and to provide a basis
for the development of fault-tolerant systems.

SSs can be built with different approaches. Since they are dynamic I/O models, simpler ones,
like linear models, are usually preferred because of the lower time and computing demand, and if a
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priori physical knowledge of the process to model is given, a white-box design approach is possible
as well. However, in an industrial environment, because of the complexity of the processes and the
amount of available data, nonlinear models are needed and data-driven black-box approaches lead
to satisfactory results. Available data must be representative of the dynamics of the process, and the
choice of the right inputs is, for this reason, a crucial step in the design process.

Input selection is a widely addressed subject. Several surveys on the topic are reported in
literature. In [42], a taxonomy of the most used methods for Artificial Neural Network models is
given, as well as in [43] where a review of the approaches used on microarray data for Support Vector
Machine (SVM) models is performed. In [5], a review of the SS design in its entirety is given. In [44],
filter selection methods exploiting Mutual Information are reviewed, while [45] provides a survey of
wrapper classified feature selection methods. The work in [46] focuses on feature selection methods
of the semi-supervised class. This paper actually focuses on the input selection step of SS design
independently from the specific model adopted by the designer, with the aim to help in the choice of
the most suitable technique by exploring all the classes of the state-of-the-art methods.

With the introduction of Industry 4.0 technologies, one underrepresented topic is the one related to
the role of humans in manufacturing and how technology can enhance the integration between human
and machine. Many manufacturing systems are people-oriented, meaning human operators interact
with intelligent devices around them. In such environments, people are the ones with the responsibility
for actions and decisions. In this case, automation aims to supply devices able to collect and aggregate
data, so to provide them in a user-friendly way to the person in charge of making the right decision
based on the available data. All the design processes require human mediation, and this generally
applies to industrial automation and machine learning applications as well. This consciousness gave
birth to the human-in-the-loop approach, which puts human knowledge and experience as a pivot
of machine learning processes [47,48]. In the SS field, human knowledge of the industrial processes
provided by technicians represents a vital resource for the design process. This was shown in [49]
where technician experience was crucial in the optimization of the number of inputs to build the best
performing SS of a unit distillation process.

As the design steps strictly correlated to each other, each step is firstly explained in Section 2.
The input variable selection problem is addressed in Section 3. The two main classes of approaches,
Feature Extraction (FE) and Feature Selection (FS) are respectively discussed in Sections 4 and 5. In the
final Section 6, conclusions are drawn as well as a table that summarizes the techniques cited in this
work. It sorts the methods by classes along with their advantages and disadvantages, with the intent to
provide some guidance to the designer for the one that most accommodates a specific case. In the same
section, references were arranged in two tables: one for the methods and one for real-case applications.

2. SS Design Stages

SS design stages follow the typical steps of pattern recognition [50] as well as system identification
theory [51]. In an industrial environment, ad-hoc experiments to collect suitable identification datasets
are, in general, not possible as in the system identification practice. So, data have to be retrieved from
industries historical databases.

SS design steps can be summarized as follows [1]:

1. Data collection and filtering;
2. Input variables selection;
3. Model structure choice;
4. Model identification;
5. Model validation.

Each of these steps is crucial for the good success of the further one.
Data is stored by industries in historical databases, generally provided from a supervisory

control and data acquisition (SCADA) control system [52] or a distributed control system (DCS) [53].
Collected data must be capable of representing the whole dynamics of the system, since the model
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cannot provide more information than the one stored in the data itself. After data are collected, the first
stage of the design regards its filtering and preprocessing [1,2]. This is due to unprocessed data from
databases coming with well-known problems, such as oversampling, outliers and missing data and
accuracy problems, such as offsets, seasonal effects and high-frequency noise. Therefore, the designer
should carefully deal with them and prepare data to become suitable for the next designing steps [54–56].
Common preprocessing stages consist of resampling, noise filtering, outlier detection and removal
and normalization.

Data collected in plant databases usually come with different sample rates. Easy-to-measure
variables are automatically measured with online available sensors; while hard-to-measure ones cannot
be measured automatically, but more commonly only sporadically, at high cost and with high delays,
such as in the case of laboratory analysis [1,57]. For this reason, the former usually present high
sample rates, even higher than the one required by the sampling theorem, while the latter tend to be
downsampled [58,59]. High sample rate can lead to huge datasets that can suffer from data collinearity.
Therefore, resampling becomes necessary to synchronize the variables back together [60] and to avoid
dealing with huge datasets.

Missing data and outliers are quite common problems in databases collected from industries.
The former occur when values are missing in the observation of a variable; the latter are actually
inconsistent data with the majority of the recorded ones that greatly deviate from the typical range of
values, such as peaks, saturations, flat trends and discontinuities. They can both be caused by sensor
or process faults and measurement noise. They are usually handled by removing the samples that
contain them or by filling the missing observations with some imputing method. Outlier detection
is, however, a tough task achieved through statistical techniques, such as the 3σ-rule, and the final
validation has to be manually performed by a plant expert to avoid outlier masking (a false negative)
and outlier swamping (false positive) [61].

High frequency noise is generally induced by measurement instruments and can be filtered out
with low-pass filters. The appropriate bandwidth is chosen by using spectral analysis.

Once data have been preprocessed, selection of input variables is one critical step in the SS
designing process. The importance of this stage is addressed in the next section along with the main
techniques adopted.

The further step consists of the choice of the model structure, which is based on the a priori
knowledge of the system. Mechanistic (or white-box) models are the ones obtained on the basis
of first principles analysis, such approach requires a deep physical knowledge of the process.
However, due to the complex processes occurring in industrial plants and given the great amount
of collected data, the use of gray- or black-box data-driven identification approaches can be a good
choice, since satisfactory results can be achieved with reasonable computational and time efforts.
Such data-driven models are only based on the empirical observations of the process and generally
require slight knowledge of the system. A great work of data processing is needed anyway. Since it is
hard to find a general solution equally satisfactory for any case, any plant experts’ knowledge must
still be taken into account. It can regard the input variables importance, the system order, the operating
range, time delay, degree of nonlinearity or sampling times. Linear models are usually preferable
as they are computationally easier, since the numerical procedures and the design of a controller
are simpler. Such approximation is possible when certain conditions are met, like small variations
around the nominal working point, a small degree of nonlinearity of the process or what degree of
approximation is needed for the model. If a linear model does not show good results, a nonlinear
identification approach is needed. In the industrial field, parametric structures such as FIR, ARX or
ARMAX are widely used in both the linear and nonlinear (NFIR, NARX, NARMAX, respectively)
cases [1,62,63], as well as static models.

Industrial SSs are generally designed with Artificial Neural Networks (ANN), mainly with the
Multi-Layer Perceptron (MLP) structure [7,11,63,64], Convolutional Neural Networks (CNN) [65,66],
Generative Adversarial Networks (GAN) [67,68], Radial Basis Networks [69], Wavelet Networks [70],
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Hinging Hyperplanes [71], Deep Belief Networks [72,73], Stacked Autoencoders [74], Long Short-Term
Memory Networks [75], Support Vector Regression [76], Gaussian Processes Regression [77],
Extreme Learning Machines [78], Fuzzy Systems and Neuro-Fuzzy Systems [79,80], just to mention a
few [5,81–88]. In some cases, the designer can choose to create more linear or nonlinear models for the
same system, each one for a different working point, instead of a single one covering all of the system
dynamics. In such cases, the models are aggregated by a suitable algorithm such as fuzzy logic or
neural stacking. Such approaches are called ensemble methods [88].

In some cases, the designer could deal with systems showing finite time delay between the input
variables and the process output, sometimes caused by the measurement process. Several approaches
are proposed in literature. In [57], a FIR model along with an Expectation–Maximization (EM)-based
algorithm is used to estimate the model parameters and the time delays. In [79], a Takagi–Sugeno-fuzzy
model is tuned using a genetic-algorithm-based approach to identify delays. Genetic Algorithms have
also been used to estimate the time delays as in [89,90], where they are used to minimize the Joint
Conditional Entropy between the input and output variables.

In [91], the problem of selecting input time-lags is treated as a variable selection problem with
a multidimensional mutual information estimator. Mutual Information is also applied to delay
selection in the design of a SS in [92,93], where the delay is estimated by using the Normalized Mutual
Information and delayed replicas of the inputs. In [10], delays are estimated through the learning
phase of a Deep Belief Network.

Once the structure has been chosen, the whole preprocessed and selected data set should be
partitioned in subsets for the last two design steps, as:

• Identification data
• Validation data

The first allows to identify the candidate models and empirically estimate their unknown parameters.
Finally, the validation step exploits validation data to verify whether the model is able to

adequately represent the system and perform generalization to new samples. In SS design, as in pattern
recognition and system identification, it is important to perform the validation on different data with
respect to the ones used for the model identification. This is particularly done to investigate overfitting
phenomena. Validation techniques analyze the model residuals characteristics by looking for any
undesired correlation between them and present and/or delayed samples of model inputs and outputs.
This can be immediately performed through graphical techniques such as visual comparison of the
time-plotted output of the system and of the one estimated by the model, lag plots, correlation graphs
or histograms. Other performance metrics usually adopted are the Mean Squared Error (MSE),
the Normalized Root Mean Square Error (NRMSE), the Mean Absolute Error (MAE), Akaike’s Final
Prediction Error (FPE), Akaike’s Information Criterion (AIC) [94,95], Rissanen’s Minimum Description
Length (MDL) [96], Bayesian Information Criterion [97], CP statistics [98]. When dealing with small
datasets, cross-validation techniques such as the K-fold cross validation or the leave-one-out (LOOCV)
one are employed. They consist of splitting given data samples in K number of groups (or folds).
At each iteration, one of the K groups is used for validation, while the other K-1 groups are for training.
This is done for all the K groups, and the final performance is given as an average of the performance
measured at each iteration. LOOCV consists of the same approach when K is the number of samples
as well.

A scheme of the design process of an SS is given in Figure 3.
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Figure 3. Main steps in SS design.

3. The Input Selection Problem in SS Design

The model design takes for granted that at least one or more of the candidate inputs is able to
describe the output of the system chosen by the designer. If that is not the case, the model development
is an impossible task and the available data should be reconsidered: ad hoc experiments should
be performed to cover the dynamics of the system or a different variable can be chosen as output.
Generally, given the initial set of candidate inputs, it is common to have irrelevant ones or to have
correlations between some of the input variables, making them redundant. Irrelevant inputs are those
that have little or no predictive power with respect to the output, so they can be discarded without
losing information. The concept of redundancy is instead associated with the level of dependency
among two or more variables.

The optimal subset of input variables is then unknown. What the designer wants to achieve is to
discard such inputs, reducing in this way the degree of redundancy and to remove no informative
variables, with the aim of detecting the relevant high informative ones to build an optimal set.

The reason why the number of inputs is reduced, is because the dimensionality and the
representability of the input space is one of the factors that may limit the successful design of an SS.
In the case of industrial processes, candidate inputs can reach great numbers [91,99]. Moreover, if in
the model structure choice a non steady-state type of model (such as the ones mentioned) is preferred,
the number of candidate variables is multiplied by the model order, making the number of variables
even larger, mostly in the case of strong persistence systems.

When this occurs, a large number of inputs dramatically increases the computational cost of
the model identification step [100] and leads to a large number of model parameters to be estimated,
generally causing poor generalization and high probability of overfitting [101]. High-dimensional
datasets that suffer the so-called “large p, small n” problem (where p is the dimension of the input space
and n is the number of samples), tend to be indeed affected by overfitting. A model suffering overfitting
mistakes small fluctuations for important variance leading to errors on test data. This unavoidably
increases in the presence of noisy measurements. The reason behind this phenomenon is called curse
of dimensionality [102]: as the input dimensionality increases, the volume of the space increases so fast
that the available data become sparse, meaning that the amount of input samples needed to support
the result grows exponentially with its dimensionality [103].

On the other hand, dimensionality reduction shortens the model development time, improves the
predictor performance, facilitates data visualization and data understanding. Also, a reduction of the
number of variables implies a lower number of required hardware sensors, decreasing costs associated
with them, as well as fewer missing data and outliers to deal with.
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The objective is therefore to find the input subset of minimum cardinality that preserves the
information contained in the whole initial set with respect to the output; or put in other words,
the subset containing the fewest inputs required to properly describe the behavior of the output.

To deal with the problem, approaches can be classified in [104]:

• Feature Extraction (FE, Unsupervised)
• Feature Selection (FS, Supervised)

These two classes of methods are addressed in the next sections. A full taxonomy of the approaches
is depicted in Figure 4.

Figure 4. Main classification of input selection methods.

4. Feature Extraction

FE is a class of unsupervised methods that create new features based on transformations or
combinations of the original variable set. The most well-known FE algorithm is Principal Component
Analysis (PCA) [105]. It uses orthogonal transformation to express a set of p variables as d vectors
called principal components, with d < p. The model identification is then performed on such found
components. PCA finds the first principal component with the largest variance in a latent space where
the original input space is projected, using the covariance matrix and its eigenvalues and eigenvectors.
All the successive components are the ones with the highest variance that are orthogonal to the others.
However, the relationship between the variables is assumed to be linear, such as the one between the
principal components and the output. Therefore, the procedure will fail at identifying any nonlinear
relationship in the data. Moreover, the transformations of the input variables are done without taking
the output variable into account, with the method being unsupervised.

The first problem is overcome by some nonlinear versions of the algorithm, such as Nonlinear PCA
(NLPCA) [106] and Kernel PCA (KPCA) [107]. The first one uses Autoassociative Neural Networks
to perform the identity mapping: the network inputs are reproduced at the output layer, with an
internal bottleneck layer and two additional hidden layers. The second one generalizes linear PCA
into the nonlinear case using the kernel method: the original input vectors are mapped into a higher
dimensional feature space in which the linear PCA is then calculated. In both cases, the transformations
of the data can be highly complex and interpretation of the PCs is a harder task.
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The unsupervised limitation led to the introduction of a supervised version of PCA,
Supervised-PCA (SPCA) [108], where PCA is applied to a subset of the inputs selected on the basis of
their association with the output.

Other PCA variations are Independent Component Analysis (ICA) [109] and Probabilistic PCA
(PPCA) [110]. ICA is originally developed to blindly separate multivariate signals with the goal of
recovering mutually independent but unknown source signals from their linear mixtures without
knowing the mixing coefficients. This is used to linearly transform original inputs into features that
are mutually statistically independent. In PPCA, a Gaussian latent factor model is considered and then
the PCAs are obtained as the solution of a maximum marginal likelihood problem, where the latent
factors are marginalized out.

PCA, SPCA, ICA, KPCA and PPCA have been applied as a way of reducing the dimensionality
of the data in many works [28,36,56,89,111–115]. A comparison between PCA, KPCA and ICA as
dimensionality reduction methods is performed in [116], where KPCA showed the best performances
among the three. In [117], an original feature selection method that combines ICA and false nearest
neighbors (FNN) is proposed as ICAFNN.

Another nonlinear dimensionality reduction FE approach is multidimensional scaling
(MDS) [118,119] along with its variations such as Principal Coordinates Analysis (PCoA) [120],
metric-MDS, non-metric MDS and generalized MDS. MDS is a set of related ordination techniques to
display the information of a dataset in a distance matrix that contains the distances between each pair
of points of such dataset. The algorithm places each point into a space of a chosen dimension N such
that the distances are preserved as well as possible. Other nonlinear FE methods are Isomap and its
variations [121–123], Locally Linear Embedding (LLE) [124,125] and Laplacian Eigenmaps [126].

Isomap is a combination of the Floyd–Warshall (F-W) algorithm with classic MDS, where the
pair-wise distances are assumed to be only known between neighboring points and the others
are computed with the F-W algorithm. Then, classic MDS is performed to compute the
reduced-dimensional positions of all the points. LLE has faster optimization and better results
than Isomap. LLE also finds a set of the nearest neighbors of each point, so to describe it as a
linear combination of them after computing a set of weights for each neighbor. It then finds the
lower-dimensional embedding of the points such that each point is still described with the computed
linear combination. Laplacian Eigenmaps adopts spectral techniques to perform dimensionality
reduction, based on the assumption that the data lies in a low-dimensional manifold that exists in a
higher-dimensional space.

Another unsupervised procedure to produce a low-dimensional representation of an input space
is given by Self-Organizing Maps (SOM, or Kohonen maps) [127], a type of artificial neural network
used to perform dimensionality reduction. The task is achieved through Vector Quantization (VQ),
which is a classical quantization technique from signal processing that describes a larger set of n vectors
by c codebook or prototype vectors. The candidate set of inputs is considered as the prototype vectors
of the SOM. Similar candidate variables will be identified by the formation of groups, which have
the closest proximity to the same prototype vector. The distance measures generally used to evaluate
this proximity are linear correlation or covariance in the linear case, otherwise Mutual Information or
Entropy in the nonlinear case.

The drawback of FE techniques is that the variables in the new space do not have any physical
meaning and they become difficult to be interpreted. In addition, in the case of industrial processes,
since the original inputs are still needed to obtain the projections, the number of required hardware
sensors for the estimation is not reduced, hence losing one of the important advantages brought by the
use of a fewer number of inputs.

5. Feature Selection

FS refers to a class of supervised methods that select the best subset from the original feature
set, retaining this way their physical meaning [128]. The selection of the input variables takes the
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relationships between inputs and outputs variables into account, either related to the accuracy of
the corresponding model or not. Different strategies are used to search among the possible sets of
candidate variables and they can be classified in the following groups of methods [45,129]:

• Filters
• Wrappers
• Embedded (model-based)
• Hybrid approaches

Any of these procedures for input selection defines a criterion or a cost function to quantify the
quality of a subset as well as a search strategy to determine the candidate subset [50]. This is done
since exhaustive search is not recommended or even not feasible in most cases, due to the extremely
high computational expensiveness given the number of inputs. In an exhaustive search all the possible
combinations of inputs are considered, and therefore, given n candidate input variables, 2n possible
combinations of subsets exist.

So search strategies provide an efficient method to search through the many possible combinations
of inputs and can be classified as local, that start their search from a point and then move incrementally,
or global, that consider many combinations.

Forward selection and backward elimination are two linear incremental local strategies [130].
Forward selection methods start with an empty input subset and then inputs from the candidate set
are included one at a time. The chosen input should be the one that most contributes to the output,
according to the criterion the specific method uses. The approach is computationally efficient and
results in relatively small input sets, but because of its nature it may encounter a local optimum,
terminating prematurely, or may ignore informative combinations of variables that are not very
relevant individually [129]. An extension of this strategy is the step-wise selection in which past input
variables may be removed at each iteration to better handle redundancies in the subset.

Backward elimination, as opposed to the previous, starts by first considering all the candidate
inputs. Then subsets with one less input are built and examined to evaluate whether the deleted one is
more or less significant. The procedure goes on until no more inputs can be deleted, according to the
adopted criterion. Such approach is generally more computationally demanding.

In their floating variants (Sequential Forward Floating Selection—SFFS and Sequential Backward
Floating Selection—SBFS, respectively) [131], there is an additional inclusion or exclusion step to
remove variables once they were included (or excluded), so that a larger number of subsets can
be sampled.

A heuristic search involves global strategies that implement a search of random solutions in
the search space and increase the focus in regions that lead to good solutions. The nature of the
approach allows finding global or near-global optimal solutions. They are usually implemented
with evolutionary algorithms as Genetic Algorithms (GA) and Ant Colony Optimization Algorithms
(ACO) [132–134] or Simulated Annealing (SA). The approach requires the tuning of search parameters
that trade-off the amount of the search space that is explored and the rate at which the final solution
is reached.

The same given taxonomy of methods is used for semi-supervised feature selection methods as
well, as stated in [46]. Semi-supervised approaches for evaluating input relevance are exploited in
cases in which both labeled and unlabeled data are available. This often happens since unlabeled data
are more easily accessible than labeled ones, where hard-to-measure variables must be measured and
recorded as well as easy-to-measure ones in order to provide enough data to build the predictive model.
This paper takes into account only methods for which available data provided to the designer are
labeled. The cited work gives, however, a comprehensive detailed survey of input selection methods
in a semi-supervised environment.
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5.1. Filter Methods

These are methods that select subsets of inputs as a preprocessing step, exploiting statistical
measures to quantify the quality of a subset (multivariate methods) or providing a ranking of each
single variable based on a relevance index, eventually rejecting those with a value that falls below an
established threshold (univariate methods). The relevance measure is usually a bivariate statistical
analysis that evaluates each candidate-output relationship, so filter methods are usually characterized
by incremental search strategies. In filter methods that operate on each input variable individually,
dependencies and interactions between them are disregarded, not accommodating the multicollinearity
problem [135]. This is the reason why they are often used as a first screening step, before more
sophisticated methods are applied in hybrid approaches.

Filter methods do not require to build any prediction model first since they are independent
of the chosen model structure: these approaches separate the inputs selection task from the
model identification step. This makes such methods simple and fast, because they are the least
computationally demanding ones. They allow for good empirical results even in cases in which the
number of samples is smaller than the number of inputs.

The most common filter method consists of the analysis of the correlation coefficient (CC).
The most common coefficient is Pearson’s correlation coefficient ρ, which is a measure of the linear
correlation between two variables, in this case the candidate input and the output [136]. The linear
correlation between each input and the output is computed and then a ranking list of the inputs is
provided, according to the scores. Practical examples of this approach are given by [1,23,137].

In [138], different coefficients such as Distance Correlation (DC) [139], Maximal Correlation
(MC) [140] and Maximal Information Coefficient (MIC) [141] are combined with Pearson’s coefficient
to introduce a more robust factor that can be generally used when the relationship between the variables
is not necessarily linear. Being the dependencies between variables neglected, if there is correlation
between the candidate inputs, such approach would select too many variables giving problems of
redundancy. To accommodate the problem, partial correlation can be used instead. It measures the
strength of the relationship between two variables, while controlling for the effect of one or more other
variables that is discounted.

In nonlinear settings, ρ is generally replaced by Mutual Information (MI) [142], a measure
of dependence based on information theory and Shannon’s notion of entropy that quantifies the
information about a variable provided by a second variable. The reason why MI is adopted in
nonlinear settings is because it is based on probability distributions within the data and makes no
assumption on the structure of the dependence between the variables. It also is insensitive to noise
and data transformation, making it a robust measure. In a univariate approach, it provides a ranking
like in the linear case [129,143]. In multivariate approaches, when the number of candidate inputs is
large, it is not possible in practice to evaluate the MI between all the possible subsets and the output,
so incremental greedy procedures are frequently used. These approaches can possibly detect subsets
of features that are jointly relevant or redundant. In such a context, probability density functions are
unknown in real-world problems and MI has to be estimated. The most adopted methods are Nearest
Neighbors-based algorithms that show good results [77,144–146] and are shown to outperform other
common estimators such as the histogram one, the kernel estimator and the b-spline estimator [147],
as well as the CC approach [91]. The basic histogram method is, however, preferred when dealing
with small variables because of its simplicity [90]. When the number of variables to work with
increases, multivariate MI methods become complex due to the estimation of the probability density
function [148].

The multivariate problem is approximated with a univariate approach in [149], where the Mutual
Information Feature Selector (MIFS) is introduced: a heuristic criterion is adopted to find the subset
that maximizes MI. MIFS’s performance can, however, be degraded as a result of large errors in
estimating the mutual information. Another common drawback is the selection of redundant variables
if an input is closely related to the already selected one. This is the reason why a new greedy
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selection method was introduced as MIFS-U (MIFS-Under Uniform Information Distribution) [150].
It is shown that the two algorithms are equivalent to the maximization of multivariate MI [151].
However, they could both lead to the selection of irrelevant variables earlier than relevant ones
if the cardinality of the inputs subset becomes big. This is partly solved by mRMR (minimum
redundancy-maximum relevance) [152]. The criterion of maximum-relevance ensures that the
selected inputs are highly informative by evaluating their high degree of correlation with the output.
The criterion of minimum-redundancy looks for inputs that are maximally dissimilar from one another,
in order to build the most useful set of relevant variables. In [153], a novel mutual information
feature selection method based on the normalization of the maximum relevance and minimum
common redundancy (N-MRMCR-MI) is proposed, where the normalization method is applied to the
Max-Relevance and Min-Common-Redundancy (MRMCR) criterion and returns a correlation measure
that takes values between 0 and 1. NMIFS is another algorithm that proposes the average normalized
MI as a measure of redundancy among inputs [154]. In [155], a variable selection method based on
Dynamic Mutual Information is proposed and called DMIFS. In [156], a selection based on Partial
Mutual Information (PMI) is introduced and successfully applied in other works as well [157,158].
When datasets become extremely large, however, the greedy optimization tends to be infeasible.
This can be overcome by the use of parallel computing to speed the procedure up. In [159], the greedy
optimization procedure is revisited to propose a semi-parallel optimization paradigm that works as
the other state-of-the-art algorithms, but in a fraction of the time. The algorithm is tested even on a
dataset of more than a million candidate inputs. Another method proposed after MIFS is Information
Theoretic Subset Selection (ITSS) [160], described as a multivariate MI approach where indications
on when the growth of the subset has to be stopped are given, as opposed to the MIFS algorithm.
The method exploits a parameter based on MI called Asymmetric Dependency Coefficient (ADC)
to estimate the knowledge of the output carried by the selected subset. When the ADC reaches the
maximum value of 1, a full knowledge of the output is reached. A review of variable selection methods
based on MI is given in [44].

Lipschitz’s quotients can be used for input selection by computing the Euclidean distances in the
input space and in the output at different time instants [161]. Such approach is based on the continuity
property of the nonlinear function representing the input–output model and it depends only on the
input–output data collected through experiments. In order to evaluate each subset of variables (or to
evaluate the importance of the variable or variables excluded), each Lipschitz‘s quotient computed for
that subset is compared with the one computed for the whole candidate set. However, this approach
requires the computation of the quotient for all the possible combinations of the input variables,
resulting in a high computational demand [162].

In [163], several linear filter variable selection methods are compared to nonlinear ones using two
large databases, in particular a synthetic one and a real-world one. Results showed nonlinear methods
to be a generally preferable and more robust tool.

5.2. Wrapper Methods

Such class of methods perform the input variable selection by evaluating the performance of the
final model via cross-validation, where each model corresponds to a unique combination of inputs [45].
The assessment is done by using the same criteria that are used to evaluate the predictive performance
in the model validation design step, for example, the MSE [164–168]. In the case of the use of the
MSE as an optimality criterion, the drawback is that the best model could not be the optimal one,
since models with a large number of inputs tend to suffer overfitting. So other criteria like Akaike’s
Information Criterion (AIC) [94,165,169,170], or the CP (Mallows’ Coefficient) statistics [1] are adopted
since these measures penalize overfitting by determining the optimal number of input variables as a
trade-off between the model size and the accuracy.
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With respect to filter methods, these approaches are slower and computationally and time
expensive, since a new model is created every time a new subset is picked. Being the evaluation done
on the final model, they generally give better results.

As explained in Section 5, the ideal approach would be evaluating all possible subsets, but as it is
infeasible, the use of a search strategy is needed. On the basis of the adopted search algorithm shown
in the same section, wrapper methods can be classified as deterministic or randomized [171,172].
Deterministic wrappers use Sequential Feature Selection greedy algorithms like Forward Selection,
Backward Elimination and their variants. They generally present a lower overfitting risk [173–175].
Randomized wrapper methods are the ones adopting heuristic search and exploit a randomized
criterion in the selection of the subset. As already stated, they have more parameters to be
tuned [176,177].

5.3. Embedded Methods

In this case, variable selection depends on the structure and on the type of the used
model: a specific characteristic of the model or of its learning process is used to define the
criterion. These methods, compared to the filter ones, are slower and give bad generalization
performance (overfitting) when not enough data is available; vice-versa when enough data is available,
they generally outperform filter methods [5,42].

Recursive feature elimination (RFE) [129,178,179] is a backward-elimination embedded input
selection strategy. RFE consists of an iterative process of training a model, where all the candidate
inputs are initially used. At each iteration, RFE seeks to improve generalization performance by
removing the least important variable in which the deletion will have the least effect on training error.
This method works well for problems with small training samples and high input dimensionality,
but it tends to remove redundant and weak variables, keeping independent ones. As already
stated in this paper, weak input variables that are useless by themselves can provide a good
improvement in performances when combined together, so simply removing them can degrade
the classification performance.

For this reason, variations of the algorithm have been proposed such as Enhanced-RFE
(EnRFE) [180] or RFE-by-sensitivity-testing (RFEST) [181]. Original RFE does not concern the further
state at each iteration, as opposed to EnRFE that will retain redundant or weak features that are useful
when combined with other features. It is shown that EnRFE performs better than its original version.
In RFEST, RFE is used with sensitivity analysis to rank inputs and to overcome the same limitations.

Sensitivity analysis [182] is an input selection method in which the model is first trained with all
the candidate inputs, then one input is analyzed by measuring the variation of the output when it is
perturbed [183–186]. If considered irrelevant by the sensitivity analysis, it is then removed.

Evolutionary ANNs (EANNs) [187] are population-based algorithms for neural network models
that simulate the natural evolution of biological systems to optimize the NN and to determine the
optimal set of input weights. When the optimization procedure sets an input connection weight close
or equal to zero, then that input variable is excluded, making the input selection embedded within the
EANN approach.

Least Absolute Shrinkage and Selection Operator (LASSO) [188,189] is a regularization method
that provides input selection in an embedded way. Regularization is a method of reducing variance
in a linear regression model at the cost of introducing some bias. This is done by adding the model
error function of a penalty term. Ridge Regression (RR) [190] penalizes the sum of squared coefficients,
the so-called L2 penalty. When the function is forced to be less than a fixed value, the penalty term
shrinks the model coefficients leading to a lower variance and a lower error value. This decreases
the complexity of the model but does not reduce the number of variables, it rather just shrinks
their effect. LASSO actually penalizes the sum of the parameters absolute values, the so-called L1

penalty. This makes some of the parameters shrink to zero, which is never the case in ridge regression,
eliminating some variables entirely and performing variable selection, by giving a subset of predictors
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that helps mitigate multicollinearity and model complexity. Elastic Net (EN) [191] linearly combines
the L1 and L2 penalties from LASSO and RR and can be optimized to effectively perform coefficient
shrinkage as well as setting some of them to 0 for sparse variable selection. LASSO regularization
for inputs selection is extended to the nonlinear case as well with the name of LASSO-MLP [162,192].
In this case, the L1 penalty term is added to the error function of a single-layer MLP and then variable
selection is performed as in linear LASSO.

5.4. Hybrid Methods

Merging different methods often brings better results and less computational demand.
Different combinations of input selection methods and classes can be performed to further reduce the
number of inputs. Filter methods can be used, such as the pre-filtering method in [1], where correlation
coefficients and scatter plots are used as a preselection and then partial correlation and Mallows’ Cp

statistics are used for input selection. In [193], a combination of wrapper and embedded methods are
proposed and called SBS-MLP. It presents low computational cost and tends to equally-perform or
outperform other state-of-the-art methods it was compared with.

In [194], a selection method is proposed in which Nearest Correlation Spectral Clustering Variable
Selection (NCSCVS), a method that clusters inputs into groups based on the correlation between
variables by nearest correlation spectral clustering, is used as a filter step and then integrated with
group LASSO. This method is called Nearest Correlation Spectral Clustering Group LASSO (NCSC-GL).
In [195], the NC-based method is used to search for inputs correlated with the output, and then che
correlation similarity between the inputs and the output is used to weight the respective input in the
model. The method is called Nearest Correlation-Based Input Variable Weighting (NCVW).

In [29], a self-organizing map (SOM) is used to reduce the dimensionality of the input space
and obtain independent inputs. Then, to determine which inputs have a significant relationship with
the output, a hybrid approach exploiting GA with a General Regression Neural Network (GRNN) is
proposed and called GAGRNN.

In [83], variable selection is performed by first ranking the candidate inputs exploiting correlation
coefficient analysis, then the optimal subset is chosen with a wrapper approach by evaluating the
prediction performance of different models.

The gradient-based leave-one-out gene selection (GLGS) algorithm [196] combines a variant of
the Leave-One-Out Cross-Validation (LOOCV) with the Gradient Descent Optimization algorithm to
PCA, to perform input dimensionality reduction.

In [197], an ensemble input set that maintains informative inputs from the original set is formed
as a combination of the output feature set of a population of LASSO models. The regularizing factors
of these selectors are estimated via cross-validation procedures.

In [49], filter methods such as CC analysis, ITSS and Lipschitz quotients analysis are combined
with either LASSO and plant experts’ knowledge, halving the original input set of an SS of a refinery
process and outperforming the model trained with all the candidate inputs.

Other cases of hybrid approaches are reported in [5].

6. Summary and Conclusions

Given the number of classes of input selection strategies, some key factors must be taken into
account when creating the model. First of all, the designer needs to understand if the chosen algorithm
is able to detect nonlinear relationships, which is a common trait when dealing with industrial
processes. The number of available samples with respect to the number of inputs to be chosen could
give a hint as well whether a filter, wrapper or embedded approach is preferable to avoid overfitting or
poor generalization properties. The expected computational demand represents another incisive factor
to be considered as well by the designer. Taking these considerations into account, Table 1 carries a
classification of the methods cited so far, divided by classes and showing the benefits and drawbacks
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of each, with the aim to provide the designer with a guidance of what the most suitable choice could
be for the case in exam.

Table 1. Classification of the methods, considering pros and cons. Given n number of samples and p
number of inputs.

Class Type Pros Cons

FE
Linear Nonlinear

PCA, SPCA,
PPCA.

NLPCA, KPCA, ICA,
MDS, PCoA, Isomap,

LLE, LE, SOM.

Reduced computational
demand.

Unsupervised. Final projections
do not have any physical

meaning and all measurement
sensors are still needed._

FS
Linear NonLinear

Filter CC analysis.
(Pearson,

Spearman)

Ensemble CC an. or
MI an. (MIFS, MIFS-U,
NMIFS, DMIFS, ITSS),

Lipschitz coeff.

Simplest, fastest,
model-independent.

Good when n < p.

Inputs are considered
individually. Dependencies and

interactions are disregarded.

Deterministic Random
Wrapper FS, SFFS,

BE, SBFS.
Heuristic search
(GA, ACO, SA).

Evaluation on the
final model gives
very good results.

Model-dependent.
Most computationally and

time expensive. Models
obtained can suffer overfitting.

_
_

Embedded RFE, RFEST, EnRFE, Sensitivity
analysis, Evolutionary ANNs, LASSO,

LASSO-MLP, Elastic net.

Best methods
when n > p.

Model-dependent.
Computationally expensive.

High overfitting when
n < p._

_
Hybrid Every possible combination of

methods from different classes.

Merge best results from
the most performing
methods for the case

in exam.

Different tests have to be done,
methods have to be combined
with a criterion. This can make

them time consuming.
_
_

Wrappers and embedded algorithms are typically preferred where the number of candidate inputs
is relatively smaller then the number of samples. Under this circumstance they both tend to give the best
results even if they are time and computationally demanding. Otherwise, the final model will suffer
overfitting, being the two methods model-dependent. As opposed to such model-dependent methods,
filter approaches offer a faster and model-independent alternative. They perform an estimation of
the input variable importance, avoiding this way the risk of overfitting. The input variables pruning
ensures a reduction of the computational burden required for the model identification and validation
steps. In some cases, such ranking can anyway be too inaccurate and an importance-wise greedy
selection of the candidate inputs tends to ignore redundancies. For this reason, they work best as a
first step of hybrid approaches. They represent the best choice if the number of candidate inputs is
relatively greater then the number of samples.

Moreover, references were summarized into the next two tables: in Table 2, references explaining
theory and procedures are classified for each input selection method; Table 3 collects references with
real case studies application of each method.

Soft sensors concern several fields of study and research, from machine learning, mathematics
and statistics. The choice of input variables has an utter impact in the model development and its final
performance. In the case of empirical data-driven models, the difficulty of the task can be lightened
by the a priori knowledge given by plant experts, if available. Most of the time, however, this is not
possible, and a black-box investigation among variables is needed. Despite the variety of the existing
methods, none of them provides a general solution equally satisfactory for any case, since in the case
of real applications, each approach tends to give different incoherent results. This means that different
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tests must be performed by the designer in an effort to find the most suitable subset for the application,
making the input selection step time and computationally consuming. For this reason, the problem of
variable selection is highly demanded, making it a topic that still needs to be researched.

Table 2. Classification of references of theory and procedure of the main input selection methods.

Methods References Table

FE

PCA [105–110,117]
MDS [118,119]
PCoA [120]
Isomap [121–123]
LLE [124,125]
LE [126]
SOM [127]

FS

Filter

CC [1,136,138–141]
Univariate MI [129]
Multivariate MI [149,150,152–156,159]
ITSS [160]
Lipschitz quot. [161]

Wrapper

[45]
FS, BE [130]
SFFS, SFBS [131]
Random [173–175]
ACO based [132–134]

Embedded

RFE [129,180,181]
Sensitivity analysis [182–184]
EANN [187]
LASSO [188,189,192]

Semi-supervised [46]

Table 3. Classification of references of application of the methods on a real case study.

Real Case Applications References Table

Plant experts’ knowledge [7–10,22,26,64]

FE

PCA [11,19,28,34,36,37,56,58,89,111,112]
Distributed PCA [31]
Kernel PCA [113–115]
PLS [32,84]
Discriminant anal. [16]

FS

Filter

CC [6,12,23,30,49,137]
Univariate MI [143]
Multivariate MI [75,77,90–92,144–146,156–158]
ITSS [13,49]
Lipschitz quot. [49,162]

Wrapper
FS, BE [14,99,165]
SFFS, SFBS [164]
Random [166–168,170,176,177]

Embedded
RFE [178,179]
Sensitivity analysis [185]
LASSO [49,162]

Hybrid [29,49,83,193–197]
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77. Grbić, R.; Sliskovic, D.; Kadlec, P. Adaptive soft sensor for online prediction and process monitoring based on
mixture of Gaussian process models. Comput. Chem. Eng. 2013, 58, 84–97. [CrossRef]

78. Shao, W.; Ge, Z.; Song, Z.; Wang, K. Nonlinear Industrial soft sensor development based on semi-supervised
probabilistic mixture of extreme learning machines. Control Eng. Pract. 2019, 91. [CrossRef]

79. Mendes, J.; Souza, F.; Araújo, R.; Gonçalves, N. Genetic fuzzy system for data-driven soft sensors.
Appl. Soft Comput. 2012, 12, 3237–3245. [CrossRef]

80. Mendes, J.; Pinto, S.; Araújo, R.; Souza, F. Evolutionary fuzzy models for nonlinear identification.
In Proceedings of the IEEE 17th International Conference on Emerging Technologies & Factory Automation
(ETFA 2012), Krakow, Poland, 17–21 September 2012; pp. 1–8. [CrossRef]

81. Sjöberg, J.; Hjalmarsson, H.; Ljung, L. Neural networks in system identification. IFAC Proc. Vol. 1994, 27,
359–382. [CrossRef]

82. Juditsky, A.; Hjalmarsson, H.; Benveniste, A.; Delyon, B.; Ljung, L.; Sjoberg, J.; Zhang, Q. Nonlinear black-box
models in system identification: Mathematical foundations. Automatica 1995, 31, 1725–1750. [CrossRef]

83. Han, M.; Zhang, R.; Xu, M. Multivariate chaotic time series prediction based on ELM-PLSR and hybrid
variable selection algorithm. Neural Proc. Lett. 2017, 46, 705–717. [CrossRef]

84. Liu, Y.; Pan, Y.; Huang, D. Development of a novel adaptive soft sensor using variational Bayesian PLS with
accounting for online identification of key variables. Ind. Eng. Chem. Res. 2015, 54, 338–350. [CrossRef]

85. Liu, Z.; Ge, Z.; Chen, G.; Song, Z. Adaptive soft sensors for quality prediction under the framework of
Bayesian network. Control Eng. Pract. 2018, 72, 19–29. [CrossRef]

86. Graziani, S.; Xibilia, M.G. Deep Learning for Soft Sensor Design, in Development and Analysis of Deep Learning
Architectures; Springer: Basel, Switzerland, 2020. [CrossRef]

87. Shoorehdeli, M.A.; Teshnehlab, M.; Sedigh, A.K. Training ANFIS as an identifier with intelligent hybrid
stable learning algorithm based on particle swarm optimization and extended Kalman filter. Fuzzy Sets Syst.
2009, 160, 922–948. [CrossRef]

88. Soares, S.; Araújio, R.; Sousa, P.; Souza, F. Design and application of soft sensors using ensemble methods.
In Proceedings of the IEEE International Conference on Emerging Technologies & Factory Automation,
ETFA2011, Toulouse, France, 5–9 September 2011; pp. 1–8. [CrossRef]

89. Shakil, M.; Elshafei, M.; Habib, M.A.; Maleki, F.A. Soft sensor for NOx and O2 using dynamic neural
networks. Comput. Elect. Eng. 2009, 35, 578–586. [CrossRef]

http://dx.doi.org/10.1155/2014/318195
http://dx.doi.org/10.1109/ICWAPR.2007.4420763
http://dx.doi.org/10.1021/ie303370x
http://dx.doi.org/10.1109/CCDC.2014.6852142
http://dx.doi.org/10.1109/CCIS.2018.8691166
http://dx.doi.org/10.1016/j.aei.2018.03.003
http://dx.doi.org/10.1155/2020/7617010
http://dx.doi.org/10.1109/MED.2010.5547730
http://dx.doi.org/10.1016/j.compchemeng.2013.06.014
http://dx.doi.org/10.1016/j.conengprac.2019.07.016
http://dx.doi.org/10.1016/j.asoc.2012.05.009
http://dx.doi.org/10.1109/ETFA.2012.6489621
http://dx.doi.org/10.1016/S1474-6670(17)47737-8
http://dx.doi.org/10.1016/0005-1098(95)00119-1
http://dx.doi.org/10.1007/s11063-017-9616-4
http://dx.doi.org/10.1021/ie503807e
http://dx.doi.org/10.1016/j.conengprac.2017.10.018
http://dx.doi.org/10.1007/978-3-030-31764-5_2
http://dx.doi.org/10.1016/j.fss.2008.09.011
http://dx.doi.org/10.1109/ETFA.2011.6059061
http://dx.doi.org/10.1016/j.compeleceng.2008.08.007


Future Internet 2020, 12, 97 20 of 24

90. Ludwig, O.; Nunes, U.; Araújo, R.; Schnitman, L.; Lepikson, H.A. Applications of information theory, genetic
algorithms, and neural models to predict oil flow. Commun. Nonlinear Sci. Numer. Simul. 2009, 14, 2870–2885.
[CrossRef]

91. Souza, F.; Araújo, R. Variable and time-lag selection using empirical data. In Proceedings of the IEEE
International Conference on Emerging Technologies & Factory Automation, ETFA2011, Toulouse, France,
5–9 September 2011; pp. 1–8. [CrossRef]

92. Souza, F.; Santos, P.; Araújio, R. Variable and delay selection using neural networks and mutual information
for data-driven soft sensors. In Proceedings of the IEEE Conference on Emerging Technologies and Factory
Automation (ETFA), Bilbao, Spain, 13–16 September 2010; pp. 1–8. [CrossRef]

93. Lou, H.; Su, H.; Xie, L.; Gu, Y.; Rong, G. Inferential Model for Industrial Polypropylene Melt Index Prediction
with Embedded Priori Knowledge and Delay Estimation. Ind. Eng. Chem. Res. 2012, 51, 8510–8525.
[CrossRef]

94. Akaike, H. Information Theory and an Extension of the Maximum Likelihood Principle. In Selected Papers of
Hirotugu Akaike; Springer: New York, NY, USA, 1998; pp. 199–213. [CrossRef]

95. Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 1974, 19, 716–723.
[CrossRef]

96. Rissanen, J. Modeling by shortest data description. Automatica 1974, 14, 465–658. [CrossRef]
97. Schwarz, G. Estimating the dimension of a model. Ann. Stat. 1978, 6, 461–464. [CrossRef]
98. Mallows, C.L. Some Comments on CP. Technometrics 1973, 15, 661–675. [CrossRef]
99. Gabriel, D.; Matias, T.; Pereira, J.C.; Araújo, R. Predicting gas emissions in a cement kiln plant using hard and

soft modeling strategies. In Proceedings of the IEEE 18th Conference on Emerging Technologies & Factory
Automation (ETFA), Cagliari, Italy, 10–13 September 2013; pp. 1–8. [CrossRef]

100. Judd, J.S. Neural Network Design and the Complexity of Learning; The MIT Press: Cambridge, MA, USA, 1990.
101. Geman, S.; Bienenstock, E.; Doursat, R. Neural Networks and the Bias/Variance Dilemma. Neural Comput.

1992, 4, 1–58. [CrossRef]
102. Bellman, R. Adaptive Control Processes: A Guided Tour; Princeton University Press: New Jersey, NJ, USA, 1961.
103. Scott, D.W. Multivariate Density Estimation: Theory, Practice and Visualisation; John Wiley and Sons: New York,

NY, USA, 1992.
104. Jain, A.K.; Duin, R.P.; Mao, J. Statistical pattern recognition: A review. IEEE Trans. Patton Anal. Mach. Intell.

2000, 22, 4–37. [CrossRef]
105. Joliffe, I.T. Principal Component Analysis; Springer: Berlin/Heidelberg, Germany, 2002.
106. Kramer, M.A. Nonlinear principal component analysis using autoassociative neural networks. AIChE J. 1991,

37, 233–243. [CrossRef]
107. Schölkopf, B. Nonlinear Component Analysis as a Kernel Eigenvalue Problem. Neural Comput. 1998, 10,

1299–1319. [CrossRef]
108. Bair, E.; Hastie, T; Paul, D.; Tibshirani, R. Prediction by Supervised Principal Components. J. Am. Stat. Assess.

2006, 101, 119–137. [CrossRef]
109. Comon, P. Independent component analysis, A new concept? Signal Proc. 1994, 36, 287–314. [CrossRef]
110. Tipping, M.E.; Bishop, C.M. Probabilistic Principal Component Analysis. J. R. Stat. Soc. Ser. B 1999, 61,

611–622. [CrossRef]
111. Eshghi, P. Dimensionality choice in principal components analysis via cross-validatory methods. Chem. Intell.

Lab. Syst. 2014, 130, 6–13. [CrossRef]
112. Hastie, T.; Tibshirani, R.; Eisen, M.B.; Alizadeh, A.; Levy, R.; Staudt, L.; Chan, W.C.; Botstein, D.; Brown, P.

‘Gene shaving’ as a method for identifying distinct sets of genes with similar expression patterns. Genome Biol.
2000, 1, 1–21. [CrossRef]

113. Liu, Z.; Chen, D.; Bensmail, H. Gene expression data classification with kernel principal component analysis.
BioMed Res. Int. 2005, 37, 155–159. [CrossRef]

114. Reverter, F.; Vegas, E.; Oller, J.M. Kernel-PCA data integration with enhanced interpretability. BMC Syst. Biol.
2014, 8. [CrossRef]

115. Yao, M.; Wang, H. On-line monitoring of batch processes using generalized additive kernel principal
component analysis. J. Proc. Control 2015, 28, 56–72. [CrossRef]

http://dx.doi.org/10.1016/j.cnsns.2008.12.011
http://dx.doi.org/10.1109/ETFA.2011.6059083
http://dx.doi.org/10.1109/ETFA.2010.5641329
http://dx.doi.org/10.1021/ie202901v
http://dx.doi.org/10.1007/978-1-4612-1694-0_15
http://dx.doi.org/10.1109/TAC.1974.1100705
http://dx.doi.org/10.1016/0005-1098(78)90005-5
http://dx.doi.org/10.1214/aos/1176344136
http://dx.doi.org/10.2307/1267380
http://dx.doi.org/10.1109/ETFA.2013.6648036
http://dx.doi.org/10.1162/neco.1992.4.1.1
http://dx.doi.org/10.1109/34.824819
http://dx.doi.org/10.1002/aic.690370209
http://dx.doi.org/10.1162/089976698300017467
http://dx.doi.org/10.1198/016214505000000628
http://dx.doi.org/10.1016/0165-1684(94)90029-9
http://dx.doi.org/10.1111/1467-9868.00196
http://dx.doi.org/10.1016/j.chemolab.2013.09.004
http://dx.doi.org/10.1186/gb-2000-1-2-research0003
http://dx.doi.org/10.1155/JBB.2005.155
http://dx.doi.org/10.1186/1752-0509-8-S2-S6
http://dx.doi.org/10.1016/j.jprocont.2015.02.007


Future Internet 2020, 12, 97 21 of 24

116. Cao, L.J.; Chua, K.S.; Chong, W.K.; Lee, H.P.; Gu, Q.M. A comparison of PCA, KPCA and ICA for
dimensionality reduction in support vector machine. IEEE Trans. Patton Anal. Mach. Intell. 2003, 55,
321–336. [CrossRef]

117. Li, T.; Su, Y.; Yi, J.; Yao, L.; Xu, M. Original feature selection in soft-sensor modeling process based on
ICA_FNN. Chin. J. Sci. Instrum. 2013, 4, 736–742.

118. Torgerson, W.S. Multidimensional scaling: I. Theory and method. Psychometrika 1952, 17, 401–419. [CrossRef]
119. Borg, I.; Groenen, P.J.F. Modern Multidimensional Scaling: Theory and Applications, 2nd ed.; Springer:

Berlin/Heidelberg, Germany, 2005.
120. Gower, J.C. Principal Coordinates Analysis. Encycl. Biostat. 2005. [CrossRef]
121. Tenenbaum, J.B.; De Silva, V.; Langford, J.C. A global geometric framework for nonlinear dimensionality

reduction. Science 2000, 290, 2319–2323. [CrossRef] [PubMed]
122. Balasubramanian, M.; Schwartz, E.L. The isomap algorithm and topological stability. Science 2002, 295, 7.

[CrossRef] [PubMed]
123. Orsenigo, C.; Vercellis, C. An effective double-bounded tree-connected Isomap algorithm for microarray

data classification. Patton Rec. Lett. 2012, 33, 9–13. [CrossRef]
124. Roweis, S.T.; Saul, L.K. Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science 2000,

290, 2323–2326. [CrossRef]
125. Shi C.; Chen, L. Feature dimension reduction for microarray data analysis using locally linear embedding.

In Proceedings of the 3rd Asia-Pacific Bioinformatics Conference, APBC ’05, Singapore, 17–21 January 2005;
pp. 211–217. [CrossRef]

126. Belkin, M.; Niyogi, P. Laplacian Eigenmaps for Dimensionality Reduction and Data Representation.
Neural Comput. 2003, 15, 1373–1396. [CrossRef]

127. Kohonen, T. Self-organized formation of topologically correct feature maps. Biol. Cybern. 1982, 43, 56–69.
[CrossRef]

128. Reitermanová, Z. Information Theory Methods for Feature Selection, 2010. Available online: https://pdfs.
semanticscholar.org/ad7c/9cbb5411a4ff10cec3c9ac5ddc18f1f60979.pdf (accessed on 3 June 2020).

129. Guyon, I. An introduction to variable and feature selection. J. Mach. Learn. Res. 2003, 3, 1157–1182.
130. Aha, D.W.; Bankert, R.L. A Comparative Evaluation of Sequential Feature Selection Algorithms. In Learning

from Data; Lecture Notes in Statistics; Springer: New York, NY, USA, 1996; Volume 112, pp. 199–206.
[CrossRef]

131. Somol, P.; Novovicova, J.; Pudil, P. Efficient Feature Subset Selection and Subset Size Optimization. Patton Rec.
Recent Adv. 2010, 56. [CrossRef]

132. Izrailev, S.; Agrafiotis, D.K. Variable selection for QSAR by artificial ant colony systems. SAR QSAR
Environ. Res. 2002, 13, 417–423. [CrossRef]

133. Marcoulides, G.A.; Drezner, Z. Model specification searches using ant colony optimization algorithms.
Struct. Eq. Model. 2003, 10, 154–164. [CrossRef]

134. Shen, Q.; Jiang, J.-H.; Tao, J.-C.; Shen, G.-L.; Yu, R.-Q. Modified ant colony optimization algorithm for
variable selection in QSAR modeling: QSAR studies of cyclooxygenase inhibitors. J. Chem. Inf. Model. 2005,
45, 1024–1029. [CrossRef] [PubMed]

135. Tang, J.; Alelyani, S.; Liu, H. Feature selection for classification: A review. Data Class. Algorithms Appl. 2014,
37–64. [CrossRef]

136. Chen, P.Y.; Popovich, P.M. Correlation: Parametric and Nonparametric Measures; Sage Publications:
Thousand Oaks, CA, USA, 2002.

137. Delgado, M.R.; Nagai, E.Y.; Arruda, L.V.R. A neuro-coevolutionary genetic fuzzy system to design soft
sensors. Soft Comput. 2009, 13, 481–495. [CrossRef]

138. Deebani, W.; Kachouie, N.N. Ensemble Correlation Coefficient. In Proceedings of the International
Symposium on Artificial Intelligence and Mathematics, ISAIM 2018, Fort Lauderdale, FL, USA, 3–5 January
2018; Available online: https://dblp.org/rec/conf/isaim/DeebaniK18 (accessed on 3 June 2020).

139. Székely, G.J.; Rizzo, M.L.; Bakirov, N.K. Measuring and testing dependence by correlation of distances.
Ann. Stat. 2007, 35, 2769–2794. [CrossRef]

140. Breiman, L.; Friedman, J.H. Estimating Optimal Transformations for Multiple Regression and Correlation.
J. Am. Stat. Assess. 1985, 80, 580–598. [CrossRef]

http://dx.doi.org/10.1016/S0925-2312(03)00433-8
http://dx.doi.org/10.1007/BF02288916
http://dx.doi.org/10.1002/0470011815.b2a13070
http://dx.doi.org/10.1126/science.290.5500.2319
http://www.ncbi.nlm.nih.gov/pubmed/11125149
http://dx.doi.org/10.1126/science.295.5552.7a
http://www.ncbi.nlm.nih.gov/pubmed/11778013
http://dx.doi.org/10.1016/j.patrec.2011.09.016
http://dx.doi.org/10.1126/science.290.5500.2323
http://dx.doi.org/10.1142/9781860947322_0021
http://dx.doi.org/10.1162/089976603321780317
http://dx.doi.org/10.1007/BF00337288
https://pdfs.semanticscholar.org/ad7c/9cbb5411a4ff10cec3c9ac5ddc18f1f60979.pdf
https://pdfs.semanticscholar.org/ad7c/9cbb5411a4ff10cec3c9ac5ddc18f1f60979.pdf
http://dx.doi.org/10.1007/978-1-4612-2404-4_19
http://dx.doi.org/10.5772/9356
http://dx.doi.org/10.1080/10629360290014296
http://dx.doi.org/10.1207/S15328007SEM1001_8
http://dx.doi.org/10.1021/ci049610z
http://www.ncbi.nlm.nih.gov/pubmed/16045297
http://dx.doi.org/10.1201/b17320
http://dx.doi.org/10.1007/s00500-008-0363-3
https://dblp.org/rec/conf/isaim/DeebaniK18
http://dx.doi.org/10.1214/009053607000000505
http://dx.doi.org/10.1080/01621459.1985.10478157


Future Internet 2020, 12, 97 22 of 24

141. Reshef, D.N.; Reshef, Y.A.; Mitzenmacher, M.M.; Sabeti, P.C. Equitability Analysis of the Maximal
Information Coefficient, with Comparisons. arXiv 2013, arXiv:1301.6314.

142. Cover, T.M.; Thomas, J.A. Elements of Information Theory; Wiley: Hoboken, NJ, USA, 1991.
143. Wang, X.; Han, M.; Wang, J. Applying input variables selection technique on input weighted support vector

machine modeling for BOF endpoint prediction. Eng. Appl. Artif. Intell. 2010, 23, 1012–1018. [CrossRef]
144. Rossi, F.; Lendasse, A.; François, D.; Wertz, V.; Verleysen, M. Mutual information for the selection of relevant

variables in spectrometric nonlinear modelling. Chem. Intell. Lab. Syst. 2006, 80, 215–226. [CrossRef]
145. François, D.; Rossi, F.; Wertz, V.; Verleysen, M. Resampling methods for parameter-free and robust feature

selection with mutual information. Neurocomputing 2007, 70, 1276–1288. [CrossRef]
146. Xing, H.-J.; Hu, B.-G. Two-phase construction of multilayer perceptrons using information theory. IEEE Trans.

Neural Netw. 2009, 20, 715–721. [CrossRef] [PubMed]
147. Doquire, G.; Verleysen, M. A comparison of multivariate mutual information estimators for feature selection.

In Proceedings the 1st International Conference on Pattern Recognition Applications and Methods, Algarve,
Portugal, 6–8 February 2012; pp. 176–185. [CrossRef]

148. Frénay, B.; Doquire, G.; Verleysen, M. Is mutual information adequate for feature selection in regression?
Neural Netw. 2013, 48, 1–7. [CrossRef] [PubMed]

149. Battiti, R. Using Mutual Information for Selecting Features in Supervised Neural Net Learning. IEEE Trans.
Neual Netw. 1994, 5, 537–550. [CrossRef] [PubMed]

150. Kwak, N.; Choi, C.H. Input Feature Selection for Classification Problems. IEEE Trans. Neural Netw. 2002, 13,
143–159. [CrossRef]

151. Balagani, K.S.; Phoha, V.V. On the feature selection criterion based on an approximation of multidimensional
mutual information. IEEE Trans. Patton Anal. Mach. Intell. 2010, 32, 1342–1343. [CrossRef]

152. Peng, H.; Long, F.; Ding, C. Feature Selection Based on Mutual Information: Criteria of Max-Dependency,
Max-Relevance, and Min-Redundancy. IEEE Trans. Patton Anal. Mach. Intell. 2005, 27, 1226–1238. [CrossRef]

153. Che, J.; Yang, Y.; Li, L.; Bai, X.; Zhang, S.; Deng, C. Maximum relevance minimum common redundancy
feature selection for nonlinear data. Inf. Sci. 2017, 409–410, 68–86. [CrossRef]

154. Estévez, P.A.; Tesmer, M.; Perez, C.A.; Zurada, J.M. Normalized Mutual Information Feature Selection.
IEEE Trans. Neual Netw. 2009, 20, 189–201. [CrossRef]

155. Liu, H.; Sun, J.; Liu, L.; Zhang, H. Feature selection with dynamic mutual information. Patton Rec. 2009, 42,
1330–1339. [CrossRef]

156. Sharma, A. Seasonal to interannual rainfall probabilistic forecasts for improved water supply management:
Part 1—A strategy for system predictor identification. J. Hydrol. 2000, 239, 232–239. [CrossRef]

157. May, R.J.; Maier, H.R.; Dandy, G.C.; Fernando, T.M.K.G. Non-linear variable selection for artificial neural
networks using partial mutual information. Environ. Model. Softw 2008, 23, 1312–1326. [CrossRef]

158. Fernando, T.M.K.G.; Maier, H.R.; Dandy, G.C. Selection of input variables for data driven models: An
average shifted histogram partial mutual information estimator approach. J. Hydrol. 2009, 367, 165–176.
[CrossRef]

159. Liu, H.; Ditzler, G. A semi-parallel framework for greedy information-theoretic feature selection. Inf. Sci.
2019, 492, 13–28. [CrossRef]

160. Sridhar, D.V.; Bartlett, E.B.; Seagrave, R.C. Information theoretic subset selection for neural network models.
Comput. Chem. Eng. 1998, 22, 613–626. [CrossRef]

161. He, X.; Asada, H. A new method for identifying orders of input-output models for nonlinear dynamic
systems. In Proceedings of the American Control Conference, San Francisco, CA, USA, 2–4 June 1993;
doi:10.23919/ACC.1993.4793346. [CrossRef]

162. Xibilia, M.G.; Gemelli, N.; Consolo, G. Input variables selection criteria for data-driven Soft Sensors design.
In Proceedings of the IEEE International Conference on Networking, Sensing and Control, Calabria, Italy,
16–18 May 2017; doi:10.1109/ICNSC.2017.8000119. [CrossRef]

163. Krakovska, O.; Christie, G.; Sixsmith, A.; Ester, M.; Moreno, S. Performance comparison of linear and
non-linear feature selection methods for the analysis of large survey datasets. PLoS ONE 2019, 14. [CrossRef]

164. Chu, Y.-H.; Lee, Y.-H.; Han, C. Improved Quality Estimation and Knowledge Extraction in a Batch Process
by Bootstrapping-Based Generalized Variable Selection. Ind. Eng. Chem. Res. 2004, 43, 2680–2690. [CrossRef]

165. Kaneko, H.; Funatsu, K. A new process variable and dynamics selection method based on a genetic
algorithm-based wavelength selection method. AIChE J. 2012, 58, 1829–1840. [CrossRef]

http://dx.doi.org/10.1016/j.engappai.2009.12.007
http://dx.doi.org/10.1016/j.chemolab.2005.06.010
http://dx.doi.org/10.1016/j.neucom.2006.11.019
http://dx.doi.org/10.1109/TNN.2008.2005604
http://www.ncbi.nlm.nih.gov/pubmed/19258200
http://dx.doi.org/10.5220/0003726101760185
http://dx.doi.org/10.1016/j.neunet.2013.07.003
http://www.ncbi.nlm.nih.gov/pubmed/23892907
http://dx.doi.org/10.1109/72.298224
http://www.ncbi.nlm.nih.gov/pubmed/18267827
http://dx.doi.org/10.1109/72.977291
http://dx.doi.org/10.1109/TPAMI.2010.62
http://dx.doi.org/10.1109/TPAMI.2005.159
http://dx.doi.org/10.1016/j.ins.2017.05.013
http://dx.doi.org/10.1109/TNN.2008.2005601
http://dx.doi.org/10.1016/j.patcog.2008.10.028
http://dx.doi.org/10.1016/S0022-1694(00)00346-2
http://dx.doi.org/10.1016/j.envsoft.2008.03.007
http://dx.doi.org/10.1016/j.jhydrol.2008.10.019
http://dx.doi.org/10.1016/j.ins.2019.03.075
http://dx.doi.org/10.1016/S0098-1354(97)00227-5
http://dx.doi.org/10.23919/ACC.1993.4793346
http://dx.doi.org/10.1109/ICNSC.2017.8000119
http://dx.doi.org/10.1371/journal.pone.0213584
http://dx.doi.org/10.1021/ie0341552
http://dx.doi.org/10.1002/aic.13814


Future Internet 2020, 12, 97 23 of 24

166. Chatterjee, S.; Bhattacherjee, A. Genetic algorithms for feature selection of image analysis-based quality
monitoring model: An application to an iron mine. Eng. Appl. Artif. Intell. 2011, 24, 786–795. [CrossRef]

167. Arakawa, M.; Yamashita, Y.; Funatsu, K. Genetic algorithmbased wavelength selection method for spectral
calibration. J. Chem. 2011, 25, 10–19. [CrossRef]

168. Kaneko, H.; Funatsu, K. Nonlinear regression method with variable region selection and application to soft
sensors. Chem. Intell. Lab. Syst. 2013, 121, 26–32. [CrossRef]

169. Pierna J.A.F.; Abbas, O.; Baeten, V.; Dardenne, P. A backward variable selection method for PLS regression
(BVSPLS). Anal. Chim. Acta 2009, 642, 89–93. [CrossRef] [PubMed]

170. Liu, G.; Zhou, D.; Xu, H.; Mei, C. Model optimization of SVM for a fermentation soft sensor. Exp. Syst. Appl.
2010, 37, 2708–2713. [CrossRef]

171. Saeys, Y.; Inza, I.; Larrañaga, P. A review of feature selection techniques in bioinformatics. Bioinformatics
2007, 23, 2507–2517. [CrossRef] [PubMed]

172. Mehmood, T.; Liland, K.H.; Snipen, L.; Sæbø, S. A review of variable selection methods in Partial Least
Squares Regression. Chem. Intell. Lab. Syst. 2012, 118, 62–69. [CrossRef]

173. Centner, V.; Massart, D.L.; De Noord, O.; De Jong, S.; Vandeginste, B.G.M.; Sterna, C. Elimination of uninformative
variables for multivariate calibration. Anal. Chem. 1996, 68, 3851–3858. [CrossRef]

174. Li, H.-D.; Zeng, M.-M.; Tan, B.-B. ; Liang, Y.-Z.; Xu, Q.-S.; Cao, D.-S. Recipe for revealing informative metabolites
based on model population analysis. Metabolomics 2010, 6, 353–361. [CrossRef]

175. Mehmood, T.; Martens, H.; Sæbø, S.; Warringer, J.; Snipen, L. A Partial least squares-based algorithm for
parsimonious variable selection. Algorithms Mol. Biol. 2011, 6. [CrossRef]

176. Cai, W.; Li, Y.; Shao, X. A variable selection method based on uninformative variable elimination for
multivariate calibration of near-infrared spectra. Chem. Intell. Lab. Syst. 2008, 90, 188–194. [CrossRef]

177. Hasegawa, K.; Miyashita, Y.; Funatsu, K. GA strategy for variable selection in QSAR studies: GA-based PLS
analysis of calcium channel antagonists. J. Chem. Inf. Comput. Sci. 1997, 37, 306–310. [CrossRef]

178. Liu, Q.; Sung, A.H.; Chen, Z.; Liu, J.; Huang, X.; Deng, Y. Feature selection and classification of MAQC-II
breast cancer and multiple myeloma microarray gene expression data. PLoS ONE 2019, 4. [CrossRef]

179. Tang, Y.; Zhang, Y.-Q.; Huang, Z. Development of two-stage SVM-RFE gene selection strategy for microarray
expression data analysis. IEEE/ACM Trans. Comput. Biol. Bioinform. 2007, 4, 365–381. [CrossRef] [PubMed]

180. Chen, X.-W.; Jeong, J.C. Enhanced recursive feature elimination. In Proceedings of the Sixth
International Conference on Machine Learning and Applications (ICMLA 2007), Cincinnati, OH, USA,
13–15 December 2007; pp. 429–435. [CrossRef]

181. Escanilla, N.S.; Hellerstein, L.; Kleiman, R.; Kuang, Z.; Shull J.; Page, D. Recursive Feature Elimination by
Sensitivity Testing. In Proceedings of the 17th IEEE International Conference on Machine Learning and
Applications (ICMLA), Orlando, FL, USA, 17–20 December 2018; pp. 40–47. [CrossRef]

182. Yeh, I.-C.; Cheng, W.-L. First and second order sensitivity analysis of MLP. Neurocomp. 2010, 73, 2225–2223.
[CrossRef]

183. Garson, G.D. Interpreting neural-network connection weights. AI Exp. 1991, 6, 46–51.
184. Dimopoulos, Y.; Bourret, P.; Lek, S. Use of some sensitivity criteria for choosing networks with good

generalization ability. Neural Proc. Lett. 1995, 2, 1–4. [CrossRef]
185. Dimopoulos, I.; Chronopoulos, J.; Chronopoulou-Sereli, A.; Lek, S. Neural network models to study

relationships between lead concentration in grasses and permanent urban descriptors in Athens city (Greece).
Ecol. Model. 1999, 120, 157–165. [CrossRef]

186. Lemaire, V.; Féraud, R. Driven forward features selection: A comparative study on neural networks.
In Proceedings of the 13th International Conference, ICONIP 2006, Hong Kong, China, 3–6 October 2006;
pp. 693–702. [CrossRef]

187. Ding, S.; Li, H.; Su, C.; Yu, J.; Jin, F. Evolutionary artificial neural networks: A review. Artif. Intell. Rev. 2013,
39, 251–260. [CrossRef]

188. Tibshirani, R. Regression Shrinkage and Selection via the Lasso. J. R. Stat. Soc. B 1996, 58, 267–288. [CrossRef]
189. Radchenko, P.; James, G.M. Improved variable selection with forward-LASSO adaptive shrinkage.

Ann. Appl. Stat. 2011, 5, 427–448. [CrossRef]
190. Tikhonov, A.N.; Goncharsky, A.; Stepanov, V.V.; Yagola, A.G. Numerical Methods for the Solution of Ill-Posed

Problems; Springer: Berlin/Heidelberg, Germany, 1995.

http://dx.doi.org/10.1016/j.engappai.2010.11.009
http://dx.doi.org/10.1002/cem.1339
http://dx.doi.org/10.1016/j.chemolab.2012.11.017
http://dx.doi.org/10.1016/j.aca.2008.12.002
http://www.ncbi.nlm.nih.gov/pubmed/19427462
http://dx.doi.org/10.1016/j.eswa.2009.08.008
http://dx.doi.org/10.1093/bioinformatics/btm344
http://www.ncbi.nlm.nih.gov/pubmed/17720704
http://dx.doi.org/10.1016/j.chemolab.2012.07.010
http://dx.doi.org/10.1021/ac960321m
http://dx.doi.org/10.1007/s11306-010-0213-z
http://dx.doi.org/10.1186/1748-7188-6-27
http://dx.doi.org/10.1016/j.chemolab.2007.10.001
http://dx.doi.org/10.1021/ci960047x
http://dx.doi.org/10.1371/journal.pone.0008250
http://dx.doi.org/10.1109/TCBB.2007.1028
http://www.ncbi.nlm.nih.gov/pubmed/17666757
http://dx.doi.org/10.1109/ICMLA.2007.35
http://dx.doi.org/10.1109/ICMLA.2018.00014
http://dx.doi.org/10.1016/j.neucom.2010.01.011
http://dx.doi.org/10.1007/BF02309007
http://dx.doi.org/10.1016/S0304-3800(99)00099-X
http://dx.doi.org/10.1007/11893257_77
http://dx.doi.org/10.1007/s10462-011-9270-6
http://dx.doi.org/10.1111/j.2517-6161.1996.tb02080.x
http://dx.doi.org/10.1214/10-AOAS375


Future Internet 2020, 12, 97 24 of 24

191. Zou, H.; Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. B 2005, 67, 301–320.
[CrossRef]

192. Sun, K.; Huang, S.-H.; Wong, D.S.-H.; Jang, S.-S. Design and Application of a Variable Selection Method
for Multilayer perceptron Neural Network with LASSO. IEEE Trans. Neual Netw. Learn. Syst. 2017, 28,
1386–1396. [CrossRef]

193. Souza, F.A.A.; Araújo, R.; Matias, T.; Mendes, J. A multilayer-perceptron based method for variable selection
in soft sensor design. J. Proc. Control 2013, 23, 1371–1378. [CrossRef]

194. Fujiwara, K.; Kano, M. Efficient input variable selection for soft-sensor design based on nearest correlation
spectral clustering and group Lasso. ISA Trans. 2015, 58, 367–379. [CrossRef] [PubMed]

195. Fujiwara, K.; Kano, M. Nearest Correlation-Based Input Variable Weighting for Soft-Sensor Design.
Front. Chem. 2018, 6. [CrossRef] [PubMed]

196. Tang, E.K.; Suganthan P.N.; Yao, X. Gene selection algorithms for microarray data based on least squares
support vector machine. BMC Bioinf. 2006, 7. [CrossRef]

197. Cui, C.; Wang, D. High dimensional data regression using Lasso model and neural networks with random
weights. Inf. Sci. 2016, 372, 505–517. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1111/j.1467-9868.2005.00503.x
http://dx.doi.org/10.1109/TNNLS.2016.2542866
http://dx.doi.org/10.1016/j.jprocont.2013.09.014
http://dx.doi.org/10.1016/j.isatra.2015.04.007
http://www.ncbi.nlm.nih.gov/pubmed/26089173
http://dx.doi.org/10.3389/fchem.2018.00171
http://www.ncbi.nlm.nih.gov/pubmed/29872653
http://dx.doi.org/10.1186/1471-2105-7-95
http://dx.doi.org/10.1016/j.ins.2016.08.060
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	SS Design Stages
	The Input Selection Problem in SS Design
	Feature Extraction
	Feature Selection
	Filter Methods
	Wrapper Methods
	Embedded Methods
	Hybrid Methods

	Summary and Conclusions
	References

