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Scalable quantum computer with superconducting circuits in
the ultrastrong coupling regime
Roberto Stassi 1,2✉, Mauro Cirio3 and Franco Nori 1,4

So far, superconducting quantum computers have certain constraints on qubit connectivity, such as nearest-neighbor couplings. To
overcome this limitation, we propose a scalable architecture to simultaneously connect several pairs of distant qubits via a
dispersively coupled quantum bus. The building block of the bus is composed of orthogonal coplanar waveguide resonators
connected through ancillary flux qubits working in the ultrastrong coupling regime. This regime activates virtual processes that
boost the effective qubit–qubit interaction, which results in quantum gates on the nanosecond timescale. The interaction is
switchable and preserves the coherence of the qubits.

npj Quantum Information            (2020) 6:67 ; https://doi.org/10.1038/s41534-020-00294-x

INTRODUCTION
Superconducting circuits are a very promising hardware platform
for quantum computers with capabilities beyond the ones of
classical computers (see, e.g., refs. 1–5 and references therein). A
basic requirement to perform quantum logic gates is to have
controllable interactions among qubits (e.g., refs. 6–9). Obviously,
quantum computers benefit from higher and better connectivity
among qubits, and this becomes more challenging to achieve as
the system is scaled up. Unfortunately, so far, superconducting
quantum computers have certain constraints on qubit connectiv-
ity, such as nearest-neighbor couplings10. Although the distant
interaction between two or more qubits, mediated by a cavity bus,
has been demonstrated (e.g., refs. 11–13), this scheme is not
convenient to connect many pairs of distant qubits simultaneously
in a superconducting quantum computer. Indeed, in this case, the
qubit–qubit interaction is activated by tuning qubit frequencies,
leading to possible unwanted couplings and to a reduction of the
coherence time of the qubits.
In addition to applications to quantum computing, super-

conducting circuits are a very versatile platform to investigate new
quantum phenomena and to engineer quantum devices (e.g.,
refs. 14–21). Note that the coupling between a superconducting
artificial atom (e.g., refs. 22–25) and a resonator can be a significant
fraction of the bare atom and cavity energies (e.g., refs. 26–31). In
this ultrastrong coupling regime, the usual Jaynes–Cummings
approximation breaks down and the counter-rotating terms must
be taken into account32,33.
Here, we theoretically propose a scalable architecture to

simultaneously couple pairs of distant superconducting qubits.
The building block of this architecture is composed of three
waveguides. Two of them (C1 and C2), see Fig. 1a, are directly
connected to the qubits (qa and qb) that form the computational
basis, while a third (C3) is connected to the first two in a Π-shape
form. At the intersection point, the interaction is mediated by
ancillary flux qubits (f1 and f2) in the ultrastrong coupling regime.
All components of the Π-connector are on resonance with each
other. However, the two qubits, qa and qb, are detuned with
respect to the eigenenergies of the bus. The last condition

guarantees that the coupling between qubits is mediated by
virtual excitations, thereby not affecting their coherence. More-
over, the bus takes advantage of the counter-rotating terms
activated by the ultrastrong coupling, enhancing the coupling
between the qubits. This allows to perform fast two-qubit gates on
nanosecond timescales. To achieve scalability, these building
blocks can be arranged in an array, see Fig. 1b, so that every qubit
is connected with each other. Couplings between qubits can be
switched on and off by tuning the ancillary flux qubit frequencies
on and off resonance with the waveguides. Importantly, this
allows the qubits qa and qb to remain in their optimal working
point, preserving their coherence times.

RESULTS
The Hamiltonian describing the Π-connector in Fig. 1a is
Ĥ ¼ Ĥq þ ĤΠ þ Ĥint, where Ĥq ¼ 1

2

P
i¼a;bωqi σ̂

ðiÞ
z represents both

qubit qa and qb (_ = 1),

ĤΠ ¼ 1
2

X2
i¼1

ωfi σ̂
ðiÞ
z þ

X3
i¼1

ωcâ
y
ðiÞâðiÞ þ

X2
i¼1

λs σ̂
ðiÞ
x X̂ i þ X̂3
� �

(1)

is the Hamiltonian of the ultrastrongly coupled quantum bus, and
Ĥint ¼ λ σ̂ðaÞ

x X̂1 þ σ̂ðbÞ
x X̂2

� �
represents the interaction between the

qubits and the quantum bus. Here, σ̂ðiÞ
z and σ̂ðiÞ

x are Pauli operators
for the qubits qa and qb (i = a, b) and for the flux qubits (i = 1, 2),
with transition energies ωqi ¼ ωq and ωf i ¼ ωc , respectively. We
set the fundamental frequency of all resonators Ck to be ωc = 3ωq,
and we denote the annihilation, creation, and quadrature
operators by âðkÞ, â

y
ðkÞ, and X̂k ¼ âðkÞ þ âyðkÞ (k = 1, 2, 3). Flux

qubit f1 (f2) is ultrastrongly coupled to cavity C1 (C2) and C3, with
coupling strength λs > 0.1ωc. Instead, the coupling strength
between qubit qa (qb) and resonator C1 (C2) is set to λ = 0.05ωq.
The latter interaction, operating in the dispersive regime, causes a
shift in the qubit frequency,

~ωqi ¼ ωqi � λ2=ðωc þ ωqi Þ ; (2)

and a dressing in the qubit states34,35. These qubit dressed states
f 0j i; 1j ig are the ones forming our computational basis. We call
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“data qubits” the dressed qubits, which are generating the
computational basis.
The quantum bus provides an effective XX interaction between

data qubits mediated by virtual excitations, as it is guaranteed by
the detuning condition ωc − ωq = 2ωq. This interaction causes a
two-qubit oscillation between states with one excitation: 1; 0j i
and 0; 1j i. The inset of Fig. 2a shows the swap from the state 1; 0j i
to the state 0; 1j i in a time t = π/ωR, where ωR = 2λeff, and λeff is
the effective coupling strength between data qubits. At t = π/2ωR,
as indicated by the arrow, a maximally entangled Bell state is
generated, and a universal

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iSWAP

p
gate is obtained. Figure 2a

shows the average gate fidelity36,37

F ¼
Z

dΨ Ψh jÛy ffiffiffiffiffiffiffiffiffiffi
iSWAP

p ρ̂ Ψj iÛ ffiffiffiffiffiffiffiffiffiffi
iSWAP

p Ψj i (3)

generated by the quantum bus as a function of the ultrastrong
coupling λs (blue circles), taking into consideration decoherence
channels originating from the components of the bus. Here, ρ̂ Ψj i is
the resulting density matrix after evolving the system for a time
t ffiffiffiffiffiffiffiffiffiffiiSWAP
p ¼ π=2ωR, under the action of the full Hamiltonian in
Eq. (1). The integral in Eq. (3) uses the unitarily invariant measure
dΨ on the state space, normalized such that ∫dΨ = 1, the operator
Û ffiffiffiffiffiffiffiffiffiffi

iSWAP
p is the ideal

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iSWAP

p
gate, and Ψj i is the input state. For

the data qubits, we choose T1 = 70 μs and pure dephasing time
Tφ = 92 μs (data are taken from ref. 35, which fulfill our parameter
conditions).
When the interaction is activated, the ultrastrong coupling

induces a small energy shift of the data qubit, resulting in a z-axis
single-qubit rotation. This can be compensated using standard
procedures38. In our simulations, it is compensated by a rotation in
the opposite direction. Figure 2a also shows the average fidelity of
the

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iSWAP

p
gate (red solid curve) when the data qubits are

directly coupled through the ideal interaction Hamiltonian
λeff σ̂

ðaÞ
x σ̂ðbÞx . A comparison between the two curves proves that

the bus does not affect the coherence of the data qubits, and
shows that the only limitation to performance is the intrinsic
decoherence of the data qubits. Considering data qubits with
transition frequency of 4 GHz35, for λs = 0.32ωc, the fidelity is
99.87% and the gate time is 11.7 ns. Beyond this coupling point,
the gate performance degrades due to the hybridization between
the computational and bus states. All the dynamics are calculated
using the master equation developed in ref. 20, for T = 0.
Every type of superconducting qubit can be used as data qubit

in our protocol. Currently, due to their long coherence time35,
transmon qubits are commonly used. However, the low anhar-
monicity of these artificial atoms could lead to non-negligible
detrimental effects on the gate performance. To estimate these
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f1

qa qb

f2

C1 C2

C3
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b

N1 2 3

2

3 BUS

Data qubits

Fig. 1 Π-connector and scalable architecture. a Sketch of the Π-connector. Dark gray lines represent the coplanar waveguide resonators,
C1, C2, and C3. Red lines represent the flux qubits, f1 and f2, connecting the waveguides. Blue lines represent the data qubits (transmon here,
but could also be other types), qa and qb. The inset inside the green dashed square represents the connection between the flux qubit (red box)
and the constriction of the center conductor of the two orthogonal waveguides (light gray). b An array of data qubits (blue disks) at the
bottom part are connected through a net of waveguides. At each node, a flux qubit tuned with the waveguides (red disk) mediates the
interaction between data qubits. The gray disks (connector is “OFF”) denote detuned flux qubits.

Fig. 2 Fidelity and effective coupling. a Average gate fidelity of theffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iSWAP

p
gate generated by the quantum bus (blue circles) and by a

direct qubit–qubit coupling (red solid curve) with coupling strength
λeff. The chosen frequency transitions of the data qubits is ωq = 4
GHz, the relaxation time is 70 μs and the pure dephasing time is
92 μs. Flux qubits have a relaxation time of 20 μs and pure
dephasing time of 10 μs; resonators have a Q-factor of 5 × 105. The
inset shows the fidelity of the 1; 0j i (blue solid curve) and 0; 1j i
states (green dotted curve). Here, the evolution is numerically
calculated using the quantum bus, no dissipation is considered.
b Effective coupling calculated numerically using the full Hamilto-
nian Ĥ (solid blue curve), dropping the counter-rotating terms
(dashed black curve) and calculated using the semi-analytical
expression in Eq. (4) (red dots).

R. Stassi et al.

2

npj Quantum Information (2020)    67 Published in partnership with The University of New South Wales

1
2
3
4
5
6
7
8
9
0
()
:,;



effects, we calculated the average gate fidelity using as data qubit
the two lowest states of a three-level system with low
anharmonicity. We set the transition frequency between the first
and second excited states to 0.8ωq, where ωq is now the transition
frequency between the ground and the first excited state. All
other parameters are as above. In this setting, the average gate
fidelity is 99.72% for λs/ωc = 0.3 (instead of 99.75% calculated
using the two-level system). Moreover, in the absence of
decoherence channels, the fidelity is 99.99%. These results
indicate that the low anharmonicity has a negligible impact on
the performance of the gate.

Effective coupling
As explained in the “Methods” section, to calculate the effective
qubit–qubit coupling we perform a projection of the full
Hamiltonian Ĥ into the ground state of the bus Hamiltonian ĤΠ.
Considering the dispersive regime between data qubits and the
bus, neglecting the dressing, the effective coupling becomes

λeff ¼
X
k

gð1Þk gð2Þk

ωq � ΔEk
; (4)

where Ek and j~ki are the eigenenergies and eigenstates of HΠ, and

where gðiÞk ¼ λ h~kjX̂ ij~0i(i = 1, 2), and ΔEk = Ek − E0
39. In Fig. 2b, we

numerically computed the effective coupling as a function of λs
using the full Hamiltonian Ĥ, and compared it with Eq. (4).
The agreement is very good in the coupling range under
investigation. According to perturbation theory to sixth
order40–42, the virtual processes that provide the main contribu-
tion to the qubit–qubit effective interaction, neglecting the
dressing, are the ones that connect the state 1; 0j i 0j ib to
0; 1j i 0j ib (where 0j ib ¼ g; g; 0; 0; 0j i) through states with the
lowest-energy differences with the initial state, 1; 0j i 0j ib. It
appears clear now that the main process, Fig. 3 (red solid arrows),
is the one that transfers one excitation through all the elements
that compose the bus. In the same diagram, it is also shown a
virtual process (red dashed arrows) involving the simultaneous
excitation of the flux qubit f1 and the resonator C3, which is
activated by the counter-rotating terms in the interacting part of
the bus Hamiltonian ĤΠ.
In the ultrastrong coupling regime, the counter-rotating terms

become relevant and activate virtual processes that strongly boost
the effective coupling. To prove this, we have numerically
calculated the effective coupling after dropping the counter-
rotating terms in Ĥ (see Fig. 2b, dashed curve). Comparing this
with the results from the full Hamiltonian (blue solid curve), we
notice that λeff(λs), calculated with the counter-rotating terms,
increases much faster compared to the one calculated without it,
as a function of the coupling λs. It is standard procedure in
perturbation theory to use virtual excitations to derive an effective
interaction. These are the virtual photons we are referring to, not
the ones in the ultrastrong coupling of cavity QED.

Switch-on and switch-off of the effective interaction
To realize a properly scalable system, it is important to be able to
switch-on and switch-off the interaction between arbitrary data
qubits. We achieve this by tuning (switch-on) and detuning
(switch-off) to the bus the transition frequency of the ancillary flux
qubit by varying the external flux Φext = fΦ0 threading it21. We set
the switch-on condition at the optimal bias point, f → fon = 0.5,
where the flux qubit has a symmetric potential energy and
maximum dipole moment Mon

43. To switch-off the interaction, we
move the flux qubit away from its optimal point, by changing the
external flux, f → foff.
If we detune f1 and f2 from the Π-connector in Fig. 1a, using foff

= 0.522, the flux qubit transition frequency becomes � 14 ωf 1 ,
and the dipole moment becomes Moff = 6 × 10−2Mon (other
parameters are provided in “Methods”). For λs = 0.3ωc, the residual

interaction is λ
ðoffÞ
eff � 2 ´ 10�11ωq and the on/off coupling ratio

between data qubits is ≈6 × 107, which is almost independent of
λs. When the flux qubit f2 is detuned and f1 is tuned, the on/off
coupling ratio is ≈9 × 103. In this case, if the system consists of
only two data qubits, no interaction occurs. This happens as the
ultrastrong coupling shifts the frequency of data qubit qa by a
quantity larger than the residual effective coupling. For instance, if
f2 is detuned and λs = 0.3ωc, the qubit qb interacts with qubit qa at
ωqb ¼ ωq � 9:3 ´ 10�4 ωq, with a residual effective coupling of
~λ
ðoffÞ
eff ¼ 1:5 ´ 10�7ωq . Note that when the flux qubits are not in the
optimal bias point, a charge interaction with the second
quadrature of the resonators is activated, but its contribution is
negligible26.

Scalable architecture
Figure 1b shows a possible scalable architecture for quantum
computation using the Π-connector. In the bottom part of
Fig. 1b, we represent an array of data qubits (blue disks). In the
upper part we present the quantum bus. At each node,
ancillary flux qubits can either couple (red disks) or decouple
(gray disks) to the waveguides, depending on their frequency.
In this way, it is possible to control the connectivity among
arbitrary pairs of data qubits. For example, in Fig. 1b qubit 1 is
connected to qubit 3, and qubit 2 is connected to qubit N. It is
also possible to connect more than two qubits simultaneously.
If the fundamental mode of the superconducting coplanar
resonator is 12 GHz35, and if the distance between two
consecutive flux qubits in the resonator is 0.1 mm (which
could be even shorter), it could be possible to connect about
100 data qubits. The effective interaction among N data qubits
in the scalable architecture is described by

ĤI ¼
XN�1

k¼1

XN
l¼ kþ1

kλkleff σ̂
ðlÞ
x σ̂ðkÞx : (5)

This considers that qubit 1 is connected (on or off) with all the
other qubits using one path, qubit 2 is connected with the rest
of the qubits using two paths for each qubit, qubit 3 is

Fig. 3 Virtual states connecting qa and qb. The main path (solid arrows) connecting the states 1; 0j i and 0; 1j i (blue states) through the virtual
bus states (black states). The order of the labels in the black kets is f 1; f 2;C1;C2;C3j i. The dashed arrows indicate a path due to the counter-
rotating terms.
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connected with the remaining qubits using three paths,
and so on.
To evaluate cross-talk, we calculate the interaction of qubit N,

the one with more connections, with all the other data qubits in
the off coupling condition, λkleff ¼ λ

ðoffÞ
eff . From Eq. (5), we find

Ĥ
ðNÞ
I ¼ σ̂ðNÞx N � 1ð ÞλðoffÞeff σ̂ðN�1Þ

x þ N � 2ð ÞλðoffÞeff σ̂ðN�2Þ
x þ � � � þ λ

ðoffÞ
eff σ̂ð1Þx

h i
:

(6)

Considering the (N − 1) data qubits as a single effective qubit,
which is interacting with qubit N, σ̂ðkÞ

x ! σ̂x for all k ≠ N, we obtain

Ĥ
ðNÞ
I ¼ NðN � 1Þ

2
λ
ðoffÞ
eff σ̂ðNÞ

x σ̂x : (7)

Now,

Λ
ðoffÞ
eff ¼ λ

ðoffÞ
eff NðN � 1Þ=2 (8)

is the residual interaction that affects qubit N in the off coupling
condition. For λs = 0.3ωc, using N = 100 data qubits, the coupler
has a numerically measured on/off ratio of ≈12,000.
In this architecture, when each pair of data qubits is interacting,

all the data qubits have the same frequency shift and the residual

coupling ~λ
ðoffÞ
eff is active. It is possible to cancel out this small

interaction by detuning every pair of interacting data qubits from
all other pairs by a quantity larger than the residual interaction.
This can be achieved by changing the flux qubit frequency, which
in turn changes the data qubit dressing.

DISCUSSION
By taking advantage of the large coupling between flux qubits
and the modes of waveguides or LC resonators, we proposed a
scalable architecture that allows to control the coupling
between many distant qubits. We numerically showed that the
effective coupling is boosted by the counter-rotating terms of
the Rabi Hamiltonian, whose contribution become more
relevant in the ultrastrong coupling regime. The switch-on and
switch-off of the interaction between data qubits is controlled
by the magnetic fluxes threading the flux qubits, which tune
their transition frequencies to the bus. Note that the resonant
condition among the waveguides and flux qubits in the bus
does not have to be perfect, because there is considerable
tolerance. In fact, the strength of the effective coupling does not
depend on this condition, but it depends on the detuning
between each element of the bus and the data qubits, and on
the couplings between elements of the bus. However, the
resonant condition between data qubits must be satisfied.
Unfortunately, current fabrication tolerances do not allow to set
the frequency of the qubits precisely, and SQUID loops must be
used to tune the data qubit frequencies. However, near-future
improvements in the fabrication quality of qubits will eventually
allow to take full advantage of this proposal. We believe that this
architecture might lead to a new generation of quantum
computer architectures controlled by elements largely detuned
from the data ones, allowing to increase the complexity of the
system without affecting the coherence times. A natural
evolution could be the connection of a matrix of data qubits
through waveguides in a 3D circuit19.

METHODS
Effective coupling
In this section, we derive an effective model to describe the dynamics of
two data qubits in contact with a quantum bus. We do this by projecting
the full dynamics (which takes place in the total Hilbert space H of both
data qubits and bus) into the subspace Heff ¼ PH, where the bus is in
the ground state. Here, P̂ ¼ Îq � ~0

�� � ~0
	 �� denotes the projector into the

ground state ~0
�� � of the bus (Îq being the identity operator on the data

qubits).
As a first step, we decompose the total Hamiltonian Ĥ into a “diagonal”

contribution Ĥ0 (which preserves Heff , i.e., ½Ĥ0; P̂� ¼ 0) and an “off-
diagonal” contribution V̂ (for which ½V̂; P̂�≠ 0). By defining a complemen-
tary projector Q̂, such that P̂ þ Q̂ ¼ Î, we can write

Ĥ ¼ ðP̂ þ Q̂ÞĤðP̂ þ Q̂Þ
¼ Ĥ0 þ V̂;

(9)

where Ĥ0 ¼ P̂ĤP̂ þ Q̂ĤQ̂ and V̂ ¼ P̂ĤintQ̂þ Q̂ĤintP̂. The potential V̂ can be
explicitly written as

V̂ ¼P
k

gð1Þk σ̂ðaÞx
~kih~0�� ��þ ~0ih~k�� ��� �

þ gð2Þk σ̂ðbÞx
~kih~0�� ��þ ~0ih~k�� ��� �h i

’P
k

gð1Þk σ̂ðaÞ� ~kih~0�� ��þ gð2Þk σ̂ðbÞ� ~kih~0�� ��h i
þ H:c:;

(10)

where we made a rotating-wave approximation under the assumption
that jgð1Þk j; jgð2Þk j � ωq;ΔEk . We further assume to be in a dispersive
regime, where the detuning between the splitting of the data qubits ωq

and the transition energies of the bus ΔEk are much larger than the
couplings gð1Þk and gð2Þk (i.e., jωq � ΔEk j � jgð1Þk j; jgð2Þk j). In this limit, it is
possible to perturbatively define a rotating frame where the dynamics
is effectively constrained in Heff (Schrieffer–Wolff transformation).
Specifically, a change of frame exp½Ŝ� (for an anti-Hermitian operator Ŝ,
such that ½Ĥ0; Ŝ� ¼ V̂) allows to define the effective Hamiltonian

Ĥeff ¼ P̂eŜĤe�Ŝ P̂ ’ P̂Ĥ0P̂ þ 1
2
P̂½Ŝ; V̂�P̂ ; (11)

at the lowest nontrivial order in Ŝ. Specifically, by choosing

Ŝ ¼
X
k > 0

gð1Þk

ωq � ΔEk
σ̂ðaÞþ þ gð2Þk

ωq � ΔEk
σ̂ðbÞþ

 !
~0ih~k�� ��� H:c:; (12)

and computing the commutator ½Ŝ; V̂� in Eq. (11), we obtain the
effective coupling between the data qubits described in the main text.

Flux qubit resonator
The energies and electric dipole moments were calculated considering a
flux qubit composed of three Josephson junctions with energies EJ1 =
EJ2 = EJ, and EJ3 = αEJ. The Hamiltonian of the flux qubit is43

HF ¼ EC Pþ þ EC
1þ 2α

P� þ Uðφþ;φ�Þ ; (13)

with Uðφþ;φ�Þ ¼ �EJ½2 cos φþ cos φ� þ α cos ð2πf þ 2φþÞ�, having defined
φ+ = (φ1 + φ2)/2 and φ− = (φ1 − φ2)/2, where φ1 and φ2 are the phase drops
across the larger junctions. P+ and P− are the conjugate momenta of φ+ and
φ−. Choosing EJ = 35EC, EC = 27.1 GHz, and α = 0.8, the dipole moment was
determined by the matrix element gh j sinð2πf þ 2φþÞ ej i.

Φext

φ1
φ2

φ3

∼∼

ψC1
(x1) ψC1

(x2)

ψC3
(y2)ψC3

(y1)

∼∼
∼∼

∼∼

∼∼
∼∼

∼∼
∼∼

Fig. 4 Equivalent circuit diagram. Coplanar waveguides (black
lines) connected to the flux qubit (red lines).
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Interaction between a flux qubit and two orthogonal coplanar
waveguides
The derivation of the flux qubit-resonator Hamiltonian ĤΠ is standard26,
but here the voltage condition for the flux qubit (red loop in Fig. 4) isP3

i¼1 φi þ ΔψC1
þ ΔψC2

¼ Φext, where ΔψC1
¼ ψC1

ðx2Þ � ψC1
ðx1Þ and

ΔψC2
¼ ψC2

ðy1Þ � ψC2
ðy2Þ.

The ultrastrong coupling between a flux qubit and two super-
conducting coplanar stripline resonators has been experimentally
realized44. However, our scheme further requires the waveguides to
cross and the resonator modes not to be significantly modified by the
coupling with the flux qubit. The inset in Fig. 1a represents a sketch of
the connection between the orthogonal waveguides mediated by the
ancillary flux qubit. The latter is directly connected to both the center
conductor of the coplanar waveguide transmission-line resonators, see
also Fig. 4. At the insertion point, the width of the center conductor is
narrower and the local inductance is larger, to enhance the coupling
between the flux qubit and the resonator26. The three Josephson
junctions forming the flux qubits must be inserted in the two tiny flux
qubit arms that connect the center conductors of both waveguides. In
this way, the current in the resonator flows predominantly through the
center conductor constrictions of the waveguides and the resonator
modes are not significantly modified. Since the distribution of the
electromagnetic field is not uniform in the resonator, we suggest to
fabricate waveguides with progressively narrower constrictions, in order
to maintain a uniform coupling for all qubits. Alternatively, one can
increase the coupling strength by inserting several Josephson junctions
in the constrictions with a progressively increasing inductance along the
waveguide26.

DATA AVAILABILITY
Data are available from the corresponding author on reasonable request.
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