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Aim and motivation
A theory for magnetic relaxation phenomena was de-
veloped by G. A. Kluitenberg and the author in
the framework of thermodynamics of irreversible pro-
cesses with internal variables. It was shown that if
n different types of microscopic irreversible phenom-
ena give rise to magnetic relaxation, it is possible to
describe these microscopic phenomena introducing n
macroscopic axial vectorial internal variables in the
expression of the entropy. The total specific magne-
tization m is split in n+1 parts m(k) (k = 1, ..., n) ,
i.e.

m = m(0) +

n∑
k=1

m(k). (1)

The following set C of independent variables was as-
sumed

C = C
(
u, εαβ,m,m(1), ...,m(n)

)
, (2)

where u is the specific internal energy and εαβ is the
strain tensor. Using the same procedure applied in
[?], by eliminating the internal variables the following
relaxation equation generalizing Snoek equation was
obtained
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where χ
(m)
BM (m = 0, 1, ..., n−1) and χ

(m)
MB (m = 0, 1, ..., n+

1) are characteristic constants of the particular mate-
rial.
This magnetic relaxation relation has the same

mathematical structure of the following stress-strain
relation for mechanical distortional phenomena in
isotropic media, derived in 1968 by G. A. K., as-
suming that n microscopic phenomena give rise to i-
nelastic strains (slip, dislocations, etc.) and the to-

tal strain tensor εαβ is split in n+1 parts, ε
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(m = 0, 1, ..., n+ 1) are ma-

terial constants and τ̃αβ and ε̃αβ are the deviators of the
stress tensor and of the strain tensor, respectively.
If n arbitrary microscopic phenomena give rise to the
total polarization vector, by introducing n partial po-
larization vectors as n macroscopic vectorial internal
variables in the expression of the entropy, the follow-
ing dielectric relaxation equation was obtained by the
author and G. A. K. in the isotropic case
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where E and P are the electric strength field and

the polarization vector, respectively, and χ
(k)
EP (k =

0, 1, ..., n−1) and χ
(k)
PE(k = 0, 1, ..., n+ 1) are constant

quantities.
The aim of the present work is to relate the n-th or-

der relaxation equation (1) (involving time derivatives
of the magnetic field B up to the n-th order, and time
derivatives of the magnetization M up to (n + 1)-th
order) to a hierarchy of first-order relaxation equa-
tions. In this way we relate the general equation to
the microscopic structure of the system. Finally, we
obtain the form of the entropy and its consequences on
the hierarchy of relaxation equations. We try the pa-
per to be as simple and pedagogical as possible, with a

minimum of physical complexity related to the math-
ematical structure of the equations.

Description of the model: a dynamical hierarchy
In the model to be considered we focus our atten-
tion on a magnetic system composed of n sets of spins
(i = 1, 2, ..., n), such that there are N (i) magnetic parti-
cles of the kind i, each of them having mass mi, radius
ri, spin Si, and so on. Thus, their inertia, relaxation
time, magnetization and susceptibility will be differ-
ent for each set of particles. These differences will
show up especially in dynamical phenomena. Here,
we will discuss a simple situation in which the time
scales of the several variables M(i), the magnetiza-
tions of the i-th set, are sufficiently separated to be
considered as a hierarchy of equations with minimal
couplings amongst them. We propose the following
hierarchy of dynamical equations
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We have assumed that τ1 > τ2 > τ3 > > τn. We will
denote χi

2 χ(i−1) τi
≡ γi. In these equations, χi is the

magnetic susceptibility of particles i, τi the magnetic
relaxation time, βi a coefficient that couples variables
i and i + 1, and γi a coefficient coupling variables i
to i− 1. This coupling may be physically realized, for
instance, through the magnetization of the slower of
the couple of the variables i and i − 1, namely i − 1,
which adds to the external applied magnetic field B
acting on M(i). Since M(i−1) is much slower than
M(i), the value of M(i−1) will not appreciably change
during the relaxation of M(i). On the other side, since
M(i+1) is much faster than M(i), M(i+1) will relax in
a very short time and will also keep practically con-
stant in its final relaxed value during the relaxation
on M(i).

Differentiating equation (6)1, using (6)2 for the time

derivative of M(2), and using (6)1 to express M(2) in

terms of M(1), dM(1)

dt and B, one gets
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We now differentiate equation (7)1, use the corre-

sponding evolution equation of hierarchy (6) for dM(3)

dt ,

and use (6)1 and (6)2 to express M(2) and M(3) in terms

of M(1), dM
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dt and B, and we get
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Note that ξ
(ab)
M is the coefficient multiplying the a-

the derivative of M(1) in the equation corresponding

to the b-th order of approximation, and analogously

for ξ
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B , but for the a-th derivative of the magnetic

field B. The corresponding coefficients are given by
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In principle, one may obtain a series of recurrence
relations for the coefficients corresponding to higher-
order equations. Here, we stop our calculations, which
become increasingly lengthy and cumbersome, as they
already illustrate the basic concept that hierarchy (6)
may be written in the form of higher-order relation
equation of the form we are considering.
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