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Introduction 

 

Performance evaluation is a structured process that allows to assess the management 

efficiency of investment projects, workforce or business progress. Organizations that focus 

on managerial evaluation are more competitive and sustainable than those who do not, 

thereby creating greatest opportunities for growth and development (Cheymetova and 

Scherbakov, 2017).  

Performance evaluation, however, is not an easy task to perform. Firstly, because it involves 

several parties (the appraisal, the organization to be evaluated, and a third party in the case 

in which the company is engaged in commitments to be fulfilled within a certain time frame, 

APEC Energy Working Group, 2013). Secondly, because it implies a continuous monitoring 

process for providing transparent feedback in an ever-changing environment. Thirdly, 

because it requires to identify the most relevant indicators and to manage them 

simultaneously.  

The need to have relevant performance measures, which reflect the whole organization 

value, along with reliable methods able to make, as much as possible, a proper performance 

evaluation, is even more important for those companies operating in the key economic 

sectors.  

In this regard, the energy industry is one of the leading sectors of the modern society that 

enhances the social and economic development of a country. As stated by the document of 

the European bank for reconstruction and development (EBRD, 2013): “Economies run on 

energy; it fuels all commercial and public life”. 

During the last decades, the energy sector has gone through several deregulation phases, 

allowing for the new entrance of competitors to buy and sell electricity. This renewed 

competitive structure has led different categories of stakeholders (utilities, governments, 

investors) to face with unprecedented complex problems, such as more alternatives to 

evaluate (energy companies), multiple and conflictual criteria to manage (technical, 

environmental, socio-economic) and a higher level of uncertainty to deal with (Diakoulaki 

et al., 2005), that were no longer solvable with traditional models.   

Multi criteria decision aid (MCDA) models, thanks to their multi-dimensional nature, 

easiness of application and ability to include different Decision Maker’s preferences, appear 

as the most suitable models to help multiple decision makers in solving two of the most 

crucial issues of the energy sector: the performance evaluation and the credit risk assessment 

of energy companies.  

The first problem arises from the more extensive role of investment plans in stimulating 

energy companies’ business growth, through innovations of services, delivery manner and 

used technologies. Thus, a closer inspection of the firm’s state of health is required in 

decision-making process to optimize capital allocation and therefore to identify the best 

alternative within the multidimensional context of the energy system performance. 
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The second one derives from the fact that serious episodes of energy companies’ failures 

have occurred after liberalization policies, leading countries where they took place, to 

considerable economic losses. In order to prevent these potential financial crashes, it is 

needed the use of proper risk assessment models, which are able to predict failures with a 

high accuracy rate.  

Despite the great relevance of the energy sector in the modern economy, the existing MCDA 

literature on firms’ performance evaluation and credit risk assessment is not so wide and 

limited to the analysis of financial dimension.  

In order to deal with the aforementioned issues and to fill the present research gap, this thesis 

is organized as follows.  

Chapter 1 provides a general overview of the energy sector, in view of the recent energy 

transition policies towards renewable power sources. The focus is on the relationship 

between energy consumption and economic growth of past few years (Section 1.1) and the 

structure of the Electric Power System with regard to the role of government in avoiding 

energy companies’ failures (Section 1.2).  Moreover, we highlight the role of multi-criteria 

methods in the performance evaluation and credit risk assessment (Section 1.3) and the key 

notions on which the MCDA models applied in this study are based, i.e. HSMAA, M.H.DIS 

and PROMETHEE (Section 1.4).  

Chapter 2 analyses the development of a performance assessment model, the Hierarchy 

Stochastic Multi-Attribute Analysis (HSMAA), for the most important listed companies 

operating in the energy sector, using a dataset obtained merging different sources. HSMAA 

is employed to handle with a hierarchical criteria structure and imprecision on criteria 

weights, enabling to evaluate the performances of companies under different uncertainty 

scenarios.   

Chapter 3 presents the implementation of a non-parametric multiple criteria decision aiding 

(MCDA) model, the Multi-group Hierarchy Discrimination (M.H.DIS) model, with the 

Preference Ranking Organization Method for Enrichment Evaluations (PROMETHEE), to 

evaluate the average accuracy rate in correctly predicting the failure risk of a dataset of 

European unlisted companies operating in the energy sector.  

Finally, Chapter 4 contains some concluding remarks and future developments. 
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Chapter 1 

The energy sector and the role of MCDA models  
 

Energy is the lifeblood of the worldwide economy that provide input for all good and 

services of the modern society. Since early 1900s, in particular electrical energy, has 

improved life-standards of population and driven the social and economic growth of a 

country by providing the key sources for most of economic activities. Its support to the 

country’s economic growth is twofold: firstly, it directly contributes to the creation of new 

job positions and to generating value through the mining, generation, transformation and 

distribution activities; secondly it sustains significantly the rest of the economy by providing 

essential Stern products and facilities to all sectors. 

In this regard, the ecological economist David Stern, in his paper entitled “The role of Energy 

in Economic Growth”, emphasized the relevance of energy sector in enhancing the economic 

progress of a society due to its special features of non-substitutability and storability for a 

long time (Stern, 2010).  

In order to recognize the value of energy sector in the modern economy and therefore to 

understand the motivations that led us to consider multicriteria models for this study, this 

Chapter outlines first the link between energy consumption and economic growth up until 

now and for next years, in the light of the recent renewable energy sources programmes. 

Then the structure of the Electric Power System is presented along with the key liberalization 

directives, to comprehend the reasons behind the transition from the monopoly regime to the 

competition and the effects of energy market deregulation on energy companies. After that, 

the role of multicriteria methods in the performance and creditworthiness assessment of 

energy companies is discussed, by introducing the basic notions of multi-criteria models, the 

most common elements of their main applications in the energy sector and the literature 

review of the most employed MCDA methods in firms’ performance evaluation and credit 

risk assessment. Finally, the key concepts of the three MCDA models employed respectively 

in Chapter 2 and Chapter 3 are described.  

1.1 The impact of energy sector on global economy 

In the wake of the energy crises in 1970’s, where high-level of energy prices reduced 

dramatically the economic development of countries, a large number of studies have been 

conducted to examine the relationship between energy consumption and economic growth. 

Most of them argue that the increase of energy for transport, residential and industrial uses, 

directly causes Gross Domestic Product (GDP) to rise; some others provide empirical 

evidences of the high and positive correlation between energy consumptions and economic 

growth in different countries (see for a literature review on this topic: Ozturk, 2010; Payne, 

2010; Tiba and Omri, 2017 and Waheed et al., 2019). Although the direction of causality is 

still debated, usually the impact of energy consumption on economic growth has been widely
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measured with different macroeconomic indicators such as the gross domestic product 

(GDP), employment and welfare (Liko, 2019).  

In order to highlight how energy consumption affects the economic development of a 

country, we focus on these variables to detect their worth in the current economy.  

GDP is the most used indicator for income and growth that reflects the value of total output 

produced by an economy during a year and adjusted for inflation.  

Figure 1.1 below shows the pattern of energy consumption and GDP from data provided by 

the World Bank between the 1990 and 2015 (Jakeman, 2019). 

 

Figure 1.1 Global GDP growth and global energy consumption. Source: World Bank 

As observed from this graph, energy consumption and gross domestic product have 

increased with a similar trend during years, highlighting a very high positive correlation. 

Energy consumption is required for many aspects of GDP growth such as electricity, 

transportation, heating and cooling and this chart is perfectly in line with what we would 

expect: the wider the energy use, the higher the GDP growth. Moreover, over the past 15 

years, the global economic growth has increased faster (+2.8%) than the global energy 

consumption (1.6%) as result of energy efficiency improvement. 

However, energy consumption and economic growth does not provide only benefits. For 

instance, the environmental effects generated by energy consumption, like the air and water 

pollutant emissions and the land issues related to coal mining and other power production, 

have to be considered for a deeper analysis. Debates about how to reduce these negative 

externalities are faced by current policies that promote the use of non-polluting energy 

sources to enhance the economic well-being of population and environment. Thus, the 

expansion of renewable energies and the improvement in energy efficiency will be the 

Action Priorities of leaders in coming years, as better explained in Section 1.1.1 (World 

Energy Issues Monitor, 2020). 

The report issued by the International Renewable Energy Agency (IRENA) offers a good 

example of these new environemntal concerns, by providing a comparison between the 
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Planned1 and the Transforming energy scenario2 in terms of GDP growth, employment and 

welfare (IRENA, 2018). Figure 1.2 shows the positive effects of the IRENA’s Renewable 

Energy Roadmaps (Remap) towards the global GDP of 2018-2050 in both scenarios.  

 

Figure 1.2 The energy transition results in GDP growth higher than the planned scenario between 2018-2050. 

Source: IRENA 

The GDP growth under the Transforming scenario has a consistent positive effects compared 

to the Planned one. However, the highest value of GDP growth (1.5%) is expected to be 

reached in 2031 and decrease slowly in 2050 (1%) for both scenarios. Moreover, the GDP 

growth is driven by the change in four major elements: investments, trade, tax and other 

inderect and induced effects. Among these, investments in renewables, energy efficiency, 

infrastructures and technologies’ flexibility (indicated in green), play a key role in 

stimulating GDP growth, especially in the first half of the energy transition, followed by 

changes in consumer expenditures due to tax rate changes (in grey). After the 2027, IRENA 

expects that the indirect and induced effects (in yellow) caused by the changes in consumer 

spending, contributes more to GDP growth than the change in energy and non-energy trade 

(in red) such as import or export. 

With respect to the second economic growth indicator, the employment indicator, often 

considered for its ability to enhance the economic productivity, the individual benefits and 

the social stability, Figure 1.3 shows the estimates of jobs within the energy sector by 2030 

and 2050 under the aforementioned scenarios (IRENA, 2020).  

                                                 
1 Planned Energy Scenario (PES): is a projection of the energy system developments based on governments’ 

current energy plans and other planned targets as of 2019. 

2 Transforming Energy Scenario (TES): is the most recent scenario planned to keep the rise of temperature 

below 2 degree Celsius (°C) through a renewables and energy efficiency based transformation. 
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Figure 1.3 The energy sector jobs growth under the planned and transforming energy scenarios in 2017-2030-

2050. Source: IRENA 

In both 2030 and 2050, the transforming energy scenario is expected to be higher than the 

planned (+15%) and the current one (+72%). The job composition of next years is expected 

to be different from that of 2017, due to a wider deployment of renewable energy 

technologies, the transition progress towards energy efficiency and the system flexibility. 

Jobs and GDP growth capture only the socio-economic condition of a country, without 

reflecting about the quality of life improvement arising from the energy transition. Thus, a 

composite indicator has been built by IRENA, to assess the multifaceted nature of welfare 

developments. It consists of three dimensions, economic, social and environmental, each one 

derived by two sub-indicators as shown in Figure 1.4. Again, the welfare is higher under the 

transforming energy scenario than the planned one where the environmental and social 

dimension prevail by limiting the pollutants. 

 

Figure 1.4 Global welfare indicator under the Transforming Energy Scenario in 2030-2050. Source: IRENA 
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1.1.1  The renewable energy and the sustainable development 

In recent years, the global energy system has faced a dual challenge: on the one hand, the 

need for more energy; on the other hand the less carbon emissions. Renewables, being clean 

and non-exhaustible energy sources, represent an interesting alternative to deal with these 

issues. 

Renewable energy is defined as the energy produced by non-fossil sources like hydropower, 

wind, solar photovoltaic, solar thermal, geothermal, tide, renewable municipal waste, solid 

and liquid biofuels and biogases (Union, 2018).  

Their importance is growing over the years, due to the heightened attention of European 

policies thereafter the Kyoto Protocol of December 1997 for lowering the greenhouse gas 

emissions (GHGs) and increasing the energy supply security.  

The original renewable energy directive in Europe is dated to 2009 (2009/28/EC) and 

marked the start of a policy centred on the production and promotion from renewable energy 

sources (Union, 2009). This directive was revised to Renewable Energy Directive 

(2018/2001/EU) that aim to achieve two goals: to make Europe the global leader of 

renewables and to lower its pollutant emissions. In order to achieve these aims, the Directive 

fosters to cut GHGs of at least 40% compared to 1990, boosts countries to use at least 32% 

of RES in total final energy consumption and encourages to improve at least 32.5% in energy 

efficiency (Union, 2018). 

Recently, new measures have been proposed by the European Community to achieve 

important targets by 2030. For instance, the 2030 Agenda for sustainable development 

includes the goal “to ensure access to affordable, reliable, sustainable and modern energy 

for all”, enhancing the international cooperation and expanding infrastructures to simplify 

access to clean energy and sustainable energy supply services (Desa, 2016).  

Despite the great efforts implemented by latest political strategies, the recent Tracking 

SDG7: Energy Progress Report of 2020, highlights that the world is far to meet targets by 

2030 under the current policies (IEA et al., 2020). Indeed, in 2018 almost 790 millions of 

people around the world had no access to electricity, especially in Sub-Saharan Africa. 

However, the number is falling compared to 1.2 billion in 2010 and data on renewable 

electricity consumptions reveal that mainly the developed countries are moving towards the 

right direction, showing an increasing of almost 6% in 2017.  

Moreover, Figure 1.5 and Figure 1.6 show respectively the Global renewable electricity 

consumption by technology from 1990 to 2017 and the share of renewable in electricity 

consumption by region. Figure 1.5 displays that the share of renewables in global electricity 

consumption has reached the 24.7% in the last year and the hydropower generation remains 

the largest source of renewable electricity although it has declined in favour of wind (+35%), 

modern bioenergy and solar PV energy (+18%). Figure 1.6 highlights that Latin America 

and The Caribbean present the highest share of renewables in electricity consumptions for 

hydropower and bioenergy resources; while in Europe, Northern America and Oceania, 

hydropower remains the largest sources of renewable generation, followed by wind and solar 

PV. 
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Figure 1.5 Global renewable electricity consumption by technology, 1990-2017. Source: EIA and UNS 

Figure 1.6 Share of renewables in electricity consumption by region, 2017. Source: EIA and UNSD. 

Thus, as the share of RES deployed in energy mix production and global consumptions 

increases, the policies that drive organisations evolve by generating benefits in terms of new 

jobs and economic well-being. The relationship between energy and economic development, 

previously identified, is therefore realised.  
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1.2 The structure of the Electric Power System and the 

role of government. 

Since the Second World War, the electricity supply model was based on a fully integrated 

statutory monopoly. European countries nationalized energy industry for several reasons: to 

reorganize production facilities eliminating territorial inequalities, to expand companies’ 

size and their marketplace competitiveness with public funds, to provide a greater 

coordination between power production and transmission system and to protect particular 

categories of end-users.  

To pursue these aims, since 1996, the most effective government tool was the introduction 

of competition in those electric power segments where the natural monopoly was not 

necessary. In order to understand deeply this aspect, we provide a brief description of the 

electric power system structure. 

The Electric power system is identified with the physical structure that makes electric service 

available to consumers. Because of non-storability of electricity, the network system is 

highly complex and energy companies have to be able to respond to an ever floating demand 

for tackling any peaks on it. The over-production capacity is therefore the only way to ensure 

the continuity of the service, even in front of structural inefficiencies.  

Figure 1.7 represents the structure of the Electric Power System in four different segments: 

the power generation, the transmission, the distribution and the selling system (US-Canada 

Power System Outage Task Force, 2004). 

 

Figure 1.7 Simplified picture of a typical electric power system. Source: US-Canada Power System Outage 

Task Force (2004) 

 Power generation: consists in the production of electrical energy through the direct or 

indirect primary energy sources transformation. In addition, according to whether a 

power plant uses renewable (like solar, wind, water, hydro, geothermal and biomass) 

or not-renewable energy sources (like coal, oil, nuclear, diesel and natural gas), it is 

distinguished in traditional (thermoelectric, hydroelectric, geothermal, nuclear) or 

innovative power plant (cogeneration, combined cycle, exploiting renewable energy 

sources); 
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 Transmission system: is responsible for delivering generated electricity over long 

distances, usually from a generating site located outside of densely populated areas to 

the distribution grid situated closer to the population. The main characteristic of this 

system is the transmission of electrical energy with overhead lines at very high 

voltage (100kV-800kV), covering long distance with minimum power losses 

(Stenhouse et al., 2020a); 

 Distribution system: it distributes power from high-voltage transmission system to 

end-use consumers through lower voltages lines (26kV-69kV) like Underground and 

Sub transmission lines (Stenhouse et al, 2020b); 

 Selling system: it consists in providing the electrical service to end-users. It involves 

therefore the definition of a different tariff option for type of customers, the seller’s 

liability for the electrical power availability of end-users within the timeframe and 

under the conditions laid down in the agreement, the parameters measurement, the 

billing and the related commercial activities. 

In the electric power system, energy producers (i.e. power generation) compose the supply, 

individual and industrial consumers constitute the demand and the transmission and 

distribution system, with their unique and not replicable structure, create the link between 

the demand and the supply. Thus, two questions arise: what is the best organizational regime 

for the electric supply chain in view of this specific structure? What is the role of the 

government in this sector?  

In the energy industry, since the main aim is to minimize the cost of production and to 

increase the efficiency of companies without generating their power market abuse, the ideal 

solution is introducing competition and/or natural monopoly in those segments where it is 

necessary. Thus, power generation and selling segment are suitable to be organized 

competitively because of their economies of scales linked respectively to power plant 

production and wholesale market price variability; whereas, transmission and distribution 

division represent a natural monopoly system because they need fixed lines and high upfront 

building costs.  

In view of this organization, in the early nineties, the electricity supply model was converted 

from a fully integrated statutory monopoly to a more competitive system. This has been 

made possible through the liberalization policies. 

1.2.1 The Liberalization of electricity supply in Europe  

The recent European Energy Directives were aimed to achieve the following two headlines 

targets by considering the peculiarities of this sector: the creation of a single internal energy 

market and the development, as far as possible, of a more competitive environment. These 

two targets were considered the basics for carrying out other central goals, such as the greater 

production efficiency, the general reduction of prices and the increasing security of supply. 

However, to reach these aims, governments had to tackle with several difficulties due to the 

specificity of the electricity sector and its political, technical and economic setting. Firstly, 

electricity, being a commodity involved into the technological progress of a country, is an 
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essential and special good compared to the others. Secondly, from the political point of view, 

national monopolies, often owned by government, managed different segments of the 

electricity supply chain due to the vertical integration of the electricity system. Thirdly, 

taking into account the technical aspect, the electricity system is a tricky process to be 

introduced in a unique European market, because of its non-storability and the compliance 

to specific physical law. Compared to any other technological commodities, it takes part of 

a larger system where different phases are coordinated each other and if one of them delays 

or advances at one stage, the whole system will be affected. Fourthly, from the economic 

perspective, two conditions occur from the sudden market opening: consumers begin to pay 

less and producers start to enter in new markets and to deal with new competitors (Léautier 

and Crampes, 2016). 

In such articulated system, it is fundamental to introduce common European policies 

supporting stakeholders who are in trouble. 

1.2.1.1 The key European directives: the directive 96/92/EC and the more recent ones. 

The Directives 90/377/EEC and 90/547 EEC issued in 1990, introduced the first common 

elements in the European energy sector. These directives were aimed to communicate all 

relevant information to industrial end-users and consumers in terms of prices and sale 

conditions, and to create an alignment of different national regimes by regulating the 

conditions of network access to cross-border exchanges. However, these generic rules gave 

national legislatures sufficient latitude based on subsidiarity.  

The first significant Community Directive for the electricity market was the Directive 

96/92/EC, undersigned by the European Parliament on 19 December 1996, which covered 

common electricity market principles and where all segments of the electricity industry chain 

were regularised properly. For instance, in the Power generation was allowed the 

construction of new power plants through authorisations or tendering procedures that 

brought down entry barriers and laid the foundation of a regulated competitive regime. In 

the Transmission system, each Member State designated the management (but not the 

ownership) of the national transmission network to only one subject responsible of 

dispatching and independent from other activities unrelated to the transmission system. In 

the Distribution system, the European legislator adopted a partition of national territories in 

local monopolies by providing a regulated charging system for customers served by 

distributors. Finally, in the Selling system, consumers were free to choose their provider 

according to their annual power consumption and therefore market was opened progressively 

to all consumers groups.  

More recently, the Directives 2003/54/EC and 2009/72/EC have introduced few changes in 

comparison to the previous ones such as, the independence and the market power of 

transmission and distribution providers, the consumers’ protection and the greater opening 

up of the market, the stronger connection among national markets, the security of supply and 

the facilitation of competition.   
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1.2.1.2  Consequences of deregulation in the energy market  

The aim to create a unique European market with lower wholesale electricity prices and a 

broader competition between producers and providers has been reached with liberalisation 

(Kočenda and Čábelka, 1998; Meyer, 2003). It was a great success for Europe, since any 

consumer could buy from any producer within the continent and any producers could have 

a direct access to a global market composed by millions of customers.  

However, different examples offer arguments against liberalisation and in favour of a market 

redesign. Among the most significant: 

- the financial difficulties faced by electricity suppliers; 

- the government intervention for ensuring security of supply and energy transition.  

With regard to electricity suppliers, some energy companies faced significant financial 

distress after deregulation processes, which had threatened their very survival. The specific 

situations depended on the companies’ characteristics but the reasons of problems were 

analogous: the management structure of the electricity incumbents was not aligned to the 

creation of a unique and more competitive electricity market. Incumbents had undervalued 

the increasing impact of renewable energy sources (RES) in the power production, for the 

future development of electricity market. To strengthen their market share, they believed 

more on the economic and technological upgrading than the power of renewable energy and 

failed to grasp the police maker’s desire to fund such renewal production with limited 

emphasis to the economic efficiency. Moreover, with the recent opening of the market, 

electricity suppliers could not charge customers for their mistakes, as companies also had 

before the reform by making prices transferrable to the end-users through the electric surplus 

obtained by the overcapacity of power generation with respect to the demand (Léautier and 

Crampes, 2016).  

The only entities able to solve the financial difficulties of energy companies could be 

national governments. In most of cases, their attitude was positive. Indeed, governments, 

being shareholders of national energy suppliers, felt responsible for the financial distress of 

energy companies and worried about the potential impact of this crisis on the job losses and 

therefore on economic growth.  

Thus, leaders preferred to monitor the energy industry for guaranteeing security of supply 

and energy transition at global level. The security of supply was ensured by maintaining the 

capacity adequacy with a power production able to cover the peak demand and satisfying 

the exceptional events. Moreover, the government intervention was justified for pursuing a 

global transition toward a cleaner energy with specific actions. The most important were: 

the reduction of negative externalities like the greenhouse gas emissions, the introduction of 

subsidies like the green and white certificates, the creation of new renewable technologies 

and the centralized planning where the production mix was decided preventively. 

1.2.1.3 Examples of energy companies’ failures 

In the last twenty years, the electricity sector has tackled serious cases of failures as 
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consequence of deregulation processes. In this section, we provide a brief description of the 

most noteworthy examples of energy crisis occurred all over the world to highlight the 

economic effects of such events. 

One of the best-known case is the California energy crisis, which involved the distribution 

companies from 2000 to 2001. California was the first state to launch the competition in the 

energy sector (1998) and it was considered, by other American countries, as the prototype 

of liberalization. This energy market was one of the biggest in the United States accounting 

for 246 billion kWh of annual electricity consumption and the largest power grid in the world 

(Taylor and Van Doren, 2001; Stuebi, 2001). However, it encountered a regulatory crisis 

in May 2000 (Safai, 2011). According to the book of  McNamara (2002), the following eight 

factors contributed to the energy crisis: the failure of the wholesale electricity market, the 

asynchrony between power supply and demand, the reduction of cross-border power 

imports, the unhelpful in-state generation, the rapid increase of the wholesale electricity 

prices, the obstacles in the transmission grid, the weather conditions and the accusation of 

system deceptions. Among these, the sudden rise of the wholesale prices (+ 800%) while 

keeping the retail prices low, was the main cause to financial indebtedness of Californian 

distribution companies (Razeghi et al., 2017). In this situation, the state was determinant to 

avoid their complete financial crash by purchasing power and issuing bonds. However, the 

prices of electricity rose again and some distribution companies such as Pacific Gas and 

Electric Co. went to bankruptcy (Ardiyok, 2008).  

In 2001, the Brazilian energy system suffered the same fate as California. Here the main 

causes were the delay in investments and the climate conditions. Indeed, with liberalization 

processes, the Brazilian government did not invest in power generation and transmission 

systems because of the high expectations of private intervention and the fulfillment to a 

policy of economic stabilization. These events failed to be realized and led the risk of power 

outage to increase between 1998 and 2001 (Jardini et al., 2002).  

In UK, the financial collapse of British Energy plc is dated 2000, when the fall in the 

wholesale electricity prices generated significant effects over other US electricity companies 

such as Edison International and AES and TXU Europe. The British Energy, being a nuclear 

company, had to bear large fixed costs related to fluctuations in energy prices, which 

compromised its operating and financial leverage and made it riskier than any other fossil 

fuels companies (Taylor, 2010).  

A more recent example concerns the distress of Electricaribe in the north of Colombia during 

the period from 2015 to 2016. It faced a severe crisis due to the non-payment of electricity 

by a consistent share of private and public customers (over 25%) (Osorio et al., 2017). In the 

same years, the incident of El Nino, led the electricity price to rise considerably, creating 

liquidity problems for the company. Thus, the company became unable to get the credit it 

needed and to deliver the energy to its end-users. As consequence, electricity shortages 

become frequent and the state was forced to absorb the company to guarantee energy supply. 

Furthermore, the study of Larsen et al. (2018), suggests that other energy companies such as 

the Dong, EDF, Vattenfall, E.ON Endesa, Enel, Centrica, SSE, faced similar crisis like the 

ones just described.  
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As observed by these examples, in electricity sector critical companies are not allowed to go 

bankrupt since these failures have the potential to generate serious effects on the economy 

of a country such as, large expenses, power cut and reduced available sources for industrial 

production, that governments have to prevent. In order to properly give an idea of the impact 

that the energetic failures can have in terms of costs, we mention the study of Walker et al., 

(2014) that has estimated the cost of electricity crisis in California during the 2000-2001 to 

be almost $40 billion, corresponding to a GDP loss ranging from 0.7 to 1.5%.  

In order to prevent domino effects on the economy, it is fundamental a constant monitoring 

of energy companies’ financial performances. Therefore, it would likely to be expected that 

in the next years stakeholders such as employees, providers and owners (for small 

companies) or shareholders (for large companies) as well as policy makers should focus on 

this topic with proper methods.  

In next Section, we highlight how multicriteria models are the most suitable tools to deal 

with the multi-dimensional issues of the energy sector.  

1.3 The role of MCDA methods in the performance 

evaluation and credit risk assessment of energy 

companies 

1.3.1 Basic notions of MCDA models 

Multiple Criteria Decision Making and Multiple Criteria Decision Analysis are two terms 

that become popular respectively with the acronyms of MCDM and MCDA due to the paper 

of Ziont (1979). MCDA is a discipline that falls within the broader framework of Operations 

Research (OR) dealing with the applications of innovative mathematical methods to help a 

Decision Maker (DM) in making better decisions. More specifically MCDA is a collection 

of formal approaches to support Decision Makers (DMs), in structuring and solving complex 

decisions that involve a set of conflictual and multiple criteria (for some survey on MCDA 

see Roy, 1990; Belton and Stewart, 2002; Figueira et al., 2005). Because of the multi-

dimensional nature of decision-making problems, a unique best solution does not exist and 

analysts need to incorporate subjective information, better known as decision maker’s 

preferences, to solve the problem. In this regard, the statement of Belton and Stewart (2002) 

encloses in few lines the main objective of MCDA:  

“the aim of good MCDA is to facilitate decision makers’ learning about the many facets of 

an issue in order to assist them in identifying a preferred way forward”. 

In MCDA framework, some key concepts need to be defined (Belton and Stewart, 2002; 

Greco et al., 2016): 

 Alternatives: constitute the options, the solutions or the actions of a decision-making 

problem. Usually they are denoted with the finite set 𝐴 = {𝑎1,⋯ , 𝑎𝑗 , ⋯ , 𝑎𝑚} where 
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𝑚 represents the total number of alternatives involved in the decision process; 

 Criteria: are the attributes or the point of views under which alternatives are 

evaluated and compared each other. A coherent3 family of criteria is represented as 

𝐺 = {𝑔1,⋯ , 𝑔𝑖, ⋯ , 𝑔𝑛} with 𝑛 denoting the number of total criteria considered in the 

analysis (Bouyssou, 1990). Generally, the criterion is a real valued function on the 

set of alternatives 𝐴, i.e. 𝑔𝑖 ∶ 𝐴 ⟶  ℝ that allows to evaluate an alternative 𝑎𝑗 ∈ A on 

a criterion 𝑔𝑖 ∈ G with a partial score 𝑔𝑖(𝑎𝑗). According to whether the preference 

value is expressed in a linguistic or quantitative extent, criteria can assume an ordinal 

or a quantitative scale.  

Moreover, each criterion can have an increasing, decreasing or non-monotonic 

preference direction. If the preference direction is increasing, then the higher the 

evaluation of an alternative 𝑎𝑗 with respect to 𝑔𝑖 , the more preferred is the alternative 

𝑎𝑗 with respect to 𝑔𝑖 . If the preference direction is decreasing, then the higher the 

evaluation of an alternative 𝑎𝑗 with respect to 𝑔𝑖 , the less preferred is the alternative 

𝑎𝑗 with respect to 𝑔𝑖 . If the preference direction is non-monotonic, it is neither 

increasing nor decreasing.  

 Weights: represent the individual formulation of trade-off existing among the 

different evaluations of criteria and they are usually denoted with 𝑊 =

{𝑤1, 𝑤2, ⋯ ,𝑤𝑛}. Through them, DM can express the relative importance of one 

criterion with respect to another according to its own preferences. The definition of 

weight differs according to what MCDA model is being applied. For instance, in 

value function based model the proper meaning of weight is close to that of trade-

off; whereas in outranking techniques, the correct interpretation is of “voting power” 

allocated to each criterion (see Section 1.3.1.1 for a more detailed description on 

MCDA models and aggregation functions). 

With these few elements, it is possible to build the performance matrix that summarizes 

in a unique table the key features of the problem and represents the starting point to 

develop the decision process. The following performance matrix 𝑀 is formed for 𝐴 x 𝐺, 

where 𝑔𝑖(𝑎𝑗) = 𝑎𝑗𝑖 is the evaluation in row 𝑗 and column 𝑖: 

                                                 
3 According to Roy (1996), a family of criteria is coherent if it is based on three notions: exhaustiveness (all 

the relevant attributes of a decision problem have to be considered), cohesiveness (if two alternatives 

𝑎1 and 𝑎2 have the same evaluation of the whole set of criteria except one, and 𝑎1 has a better evaluation on 

the remaining criterion than 𝑎2, then 𝑎1 is at least as good as 𝑎2), non-redundancy (the withdrawal of one 

attribute would create a family of criteria not satisfying the former conditions). 
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𝑀 =

[
 
 
 
 
 
 

𝑔1 𝑔2 … 𝑔𝑖 … 𝑔𝑛

𝑎1 𝑎11 𝑎12 … 𝑎1𝑖 … 𝑎1𝑛

𝑎2 𝑎21 𝑎22 … 𝑎2𝑖 … 𝑎2𝑛

… … … … … … …
𝑎𝑗 𝑎𝑗1 𝑎𝑗2 … 𝑎𝑗𝑖 … 𝑎𝑗𝑛

… … … … … … …
𝑎𝑚 𝑎𝑚1 𝑎𝑚2 … 𝑎𝑚𝑖 … 𝑎𝑚𝑛]

 
 
 
 
 
 

 

Furthermore: 

 Decision maker (DM): is the individual or the group of people that would like to 

solve a decision problem. Generally, three types of problems are identified: 

- Choice problem consists of the selection of a subset of alternatives from a given 

initial set of options; 

- Ranking problem requires to rank alternatives in a partial or total order;  

- Sorting problems assign each alternative to one or more contiguous preferentially 

ordered classes; 

 Analyst: is the expert that thanks to its mathematical expertise guides DMs in all 

stages of the decision making process (Figure 1.8) for solving the problem;  

 Uncertainty: in order to solve a decision problem, some elements of uncertainty 

involving the measurement or the quantification of criteria, the trade-off or the 

preferences, could arise. Often occurs for instance that criteria are evaluated on a 

qualitative scale or DM is unable to quantify its preferences on a criterion. However, 

the analyst needs to incorporate these elements into the model and in order to 

overcome with the uncertainty issue, different methods have been proposed, such as 

the interaction between aggregation and disaggregation approach (Jacquet-Lagreze 

and Siskos, 2001). 

Figure 1.8 below shows the decision aid activity organized in three main stages. It combines 

objectives measurements and the subjectivity of DMs (see Belton and Stewart, 2002 and 

Cinelli et al., 2020 for a comprehensive taxonomy of the MCDA process characteristics): 

Problem 
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Model Building Action plan

Identify

Stakeholders

Problem
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Design
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Criteria 
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Implement
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Interpretation
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Figure 1.8 Main stages of Decision aid activity. Source: Belton and Stewart (2002) 
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In stage 1 DMs are advised by the analyst to provide essential information for the decision 

model development. In this phase, stakeholders have to discuss with analyst about the 

problem to solve and the goals to achieve. Thus, the identification of a potential set of 

alternatives, jointly to constraints and values are the key elements in order to apply any 

multicriteria model. 

Stage 2 consists of the development of a preference model. Although it does not exist a 

specific classification for MCDA methods (Sen and Yang, 2012), three types of models can 

be identified with different aggregation procedures: value measurement, goal programming 

or reference level and outranking methods (Section 1.3.1.1). Despite the choice of analyst to 

use one model rather than another one, in this phase it is fundamental to specify alternatives, 

to define criteria and to elicit values. Among these, the selection, the organization and the 

development of appropriate criteria is crucial, and varies according to the problem under 

investigation. It faces with the issues of data quality, preferential dependency, imprecision 

and uncertainty determination. Since MCDA models manage with several criteria 

simultaneously, aggregation procedures have to be provided to the analyst in order to build 

a model able to support DMs in taking the final decision. To deal with this aim, analyst asks 

DMs to estimate the model parameters such as criteria weights, indifference thresholds, 

trade-off and so forth. Moreover, since the direct estimation of parameters is a very complex 

task for DMs, it can cause the interruption of the whole process. Thus, Stage 2 is crucial for 

the entire development of a MCDA model. 

Once the MCDA model has been applied to the problem under investigation, Stage 3 consists 

of action plan, i.e. to interpret outcomes, synthetize information and provide a final 

recommendation to DMs. Since it may happen that the MCDA solution is unexpected and 

has to be interpreted in relation to the context of the problem, it is required therefore that the 

results of MCDA model have to be examined and tested for their validity and implications. 

Thus, this stage implies further analysis of sensitivity and robustness. 

1.3.1.1 Main categories of MCDA models and aggregation functions 

The following subsection presents the basic notions on the most important MCDA models 

classified according to Belton and Stewart (2002) in three main categories: value 

measurement, goal programming or reference level and outranking methods.  

However, before providing a thorough description of the most traditional models, it is useful 

to introduce the mathematical notation employed for comparing alternatives to each other 

according to the evaluation criterion chosen.  

More specifically, for alternatives 𝑎1, 𝑎2 ∈ 𝐴 it is assumed that: 

- 𝑎1𝑃𝑎2 ⟺ 𝑔𝑖(𝑎1) > 𝑔𝑖(𝑎2) and  

- 𝑎1𝐼𝑎2 ⟺ 𝑔𝑖(𝑎1) = 𝑔𝑖(𝑎2) 

where 𝑃 and I indicate the binary relations between the two alternatives, respectively with 

the meaning of “𝑎1 is strictly preferred to 𝑎2” (𝑎1𝑃𝑎2) and “𝑎1 is indifferent to 𝑎2” 

(𝑎1𝐼𝑎2) with regard to the criterion 𝑔𝑖.  
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In some models, any kind of difference between the two evaluations, even if minimal, 

indicates a strict preference of one alternative over the other; in other models, it is more 

reasonable to assume that small differences 𝑔𝑖(𝑎1) − 𝑔𝑖(𝑎2) among alternative evaluations 

are consistent with an indifference condition, leading to another model of comparison 

(Bouyssou, 1990): 

- 𝑎1𝑃𝑎2 ⟺ 𝑔𝑖(𝑎1) − 𝑔𝑖(𝑎2) > q and  

- 𝑎1𝐼𝑎2 ⟺ |𝑔𝑖(𝑎1) − 𝑔𝑖(𝑎2)| ≤ q 

where q is the indifference threshold. Thus, a difference 𝑔𝑖(𝑎1) − 𝑔𝑖(𝑎2) wider than q gives 

a strict preference of an alternative over the other, also if the difference is close to q; 

otherwise it leads to an indifference condition. Moreover, because of the sudden variation 

from a strict preference to an indifferent condition, it may be useful to introduce a “baffer 

zone” where the hesitation between the two aforementioned conditions is introduced. This 

hesitation is called weak preference and it is denoted with the binary relation 𝑆, where 𝑝 and 

𝑞 indicate respectively the preference and the indifference threshold: 

- 𝑎1𝑃𝑎2 ⟺ 𝑔𝑖(𝑎1) − 𝑔𝑖(𝑎2) > q  

- 𝑎1𝑆𝑎2 ⟺ 𝑞 < 𝑔𝑖(𝑎1) − 𝑔𝑖(𝑎2) ≤ 𝑝 

- 𝑎1𝐼𝑎2 ⟺ |𝑔𝑖(𝑎1) − 𝑔𝑖(𝑎2)| ≤ q 

In what follows, the basic concepts of the main categories of MCDA models: 

 Value measurement methods: have been introduced by Keeney and Raiffa (1976) 

with the aim to assign a score or a value (𝑉) for each option. Initially the model 

evaluates a partial score for each criterion that is then aggregated into a global score 

by considering the whole set of criteria and their associated weights. Through the 

global score it is possible to delineate a preference order of alternatives such that 𝑎1 

is preferred to 𝑎2 if and only if the value of 𝑎1 is greater than the value of 𝑎2 on the 

whole set of criteria 𝐺 (i.e. 𝑎1𝑃𝑎2  ⟺ 𝑉(𝑎1) > 𝑉(𝑎2)). Thus, preferences are 

characterized by two main properties: completeness and transitivity. Preferences are 

complete when, given two alternatives, one is necessarily more or equally preferred 

to the other; while they are transitive when, given three options 𝑎1, 𝑎2, 𝑎3  ∈ 𝐴 such 

that 𝑎1 is preferred to 𝑎2 and the latter is preferred to 𝑎3, then 𝑎1 is preferred to 𝑎3 

(i.e. if 𝑎1𝑃𝑎2  ∧  𝑎2𝑃𝑎3  ⇒   𝑎1𝑃𝑎3). Moreover, to take into account the importance 

of criteria, a partial value function 𝑣𝑖(𝑎𝑗) is created for each 𝑔𝑖 𝜖 𝐺.  

The simplest additive model is the weighted sum that expresses the value function in 

an additive form. More specifically the global value of an alternative 𝑉(𝑎𝑗) is 

obtained through the product between the partial value function 𝑣𝑖(𝑎𝑗) on the 

criterion 𝑔𝑖 and the weight value 𝑤𝑖 assigned by the DM to that criterion, as in the 

following equation:  

𝑉(𝑎𝑗) = ∑𝑤𝑖𝑣𝑖(𝑎𝑗)

𝑛

𝑖=1
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 Goal programming or Reference level models: are based on reference levels of 

achievements for each criterion, considered as goals. The main aim of these models 

is to discover those alternatives that are closest to the reference levels. The model is 

articulated in different stages. At the beginning, DM has to prioritize criteria 

according to an order; the most important one is assessed on the set of alternatives 

until a desirable level of performance is achieved and alternatives with the less 

performances on the reference level are eliminated. Similarly, DM evaluates the 

performances on the second best criterion and alternatives with the less reference 

level are removed. The process continues until the worst criterion of the whole set is 

considered. 

 Outranking methods: have been introduced by Roy (1996) and are based on an binary 

relation on the set of alternatives. Initially options are pairwise compared by 

considering one criterion at a time in order to detect the preference degree of one 

alternative over the other. Then the model is extended to the entire set of criterion by 

providing strong enough evidence to affirm that “𝑎1 is at least as good as 𝑎2” 

(𝑎1𝑆𝑎2). To use this model it is required that criteria are based on the dominance 

notion and satisfy the preferential independence property. Dominance implies that, 

given two alternatives 𝑎1 and 𝑎2 and their corresponding preference functions 

𝑉(𝑎1) and 𝑉(𝑎2), if 𝑉(𝑎1) > 𝑉(𝑎2) then 𝑎1 is preferred to 𝑎2 (𝑎1𝑃𝑎2); whereas the 

preferential independence property entails that the set of criteria must not show any 

degree of interaction. However, if any alternative outranks another one, it does not 

imply that they present the same preference value or they are indifferent (Belton and 

Stewart, 2002).  

1.3.2 Multi-criteria Decision Analysis in the energy sector 

Multi-criteria decision analysis and its wide range of methodologies have been applied to 

many domains. In this study, we focus on MCDA models employed in energy decision 

making in view of the significance that this sector plays in the economic, political and 

environmental context, as stressed before.  

MCDA methods, thanks to their capability to handle simultaneously with multiple and 

conflictual criteria, different categories of stakeholders and several uncertainty conditions, 

are well suitable instruments to implement in the energy industry and achieve integrated 

results (Mateo, 2012). 

In what follows, an extensive literature review on the main applications of MCDA models 

in the energy sector, emphasizes the importance of these mathematical tools to solve 

decision-making issues related to this area and proves the recent growing attention of 

researchers for this field. For instance, the studies of Abu-Taha (2011) and Mardani et al. 

(2015) provide a review of MCDM techniques in the main areas of sustainable and 

renewable energy for type of multi-criteria model employed, authors’ origin, kind of journal, 

year of publication and criteria considered. They underline the role of MCDA methods in 

supporting DMs for disclosing the uncertainties of environment decision-making and 

solving the different stages of energy system. Similarly, the paper of Wang et al. (2009) 
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reviewed the main MCDA models employed in each stage of sustainable energy decision-

making such as criteria identification, weighting, evaluation and aggregation. Pohekar and 

Ramachandran (2004) offer a wide survey of 90 published papers dealing with the 

application of MCDA methods in the comprehensive area of sustainable energy planning 

that consists of seven categories: renewable energy planning, energy resource allocation, 

transportation and building energy management, energy projects and electric utility planning 

and other various areas. Instead, more oriented to energy investments question is the recent 

literature review of Strantzali and Aravossis (2016) that allow understanding the dynamics 

of evaluation in renewable energy sources investments. The authors, through the 

classification of energy planning papers in year of publication, method employed, energy 

source, area of application, criteria and geographical distribution of case studies, highlight 

the widespread use of MCDA methods to solve energy planning problems.  

In analyzing these comprehensive studies, it is possible to bring out some common elements: 

- The problems to solve 

- The criteria employed 

- The methods applied 

- The uncertainty of data 

The problems to solve: typically, the decision problems related to the energy sector applying 

MCDA techniques concern the following subjects:  

 The choice of the power plants location involving the strategic selection of the most 

efficient site to locate thermal, solar or wind power plants in terms of economic and 

sustainable development of a country (Choudhary and Shankar, 2012; Barda et al., 

1990; Ren, 2010; Wu et al., 2014; Yunna and Geng, 2014);  

 The evaluation of the power generation projects consisting of the assessment of 

renewable energy investments for power generation (Chen et al., 2010; Atmaca and 

Basar, 2012; Liu et al., 2010; Mavrotas et al., 2003); 

 The comparison among power generation and supply technologies concerning the 

sustainability assessment of power production and supply from renewable and not 

renewable energy sources or from traditional and renewable energy technologies 

(Barros et al., 2015; Maxim, 2014; Stein, 2013; Troldborg et al., 2014; Doukas et al., 

2007; Hirschberg et al. 2004); 

 The designing of energy plans and policies involving the strategic decision among 

different energy scenarios faced by energy planners or political stakeholders to 

comply with more sustainable energy strategies (Angilella et al., 2016; Kablan, 2004; 

Greening and Bernow, 2004; Diakoulaki et al., 1999); 

 The system of energy transportation entailing the choice of the most environmentally 

sustainable transport system to mitigate the environmental risks related to pollutant 

emissions (Yedla and Shrestha, 2003; Awasthi and Chauhan, 2011; Sayers et al., 

2003); 

 The building of sustainable energy indices consisting of the development of 



Chapter 1. The energy sector and the role of MCDA models 

 

19 

 

aggregated indicators for monitoring the energy performance at national or regional 

level (Song et al., 2017; Ding et al., 2018; Zhou et al., 2007; Hatefi and Torabi, 2010; 

Peng et al., 2017). 

The criteria employed: in the framework of energy system, the most used attributes for 

evaluating or comparing alternatives to each other are usually grouped into four main 

categories: technical, economic, environmental and social criteria (Wang et al., 2009). Table 

1.1 summarizes the most commonly used sub-criteria for each category. They have been 

derived from the main literature reviews in energy planning studies (Wang et al., 2009; 

Antunes and Martins, 2014; Ibáñez-Forés et al., 2014; Luthra et al., 2015; Strantzali and 

Aravossis, 2016). Moreover, a detailed description for each of them is provided below:  

Table 1.1 Most used criteria and sub-criteria in energy planning studies employing multi-criteria methods 

(Wang et al., 2009; Antunes and Martins, 2014; Ibáñez-Forés et al., 2014; Luthra et al., 2015; Strantzali and 

Aravossis, 2016) 

Technical criteria Economic criteria Environmental criteria Social criteria 

Efficiency Fuel costs Pollutants emissions 

(CO2, NOx,  SO2) 

Risk of premature mortality 

Safety Investment costs Particles emissions Morbidity 

Reliability 

Maturity 

Capacity 

Operation and Maintenance costs 

Production costs 

Levelized electricity cost 

Wastewater discharge  

Waste and sludge generation 

Land use 

Accidents 

Social acceptability 

Job creation 

Peak load response 

Primary energy ratio 

Fuel availability 

Risk 

Avoided costs 

Economic impacts 

Economic profitability (Payback 

Period, service life, equivalent 

Annual costs, net present value) 

Noise pollution 

Visual impact 

Climate change 

Social benefit 

Social equity 

Cultural heritage protection 

Adaptability 

Diversity 

Lifetime 

Market maturity 

Financial capacity 

Acidification 

Greenhouse effect 

 

 

Equipment design 

Waste utilization 

  

 

 

 Technical criteria: usually refer to the production features of each technology. They 

include efficiency (the percentage of useful energy, namely electricity or heat,  

obtained from energy sources), safety (the security of workforces in the place of 

energy activity or the reduction of energy dependence), reliability (the capability for 

the power technology to perform, in a certain time span, as planned, ensuring a 

continuous energy service without failures or blackout), maturity (the technology’s 

maturity degree with respect to other international technologies, viewed as a sort of 

technical advantage), capacity (the firm’s ability to get the maximum energy 

production by using its installations), peak load response (the capability of a device 

or a system to respond immediately to large demand fluctuations), primary energy 

ratio (the ratio between the primary energy consumption and the user’s energy 

demand),  fuel availability (computes the availability of a specific kind of fuel during 

years over its actual consumption), risk (the exposition to certain dangers due to new 

policies or control properties), adaptability (the technology’s ability to conform the 

energy production to the current situations), diversity (refers to the energy production 

mix, technology or supply sources), lifetime (the number of years the power plant 
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can work before its replacement), equipment design (design complexity of the plant 

equipment in terms of involved operating stages and equipment required), waste 

utilization (volume of waste produced that can be recycled); 

 

 Economic criteria pertain to economic costs and economic performance criteria. 

Economic costs refer to the whole set of expenditures faced by companies which are 

part of the electricity supply chain. They have been identified with: fuel costs (the 

amount of financial resources spent to provide the raw materials required to initiate 

the power production process according to the specific technology employed, i.e. 

natural gas or coal for thermal power plant; they include also any charges resulting 

from the extraction, transportation or processing activities), investment costs 

(comprise all those costs related to the acquisition of mechanical systems and 

installations, road and networks building to the national grid and other construction 

costs, except the labor costs associated to the equipment maintenance), operation 

costs (refer to labor costs like the wages paid to employees, the costs for energy, 

goods and facilities); maintenance costs (total funds spent to extend the energy 

system lifespan in order to avoid as much as possible system outages); production 

costs (allow to compare a certain power production technology over the others in 

terms of their market competition); levelized electricity costs (measures the 

production cost per KWh of the electricity produced by the power plant expressed 

as Euro cents); avoided costs (amount of costs saved for less primary energy 

consumed). While economic performance criteria refer to the efficiency attributes 

under the economic point of view that include: economic impacts (the ability of a 

certain energy plan or policy to stimulate the economic development of a country); 

economic profitability (consists of assessing long-term energy projects through 

different indicators such as net present value, payback period, service life, 

equivalent annual cost, in order to appraise its economic feasibility by stakeholders), 

market maturity (refers to the availability in the market and the status of penetration 

of a given technology for less and more than 10 years), financial capacity (the 

capability of a company to finance the amount of materials required for technology 

operation); 

 

 Environmental criteria: refer to negative externalities generated by power plants 

during the fossil fuels burning process on the surrounding and global environment. 

Local externalities relate to the release of pollutants and particles emissions to the 

atmosphere like the nitrogen oxides (NOx), carbon monoxide (CO), carbon dioxide 

(CO2), sulphur dioxide (SO2), methane (CH4) and non-methane volatile organic 

compounds (NMVOCs) that contribute to produce local air pollution and toxic 

products for the health of the surrounding community. Moreover they include land 

use (the landscape occupied by energy systems), noise pollution (the distracting 

noise generated by the equipment functioning that can cause permanent 

physiological damage to hearing), wastewater discharge (the amount of wastewater 
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discharged in the surrounding environment by power plant), waste and sludge 

generation (the quantity of waste and sludge generated by power plant production) 

and visual impact (the visual alteration of nearby landscape caused by the 

implementation of an energy project). Similarly, global externalities are generated 

from the release of pollutants to the air, but relate to the overall environmental 

impact across the world through climate change, acidification and greenhouse 

effect,  that have been recently focused by governments and industry experts to 

monitor the global development of energy systems; 

 

 Social criteria: include two notions. From one side they refer to negative 

externalities generated by energy systems to human health, natural ecosystem and 

other non-environmental externalities. Literature defines these externalities as 

human health costs, burden by entities not directly involved with electricity 

generation unit such as the risk of premature mortality (that is the life expectancy 

reduction), morbidity (breathing or cardiovascular problems caused by a long or 

short greenhouse gases expositions), and accidents (like fatal accidents or injuries 

during the normal plant operations).  From the other side, social criteria include the 

people’s approval towards new energy projects and the social development of the 

surrounding population. In order to evaluate these aspects, the most used criteria are: 

social acceptability (the local community sentiment about the creation of new 

energy projects; if the population is against, it may create the slowdown in works), 

job creation (the introduction of new job vacancies in the energy system that help 

locale people to improve their living standards); social benefits (the social 

improvement of the surrounding population in terms of living conditions, earned 

income and collective well-being due to the development in energy programmes), 

social equity (a measure to assess reliable supply to the whole population); cultural 

heritage protection (refers to the impact of a new project towards surrounding 

heritage buildings or ancient cultural sites).   

The methods applied: several multi-criteria methods have been implemented to solve 

different decision-making problems in the energy sector. The majority of literature review 

studies related to energy industry, agree that AHP model is the most used multi-criteria 

method for supporting sustainable energy planning and policy issues, thanks to its 

hierarchical structure and the possibility to handle with results until the consistency is 

obtained (Abu-Taha, 2011). Moreover, ELECTRE, PROMETHEE, MAUT, and TOPSIS 

models are the other multi-criteria methods widely employed within the same field (Doukas, 

2013; Pohekar and Ramachandran, 2004; Mardani et al., 2015).   

Following the paper of Belton and Stewart (2002) which classifies MCDA models in three 

main categories (value measurement, reference level and outranking methods), we provide 

an overview of the major multi-criteria models applied in the energy sector according to this 

classification: 

- Value measurement methods: include Simple Additive Weighting (SAW), Ordered 

Weighted Average (OWA), Multi-Attribute Utility Theory (MAUT), Analytical 

Hierarchy Process (AHP), and Measuring Attractiveness by a Categorical Base 
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Evaluation Technique (MACBETH) models; 

- Reference level methods: are Technique for Order Preference by Similarity to Ideal 

Solution (TOPSIS), VIKOR and Goal Programming (GP) models;  

- Outranking methods: refer to Preference Ranking Organization Method for 

Enrichment Evaluation (PROMETHEE) and Elimination et choice translating reality 

(ELECTRE) models.  

However, other multi-criteria techniques, such as Novel approach to Imprecise Assessment 

and Decision Environment (NAIADE) and Preference Assessment by Imprecise Ratio 

Statements (PAIRS) not included in the previous list, have been implemented in the energy 

sector and denoted here as other approaches. 

Table 1.2 provides a classification of the aforementioned multi-criteria models that have 

been applied to solve different decision-making problems in the energy sector, such as the 

renewable and sustainable energy, the renewable energy investments and the sustainable 

energy planning. This table has been derived from the main literature review studies on these 

topics (Abu-Taha, 2011; Strantzali and Aravossis 2016; Pohekar and Ramachandran, 2004; 

Mardani et al., 2015) to highlight the key contributions of MCDA methods in solving 

specific energy issues.  

Table 1.2 Classification of MCDA methods by application area (Abu-Taha, 2011; Strantzali and Aravossis 

2016; Pohekar and Ramachandran, 2004; Mardani et al., 2015) 

Categories 
MCDA 

method 
Application Area References 

Value 

measurement 

methods 

SAW 

evaluation of new and renewable power plants Afgan and Carvalho, 2002 

evaluation of commercial power supply technologies Shakouri et al., 2014 

evaluation of natural gas systems Afgan et al., 2007 

OWA 
identification of the better siting for renewable energy 

systems 

Aydin et al., 2013; 

Al-Yahyai et al., 2012 

MAUT 

selection of energy projects Golabi et al., 1981 

selection of energy resources Pan et al., 2000 

study of the electric power system growth Voropai and Ivanova, 2002 

assessment of the environmental effects of electric 
utilities 

McDaniels, 1996 

AHP 

energy policy problems 

Toossi et al., 2013; 

Hämäläinen and Karjalainen, 1992;  
Poh and Ang, 1999; 

Sadeghi and Ameli, 2012; 

Kablan, 2004 

energy planning problems 
Haddad et al., 2017;  
Lee et al., 2007;  

Lee et al., 2008 

assessment of power generation technologies and heating 
systems 

Pilavachi et al., 2009; 
Chatzimouratidis and Pilavachi, 2009; 

Mohsen and Akash, 1997; 

Chatzimouratidis and Pilavachi, 2007; 
Chatzimouratidis and Pilavachi 2008 

selection of power plant location Aras et al., 2004 

allocation of energy resources 
Ramanathan and Ganesh, 1995; 

Ramanathan and Ganesh, 1993 

ANP 

optimal fuel mix for sustainable power generation 
Köne and Büke, 2007; 

Ulutaş, 2005 

investor's inclinations towards biomass power plants 

projects 
Cannemi et al., 2014 

optimal recycling strategy in the solar energy industry Shiue and Lin, 2012 

ranking renewable energy sources Kabak and Dağdeviren, 2014 

MACBETH compare feasibility of renewable energy projects Burton and Hubacek, 2007 

Reference 

level methods 
TOPSIS evaluation of power technologies 

Lozano-Minguez et al., 2011; 

Boran et al., 2012 
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evaluation of renewable resources Doukas and Psarras, 2009 

VIKOR 

select a renewable energy plan San Cristóbal, 2011 

evaluate the feasibility of sustainable hydropower 
projects 

Vučijak et al., 2013 

Goal 

Programming 

resource allocation problems Kambo et al., 1991 

select the optimal location for renewable power plants Chang, 2015 

PROMETHEE 

evaluation of renewable energy projects 
Haralambopoulos and Polatidis, 2003; 
Tsoutsos et al., 2009 

optimal exploitation of geothermal resources Goumas et al., 1999 

compare the sustainability of renewable energy 

technologies 

Troldborg et al, 2014; 

Cavallaro, 2009 

evaluation the diffusion of future energy scenario 
Diakoulaki and Karangelis, 2007; 
Madlener et al., 2007 

Outranking 

methods 
ELECTREE 

selection of the best power generation project 
Georgopoulou et al., 1997; 

Beccali et al., 2003 

selection of the most attractive energy source Papadopoulos and Karagiannidis, 2008 

location of the thermal power plants and solar farm 

Barda et al., 1990; 

Sánchez-Lozano et al., 2014; 

Jun et al., 2014 

ranking of a set of office buildings Roulet et al., 2002 

sorting of energy efficiency initiatives Neves et al., 2008 

Other 

approaches 

NAIADE 
optimal scenario for natural gas systems and wind 

turbine technologies 

Dinca et al., 2007; 

Cavallaro and Ciraolo, 2005 

PAIRS 
evaluation of the competitiveness of residential energy 
heating systems 

Alanne et al., 2007 

The uncertainty of data: the energy decision-making problems are characterized by 

imprecision of data, fuzziness of individual judgements and vagueness of the parameters 

required. All these elements of uncertainty have to be taken into consideration by analysts 

both when a specific model is applied and when results are provided to the DM. For instance, 

evaluating alternatives on each criteria or eliciting weights over the whole set of attributes 

considered, is really a difficult task for the DM due to the high difficulty in quantifying its 

own preferences. Hence, two different MCDA techniques have been applied in the energy 

framework to handle with the data uncertainty issue: sensitivity analysis, fuzzy sets and 

fuzzy logic techniques.  

 Sensitivity analysis: it consists of checking how the results of the model vary 

according to a single variation of input information, such as raw data or preference 

parameters that are provided by the DM. This tool, particularly suitable in ranking 

problems, highlights how the change of DM’s preferences on criteria weight may 

widely (or slightly) affect the final order of alternatives and lead therefore to the 

model instability (or stability) for that specific decision making problem. The main 

MCDA methods dealing with sensitivity analysis are the Stochastic Multi-Attribute 

Acceptability Analysis (SMAA models), the Data envelopment analysis (DEA) and 

ELECTRE IV. In ELECTRE methods for instance, the sensitivity analysis allows 

observing changes in preference, indifference and veto thresholds or evaluating the 

robustness for each outranking situation. 

 

 Fuzzy sets and fuzzy logic techniques: are quantitative methodologies that enable to 

interpret qualitative information by numerical values. They own the advantage to 

convert the DM’s preferences, which are highly imprecise and expressed through 

linguistic variables, into a set of scores (weights) which make exact the final 

evaluation. In this way, it is possible to structure the problem hierarchically and to 
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obtain highly accurate, transparent and realistic results from rough and approximate 

data. These techniques presented for the first time by Zadeh (1965) have been applied 

with other MCDA models to solve different decision-making problems in the energy 

sector. For instance, fuzzy analysis has been applied along with:  

 

- MAUT: to compare the company performances in terms of sustainable supply 

chain (Erol et al., 2011), to develop an energy demand model for residential 

sector (Michalik et al., 1997);  

- ANP: to evaluate the environmental impact of construction projects (Liu and 

Lai, 2009); 

- AHP: to select the most appropriate renewable energy sources in the power 

generation, distributed and storage energy system (Ahmad and Tahar, 2014; 

Barin et al., 2009a; Barin et al., 2009b; Tasri and Susilawati, 2014), to 

evaluate the optimal tri-generation and heating system (Wang et al., 2008; 

Jaber et al., 2008);  

- AHP and WIKOR: to identify the best energy policy and production site in 

Istanbul (Kaya and Kahraman, 2010); 

- AHP and TOPSIS: to evaluate renewable energy alternatives in Turkey 

(Çolak and Kaya, 2017); 

- TOPSIS: to rank and evaluate the environmental performance of energy 

supply system (Şengül et al., 2015; Awasthi et al., 2010), to select the facility 

location (Chu, 2002);  

- PROMETHEE: to test and rank different geothermal energy exploitation 

systems (Goumas and Lygerou, 2000; Haralambopoulos and Polatidis, 2003), 

to assess the sustainability of production techniques (Geldermann et al., 

2000);  

- ELECTRE: to compare the fuzzy set methodology over the ELECTRE model 

to a real case of energy planning (Beccali et al., 1998), to assess the 

environmental effects of water resources based projects (Khodabakhshi and 

Jafari, 2010), to compare different energy options under the social and public 

safety viewpoint (Siskos and Hubert, 1983) 

1.3.3 Literature review on MCDA models employed in firms’ performance 

evaluation and credit risk assessment: filling the gaps and outlining the 

motivations 

MCDA models have been widely applied also in studies dealing with firms’ performance 

evaluation and credit risk assessment. The two notions are strictly related since through the 

investigation of the current company’s performance it is possible to predict its future 

likelihood of success or failure (Psillaki et al., 2010).  

Performance evaluation consists of appraising the efficiency and the efficacy of previously 

implemented strategies (Neely et al., 2002). The literature concerning this topic has been 

characterized by two main phases. In the first one, between the 1880s and the 1980s, 
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performance measures were directed to financial indicators based on accounting data, such 

as profitability, return on investment and productivity (Ghalayini and Noble, 1996). In the 

second one, as the market became more competitive (after the 1980s), it was realized that 

traditional financial measures presented several limitations in assessing a more strategic 

corporate condition and Performance Measurement Systems (PMSs) have been enriched of 

managerial components, able to improve the decision-making processes (Taticchi, 2008). 

Thus, during years, several efforts have been made by the scientific community to guarantee 

the most appropriate performance evaluation models for enabling industrial practitioners to 

better understand an integrated assessment process. For instance the survey of De Toni and 

Tonchia (2001), classifies the PMSs models in five main typologies: hierarchical, balanced 

scorecard, frustum, internal-external performances and value chain models. 

However, these conventional decision-making processes are no longer sufficient to consider 

several features simultaneously, which relate for instance to the financial or economic well-

being as well as the market position, human capital, quality of goods produced and many 

other factors concerning the specific sector where the firm operate.  

Multi-Criteria Decision Aid (MCDA) methods, thanks to their multi-dimensional nature and 

their capability to monitor several aspects concurrently, are instead suitable instruments to 

evaluate the complex structure of firms, which typically involves a set of conflicting criteria 

to assess their performances.  

In the energy sector, the business evaluation analysis is even more relevant than in other 

fields, and the need for reliable models able to predict the corporate failure consistently and 

accurately is crucial. Just think to the recent cases of financial distresses occurred within the 

energy industry after deregulation policies, with their significant impacts on the economy of 

the country where the crash has taken place (Section 1.2.1.3 ). 

Despite its great relevance in the modern economy, the available MCDA literature related 

to the performance evaluation of energy companies is not so wide and often limited to the 

analysis of the financial dimension. In the study of Eyüboglu and Çelik (2016), for instance, 

although authors suggest to monitor the performances of energy companies for their crucial 

importance in a given economy, they offer a ranking of firms based only on accounting 

measures, providing a reductive view for an exhaustive decision-making process. In this 

regard, the papers of Capece et al. (2013) and Guo et al. (2016), study the performance 

evaluation respectively of the Italian and Chinese energy companies through other 

perspectives, such as geographical position and top managers’ background characteristics. 

Thus, the weakness detected in this stream of literature, is just to consider a single 

perspective at once.  

To fill this gap, this thesis proposes the selection of a coherent and hierarchical set of criteria, 

specifically oriented towards energy industry assessment where, conventional financial 

criteria are considered together with other dimensions. Among these, sustainability, 

technical and market ones, have been identified to form the basis of a reliable model, 

addressed to several decision makers’ purposes. The proposed family of criteria has been 

assessed on a set of listed companies operating in the energy sector, with the aim to provide 

a ranking of them in terms of performance.  
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On the methodological side, Hierarchy Stochastic Multi-Attribute Acceptability Analysis 

(HSMAA) (De Matteis et al., 2019) has been employed, as a suitable MCDA model 

simultaneously dealing with the hierarchical criteria structure and with the Decision Maker 

(DM)’s uncertainty on preference parameters, which has been considered simulating 

different scenarios. Indeed, a common feature of most real-life problems, independently of 

the context, is the plurality of different stakeholders (see Cinelli, 2017) as in the evaluation 

of the performance of the energy sector.  

Credit risk, instead, is a kind of risk faced by lenders that arises from the declined refund of 

a granted loan under pre-specified terms and conditions. Because of its crucial importance 

in the banking system, credit risk assessment has been of central interest for many 

researchers.  

In this regard, the literature review on credit risk evaluation has highlighted that methods 

mainly dealing with corporate failure prediction problems include usually statistical, 

econometric and machine learning techniques. For instance, the study of Balcaen and Ooghe 

(2006) provides a well-organized survey of the classical statistical modelling systems 

applied to business failure predictions of corporations throughout 35 years of studies. This 

paper identifies specifically four types of approaches with their main features and 

assumptions: univariate analysis, risk index models, multiple discriminant analysis (MDA) 

and conditional probability models.  

Despite their extensive implementation, these methodologies present some specific issues 

related to the application of corporate failure prediction modelling and do not hold some 

significant attributes that analysts often require for scoring models, such as the ordinal risk 

grades and the monotonicity assumptions. The last requirement entails that if in a rating 

model an input variable for a given firm improves, then the probability of default should 

decrease. Both the aforementioned attributes fit well to multi-criteria decision aiding 

(MCDA) models, which have also the advantages of a high comprehensibility, easiness of 

application and ability to include the DM’s preferences. These characteristics make these 

tools more efficient and powerful than traditional statistical techniques (Doumpos et al., 

2002).  

It is for all these reasons that multi-criteria models have been adopted to support a wide 

range of financial decisions, such as the portfolio selection, the choice of investments 

projects, the failure risk assessment of corporations (see Spronk et al., 2005 and Doumpos 

and Zopounidis, 2014 for literature reviews of MCDA on finance).  

Moreover, multi-criteria analysis offers a variety of discrimination models (see Zopounidis 

and Doumpos, 2002a for a literature review of multi-criteria classification and sorting 

methods), which have been applied to handle with the credit risk assessment issue especially 

in financial and banking sector. Most of them make use of preference disaggregation 

approaches (Zopounidis and Doumpos, 1999; Doumpos and Pasiouras, 2005; Baourakis et 

al., 2009), goal programming (García et al., 2013), rough set theory (Slowinski and 

Zopounidis, 1995; Capotorti and Barbanera, 2012) outranking techniques (Doumpos and 

Zopounidis, 2011; Angilella and Mazzù, 2015; Angilella and Mazzù, 2019). 
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The preference disaggregation approaches are based on indirect elicitation of preference 

parameters. In the indirect elicitation, the DM is asked to provide preference information in 

terms of some pairwise comparisons on some criteria or reference alternatives. These MCDA 

models are widely used to tackle with several decision real problems since they require a 

less cognitive effort of the DM. The most known preference MCDA methodologies based 

on indirect elicitation are the Robust Ordinal Regression (ROR) (Greco et al., 2010) and the 

Stochastic Multi Attribute Acceptability Analysis (SMAA) methodologies (Lahdelma et al., 

1998). For example, UTA method is a well-known MCDA method based on the ROR 

approach. In particular, the UTADIS methods are a variant of UTA methods, which are well 

suited for sorting problems.  UTADIS models replicate accurately a predefined classification 

by building an additive utility function that is used then to estimate the global utility of each 

alternative. Finally, each additive utility function is compared to some thresholds, 

representing the lower and upper bounds of classes, which are estimated through linear 

program techniques.  

In what follows, Table 1.3 highlights the strengths and the weaknesses of the main MCDA 

sorting models used in credit scoring and failure prediction problems.  

Table 1.3 Pros and Cons of the main MCDA sorting models employed for credit scoring and failure prediction 

problems (Mousavi and Lin, 2020). 

Method Model Reference Pros Cons 

Preference 

disaggregation 

UTADIS 
Doumpos and 

Pasiouras, 

2005 

The estimation of the additive value 

function and the cut-off thresholds is 

performed through linear programming 
techniques. The additive value model that 

reproduce the predetermined classification 

of alternatives is developed as accurately as 
possible 

The global DM's preferences are not 

perfectly represented by the model 

Evolutionary 
optimization 

Doumpos, 
2012 

The methodology based on an evolutionary 

optimization process, is applicable with 
large dataset and it is particularly useful for 

modelling non-monotonic preferences. 

A broad class of non-monotonic value 

functions is proposed, inferred directly 
from a set of decision examples 

Outranking 
relation 

ELECTRE 

TRI+SMAA 
methodology 

Angilella and 

Mazzù, 2015 

Through the SMAA procedure, it has been 

accounted for uncertainty and imprecision 
in the criteria weights, cutting level and 

data. Thus, the different points of view  of 

credit officers are considered with regard to 
the importance of criteria 

Due to the SMEs’ lack of sufficient or 

reliable track records, the most useful 
approach for evaluating their 

creditworthiness is a rating based on 

experts’ judgment. 

ELECTRE 

TRI + 

Evolutionary 
optimization 

Doumpos and 
Zopounidis, 

2011 

Allows analyst to introduce the DM's 

preferences during the model building 
process and calibrate the model, by 

meeting the requirement posed by the risk 

management department of a credit 
institution. The DE algorithm optimizes the 

model fitting process 

The assignment of the alternatives to 

the predefined categories is based on 
their comparison with the references 

profiles that have to be set by industry 

experts. For the huge amount of a-
priori information needed to set the 

model, it can be applied specifically 

with members of a decision committee.  

ELECTRE 

TRI-nC 

Doumpos and 

Figueira, 2019 

The multiple characteristic profiles 

increase the robustness of the risk 

assignment for alternatives and decrease 

their deviations from external ratings. The 

robustness of the model is further enhanced 

by adding veto conditions. 

The reference actions are defined 

depending on the preferences of the 

decision-maker and therefore, they are 

co-constructed during an intensive 

interaction process between the 

decision-maker and the analyst. 

MURAME 
Corazza et al., 

2016 

Being based on the combination of 
ELECTRE TRI and PROMETHEE 

method, it allows, through three different 

stages, to: rank the firms according to their 
credit risk features, to sort them into 

creditworthiness classes, to compute the 

probabilities of migration over time from 
one class to another 

If the model is built with few variables, 
it does not  perform properly 
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PROMCM 
Hu and Chen, 

2011 

An overall preference index is defined 

using both concordance and discordance 
relations for ordinal sorting problems and 

the final classification depends on its net 

flow. Criteria weights, preferential 
parameters and cut off points, are 

automatically determined through the 

genetic algorithm based (GA-based) that 
increase its performance 

GA parameter specifications are 

somewhat subjective 

Fuzzy 

Fuzzy rule-

based 

classifiers 

Gorzałczany 

and 
Rudziński, 

2016 

It involves and optimizes a trade-off 

between the accuracy and the 
interpretability requirements  

The transparency and interpretability 

become limited when excessive 
numbers of complex rules are 

generated 

Fuzzy group 
decision 

making 

model 

Yu et al., 

2009 

Intelligent agents are used in place of 

human experts to take decisions and 
formulate different opinions on a specified 

decision problem, reducing the bias of 
human experts in GDM. These opinions 

constitute the basis for formulating fuzzy 

opinions. 

The classification accuracy used is 

affected by the overlap in the way the 
range of some evaluations results is 

split into various categories 

 

In several credit risk assessment studies, some of the methods displayed in Table 1.3 have 

been compared to each other (Araz and Ozkarahan, 2005) and with traditional econometric 

tools such as discriminant, logit and probit analysis (Voulgaris et al., 2000; Zopounidis and 

Doumpos, 1999). All these studies agree in recognizing the higher efficiency of multi-

criteria methods in comparison to the econometric ones in obtaining credit risk estimates 

(Doumpos and Zopounidis, 2002). Instead, a more controversial question is about which 

multi-criteria model is more efficient in corporate credit risk assessment, because of the 

significant link between the features of the context of application and the obtained results.  

In literature, one of the most efficient multi-criteria discrimination model is the Multi-group 

Hierarchy Discrimination (M.H.DIS) technique elaborated by Zopounidis and Doumpos 

(2000). In comparison to other studies concerning the application of preference 

disaggregation approaches, (such as the family of UTADIS models), the performance of 

M.H.DIS is indeed not only superior for some real world cases, but also computationally 

less time-consuming, especially with respect to UTADIS II and UTADIS III (1 minute 

against several hours) (Zopounidis and Doumpos, 2000).  

The following features emphasize the M.H.DIS model’s main strengths: 

 it is able to discriminate alternatives between two or more than two categories; 

 it employs a hierarchical discrimination procedure to assign alternatives into classes. 

More specifically, the categories are discriminated progressively, starting by 

discriminating the most preferred alternatives (𝐶1) from all the alternatives of the 

remaining ones (𝐶2, 𝐶3, 𝐶4, … , 𝐶𝑝) then proceeding to the discrimination between the 

alternatives of the next category (𝐶2) from all the alternatives of the remaining ones 

(𝐶3, 𝐶4, … , 𝐶𝑝) and so forth; 

 his development process is based on three mathematical programming techniques, 

two linear programs (LP1, LP2) and a mixed-integer one (MIP), implemented at each 

stage of the hierarchical discrimination process to estimate the optimal pair of 

additive utility functions in terms of misclassification errors and clear distinction 

between categories. The first linear program (LP1) is employed to minimize the 

misclassification errors in terms of distance, the mixed integer program (MIP) is 
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performed then to minimize the number of misclassifications that could occur after 

the implementation of LP1 and the second linear program (LP2) is finally 

implemented to maximize the clarity of the discrimination after LP1 and MIP.  

M.H.DIS model has been applied to several fields such as the banking system (Pasiouras et 

al., 2010; Spathis et al., 2004), the corporate sector (Doumpos et al., 2002; Kosmidou et al., 

2002; Doumpos and Zopounidis, 1999) and the country analysis (Doumpos and Zopounidis, 

2001; Doumpos et al., 2000). 

However, to the best of our knowledge, the M.H.DIS model has never been employed to 

financial distress prediction of energy companies, despite their great importance for the 

entire economy. 

Thus, thanks to its specific hierarchical procedure and optimization framework, the Multi-

group Hierarchical Discrimination (M.H.DIS) model of Zopounidis and Doumpos (2000), 

has been selected among the wide range of MCDA sorting models to fill the aforementioned 

literature gap. More specifically, in this study, the M.H.DIS model has been applied on a 

dataset of European unlisted companies operating in the energy sector.  

Following a five-fold cross validation procedure, it has been analyzed whether the model 

explains and replicates a two-group pre-defined classification of companies in the considered 

sample. Moreover, to provide a benchmark sorting procedure, the Preference Ranking 

Organization Method for Enrichment Evaluations (PROMETHEE) method has been 

performed then, as deeply discussed in Chapter 3.  

1.4  The MCDA models applied in this study 

In this Section, we provide some basic concepts used further in this thesis. More specifically, 

in Section 1.4.1 we present an overview of the Hierarchy Stochastic Multi-Attribute 

Acceptability Analysis (HSMAA), the multi-criteria model employed in the second Chapter.  

While, in Section 1.4.2 and Section 1.4.3 we describe respectively the main features of the 

Multi group Hierarchical Discrimination (M.H.DIS) and the Preference Ranking 

Organization Method for Enrichment Evaluations (PROMETHEE II) that have been jointly 

implemented in Chapter 3. 

1.4.1 Hierarchy Stochastic Multi-Attribute Acceptability analysis 

(HSMAA) 

Hierarchy Stochastic Multi-Attribute Acceptability Analysis (HSMAA), firstly introduced 

in De Matteis et al. (2019), is an extension of the Stochastic Multi-Attribute Analysis 

(SMAA-2) (Lahdelma and Salminen, 2001) able to handle the imprecision relating to the 

criteria weights and/or alternatives from one side and the hierarchical structure of criteria 

from the other side.  

Commonly in MCDA, Analytic Hierarchy Process (AHP) (Saaty, 2016) and Multi-Criteria 

Hierarchy Process (MCHP) (Corrente et al., 2012) have usually been applied to deal with 

the multi-level structure of criteria. Only recently, HSMAA model has been proposed to 
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manage the hierarchical criteria structure organised in macro-criteria, and sub-criteria, and 

the uncertainty with respect to the criteria weights.  

In this study, Hierarchy Stochastic Multi Attribute Analysis (HSMAA) method has been 

applied to rank a set of listed companies operating in the energy sector based on their 

performance evaluation. In order to deal with the energy companies’ performance 

assessment, the structure of criteria has been organized in three hierarchical levels (macro-

criteria, criteria and sub-criteria, as better explained in Chapter 2). Thus, the application of 

HSMAA model, which is able to handle with a hierarchical structure of criteria and to take 

into account the space of fluctuations related to the imprecision on criteria weights, allows 

us to provide “more robust recommendation” on final rank results. 

In this section, we introduce the HSMAA model using the following notation: 

 𝐴 = {𝑎1, … , 𝑎𝑗 , … , 𝑎𝑚} is the set of finite alternatives; 

 𝐺 = {𝑔1, … , 𝑔𝑖, … , 𝑔𝑛} is the set of the macro-criteria at the first level; 

 𝑄𝑖 = {𝑞𝑖1, … , 𝑞𝑖𝑘, … , 𝑞𝑖𝑠} is the set of sub-criteria at the second level, deriving from 

each macro-criterion 𝑔𝑖; 

  𝑇𝑖𝑗 = {𝑡𝑖𝑘1, … , 𝑡𝑖𝑘𝑦, … , 𝑡𝑖𝑘𝑟} is the set of elementary criteria at the third level, 

deriving from the criterion 𝑞𝑖𝑗. 

As in the traditional SMAA-2 model, HSMAA model captures the problem of imprecision 

on criteria weights and alternatives’ evaluations through the probability distributions 𝑓𝑊(𝑤) 

and 𝑓𝑋(𝜉) related to the macro-criteria weights (𝑊) and the alternatives’ evaluations 𝑋, at 

which two further distributions 𝑓𝑉(𝑣), 𝑓𝑍(𝑧) are added, respectively, to the sub-criteria 

weights (𝑉) and elementary criteria weights (𝑍), where:  

 𝑊 = {(𝑤1, … , 𝑤𝑖, … , 𝑤𝑛)  ∈  ℝ+
𝑛 : 𝑤1 + ⋯+ 𝑤𝑖 + ⋯+ 𝑤𝑛 = 1} is the set of macro-

criteria weights at the first level; 

 𝑉 = {(𝑣𝑖1, … ,  𝑣𝑖𝑘, … , 𝑣𝑖𝑠)  ∈  ℝ+
𝑠 : 𝑣𝑖1 + ⋯+ 𝑣𝑖𝑘 , +⋯+ 𝑣𝑖𝑠 = 1, 𝑖 = 1, 2, … , 𝑛} is 

the set of sub-criteria weights at the second level; 

  𝑍 = {(𝑧𝑖𝑘1, … , 𝑧𝑖𝑘𝑦, … , 𝑧𝑖𝑘𝑟 , )  ∈  ℝ+
𝑟 :   𝑧𝑖𝑘1, +⋯+ 𝑧𝑖𝑘𝑦, +⋯+ 𝑧𝑖𝑘𝑟 = 1, 𝑖 =

1, … , 𝑛,   𝑘 = 1,2, … , 𝑠} is the set of elementary criteria weights;  

 𝑋 is the space of the alternatives’ evaluations that can be taken by the elementary 

criteria 𝑡𝑖𝑘𝑦  ∈  𝑇𝑖𝑘 (𝑦 = 1,2,⋯ , 𝑟). 

Regardless of the issue analysed, one of the principal aspects in MCDA model is how to 

aggregate the evaluations of alternatives 𝐴 on the set of criteria 𝐺, based on three different 

families acknowledged in literature: the value function (Keeney and Raiffa, 1993), the 

outranking relation (Roy, 2013) or the decision rules (Greco et al., 2001). 

In our framework, the value function used to aggregate the alternatives’ evaluations on the 

elementary criteria is the following weighted sum:  



Chapter 1. The energy sector and the role of MCDA models 

 

31 

 

𝑢(𝑎𝑗 , 𝑤, 𝑣𝑖 , 𝑧𝑦) = ∑𝑤𝑖

𝑛

𝑖=1

. ∑ 𝑣𝑖𝑘

𝑠

𝑘=1

. ∑ 𝑧𝑖𝑘𝑦

𝑟

𝑦=1

𝑡𝑖𝑘𝑦(𝑎𝑗) (1) 

with 𝑤𝑖  ∈ W, 𝑣𝑖𝑘  ∈  𝑉 and 𝑧𝑖𝑘𝑦  ∈  𝑍. 

The previous defined weighted sum gives a score to each alternative, which is used to 

evaluate the following indices as in SMAA-2. 

Thus, HSMAA:  

 introduces the ranking function relative to the alternative 𝑎𝑗:  

𝑟𝑎𝑛𝑘(𝑗, 𝜉, 𝑤, 𝑣, 𝑧) = 1 + ∑ 𝜌 (𝑢(𝜉ℎ, 𝑤, 𝑣ℎ , 𝑧ℎ) > 𝑢(𝜉𝑗, 𝑤, 𝑣𝑗 , 𝑧𝑗))ℎ≠𝑗 , 

      

(2) 

where 𝜌 (𝑓𝑎𝑙𝑠𝑒) = 0 and 𝜌 (𝑡𝑟𝑢𝑒) = 1, 

 computes, for each alternative 𝑎𝑗, for each alternative’s evaluation  𝜉 ∈  𝑋, and for 

each rank 𝑟 =  1, … , 𝑝, the set of criteria weights for which alternative 𝑎𝑗 assumes 

rank r: 

𝑊𝑗
𝑟(𝜉, 𝑣, 𝑧) = {𝑤 ∈  𝑊: 𝑟𝑎𝑛𝑘(𝑗, 𝜉, 𝑤, 𝑣, 𝑧) = 𝑟}, (3) 

 evaluates the Rank Acceptability Index 𝑏𝑗
𝑟 (RAI), i.e. the probability that alternative 

𝑎𝑗 gets the r-th position, through the following formula:  

𝑏𝑗
𝑟 = ∫ 𝑓𝑊(𝑤)∫ 𝑓𝑋(𝜉)

𝜉∈𝑋

 ∫ 𝑓𝑉(𝑣)∫ 𝑓𝑍(𝑧)
𝑧∈𝑍𝑣∈𝑉

𝑑𝑧𝑑𝑣𝑑𝜉𝑑𝑤,
𝑤∈𝑊𝑗(𝜉)

𝑟
 

                       

(4) 

 

 estimates the Central Weight Vector (CWV) that is the barycentre of a set of criteria 

weights for which 𝑎𝑗 is evaluated as the best alternative: 

 

𝑤𝑗
𝑐 = 

1

𝑏𝑗
1 ∫ 𝑓𝑋(𝜉)

𝜉∈𝑋

∫ 𝑓𝑊(𝑤)
𝑤∈𝑊𝑗(𝜉)

1
 ∫ 𝑓𝑉(𝑣)∫ 𝑓𝑍(𝑧)

𝑧∈𝑍𝑣∈𝑉

𝑑𝑧𝑑𝑣𝑑𝑤𝑑𝜉, (5) 

 

 assesses the Confidence Factor (CF), which is the relative measure expressing the 

probability of a given alternative 𝑎𝑗 to be the best, considering the previous weights 

combination (CWV): 

𝑝𝑗
𝑐 = ∫ 𝑓𝑋(𝜉)𝑑

𝜉∈𝑋:𝑢(𝜉𝑗,𝑤𝑗
𝑐)≥𝑢(𝜉ℎ,𝑤ℎ

𝑐)

∀ℎ=1,… ,𝑖

𝜉, 
                                             

(6) 

 considers the Pairwise Winning Index (PWI) that provides the probability of the 

preference relation between two alternatives 𝑎ℎ and 𝑎𝑗 according the formula: 
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𝑝𝑗ℎ = ∫ 𝑓𝑊(𝑤)∫ 𝑓𝑉(𝑣)∫ 𝑓𝑍(𝑧)
𝑧∈𝑍𝑣∈𝑉𝑤∈𝑊

∫ 𝑓𝑋(𝜉)𝑑
𝜉∈𝑋:𝑢(𝜉𝑗,𝑤)≥𝑢(𝜉ℎ,𝑤)

𝜉𝑑𝑧𝑑𝑣𝑑𝑤. (7) 

Moreover, the rank acceptability index has been used: 

 to compute the upward and the downward cumulative rank acceptability indices 

(introduced in Angilella et al., 2016), represented respectively by the following two 

equations: 

𝑏𝑗
≥𝑝 = ∑𝑏𝑗

𝑠

𝑚

𝑠=𝑝

 and 𝑏𝑗
≤𝑝 = ∑𝑏𝑗

𝑠

𝑝

𝑠=1

 

 

(8) 

 

where 𝑏𝑗
≥𝑝

 represents the upward cumulative acceptability index, namely the 

frequency that a company 𝑎𝑗 gets a rank position greater than 𝑝, and 𝑏𝑗
≤𝑝 the 

downward cumulative rank acceptability, i.e. the frequency that a company 𝑎𝑗 gets a 

rank position lower than 𝑝; 

 to define an uncertainty index using the Shannon entropy concept (presented in a 

multi-criteria decision context in Ciomek et al., 2017), able to measure the 

confidence for each alternative to be placed in a position j in the final rank according 

to the formula:  

𝑃𝑅𝐴𝐼𝑗 = −
1

𝑛
∑𝑏𝑗

𝑟(𝑎𝑗)𝑙𝑜𝑔2𝑏𝑗
𝑟(𝑎𝑗)

𝑛

𝑖=1

        (9) 

 

Note that  𝑃𝑅𝐴𝐼j is minimal (= 0) when there exists a unique  alternative with 𝑏𝑗
𝑟 (RAI) =

1 and thus there is  no uncertainty for the alternative 𝑎𝑗 to be placed in position j; while it is 

maximum (=
𝑙𝑜𝑔2𝑛

𝑛
) when all the alternatives have the same probability (𝑏𝑗

𝑟  =
1

𝑛
)  to be 

placed in position 𝑗. Summing up, 𝑃𝑅𝐴𝐼j   belongs to the range [0, 
𝑙𝑜𝑔2𝑛

𝑛
].    

1.4.2 Multi-group Hierarchy Discrimination model (M.H.DIS) 

The Multi-group Hierarchy Discrimination model (M.H.DIS) has been developed by  

Zopounidis and Doumpos (2000) and applied here to solve the sorting problem of the 

assignment of a given set of alternatives into predefined ordered classes (Chapter 3). 

The following notation has been used: 

 𝐴 = {𝑎1,⋯ 𝑎𝑗 , ⋯ , 𝑎𝑚} is the set of finite alternatives; 

 𝐺 = {𝑔1,⋯ 𝑔i, ⋯ , 𝑔𝑛} is the set of consistent criteria with an increasing or decreasing 

direction of preference order;  

 𝑎𝑗𝑖 indicates the evaluation of alternative 𝑗 on criterion 𝑖; 

 C = {𝐶1 ≻ ⋯ ≻  𝐶𝑘 ⋯ ≻ 𝐶𝑝} is the set of 𝑝 ordered categories from the best (or 

healthiest) 𝐶1 to the worst (or riskiest) 𝐶𝑝. 



Chapter 1. The energy sector and the role of MCDA models 

 

33 

 

Alternatives are evaluated on a set of criteria 𝐺 representing the main aspects for 

distinguishing options between categories. 

Moreover, for simplicity of computation, the model has been implemented only in the case 

in which criteria present an increasing preference direction, implying that the evaluation of 

an alternative on an attribute 𝑔𝑖  that is negatively (positively) related to financial distress, 

increases its likelihood to be assigned to the best (worst) category. 

Furthermore, M.H.DIS model is a credit risk assessment technique, such as discriminant, 

logit and probit analysis, that requires the application of two distinct samples: a basic sample 

(training set) to build a model able to reproduce the pre-specified classification as much as 

possible, and a holdout sample (test set) to validate and verify its generalization of 

application. Hence, also the following two subsets of 𝐴 have to be considered in the building 

of M.H.DIS model: 

 B = {𝑏1, ⋯ 𝑏𝑟 , ⋯ , 𝑏𝑠} is the subset of alternatives composing the training sample, 

used for model development; 

 𝐷 = {𝑑1, ⋯𝑑𝑠, ⋯ , 𝑑𝑡} is the subset of alternatives composing the test sample, used 

for validation purposes with  𝐵 ∩ 𝐷 = Ø.  

Initially, the alternatives of the training sample are evaluated on the attributes in 𝐺 and each 

of them is assigned to a pre-specified category 𝐶𝑘; once it is carried out, the model aims to 

sort companies into two categories in order to replicate, as much as possible, a given 

classification before model development. Then, the discriminating procedure is applied also 

to companies of test sample to classify them and validate the results.  

In order to sort companies of training set, M.H.DIS model applies the following hierarchical 

technique. The procedure starts from stage 𝑘 = 1 by considering the best category 𝐶1 to 

which companies of training set (𝑏r) can belong. In 𝑘 = 1,  the model builds a pair of additive 

utility functions, of which formulas are provided below, to discriminate companies 

belonging to the healthiest category 𝐶1 and companies belonging to the remaining riskier 

categories than 𝐶1 (i.e. 𝐶2 in our context): 

𝑈1(�̅�(𝑏𝑟)) = ∑ℎ1𝑢1𝑖(𝑔𝑖(𝑏𝑟)),

𝑛

𝑖=1

 (10) 

𝑈∼1(�̅�(𝑏r)) = ∑ℎ∼1𝑢∼1𝑖(𝑔𝑖(𝑏r))

𝑛

𝑖=1

, (11) 

where 𝑈1(�̅�(𝑏r)) ∈  [0,1]  and 𝑈∼1(�̅�(𝑏r)) ∈  [0,1] represent the two additive utility 

functions of each alternative 𝑏r; �̅� is the global evaluation of each alternative (𝑏r) on the 

whole set of criteria considered; 𝑢1𝑖(𝑔𝑖(𝑏r)) and 𝑢∼1𝑖(𝑔𝑖(𝑏r)) indicate the estimated  two 

marginal utility functions with an increasing (or decreasing) preference direction according 

to each attribute 𝑔𝑖 negatively (or positively) related to financial distress; ℎ1 and ℎ∼1 denote 

the weights of each criterion summing to one.  
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In stage 𝑘 = 1, if the global score of the estimated additive utility function of healthiest 

category for alternative 𝑏r , is higher than the global score of the estimated additive utility 

function of the riskiest categories, i.e. 𝑈1(�̅�(𝑏r)) ≥  𝑈∼1(�̅�(𝑏r)), then 𝑏r is classified to 

category 𝐶1; otherwise if 𝑈1(�̅�(𝑏r)) ≤ 𝑈∼1(�̅�(𝑏r)), company 𝑏r does not belong to class 𝐶1 

and the procedure will continue to stage 𝑘 = 2. From stage 1, it has to be highlighted that if 

the strict inequality among the global scores of the estimated utility 

functions  occurs (𝑈1(�̅�(𝑏r)) > 𝑈∼1(�̅�(𝑏r))), then company  𝑏r is classified correctly by 

the model; on the contrary if the two estimated additive utility functions are 

equal ( 𝑈1(�̅�(𝑏r)) =  𝑈∼1(�̅�(𝑏r))) ,   then the model misclassifies the company. The whole 

set of companies correctly or incorrectly classified in 𝐶1 by the model, are excluded in next 

stages. 

At stage 𝑘 = 2, analogously the model builds another pair of additive utility functions to 

discriminate companies belonging to category 𝐶2 from companies belonging to the 

remaining riskier categories than 𝐶2 (i.e. 𝐶3, 𝐶4, ⋯ , 𝐶𝑝). Similarly to stage 1, if 𝑈2(�̅�(𝑏r)) ≥ 

𝑈∼2(�̅�(𝑏r)) or 𝑈2(�̅�(𝑏r))≤ 𝑈∼2(�̅�(𝑏r)),  then company 𝑏r is classified respectively into 𝐶2 

or 𝐶∼2.  

The same discriminating procedure continues until all companies of training sample have 

been classified into the ordered categories to replicate the pre-specified classification as 

much as possible. M.H.DIS model is also applied to companies of test sample in the same 

manner.  

Figure 1.9 shows the hierarchical discrimination technique employed to perform the 

M.H.DIS model. 

In order to generalize the hierarchical discriminating procedure to 𝑝 categories, the 

expressions (1) and (2) are replaced with the following:  

𝑈𝑘(�̅�(𝑏𝑟)) = ∑ℎ𝑘𝑢𝑘𝑖(�̅�(𝑏𝑟)),

𝑛

𝑖=1

 (12) 

𝑈∼𝑘(�̅�(𝑏r)) = ∑ℎ∼𝑘𝑢∼𝑘𝑖(�̅�(𝑏r))

𝑛

𝑖=1

 (13) 

Hence, the model will build as many pairs of additive utility functions as 𝑝 − 1 classes to 

which companies have to be sorted.  

Furthermore, to estimate optimally the additive utility functions of the model at each stage 

k, two mathematical programing techniques have been solved through a Matlab code: two 

linear programs (LP1 and LP2) and a mixed-integer program (MIP). The linear program LP1 

has been implemented with the mixed-integer program MIP first, to minimize the 

misclassification costs of companies belonging to other categories than the pre-defined one; 

the second linear program LP2 has been performed then, to enhance the clarity of the 

obtained classification as an among-group variance maximization in discrimination analysis. 
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Further details on the assessment of the additive utility functions are provided in next 

Section. 

1.4.2.1 Mathematical programming formulations to assess the additive utility functions 

in M.H.DIS model 

M.H.DIS model employs two mathematical programming techniques to estimate optimally 

additive utility functions able to assign the considered companies into two categories: two 

linear programs (LP1 and LP2) and a mixed integer one (MIP). The first linear program LP1 

is employed to determine a pair of utility functions able to reduce the misclassification errors 

of healthy companies into risky classes; the mixed integer one (MIP) is implemented then, 

to minimize the misclassification costs of companies sorted into different classes than the 

pre-specified ones; the second linear program (LP2) is developed last, to increase the 

accuracy results.  

Table 1.4 shows the three mathematical programming problems solved through M.H.DIS 

model to assess the additive utility functions for sorting the companies of the sample.  

Table 1.4 Mathematical programming problems solved by M.H.DIS model. Authors’ elaboration 

PROBLEM 

TO SOLVE 

LP1: minimization of the 

misclassification error 

MIP: minimization of the 

misclassification cost 

LP2: maximization of the 

minimum distance 

OBJECTIVE 

FUNCTION 

min 𝐸𝐶′ = 

𝑤𝑘 (
1

𝑁𝑘
∑ 𝑒𝑘𝑟

∀ 𝑏𝑟∈𝐶𝑘

)

+ 𝑤∼𝑘 (
1

𝑁∼𝑘
∑ 𝑒∼𝑘𝑟

∀𝑏𝑟∈𝐶∼𝑘

) 

where 

𝑒𝑘𝑟 = max{0, 𝑈𝑘(𝑔 ̅(𝑏𝑟)) − 𝑈∼𝑘(𝑔 ̅(𝑏𝑟))}, 

𝑒∼𝑘𝑟 = max{0, 𝑈𝑘(𝑔 ̅(𝑏𝑟)) −

𝑈∼𝑘(𝑔 ̅(𝑏𝑟))}. 

min 𝐸𝐶 = 

𝑤𝑘 (
1

𝑁𝑘
𝑚𝑖𝑠 ∑ 𝐼𝑘𝑟

𝑁𝑘
𝑚𝑖𝑠

𝑟=1

)

+ 𝑤∼𝑘 (
1

𝑁∼𝑘
𝑚𝑖𝑠

∑ 𝐼∼𝑘𝑟

𝑁∼𝑘
𝑚𝑖𝑠

𝑟=1

) 

max 𝑑 = 𝑚𝑖𝑛{𝑑1, 𝑑2} 

where 

𝑑1 = 𝑚𝑖𝑛
𝑟=1,2,⋯,𝑁𝐾

𝑐𝑜𝑟′{𝑈𝑘(𝑔 ̅(𝑏𝑟)) −

𝑈∼𝑘(𝑔 ̅(𝑏𝑟))} , 

𝑑2 = 𝑚𝑖𝑛
𝑟=1,2,⋯,𝑁∼𝐾

𝑐𝑜𝑟′{𝑈∼𝑘(𝑔 ̅(𝑏𝑟))

− 𝑈𝑘(𝑔 ̅(𝑏𝑟))} 

CONSTRAINTS: s.t. s.t. s.t. 

PREFERENCE 

 
∑ 𝑢𝑘𝑖(𝑔𝑖(𝑏𝑟)) −

𝑛

𝑖=1

∑𝑢∼𝑘𝑖(𝑔𝑖(𝑏𝑟)) ≥ 𝑠,

𝑛

𝑖=1

 

𝑏𝑟 = 1,2,⋯ , 𝑁𝑘
𝑐𝑜𝑟 

∑𝑢𝑘𝑖(𝑔𝑖(𝑏𝑟)) −

𝑛

𝑖=1

∑𝑢∼𝑘𝑖(𝑔𝑖(𝑏𝑟)) − 𝑑

𝑛

𝑖=1

≥ 𝑠, 

𝑏𝑟 = 1,2,⋯ ,𝑁𝑘
𝑐𝑜𝑟′

, 

 
∑ 𝑢∼𝑘𝑖(𝑔𝑖(𝑏𝑟)) − ∑𝑢𝑘𝑖(𝑔𝑖(𝑏𝑟))

𝑛

𝑖=1

≥ 𝑠,

𝑛

𝑖=1

 

𝑏𝑟 = 1,2,⋯ , 𝑁∼𝑘
𝑐𝑜𝑟, 

∑𝑢∼𝑘𝑖(𝑔𝑖(𝑏𝑟)) − ∑𝑢𝑘𝑖(𝑔𝑖(𝑏𝑟)) − 𝑑

𝑛

𝑖=1

𝑛

𝑖=1

≥ 𝑠, 

𝑏𝑟 = 1,2,⋯ , 𝑁∼𝑘
𝑐𝑜𝑟′

, 

∑ 𝑢𝑘𝑖(𝑔𝑖(𝑏𝑟)) −

𝑛

𝑖=1

∑𝑢∼𝑘𝑖(𝑔𝑖(𝑏𝑟)) + 𝑒𝑘𝑟

𝑛

𝑖=1

≥ 𝑠  

∀𝑏𝑟 ∈ 𝐶𝑘 

∑ 𝑢𝑘𝑖(𝑔𝑖(𝑏𝑟)) −

𝑛

𝑖=1

∑𝑢∼𝑘𝑖(𝑔𝑖(𝑏𝑟)) + 𝐼𝑘𝑟

𝑛

𝑖=1

≥ 𝑠, 

𝑏𝑟  = 1,2,⋯ , 𝑁𝑘
𝑚𝑖𝑠 , 

∑𝑢𝑘𝑖(𝑔𝑖(𝑏𝑟)) − ∑𝑢∼𝑘𝑖(𝑔𝑖(𝑏𝑟)) ≤ 0,

𝑛

𝑖=1

𝑛

𝑖=1

 

𝑏𝑟 = 1,2,⋯ , 𝑁𝑘
𝑚𝑖𝑠 , 

∑𝑢∼𝑘𝑖(𝑔𝑖(𝑏𝑟)) − ∑𝑢𝑘𝑖(𝑔𝑖(𝑏𝑟))

𝑛

𝑖=1

+ 𝑒∼𝑘𝑟

𝑛

𝑖=1

≥ 𝑠  

∀ 𝑏𝑟 ∈ 𝐶∼𝑘 

∑𝑢∼𝑘𝑖(𝑔𝑖(𝑏𝑟)) − ∑𝑢𝑘𝑖(𝑔𝑖(𝑏𝑟))

𝑛

𝑖=1

𝑛

𝑖=1

+ 𝐼∼𝑘𝑟 ≥ 𝑠, 

𝑏𝑟 = 1,2,⋯ , 𝑁∼𝑘
𝑚𝑖𝑠, 

∑𝑢∼𝑘𝑖(𝑔𝑖(𝑏𝑟)) − ∑𝑢𝑘𝑖(𝑔𝑖(𝑏𝑟))

𝑛

𝑖=1

≤ 0,

𝑛

𝑖=1

 

𝑏𝑟 = 1,2,⋯ , 𝑁∼𝑘
𝑚𝑖𝑠 

NORMALIZATION 

∑ 𝑢𝑘𝑖(𝑔𝑖(𝑏𝑟∗)) =𝑛
𝑖=1

0,   ∑ 𝑢𝑘𝑖(𝑔𝑖(𝑏𝑟
∗)) = 1,𝑛

𝑖=1  

 ∑ 𝑢∼𝑘𝑖(𝑔𝑖(𝑏𝑟∗)) = 1,𝑛
𝑖=1  

∑ 𝑢∼𝑘𝑖(𝑔𝑖(𝑏𝑟
∗)) = 0,𝑛

𝑖=1  

∑ 𝑢𝑘𝑖(𝑔𝑖(𝑏𝑟∗)) =𝑛
𝑖=1

0,   ∑ 𝑢𝑘𝑖(𝑔𝑖(𝑏𝑟
∗)) = 1,𝑛

𝑖=1  

 ∑ 𝑢∼𝑘𝑖(𝑔𝑖(𝑏𝑟∗)) = 1,𝑛
𝑖=1  

∑ 𝑢∼𝑘𝑖(𝑔𝑖(𝑏𝑟
∗)) = 0,𝑛

𝑖=1  

∑ 𝑢𝑘𝑖(𝑔𝑖(𝑏𝑟∗)) =𝑛
𝑖=1

0,   ∑ 𝑢𝑘𝑖(𝑔𝑖(𝑏𝑟
∗)) = 1,𝑛

𝑖=1  

 ∑ 𝑢∼𝑘𝑖(𝑔𝑖(𝑏𝑟∗)) = 1,𝑛
𝑖=1  

∑ 𝑢∼𝑘𝑖(𝑔𝑖(𝑏𝑟
∗)) = 0,𝑛

𝑖=1  

MONOTONICITY 

 

𝑢𝑘𝑖(𝑔𝑖(𝑏𝑟)) increasing function, 

𝑢∼𝑘𝑖(𝑔𝑖(𝑏𝑟)) decreasing function, 

𝑢𝑘𝑖(𝑔𝑖(𝑏𝑟)) ≥ 0, 𝑢∼𝑘𝑖(𝑔𝑖(𝑏𝑟)) ≥ 0, 

𝑒𝑘𝑟 ≥ 0, 𝑒∼𝑘𝑟 ≥ 0. 

𝑢𝑘𝑖(𝑔𝑖(𝑏𝑟)) increasing function, 

𝑢∼𝑘𝑖(𝑔𝑖(𝑏𝑟)) decreasing function, 

𝑢𝑘𝑖(𝑔𝑖(𝑏𝑟)) ≥ 0, 𝐼𝑘𝑟, 𝐼∼𝑘𝑟 Integers. 

𝑢𝑘𝑖(𝑔𝑖(𝑏𝑟)) increasing function, 

𝑢∼𝑘𝑖(𝑔𝑖(𝑏𝑟)) decreasing function, 

𝑢𝑘𝑖(𝑔𝑖(𝑏𝑟)) ≥ 0, 𝑑 ≥ 0. 
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The main aim of M.H.DIS model is to solve the problem of misclassification costs by 

minimizing the following function: 

min𝐸𝐶 =𝑤𝑘 (
1

𝑁𝑘
∑ 𝐼𝑘𝑟

∀𝑏𝑟∈𝐶𝑘

) + 𝑤∼𝑘 (
1

𝑁∼𝑘
∑ 𝐼∼𝑘𝑟

∀𝑏𝑟∈𝐶∼𝑘

) (14) 

where 𝑁𝑘 and 𝑁∼𝑘 represent the amount of companies belonging respectively to healthiest 

class 𝐶𝑘 and the remaining riskiest classes than 𝐶𝑘 (that is 𝐶∼𝑘); 𝐼𝑘𝑟 and 𝐼∼𝑘𝑟 are two 

dichotomous variables that take value of 0 if company 𝑏𝑟 is correctly assigned to class 

𝐶𝑘 (𝐶∼𝑘 for 𝐼∼𝑘𝑟) and 1 if the company is misclassified to class 𝐶∼𝑘 (𝐶𝑘 for 𝐼∼𝑘𝑟); 𝑤𝑘 and 

𝑤∼𝑘 are positive weights, and whose sum is one, that have to be chosen by the DM and 

depend on the misclassification cost and the a-priori default probability according to the 

formula: 𝑤𝑘=𝜋𝑘 𝑀𝐶𝑘 and 𝑤∼𝑘=𝜋∼𝑘 𝑀𝐶∼𝑘 . 𝑀𝐶𝑘 and 𝑀𝐶∼𝑘 are the misclassification costs 

related to the classification errors to sort companies of sample in other classes than the pre-

specified ones (specifically 𝑀𝐶𝑘 is linked to the error of classify a company into 𝐶∼𝑘 instead 

of 𝐶𝑘and 𝑀𝐶∼𝑘 is linked to the error of classifying a company in 𝐶𝑘 instead of 𝐶∼𝑘); while 

𝜋𝑘 and 𝜋∼𝑘 indicate the ex-ante probability of 𝑏𝑟 to belong respectively to category 𝐶𝑘 or 

𝐶∼𝑘.  

In this model 𝑤𝑘 and 𝑤∼𝑘 are set both equal to 0.5 for two reasons: first because the M.H.DIS 

problem is usually used to classify firms in two categories (the healthy and the distress class) 

where the 𝑀𝐶∼1 > 𝑀𝐶1 ; secondly because the a-priori probability associated to failed 

companies is less than the active one (i.e. 𝜋∼1 < 𝜋1), since the number of distressed 

companies is generally inferior than the healthy ones.  

To minimize the equation above, a mixed integer program (MIP) has to be used. However, 

because of the huge number of integers 𝐼𝑘𝑟 and 𝐼∼𝑘𝑟 to compute in EC, it results a challenging 

procedure to implement as first stage. To overcome with this issue, the model introduces the 

following error function denoted with 𝐸𝐶′, to roughly estimate the previous 𝐸𝐶. It is solved 

through the first linear program LP1 and Table 1.4 shows the constraints to solve this 

minimization problem.  

 

min𝐸𝐶′ =𝑤𝑘 (
1

𝑁𝑘
∑ 𝑒𝑘𝑟

∀𝑏𝑟∈𝐶𝑘

) + 𝑤∼𝑘 (
1

𝑁∼𝑘
∑ 𝑒∼𝑘𝑟

∀𝑏𝑟∈𝐶∼𝑘

) 

 

(15) 

with: 

 𝑒𝑘𝑟 = max{0,𝑈𝑘(𝑔�̅�(𝑏𝑟)) − 𝑈∼𝑘(𝑔�̅�(𝑏𝑟)) },  (16) 

 𝑒∼𝑘𝑟 = max{0,𝑈𝑘(𝑔�̅�(𝑏𝑟)) − 𝑈∼𝑘(𝑔�̅�(𝑏𝑟)) }. (17) 

𝑒𝑘𝑟 and 𝑒∼𝑘𝑟 are positive real numbers that have been introduced in place of previous 

𝐼𝑘𝑟 and 𝐼∼𝑘𝑟 to measure the intensity of classification errors in a more straightforward way. 

For instance if an alternative 𝑏𝑟 belongs to 𝐶𝑘 but the estimated pair of utility functions is 
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such that  𝑈𝑘(𝑔�̅�(𝑏𝑟)) ≤ 𝑈∼𝑘(𝑔�̅�(𝑏𝑟)), then the classification error is 𝑒𝑘𝑟 =

∑ 𝑢∼𝑘𝑖(𝑔𝑖(𝑏𝑟)) − ∑ 𝑢𝑘𝑖(𝑔𝑖(𝑏𝑟))
𝑛
𝑖=1 + 𝑠 𝑛

𝑖=1 ; correspondingly if an alternative 𝑏𝑟 ∉ 𝐶𝑘 but 

additive utility functions satisfy the inequality 𝑈𝑘(𝑔�̅�(𝑏𝑟)) ≥ 𝑈∼𝑘(𝑔�̅�(𝑏𝑟)), then the 

classification error is 𝑒𝑘𝑟 = ∑ 𝑢𝑘𝑖(𝑔𝑖(𝑏𝑟))
𝑛
𝑖=1 − ∑ 𝑢∼𝑘𝑖(𝑔𝑖(𝑏𝑟)) + 𝑠 𝑛

𝑖=1 .   

In these inequalities 𝑠 is a negligible small value inserted into the model to comply with the 

strict inequality between the two additive utility functions 𝑈𝑘(𝑔�̅�(𝑏𝑟)) > 𝑈∼𝑘(𝑔�̅�(𝑏𝑟)) and 

𝑈∼𝑘(𝑔�̅�(𝑏𝑟)) > 𝑈𝑘(𝑔�̅�(𝑏𝑟)); while 𝑔�̅� is the evaluation of the company 𝑏𝑟 on the overall set 

of criteria considered in the analysis.  

The implementation of LP1 gives us an initial pair of utility functions that minimize 𝐸𝐶′; 

nevertheless, if this solution contains a classification error 𝑒𝑘𝑟 > 0, i.e. there is at least an 

alternative that is placed in a different class than the pre-specified one, it is possible to reduce 

the classification error of LP1 through the aforementioned mixed-integer program MIP.  

Thus at stage 2, MIP is implemented by considering two sets of constraints: the first set is 

used to hold the companies classified correctly by LP1 (denoted with COR); otherwise, the 

second set is introduced to consider the companies misclassified by LP1 (denoted with MIS). 

Once an optimal pair of utility functions has been found through LP1 and MP1 programs in 

terms of misclassification cost, the second aim of M.H.DIS model is to guarantee a high 

predictability to the obtained classification results, by finding those utility functions that 

clearly distinguish among firms belonging to different categories. In this regard, at stage 3 

the second linear program LP2 is employed to maximize the minimum difference between 

the additive utility functions of companies classified correctly in previous stages (𝐿𝑃1 +

𝑀𝐼𝑃). Thus, analogously to MIP, LP2 is implemented by considering two set of constraints: 

the first set is used to hold the companies classified correctly by LP1 and MP1 (denoted 

with 𝐶𝑂𝑅′); the second set is introduced to consider the companies misclassified by LP1 

and MP1 (denoted with 𝑀𝐼𝑆′). 

The pair of utility functions obtained with LP2 program are the ones used for credit risk 

assessment of companies. 

This procedure consisting in the resolution of three problems, LP1, MIP and LP2, stops when 

the model will build as many optimal pairs of additive utility functions as p − 1 classes to 

which companies have to be sorted.  
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END

YES NO

YES

YES

YES

NO

NO

NO

Stage K=1

Stage K=2

Stage K=3

Stage K=4

Training sample

 
s companies 𝑏1, … , 𝑏𝑟 , … , 𝑏𝑠 

n criteria 𝑔1, … , 𝑔𝑖 , … , 𝑔𝑛  

p classes 𝐶1 > ⋯ > 𝐶𝑘 > ⋯ > 𝐶𝑝  

Mathematical programming techniques

LP1 MIP LP2

Test sample

 

t companies 𝑑1, … , 𝑑𝑠 , … , 𝑑𝑡  

n criteria 𝑔1, … , 𝑔𝑖 , … , 𝑔𝑛  

p classes 𝐶1 > ⋯ > 𝐶𝑘 > ⋯ > 𝐶𝑝  

Credit risk assessment of 

training sample

YES NO

END

Credit risk assessment model

𝑏𝑟 ∈  𝐶1 

𝑏𝑟 ∈  𝐶2 

𝑏𝑟 ∈  𝐶3 

𝑏𝑟 ∈  𝐶4 

𝑈1(�̅�(𝑏r)) > 𝑈∼1(�̅�(𝑏r)) 

𝑈2(�̅�(𝑏r)) > 𝑈∼2(�̅�(𝑏r)) 

𝑈3(�̅�(𝑏r)) > 𝑈∼3(�̅�(𝑏r)) 

𝑈4(�̅�(𝑏r)) > 𝑈∼4(�̅�(𝑏r)) 

𝑏𝑟  ∉  𝐶1 

𝑏𝑟  ∉  𝐶2 

𝑏𝑟  ∉  𝐶3 

𝑏𝑟  ∉  𝐶4 

 

Figure 1.9 General scheme of model development in the M.H.DIS model. Authors’ elaboration 
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1.4.3  Preference Ranking Organization Method for Enrichment 

Evaluations (PROMETHEE II) 

PROMETHEE II is a multi-criteria method belonging to the family of PROMETHEE 

methods, that builds an overall composite indicator of alternatives on the basis of pairwise 

comparisons considering a set of criteria. PROMETHEE methods are widely used in 

Multiple Criteria Decision Aiding (see Brans and De Smet, 2016 for a state-of-the-art on the 

topic). There is a considerable number of PROMETHEE applications currently available for 

various fields. With respect to financial topics,  PROMETHEE methods have been already 

successfully applied for example in banking (Mareschal and Brans, 1991 and Doumpos and 

Zopounidis, 2010), in asset evaluation (Albadvi et al., 2007), in bankruptcy prediction (Hu 

and Chen, 2011 and  Mousavi and Lin, 2020), in portfolio selection (Vetschera and de 

Almeida, 2012), in country risk assessment (Doumpos and Zopounidis, 2001) and in 

performance assessment of microfinance institutions (Gaganis, 2016).  

Among the different versions of PROMETHEE methods, PROMETHEE II is the most 

frequently applied one because it enables a decision maker (DM) to obtain a complete 

ranking of the alternatives. It is based on the preference function 𝑃𝑖(𝑎𝑗 , 𝑎ℎ) representing the 

degree of preference of alternative 𝑎𝑗 on 𝑎ℎ. 𝑃𝑖(𝑎𝑗 , 𝑎ℎ) is a non-decreasing function of the 

difference 𝑑𝑖 = 𝑔𝑖(𝑎𝑗) − 𝑔𝑖(𝑎ℎ). In Mareschal, Brans and Vincke (1984), the multi-criteria 

methodology PROMETHEE II has been presented, considering six different types of 

preference functions: the regular criterion, the u-shape criterion, the v-shape criterion, the 

level criterion, the criterion with linear preference and indifference area and the Gaussian 

criterion.  

In this study, each preference function is employed to build a binary classification of 

companies which will be compared with the one provided by AMADEUS database. 

Moreover, the whole set of preference functions is used to observe how the classification 

made with PROMETHEE II method varies according the type of function considered (Figure 

1.10).  

0

P

  1 1 1

  0 0

P P

Type I:

 Regular criterion

Type II:

U-shape criterion

Type III:

V-shape criterion

p-p q-qd d d

 

 𝑃(𝑑𝑖) = {
0,   𝑖𝑓      𝑑𝑖 ≤ 0
1, 𝑖𝑓       𝑑𝑖 > 0

                    𝑃(𝑑𝑖) {
0,    𝑖𝑓    𝑑𝑖 ≤ 𝑞𝑖

1,    𝑖𝑓    𝑑𝑖 > 𝑞𝑖
                𝑃(𝑑𝑖){

0,     𝑖𝑓            𝑑𝑖 < 0    
𝑑𝑖

𝑝𝑖
,   𝑖𝑓    0 ≤ 𝑑𝑖 ≤ 𝑝𝑖    

1,   𝑖𝑓             𝑑𝑖 > 𝑝𝑖   
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Type IV:

Level criterion

Type V:

Linear criterion

Type VI:

Gaussian criterion

p q-q -p -q -p p q -s sd d d

P(𝑑𝑖) = {

0,    𝑖𝑓            𝑑𝑖 ≤ 𝑞𝑖
1

2
,    𝑖𝑓  𝑞𝑖 < 𝑑𝑖 < 𝑝𝑖

1,    𝑖𝑓            𝑑𝑖 ≥ 𝑝𝑖

       𝑃(𝑑𝑖) = {

0,          𝑖𝑓          𝑑𝑖 ≤ 𝑞𝑖
𝑑𝑖−𝑞𝑖

𝑝𝑖−𝑞𝑖
, 𝑖𝑓 𝑞𝑖 < 𝑑𝑖 ≤ 𝑝𝑖

1,         𝑖𝑓           𝑑𝑖 > 𝑝𝑖

        𝑃(𝑑𝑖) {
0,                    𝑖𝑓  𝑑𝑖 ≤ 0

1 − 𝑒
−

𝑑𝑖
2

2𝑠𝑖
2    

, 𝑖𝑓  𝑑𝑖 > 0
 

Figure 1.10 Types of preference functions 𝑃(𝑑𝑖). Authors’ elaboration 

Considering for each criterion 𝑔𝑖 a weight 𝑤𝑖 such that 𝑤𝑖 ≥ 0 and  ∑ 𝑤𝑖 = 1𝑛
𝑖=1 , 

PROMETHEE II computes: 

𝜋(𝑎𝑗 , 𝑎𝑦) = ∑𝑤𝑖

𝑛

𝑖=1

𝑃𝑖(𝑎𝑗, 𝑎𝑦) (18) 

which represents the strength of preference of alternative 𝑎𝑗 with respect to 𝑎𝑦 on the basis 

of the whole set of criteria. Then PROMETHEE II compares each alternative 𝑎𝑗 with the 

other alternatives by computing the positive and negative inflow of 𝑎𝑗, defined, respectively, 

as follows: 

𝛷+(𝑎𝑗) =  
1

𝑚−1
∑ 𝜋(𝑎𝑗, 𝑎𝑦),𝑎𝑗∈A\{𝑎𝑦}     and    𝛷−(𝑎𝑗) =  

1

𝑚−1
∑ 𝜋(𝑎𝑦, 𝑎𝑗).𝑗∈A\{𝑎𝑦}   (19) 

Finally, PROMETHEE II builds a net flow for each alternative by: 

𝛷(𝑎𝑗) = 𝛷+(𝑎𝑗) − 𝛷−(𝑎𝑗). (20) 

PROMETHEE II provides a complete preorder on 𝐴 ranking the alternatives from the best 

to the worst. The net flow takes values in the range [−1,1];  if 𝛷(𝑎𝑗) ≃ 1, then 𝑎𝑖 is almost 

strictly preferred over all alternative, while if 𝛷(𝑎𝑗) ≃ −1, then 𝑎𝑗 is almost strictly 

preferred by all the alternatives. 

In Chapter 3, the following assumptions have been considered:  

 the weights of criteria have been simulated using a hit and run procedure (see  

Smith, 1984) with 10,000 scenarios similarly to SMAA-PROMETHEE method 

(Corrente et al., 2014) but without providing preference information of Decision 

Maker on the parameters involved and without estimating the SMAA indices; 
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under each scenario the net flow of each company has been evaluated and the 

average net flow of each company has been computed for all the scenarios; 

 the user constant 𝑠𝑖 of the Gaussian criterion, has to be determined on the basis 

of a rule of thumb: 𝑠𝑖 =
𝑝𝑖+𝑞𝑖

2
> 0, where for each 𝑔𝑖 ∈ G, 𝑝𝑖 and 𝑞𝑖 are, 

respectively, the preference and indifference thresholds; 

 as in Rogers and Bruen (1998), for each 𝑔𝑖 ∈ G we have assumed 𝑝𝑖 and 𝑞𝑖 

constant, computed as follows: 𝑝𝑖 =
2

3
 𝑟𝑖 and 𝑞𝑖 =

1

6
 𝑟𝑖 with 𝑟𝑖 = |max (𝑔𝑖) −

min (𝑔𝑖)|.  
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Chapter 2 

Performance assessment of energy companies 

employing Hierarchy Stochastic Multi-Attribute 

Acceptability Analysis4  
 

In this chapter we analyses the development of a performance assessment model for the most 

important listed companies operating in the energy sector, using a dataset obtained merging 

different sources. The construction of the model is based on a multiple criteria decision aid 

(MCDA) approach considering various indicators. The multidimensional nature of the topic 

in this study requires the definition of a hierarchical structure of criteria, which has been 

aggregated into a composite index to obtain a final ranking for the energy companies under 

investigation. To handle with a hierarchical criteria structure and to take into account the 

space of fluctuations related to the imprecision on criteria weights, we employ the Hierarchy 

Stochastic Multi-Attribute Analysis (HSMAA). Thus, the proposed model is able to evaluate 

the performances of energy companies under different uncertainty scenarios. The results 

indicate that the first and last positions are quite robust in all considered scenarios, while the 

rankings relative to the intermediate positions vary widely by the chosen set of weights, 

exemplifying the need to rank companies based on multiple sets of criteria weights. 

2.1 Background 

Nowadays, energy sector appears highly concentrated and characterized by the frequent 

creation of large corporate groups, in which the principal aim is the extension of the area in 

which public utilities are delivered also compliant with environmental requirements (Jamasb 

and Pollitt 2005). In this context, investment programmes play a significant role to foster the 

development of energy companies and a thorough analysis of the firm’s health status is 

needful to make decisions concerning the optimization of capital allocation. 

Thus, for its relevant implications in the public and private sectors, the attention of 

researchers has focused on the performance evaluation of energy companies, becoming a 

significant field of study.  

Stakeholders require consistent methods to detect the best alternative within the multifaceted 

setting of the energy system performance, dealing with energy security, energy equity and 

                                                 
4 This study has been published in the journal of Operational Research: Silvia Angilella, Maria Rosaria 

Pappalardo (2020). Performance assessment of energy companies employing Hierarchy Stochastic Multi-

Attribute Acceptability Analysis. Springer Journal. DOI: 10.1007/s12351-020-00567-5. The current work is a 

combined effort of the two authors. However, Maria Rosaria Pappalardo contributed in conceptualization, 

implementation, data search and curation, writing; Silvia Angilella contributed in conceptualization and 

supervision.  
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environmental sustainability policies as acknowledged also by the Energy Trilemma index 

of the World Energy Council (2017), assessed for each country’s energy market (Song et al., 

2017).  Energy security concerns an effective management system of primary supply from 

domestic and external sources, energy equity is related to the energy access and affordability, 

while environmental sustainability deals with the achievement of the supply and demand 

side efficiencies and the development of energy supply from renewable sources.  

Thus, in this context, a multidimensional analysis is necessary, and Multi Criteria Decision 

Aid (MCDA) methods appear as the most suitable tools to assess the integrated structure of 

firms, which typically entails a family of conflicting criteria.  

Several studies deal with the implementations of MCDA methods in the energy sector 

(Section 1.3.2). However, as suggested in Section 1.3.3, the available MCDA literature based 

on energy companies’ performance evaluation is narrow and restricted to the financial 

aspects of the business (see for example Eyüboglu and Çelik, 2016). This gives a partial 

perspective for making proper decision-making process, and other dimensions need to be 

considered along with the financial aspect.  

For these reasons, this study aims to select a coherent and hierarchical set of criteria, which 

highlight the link with the performances enhancement of firms operating in the energy 

sector. Hence, additional criteria, such as sustainability, technical and market criteria, widely 

implemented in similar sector studies (Section 1.3.2), have been added to the traditional 

financial ones, giving more reliability to the decision-making process addressed to several 

purposes. The proposed family of criteria has been assessed on a set of twenty worldwide 

listed energy companies, for providing a ranking of them based on their performances. 

Moreover, the Hierarchy Stochastic Multi-Attribute Acceptability Analysis (HSMAA) 

(firstly, introduced in De Matteis et al., 2019) has been employed here, to handle with a 

structure of criteria organized hierarchically and with the Decision Maker (DM)’s 

uncertainty on preference parameters, which has been considered simulating different 

scenarios. 

The results of the employed HSMAA model show that the first and last positions of the 

considered companies are quite robust in all considered scenarios, while the rankings relative 

to the intermediate positions vary widely by the chosen set of weights, exemplifying the need 

to rank companies based on multiple sets of criteria weights. 

The goals of this study are twofold: on one hand investors will have the advantage to 

evaluate, as quickly and efficiently as possible, their capital allocation process among 

various investment opportunities on the energy sector; on the other hand business leaders 

and policy makers will use the proposed method to check the strengths and the weaknesses 

of the considered energy companies, identifying then potential energy-policy actions to 

enhance their overall performances in the future.  To this purpose, market criteria as well as 

indicators about sustainability and technical features of energy companies have been selected 

and added to the traditional financial variables.  

The chapter is organized as follows. The next section provides a literature review of SMAA 

based models applied on the energy management and of the macro-criteria used to evaluate 

the energy companies. Section 2.3 describes the data and the family of criteria.  In Section 
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2.4, the proposed methodology is implemented in a real decision problem, considering 

twenty worldwide listed energy companies. Section 2.5 presents and discusses the obtained 

results. Finally, conclusions and policy implications are presented in Section 2.6.  

2.2 Literature review 

One important question arises from the decision-making process for the performance 

assessment of energy companies: How it is possible to manage simultaneously a large set of 

conflictual criteria and different DMs’ preference parameters?  

One branch of multi-criteria decision aid (MCDA) models, which helps to solve this 

important issue, is the Stochastic Multi Attribute Analysis (SMAA), which has been 

introduced firstly by Lahdelma et al. (1998) to handle with uncertainty on the alternatives’ 

evaluations and/or weights. Furthermore, SMAA methods evaluate some indices through 

Monte Carlo simulations, supporting a sensitivity analysis on the decision-making process.   

The original SMAA method has been extended to SMAA-2 (Lahdelma and Salminen 2001) 

for ranking purposes and to SMAA-O (Lahdelma et al., 2003) to deal simultaneously with 

ordinal and cardinal criteria. Moreover, SMAA method has been applied in addition to 

conventional MCDA methods such as the Data Envelopment Analysis (DEA) (Lahdelma 

and Salminen, 2006), the PROMETHEE method (Corrente et al., 2014) and the Choquet 

integral preference model (Angilella et al., 2015) under the hierarchical structure of criteria 

with a Non Additive Robust Ordinal Regression (NAROR) (Angilella et al., 2016a; 

Angilella et al., 2016). SMAA methodologies have been successfully implemented in 

various fields (environmental, health-care, business and financial management) and more 

related to our concern, they have been employed also in the energy management (see the 

recent literature review of Pelissari et al., 2019) which suggests that papers on this topic 

represent the 20% of total papers applying SMAA methods. More specifically, this study 

has identified sixteen papers, which are listed in Table 2.1, according to the SMAA 

methodology used. 

Table 2.1 Studies using SMAA methodologies for the energy management (Pelissari et al., 2019). 

SMAA 

methods 
References 

Models 

used 

jointly 

with 

SMAA 

Problem statement 

to tackle 
Main findings Criteria Sub-Criteria 

SMAA 

Loikkanen et 

al. (2017) 
- 

To extend 

traditional benefit-

cost analysis by 

considering 

criterion of soft 

attractiveness 

Evaluate 

sustainable 

technologies to 

build a large 

office building in 

Finland 

Attractiveness Evaluated by experts on a qualitative scale 

Economic Internal rate of return 

Improvement of the 

energy efficiency 
Improvement in the E-score 

Environmental CO2 reduction 

Jung et al. 

(2016) 
- 

Analyse the 

robustness of the 

respondents’ 

preference rankings 

in a survey 

Analyse the 

social acceptance 

of renewables 

technologies for 

building in 

Finland 

Perceived reliability 

 

Investment costs 

Payback time 

National incentives 

Song et al. 

(2017) 
- 

Determine a 

holistic ranking 

scheme through the 

rank acceptability 

indices and the 

holistic 

Measure country 

energy 

performance via 

energy trilemma 

index 

Energy security 

Management of primary energy supply from 

domestic and external sources, reliability of 

energy infrastructures, ability of energy 

companies to meet current and future 

demand. 

Energy equity 
Accessibility and affordability of energy 

supply across the population 
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acceptability 

indices 
Environ. 

sustainability 

supply and demand energy efficiency, 

development of renewable and low carbon 

energy supply 

SMAA-2 

Vishnupriyan 

and Manohara 

(2018) 

AHP and 

BWM 

Implement a 

sensitivity analysis 

and compare the 

results with AHP 

and BWM 

Evaluate  the 

RES for 

upgrading and 

existing power 

system in India 

Technical 

dimension 
PV Capacity factor, Renewable fraction 

Economic 

dimension 
ROI, Payback period, Initial cost, COE 

Environ. dimension Emissions 

Wang et al. 

(2017) 
SMAA-O 

Handle the 

uncertainties of 

ordinal criteria 

measurements 

when mapping the 

ordinal scales 

Evaluate the 

combined district 

heating system 

Economy Net heating cost 

Technology Reliability, regulation convenience, maturity 

Environment NOx, SO2, PM10, CO2 

Energy Energy efficacy, energy utilization policy 

Wang et al. 

(2015) 
- 

Handle the 

uncertainties in 

criteria evaluations 

and weighting 

through the 

Feasible weight 

space 

Evaluate 

combined heat 

and power units 

Technical 

dimension 
Electrical output, power to heat ratio 

Economic 

dimension 

Installation cost, maintenance cost, 

electricity cost, heat cost 

Environ. dimension CO2 production, footprint 

Rahman et al. 

(2013) 

SMAA-O 

 

Treat mixed ordinal 

and cardinal 

measurements for 

criteria 

Evaluate choices 

for sustainable 

rural 

electrification 

projects 

Technical 

dimension 

Capacity utilization factor, compatibility 

with future capacity expansion, compatibility 

with existing infrastructure, Availability of 

local skills and  resources , Weather and 

climate condition dependence, Annual 

resource availability duration 

Economic 

dimension 

Capital cost, Annual operation and 

maintenance costs , Lifespan of the system, 

Learning rate, Current market share, 

Dependence on fossil fuel 

Social dimension 

Public and political acceptance, Scope for 

local employment, Public awareness and 

willingness, Conflict with other applications 

Environ. dimension 
Lifecycle, GHG emissions, Local 

environmental impact 

Policy/regulation 

dimension 

Land requirement and acquisition, Emphasis 

on use of local resources, Opportunity for 

private participation, Tax incentives, Degree 

of local ownership, Interference with other 

utilities 

Kirppu et al. 

(2018) 
- 

Deal with highly 

conflicting experts 

preferences 

Evaluate 

production 

technologies only 

based on carbon-

neutral heat 

Costs Investments costs, levelized costs of heat 

Technical Availability, storability, flexibility, maturity 

Environmental 
Space requirements, logistics, CO2 

emissions, other emissions 

Mendecka et 

al. (2020) 

 

Data 

reconcilia

tion 

approach 

Consider different 

and individual 

uncertainty of the 

criteria preferences 

and to adjust the 

random vector of 

weights 

Evaluate 

biodiesel 

production 

technologies 

Energy Cumulative energy consumption 

Environmental Global warming potential 

Economic Investment and operating cost 

Social Human health 

Rahman et al. 

(2016) 

LEAP 

model 

Examine the 

preferences of 

different policy 

elements that are 

not available 

Evaluate energy 

policy elements 

in Bangladesh 

Technical 

dimension 

Capacity utilization factor, compatibility 

with future capacity expansion, compatibility 

with existing infrastructure, Availability of 

local skills and  resources, Weather and 

climate condition dependence, Annual 

resource availability duration 

Economic 

dimension 

Capital cost, Annual operation and 

maintenance costs , Lifespan of the system, 

Learning rate, Current market share, 

Dependence on fossil fuel 

Social dimension 

Public and political acceptance, Scope for 

local employment, Public awareness and 

willingness, Conflict with other applications 

Environ. dimension 
Lifecycle GHG emissions, Local 

environmental impact 

Policy/regulation 

dimension 

Land requirement and acquisition, Emphasis 

on use of local resources , Opportunity for 

private participation, Tax incentives, Degree 

of local ownership, Interference with other 

utilities 

Wang et al. 

(2018) 
SMAA-O 

Deal with 

quantitative and 

qualitative criteria 

Evaluate district 

heating systems 

Economy Tot. costs per floor area 

Environment NOx, SO2, CO, CO2, other 

Energy 
Technical merit, mentality effects, heating 

charge 

Kontu et al. 

(2015) 

Hierarchi

cal model 

Handle 

simultaneously with 

a hierarchy of 

criteria and sub-

criteria, ordinal and 

Evaluate heating 

choices for a new 

sustainable 

residential area 

Economic Investment costs, operating costs 

Environmental Climate impact, particulate emissions 

Social 
Domestic, promotes new technologies, 

popularity, competing energy providers 

Technology technical solutions are flexible, reliability 
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uncertain cardinal 

information and 

imprecise 

preference 

information 

Usability 

provides meaningful activity, easy to 

acquire, care-free, easy to use, requires little 

space and his unobtrusive 

SMAA-2 

Lahdelma et 

al. (2006) Multivari

an 

Gaussian 

distributi

on 

Treat the criteria 

uncertainties and 

their 

independencies 

Support the 

strategic decision 

of an electricity 

retailer in the 

deregulated 

European 

electric. market 

Long term profit  
Short term profit 

Lahdelma et 

al. (2009) 

Market share 

 
Green share 

SMAA 
Dias et al. 

(2018) 

ELECTR

E TRI 

Determine 

approximately 

robust 

classifications of 

energy policies 

Sort and rank 

energy policies 

of smart grids in 

Brazil 

Environ. and 

human health 

 

Technol. 

Infrastructure 

Security of supply 

Electricity markets 

Financial benefit to 

agents 

Benefit to country 

Feasibility and 

adoption 

SMAA 
Tylock et al. 

(2012) 

Revision 

of the 

Algorith

m 2 

Constraint weight 

ranges and facilitate 

DMs to express the 

weights in 

qualitative terms 

Identify the best 

choice for energy 

technologies in 

terms of 

investment 

decision 

Fossil fuel savings 

 

Economic payback 

period 

Energy 

independence 

Personnel 

requirements 

 

All the studies have the characteristic to use conflictual criteria, involving all those aspects 

that are expected to affect the specific issue under investigation. The selection of the most 

appropriate criteria is an important aspect in whatever decision-making problem, becoming 

more evident in performance evaluation of energy companies; however, in this respect, the 

literature appears poor and inadequate.  

Consequently, it is important to enrich the existing literature mainly based on financial 

measures (Altman, 1968; Beaver, 1966), adding some specific features of energy companies 

taken from studies of sustainability energy assessment applying MCDA methods and chosen 

for their possible implications in terms of performance evaluations (Weber et al., 2008). 

Therefore, beyond the financial indicators, three macro-criteria have been also considered: 

sustainability, technical and market. 

Sustainability measures the behaviour of each group with respect to the surrounding 

environmental structure, emphasizing the concept of “green sustainability”.  

Most studies on companies from different sectors examine the relationship between 

environmental and financial performance (Edwards, 2014; Klassen and McLaughlin, 1996) 

and some of these find a positive impact of green practices (e.g. pollution avoidance, 

reducing raw materials use) on competitive outcomes (e.g. product quality, company 

innovativeness) (Rusinko, 2007). This relationship becomes more evident for energy 

companies, since they can be simultaneously producers and distributors of energy and thus 

of pollutants.  

Moreover, according to their green policies, companies are able to attract more stakeholders’ 

investments, enhancing their competitive advantage (Shrivastava, 1995).  

Technical macro-criteria are referred generally to internal company features. Several papers 

emphasize the importance of technical characteristics inside the evaluation process. They 

affect the equilibrium values of the firm’s productivity, the profitability and the stock price, 

enhancing companies’ business profits (Alam and Sickles, 1998). A firm needs specific 
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technical elements to be efficient, to provide a reliable quality of service, to ensure future 

developments increasing its market shares.  

Moreover, it is widely acknowledged that market orientation contributes to enhance 

significant companies’ achievements in terms of firm’s financial dimensions as well as 

external market price (Ramaswami et al., 2009). In this sense, the existence of a large gap 

between firm’s market value and financial results arising from financial statements has been 

emphasized, due to not full adequacy of the balance sheet data with the technological 

improvement, competition or deregulation of companies’ lifecycle. 

Renewed variables associated to market criteria are required in the analysis, since 

liberalization process and green energy policies have been increased over the last decades. 

Thus, recent economic studies intensify their interest towards “non-financial variables” that 

have the power to be more discriminating than traditional financial ratios. Some studies 

identify these variables with product quality, customer satisfaction and market share (Banker 

et al., 2000), some others with sales volume and market development (Sarkar et al., 2001). 

However, all of them strongly agree that market share has a positive relationship with 

business profitability even if inconsistent in magnitude (Prescott et al., 1986). 

2.3 Data 

2.3.1 Data collection and alternatives 

The sample considered for implementing the HSMAA method is composed of twenty 

European and American energy listed companies whose data have been collected by merging 

different sources. Initially, a set of European companies have been drawn from the Amadeus 

database of Van Dijk (2010), based on the two-digit NACE code 35 used as filter which 

covers the main industrial sectors in the energy sector. Within the NACE code 35, we have 

selected specifically the code 351, indicating electricity, gas, steam and air conditioning 

supply sector, articulated in the electricity production, transmission, distribution and trade 

segments. Among the listed companies operating in the energy supply chain, only those 

located in Europe have been selected.  

Then, all those companies mainly involved in only one sector (such as the distribution of 

electricity, the renewable power production, the trading sector, the industrial plant 

management) have been excluded from the original sample, as well as those with unavailable 

public sustainability report or drawn up in a language other than English, Italian or French. 

Finally, other European and American companies have been added to the original sample, 

selecting those that contribute significantly to the gross national power production. The first 

ones have been chosen from the “Annual Report on the state of services and on the regulatory 

activities” published by Arera in 2018; the second ones have been selected among the main 

competitors of the most important European energy companies. Thus, the final sample is 

composed of twenty worldwide energy listed companies mainly operating in the gas and 

electricity market. Table 2.2 shows how the examined companies are distributed per country. 
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Table 2.2 Energy companies in the final sample distributed per country. 

ENERGY COMPANIES COUNTRY ACRONYM 

ENEL SPA ITALY BIT:ENEL 

ENI ITALY BIT:ENI 

EDISON SPA ITALY BIT: EDNR 

A2A SPA ITALY BIT: A2A 

IREN SPA ITALY BIT:IRE 

ACEA SPA ITALY BIT:ACE 

GRUPPO HERA ITALY BIT:HER 

ELECTICITE' DE FRANCE FRANCE ENXTPA 

ENGIE SA FRANCE ENXTPA:ENGIE 

E.ON SE GERMANY DB:EOAN 

SSE PLC UK LSE:SSE 

DRAX GROUP PLC UK LSE:DRX 

RWE GERMANY DB:RWE 

EXELON CORPORATION USA NYSE:EXC 

AMEREN USA NYSE:AEE 

DTE ENERGY COMPANY USA NYSE:DTE 

XCEL ENERGY INC USA NasdaqGS:XEL 

DUKE ENERGY CORPORATION USA WBAG:DUKE 

IBERDROLA SPAIN BME:IBE 

ENDESA SPAIN BME:ELE 

Each company is organized in business units of different nature, such as electricity 

generation and trading, service facilities, environment, trade, smart city, e-solutions, which 

have the common feature to operate predominantly in the same activity sectors: the 

production of electricity and the distribution of electricity and gas. 

The performance matrix has been constructed by merging the following data sources: 

- Compustat database, to compute the financial ratios;  

- the sustainability reports, the consolidated balance sheets and the specific group’s 

website, to handle respectively with environmental and technical criteria; 

- Arera Annual Report (2018) and U.S. Energy Information Administration (EIA), 

State Electricity Profiles (2017) to deal with the market criteria.  

All the data have been collected in 2017, the latest fiscal year for which data are fully 

available.  

2.3.2 Family of criteria 

In this section, we describe the hierarchical structure of criteria used in the analysis of the 

performance of the considered energy companies in the selected sample. The examined 

variables involve financial, environmental, technical and market dimensions of the energy 

companies’ performance assessment. Specifically, in this study four macro-criteria are 

considered: financial, sustainability, technical and market. These criteria have been further 

decomposed into more detailed sub-criteria as follows:  

1) Financial. The first macro-criterion considered to evaluate the performance of energy 

companies is the financial one. Financial ratios have been frequently used by several 

researchers to assess corporate firm’s performance (see among others Altman, 1968; 

Beaver, 1966), including also the energy sector (Eyüboglu and Çelik, 2016).  Analysts 

have provided many attempts to sort financial ratios into four or five categories, to 

examine better the specific aspects, which have a significant impact on energy firm’s 
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performances. Usually, these aspects are identified with profitability, turnover, solvency, 

liquidity and leverage. 

In this study, we monitor such dimensions, using Return on Asset (ROA), Total Asset 

Turnover ratio (TAT), Total Liabilities to Net Worth ratio (TLNW), Current Ratio (CR), 

and the Debt Ratio (DR) as measures, respectively, of profitability, turnover, solvency, 

liquidity and leverage.  

Table 2.3 presents the correlation coefficients between the variables under consideration. 

From Table 2.3, it can be observed that most of the correlations are moderate, ranging 

below 0.4, except for the high correlation of ROA with Debt Ratio (greater than 0.6), 

which has been eliminated from the original set of elementary criteria referred to the 

financial macro-criteria. 

Table 2.3 Pearson correlation coefficients among financial criteria. Sources: Statistical Software Stata 

Variables ROA TAT TLNW  CR DR 

ROA 1.000 

TAT -0.107 1.000 

TLNW -0.083 -0.241 1.000 

CR -0.373 0.383 -0.008 1.000 

DR 0.640* -0.347 0.031 -0.258 1.000 

* shows significance at the .05 level  

More in detail, to avoid inconsistency issues, profitability and turnover have been 

grouped into efficiency criteria, while solvency and liquidity into indebtedness criteria.  

Thus, the financial macro-criterion is split into two sub-criteria: efficiency and 

indebtedness. Moreover, the efficiency sub-criteria have been further decomposed in 

Return on Asset and Total Asset Turnover, while Total Liabilities to Net Worth and 

Current Ratio descend from indebtedness criteria. A brief description of the financial 

elementary criteria is provided below. 

Efficiency criteria: 

- Return on asset (ROA) is the ratio between the current year’s net income and the 

value of all company’s assets in the same period, chosen among a broad range of 

profitability ratios, for its frequent use in the energy sector (Doumpos et al., 2017); 

- Total asset turnover (TAT) is measured as ratio between company’s revenue and total 

asset, chosen considering the multi-criteria analysis of Babic and Plazibat (1998) on 

the enterprises’ ranking.  

 

Indebtedness criteria: 

 

- Total liabilities to net worth (TLNW) has been computed as the total liabilities over 

the net worth (the difference between assets and liabilities) to provide to lenders and 

investors, a crucial indicator of the firm’s indebtedness level; 

- Current ratio (CR) is the ratio between the current assets and the current liabilities. 

The higher the ratio, the greater the liquidity position. Optimal values for current 

ratios differ according to the specific sectors in which the companies operate. Among 
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the common liquidity ratios, Current Ratio has been chosen, since it is a good 

measure of liquidity criteria also in energy sector (Eyüboglu and Çelik, 2016) and it 

represents the firm’s ability to cover debts over the next 12 months.  

 

2) Sustainability is the second macro-criterion considered. It is split into three sub-criteria: 

environmental, economic, social. Moreover, at the third level carbonic intensity index and 

morbidity indicator descend from the environmental criteria, while sustainable resources 

indicator and employment indicator descend respectively from economic and social 

criteria. 

These elementary criteria, generally obtained from companies’ sustainable or integrated 

report, measure the environmental, human and social externalities. 

In this analysis, the “triple bottom line” approach has been followed, since it is based on 

the sustainable development concept. It is often used by many organizations, to evaluate 

their sustainability performance in a broader environmental, economic and social 

perspective.  Hereafter, sustainability sub-criteria are described more in detail.  

Environmental criteria refer to negative externalities produced by power plants in a given 

environment. Generally, they have been used to evaluate the impact that the production 

of energy can generate on surrounding environment, through the reduction or the increase 

of the pollutant emissions. However, the use of electricity also causes damage to human 

health, natural ecosystem and other non-environmental externalities like employment and 

security, which will be “paid” by future generations. 

In this study, environmental criterion has been further decomposed into two elementary 

criteria:  

- Carbonic Intensity index (CO2_Emissions) represents the specific amount of CO2 

emissions derived from thermal generation, simple and combined, over the total 

production of electricity and heat (gCO2/KWh) (La Rovere et al., 2010; U.S. Energy 

Information Administration Glossary, 2012). It is always used together with other 

Greenhouse gas emissions (GHG) and waste production, as measures of 

environmental externalities. 

- Morbidity indicator (Morbidity) is given by the ratio between the amounts of NOx 

emissions expressed in tons and the total annual energy produced by the power plant 

(tNOx/MWh). In this study, it has been used to measure the adverse health effects of 

energy production, following the approach of Afgan and Carvalho (2008). 

Economic criteria are always considered in MCDA studies addressed to the energy 

companies, to evaluate the sustainability of electrical energy generation technologies. 

Generally, companies that want to survive for a longer period and gain a competitive 

advantage, base their policies on two elements: “green resources”, i.e. new and renewable 

energy sources (such as hydropower, biomass, wind, solar) and “sustainable 

investments”, namely corporate investments addressed to environmental, ethical and 

social aspects. 
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In this study, the economic criteria have been assessed only with a sustainable resource 

indicator, since the data on sustainable investments are not available for all the considered 

alternatives: 

- Sustainable resources indicator (Sust_Res) is the percentage contribution of 

renewable energy resources (RER) as defined before to the total amount of energy 

production (%) (Štreimikienė et al., 2016).  

Social criteria represent the third pillar of Sustainability Development and generally refer 

to personal resources such as skills, education, and employment. For long time, social 

sustainability has been neglected in reports, for its difficulty of quantification in terms of 

economic and environmental impact. Only recently social reputation and firms’ 

performance relationship attracted the attention among academics. Some attempts to 

build social indicators through the Global Reporting Initiative (an international 

corporation that helps organizations understand and communicate their sustainability 

report in a clear and comparable way) and MCDA models, highlight the importance of 

this criterion in the evaluation process (see GRI- Global Reporting Initiative, 2002 for 

further details). 

A literature review on MCDA in sustainability energy decision-making (Wang et al., 

2009), stresses how social sustainability continues to reflect qualitative criteria; instead 

other studies prefer to employ quantitative indicators such as the job indicators, social 

acceptability, visual impact and health effects on the surrounding population (Barros et 

al., 2015; Maxim, 2014). Among these several and various quantitative indicators, a few 

studies aim to create hybrid indicators by merging the social with the political aspects 

(Kahraman et al., 2009); others deal only with social indicators (La Rovere et al., 2010); 

other ones add to the traditional job creation indicators, specific social sub-indicators 

(Jovanović et al., 2009).  

In this analysis, the social criteria have been assessed with the following indicator, 

obtained by merging the approach of La Rovere et al. (2010) and Barros et al. (2015): 

- Employment indicator (Employment) is computed as the amount of full-time 

permanent employee divided by the electrical energy production (full-time person- 

years/GWh) (Maxim, 2014). 

 

3) Technical. It is the third macro-criterion considered in this analysis. It is further 

decomposed into two criteria of the second level: technical efficiency and technical 

capacity, and from each of them some elementary criteria of third level has been 

identified: energy loss indicator, customer satisfaction index and network density 

indicator descending from the technical efficiency criterion; electrical factor capacity and 

demand indicator descending from technical capacity criterion.  

Again, specific indicators generally obtained from companies’ sustainable, integrated 

report or companies’ website, measure these elementary criteria.  

Technical efficiency and technical capacity criteria clearly represent the features of the 

technology linked to power source and to production capabilities.  
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Technical efficiency indicates the effectiveness with which a firm produces the output, 

given a set of inputs. In the electrical production process, this measure expresses the 

amount of energy within raw materials converted into output, such as electricity and heat 

(Maxim, 2014).  

In this study, technical efficiency has been assessed using the following elementary 

criteria:   

- Energy loss indicator (Energy_loss) is a percentage value obtained from the 

difference between the theoretical efficiency, 100%, and the specific efficiency score 

of each company. The efficiency score is calculated as the ratio between the total 

production of electrical energy measured in GWh and the equivalent amount of 

energy associated to the raw materials (i.e. gas, coal, oil and others) used in the 

electricity production process, converted in GWh (Maxim, 2014).  

- Customer Satisfaction Index (CSI) represents the satisfaction perceived by the 

customer from the quality of goods and services provided by a company, expressed 

as percentage. Data on CSI have been taken from the Sustainability Reports of energy 

companies, which gather them annually by means of different survey methods. One 

of these survey practises is the so-called CATI methodology (Computer Aided 

Telephone Interview), in which data on customer satisfaction are collected through 

a telephone interview of 15 minutes on a sample of householders and then evaluated 

on an increasing numerical scale (see for further details of CSI computation, Hera 

Group. Consolidated non-financial report, 2017). 

- Network density indicator (EG_Density) is given by the ratio between the total 

volume of electricity and gas delivered per unit of network length (GWh/km) and it 

measures the economies of density of a company i.e. the expansion in the existing 

service areas where further network is not necessary (Jamasb et al., 2012). 

 

Technical capacity indicates the firms’ ability to make the maximum electrical energy 

production by using its installations. It was employed in multi-criteria decision aid studies 

related to sustainability assessment or expansion of electrical generation technologies 

(Maxim, 2014).  

The technical capacity is measured by: 

 

-  Electrical factor capacity (E_factor) is the percentage ratio between the net 

produced electrical energy per year and the maximum electrical energy that could be 

obtained exploiting the maximum power plant capacity in the same period, i.e. the 

total installed power, multiplied by the total amount of hours in one year (Wang et 

al., 2009);  

- Demand indicator (EG_demand) is the total volume of electricity and gas delivered 

by the company in a year over the total number of customers, expressed in 

GWh/person (Farsi et al., 2007).  
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4) Market. The fourth macro-criterion considered in this analysis is the market one. It is 

split into three criteria of the second level: market share, investment opportunity and 

country profile further decomposed into three elementary criteria, specifically market 

share, price to book value and trilemma index.  

Data on market share have been taken from different sources: Arera Annual Report for 

Italian companies (2018); U.S. Energy Information Administration (EIA), total retail 

sales (2017) for American companies; Iberian Data Flyer (2017) for Spanish companies 

and Ofgem Data Portal for UK companies (2017). Data on price to book value and on 

trilemma index have been obtained from, respectively, Compustat database and the report 

published annually by the world energy council (2017) website. 

To the best of our knowledge, one of the most significant attempts to consider market 

criterion in the energy sector, is the paper of Doumpos et al. (2017). They measure the 

country effects on firms’ performance assessment using macroeconomic environmental 

variables, countries’ energy markets characteristics and firm’s specific attributes. Such 

indicators highlight how energy companies are affected by the status of the economic and 

national institutional context in which companies produce, distribute or sell their 

products.  

In this study, the following three market elementary criteria have been considered:  

- Absolute market share (MS): is the ratio between the company’s electricity sales and 

the total electricity sales of companies operating in a certain country. It is a 

representative measure of the company’s market position in comparison to its 

competitors producing similar products, i.e. its market power. 

Absolute market share has been used in this analysis instead of the relative one, since 

the considered companies belong to the same sector (see Szymanski et al., 1993 for 

further details of calculation).  

- Price to book ratio (P/B) is computed as the market share price over the book value 

per share. 

Market share price is obtained here by looking at the average value among the high, 

low and close share price in the market at the end of 2017; book value per share is 

obtained from the balance sheet data as ratio between the difference of total assets 

and total liabilities and the number of shares outstanding.  

It measures how good a company is evaluated on market in comparison with its book 

value; thus, it is a good indicator for DMs that are looking for the best potential 

investment.  

- Energy Trilemma index (ETI) is an official indicator published annually by the World 

Energy Council (2017) to rank the energy performance of different countries with 

respect to three dimensions: energy security, energy equity and environmental 

sustainability (Song et al., 2017). 

Energy security refers to the ability to provide a safe and reliable energy system; 

Energy equity denotes the level of accessibility and affordability across the 

population and Environmental sustainability represents the efficiency and the 

development of green resources within the energy system.  
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For each country, WEC establishes separate values on single dimensions and then 

compute a composite indicator (ETI) expressed in a balance score, to give a global 

ranking of all countries. The higher the values in all three dimensions, the better will 

be the balance score and consequently the final ranking of the country.  

In this study, ETI has been employed for its great ability to enclose in a unique 

balance score, elements of different nature such as economic and social factors, 

institutional elements, public and private actors, resources, demand and supply 

behaviour, allowing to introduce a comprehensive country effect inside our decision 

model.  

For our purpose, ETI has been used in the performance matrix with numerical values 

in place of the balance score to facilitate the comparison among alternatives and the 

normalization process.  Therefore, for each country of the considered companies’ 

average value from the three aforementioned dimensions has been calculated and 

then applied to each company located in the same considered country. 

The whole hierarchy of criteria, which has been displayed in Figure 2.1, is composed at the 

first level of four macro-criteria, at the second level of ten criteria and at the third level of 

sixteen elementary criteria.  

Table 2.4 lists all the elementary criteria and reports the corresponding units of measures, 

preference direction, abbreviations and data sources.  
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Figure 2.1 Hierarchical structure of criteria 
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Table 2.4 Description of the variables 

Elementary criteria Acronym Definition 
Unit of 

measure 

Pref. 

Direc. 

Return on Asset ROA Net Income/Total asset % max 

Total asset turnover TAT Revenue/Total assets % max 

Total liabilities to net worth TLNW Total liabilities/Net worth % min 

Current ratio CR Current assets/ Current liabilities % max 

Carbonic Intensity index CO2_Emis 
CO2 emissions from thermal generation/Net energy 

Production 
gCO2/KWh min 

Morbidity indicator Morb NOx emissions/Energy production tNOx/GWh min 

Sustainable resources 

indicator 
Sust_Res 

Contribution of RER (hydropower, biomass, geothermal, 

wind, solar…)/Total energy production 
% max 

Employment indicator Employment Full time permanent employee/Electricity production 
person- 

years/GWh 
max 

Energy loss indicator Energy_loss 
100% - Efficiency score (electricity production /equivalent 

amount of energy associated to the row materials) 
% min 

Customer satisfaction index CSI Percentage quality measure of good and services % max 

Network density indicator EG_Density 
Tot. volume of electricity and gas delivered/tot. network 

length 
GWh/km max 

Electrical factor capacity E_factor 
Net electricity production/Total installed power * 8640 

hours 
% max 

Demand indicator EG_demand 
Tot. volume of electricity and gas sold/Tot. number of 

customers 
GWh/person min 

Absolute Market share MS Company's energy sales / Market's electricity sales % max 

Price to book ratio P/B Market share price /Book value per share % max 

Energy Trilemma Index ETI 
Average value between energy security-energy equity-

environmental sustainability for a given country 
n. min 

2.4 The methodology: HSMAA 

In a Multi Criteria Decision Aiding (MCDA) problem there is a finite set of alternatives 𝐴 =

{𝑎1, … , 𝑎𝑘, … , 𝑎𝑚}, which are evaluated on a consistent set of criteria 𝐺 = {𝑔1, 𝑔2, … , 𝑔𝑛}. 

In this study, the alternatives are twenty worldwide listed companies operating in the energy 

sector, mainly in the gas and electricity segment. Each alternative 𝑎𝑘 ϵ A is assessed on a 

hierarchical criteria structure composed of three levels: macro-criteria, criteria and 

elementary criteria, as shown in Figure 2.1. 

In this study, we rank these companies based on their performance evaluations, from the best 

to the worst. Moreover, since the structure of criteria is organized in the three aforementioned 

levels, Hierarchy Stochastic Multi Attribute Analysis (HSMAA) (De Matteis et al., 2019) is 

adopted to provide a “more robust recommendation” on final rank results. 

The detailed description of this methodology is presented in Section 1.4.1.  

Moreover, from a computational point of view, in this study the proposed HSMAA method 

shares the following elements with the methodology presented in De Matteis et al. (2019): 

- the use of Monte Carlo Simulation in calculating the multidimensional integral for 

rank acceptability index computation; 

- the elimination of the probability distribution on alternatives 𝑓𝑋(𝜉), for the 

availability of a specific value on each criterion taken from the companies’ balance 

sheet data or their sustainability report.  

 

However, our model differs from HSMAA of De Matteis et al. (2019) for the implementation 

of the Hit and Run (HAR) technique (Smith, 1984; Tervonen and Lahdelma, 2007) in place 
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of the uniform distribution, to sample the set of weights. In particular, HAR sampling 

procedure has been applied respectively on weights of the macro-criteria and sub-criteria. 

Otherwise, inside the same node the weights have been divided equally among the 

elementary criteria. The stopping rule used for the HAR sampling procedure is the maximum 

number of iterations equal to 10,000 meaningful to obtain robust results (Tervonen et al., 

2013). 

Within HSMAA we shall consider the following two different cases: 

 Case (1). HSMAA is performed without DM’s preference on the macro-criteria 

weights;  

 Case (2). The analyst simulates the possibility that the DM can express a preference 

on macro-criteria weights, preferring for example the financial to the sustainability 

and the technical to the market macro-criteria (translated into the following 

constraints 𝑤1 > 𝑤2 or  𝑤3 > 𝑤4 ) and so on. Simulating a decision process, six-

preference information on the criteria weights have been taken into consideration and 

presented in Table 2.5. 

For the sake of uniformity, we call the first case also first scenario; while the six-preference 

information relative to case (2) are renamed scenarios from second to the seventh.  

Table 2.5 summarizes the all scenarios with the corresponding preference information. 

Table 2.5 The considered scenarios 

Cases Scenarios DM's preferences on macro-criteria weights 

Case (1) Scenario 1 no preference information on macro-criteria 

Case (2) 

Scenario 2 w1>w4 and w2>w3 

Scenario 3 w1>w2 and w3>w4 

Scenario 4 w1>w3 and w2>w4 

Scenario 5 w2>w1 and w4>w3 

Scenario 6 w3>w1 and w4>w2 

Scenario 7 w4>w1 and w3>w2 

macro-criteria 1 = financial; 2 = sustainability; 3 = technical; 4 = market 

Consequently, in each case HSMAA gives as output:  

 Case (1) One probability distribution for the alternatives’ ranking (rank acceptability 

indices); 

 Case (2) Six probability distributions for the alternatives’ ranking (rank acceptability 

indices).  

Finally, to get more insights in the problem at hand, HSMAA has been also implemented 

with respect to each macro-criterion: financial, sustainability, technical, market, obtaining 

four probability distributions for the alternatives’ ranking.  
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2.5  Results and discussions 

2.5.1 Ranking of energy companies’ performances 

Criteria evaluations of the twenty energy-listed corporations considered are reported in Table 

2.6. 

Table 2.6 Performance matrix. Authors’ elaboration. 

ALTERNATIVES 

MACRO- 

CRITERIA 
FINANCIAL RATIO SUSTAINABILITY 

Elementary  

criteria 
ROA TAT TLNW CR CO2_Emis Morb. Sust_Res Employment 

Unit of measure % % % % g CO2/KWh t NOx/GWh % person- years/GWh 

Pref. direction max max min max min min max max 

ENERGY COMPANIES COUNTRY         

1 ENEL SPA ITALY 3.80 46.69 198.39 90.05 411 0.81 6.56 0.24 

2 ENI ITALY 2.70 58.23 139.04 148.08 393 0.11 0.09 0.90 

3 EDISON SPA ITALY -0.30 85.11 66.37 119.81 314 0.21 16.00 0.23 

4 A2A SPA ITALY 4.40 56.19 230.20 130.77 419 0.16 25.00 0.54 

5 IREN SPA ITALY 3.40 43.67 216.05 138.49 366 0.06 86.00 0.50 

6 ACEA SPA ITALY 2.90 36.37 305.02 100.18 424 0.21 65.13  4.84 

7 GRUPPO HERA ITALY 3.50 63.87 224.72 109.31 527 0.43 67.50 4.29 

8 EDF FRANCE 0.90 23.87 458.20 144.09 82 0.10 10.17 0.24 

9 ENGIE SA FRANCE 1.90 39.68 256.60 105.34 363 0.16 23.10 0.25 

10 E.ON SE GERMANY 2.00 67.58 734.10 103.44 308 0.39 29.30 0.11 

11 SSE PLC UK 4.80 121.4 281.30 112.44 304 0.21 30.30 0.69 

12 DRAX GROUP  UK -2.00 104.7 104.50 143.40 297 0.72 65.00 0.12 

13 RWE GERMANY 0.30 21.25 714.20 115.13 670 0.41 5.22 0.28 

14 EXELON CORP. USA 2.60 28.74 262.80 110.17 488 0.90 15.00 0.16 

15 AMEREN USA 3.60 22.78 254.10 54.83 729 0.38 4.49 0.20 

16 DTE ENERGY  USA 3.20 37.34 238.00 109.57 707 0.53 8.73 0.24 

17 XCEL ENERGY  USA 3.10 26.32 275.60 72.72 458 0.33 27.00 0.11 

18 DUKE ENERGY  USA 2.70 16.81 230.40 67.72 478 0.25 5.00 0.13 

19 IBERDROLA SPAGNA 1.90 28.24 159.00 82.50 187 0.26 41.00 0.24 

20 ENDESA SPAGNA 3.90 63.01 236.20 73.39 439 1.07 4.38 0.17 

 

ALTERNATIVES 

MACRO- 

CRITERIA 
TECHNICAL MARKET 

Elementary  

criteria 
Energy_loss CSI EG_Density E_factor EG_demand MS P/B ETI 

Unit of measure % % GWh/Km % GWh/person % % n. 

Pref. direction min max max max min max max min 

ENERGY COMPANIES COUNTRY         

1 ENEL SPA ITALY 40.54 93.75 0.20 34.06 0.006 25.00 1.35 21.66 

2 ENI ITALY 55.63 86.70 0.30 55.21 0.101 5.70 1.01 21.66 

3 EDISON SPA ITALY 43.33 95.80 0.75 35.86 0.079 5.20 0.87 21.66 

4 A2A SPA ITALY 35.53 90.60 1.44 20.78 0.010 2.70 1.57 21.66 

5 IREN SPA ITALY 56.25 92.00 1.14 36.81 0.027 3.00 1.4 21.66 

6 ACEA SPA ITALY 63.26 89.60 0.35 32.26 0.050 1.60 1.69 21.66 

7 GRUPPO HERA ITALY 73.30 69.00 1.00 53.69 0.017 3.60 1.61 21.66 

8 EDF FRANCE 63.13 71.00 0.28 51.98 0.019 68.00 0.66 14.66 

9 ENGIE SA FRANCE 56.40 83.00 1.16 51.98 0.047 11.00 0.86 14.66 

10 E.ON SE GERMANY 28.35 70.00 0.39 26,00 0.011 11.60 15.27 20.33 

11 SSE PLC UK 20.96 76.00 0.90 28.59 0.002 14.00 2.58 16.66 

12 DRAX GROUP  UK 59.03 84.00 0,00 26.89 0.028 10.00 0.67 16.66 

13 RWE GERMANY 46.55 75.00 0.54 54.08 0.023 16.00 2.04 20.33 

14 EXELON CORP. USA 72.30 79.00 7.25 64.27 0.042 5.69 1.31 35.66 

15 AMEREN USA 24.77 74.00 0.81 41.89 0.040 2.07 1.93 35.66 

16 DTE ENERGY  USA 27.80 71.90 1.59 39.09 0.057 1.20 2.09 35.66 

17 XCEL ENERGY  USA 31.00 72.30 0.55 66.16 0.048 2.87 2.12 35.66 

18 DUKE ENERGY  USA 58.74 76.00 0.78 48.32 0.042 6.78 1.43 35.66 

19 IBERDROLA SPAGNA 34.82 78.00 0.25 32.88 0.012 22.00 1.14 22.66 

20 ENDESA SPAGNA 29.91 73.00 0.37 38.44 0.014 29.00 2.34 22.66 

Data Source: Compustat Database, Sustainability report, annual report, integrated report, companies website, Arera, U.S. 

EIA Total retail sales, Iberian Data Flyer, Ofgem Data portal, World Energy Council Trilemma Index 
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In order to get recommendations to DMs as robust as possible, the ranking of the energy 

companies considered was made employing the HSMAA, presented in the above section. 

Before implementing the proposed methodology, we perform a normalization procedure on 

the criteria evaluations of each company.  

Normalization procedure is necessary since it allows the transformation of raw data into 

comparable measurement scales.  

Many normalization methods are reported in literature (Joint Research Centre of the 

European Commission, 2008). Usually they are clustered in: 

- data driven and expert-driven; 

- internal and external.  

Data driven methods are based on statistical elements of the dataset and include the 

standardization, the min-max and the target approach; while expert-driven methods consist 

for instance of the value theory methodology based on inputs provided by experts and a 

value function elicited from specialists or DMs (Geneletti and Ferretti, 2015).  

Moreover, normalization methods can be classified into internal or external according to 

whether they are dependent or independent from the raw dataset with a reference point fixed 

externally or internally to the dataset (Laurent and Hauschild, 2015).  

Although until now, it does not exist a specific rule of thumb to select a normalization 

method over another, each of them is characterized by proper advantages and disadvantages. 

Therefore, the final choice depends on a combination of theoretical framework and data 

properties (Joint Research Centre of the European Commission, 2008).  

In this study, we have applied specifically the min-max normalization method since it is the 

most used when an additive aggregation function is employed as the weighted sum and no 

direct or indirect inputs are provided by experts or DMs (see Gasser et al., 2020 for a detailed 

analysis and comparison of normalization methods).  

Specifically, the two equations displayed below, have been employed according to the 

preference direction of each elementary criterion, respectively, to maximize or to minimize: 

𝑔�̅�(𝑎𝑘) =
𝑔𝑖(𝑎𝑘)−𝑚𝑖𝑛𝑖

𝑚𝑎𝑥𝑖−𝑚𝑖𝑛𝑖
; (21) 

𝑔�̅�(𝑎𝑘) =
𝑚𝑎𝑥𝑖−𝑔𝑖(𝑎𝑘)

𝑚𝑎𝑥𝑖−𝑚𝑖𝑛𝑖
; (22) 

where 𝑔�̅�(𝑎𝑘) is the value after the normalization, 𝑔𝑖(𝑎𝑘) is the evaluation of the alternative 

𝑎𝑘 on the elementary criterion 𝑔𝑖, 𝑚𝑖𝑛𝑖 and 𝑚𝑎𝑥𝑖 are, respectively, the minimum and the 

maximum values that  alternative 𝑎𝑘 has on  criterion 𝑔𝑖. 

Min-max normalization method being based on the bounded scale [0, 1] presents the 

advantages to provide an easy comparison among the alternatives and to not be affected by 

the number of over/under performances. However, it has the disadvantages to not maintain 

the ratios between the performances and to be strongly affected by outliers (Carrino, 2017). 

To overcome the issue that outliers can have a strong impact on the normalized values, data 

were trimmed. The outliers were identified with the Interquartile Range method (IRQ), by 

simply verifying one of the following inequalities (Gasser et al., 2020): 
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𝑔𝑖(𝑎𝑘) < 𝑄1 − 1.5(𝑄3 − 𝑄1)       or     𝑔𝑖(𝑎𝑘) > 𝑄3 + 1.5(𝑄3 − 𝑄1) (23) 

Then, data were trimmed to the maximum or minimum values that are not outliers.  

Table 2.7 reports data trimmed to the maximum and minimum values, respectively, in yellow 

and orange.  

Table 2.7 Performance matrix with the outliers trimmed to the maximum and minimum values. Authors’ 

elaboration. 

ALTERNATIVES 

MACRO- 

CRITERIA 
FINANCIAL RATIO SUSTAINABILITY 

Elementary criteria ROA TAT TLNW CR CO2_Emis Morb. Sust_Res Employment 

Unit of measure % % % % gCO2/KWh tNOx/GWh % person- years/GWh 

Pref. direction max max min max min min max max 

ENERGY COMPANIES COUNTRY         

1 ENEL SPA ITALY 3.80 46.69 198.39 90.05 411 0.81 6.56 0.24 

2 ENI ITALY 2.70 58.23 139.04 148.08 393 0.11 0.09 0.90 

3 EDISON SPA ITALY -0.30 85.11 139.04 119.81 314 0.21 16.00 0.23 

4 A2A SPA ITALY 4.40 56.19 230.20 130.77 419 0.16 25.00 0.54 

5 IREN SPA ITALY 3.40 43.67 216.05 138.49 366 0.06 67.50 0.50 

6 ACEA SPA ITALY 2.90 36.37 305.02 100.18 424 0.21 65.13 0.90 

7 GRUPPO HERA ITALY 3.50 63.87 224.72 109.31 527 0.43 67.50 0.90 

8 EDF FRANCE 0.90 23.87 305.02 144.09 82 0.1 10.17 0.24 

9 ENGIE SA FRANCE 1.90 39.68 256.60 105.34 363 0.16 23.10 0.25 

10 E.ON SE GERMANY 2.00 67.58 305.02 103.44 308 0.39 29.30 0.11 

11 SSE PLC UK 4.80 104.70 281.30 112.44 304 0.21 30.30 0.69 

12 DRAX GROUP  UK -0.30 104.70 139.04 143.40 297 0.72 65.00 0.12 

13 RWE GERMANY 0.30 21.25 305.02 115.13 670 0.41 5.22 0.28 

14 EXELON CORP. USA 2.60 28.74 262.80 110.17 488 0.81 15.00 0.16 

15 AMEREN USA 3.60 22.78 254.10 54.83 729 0.38 4.49 0.20 

16 DTE ENERGY  USA 3.20 37.34 238.00 109.57 707 0.53 8.73 0.24 

17 XCEL ENERGY  USA 3.10 26.32 275.60 72.72 458 0.337 27.00 0.11 

18 DUKE ENERGY  USA 2.70 16.81 230.40 67.72 478 0.255 5.00 0.13 

19 IBERDROLA SPAGNA 1.90 28.24 159.00 82.50 187 0.261 41.00 0.24 

20 ENDESA SPAGNA 3.90 63.01 236.20 73.39 439 0.06 4.38 0.17 
           
  max 4.80 104.70 305.02 148.08 729.00 0.81 67.50 0.896 
  min -0.30 16.81 139.04 54.83 82.00 0.06 0.09 0.110 

 

ALTERNATIVES 

MACRO- 

CRITERIA 
TECHNICAL MARKET 

Elementary criteria Energy_loss CSI EG_Density E_factor EG_demand MS P/B ETI 

Unit of measure % % GWh/Km % GWh/person % % n. 

Pref. direction min max max max min max max min 

ENERGY COMPANIES COUNTRY         

1 ENEL SPA ITALY 41 93.75 0.20 34.06 0.006 25.00 1.35 21.66 

2 ENI ITALY 56 86.70 0.30 55.21 0.080 5.70 1.01 21.66 

3 EDISON SPA ITALY 43 95.80 0.75 35.86 0.079 5.20 0.87 21.66 

4 A2A SPA ITALY 36 90.60 1.45 20.78 0.011 2.70 1.57 21.66 

5 IREN SPA ITALY 56.25 92.00 1.14 36.81 0.027 3.00 1.40 21.66 

6 ACEA SPA ITALY 63 89.60 0.35 32.26 0.050 1.60 1.69 21.66 

7 GRUPPO HERA ITALY 73.30 69.00 1.00 53.69 0.018 3.60 1.61 21.66 

8 EDF FRANCE 63 71.00 0.29 51.98 0.019 29 0.66 14.66 

9 ENGIE SA FRANCE 56 83.00 1.17 51.98 0.047 11 0.86 14.66 

10 E.ON SE GERMANY 28 70.00 0.39 26.00 0.011 11.60 2.58 20.33 

11 SSE PLC UK 20.96 76.00 0.90 28.59 0.003 14 2.58 16.66 

12 DRAX GROUP  UK 59 84.00 0.00 26.89 0.028 10 0.67 16.66 

13 RWE GERMANY 47 75.00 0.54 54.08 0.023 16 2.04 20.33 

14 EXELON CORP. USA 72 79.00 1.59 64.27 0.043 5.69 1.31 22.66 

15 AMEREN USA 24.77 74.00 0.81 41.89 0.040 2.07 1.93 22.66 

16 DTE ENERGY  USA 27.80 71.90 1.59 39.09 0.057 1.20 2.09 22.66 

17 XCEL ENERGY  USA 31 72.30 0.55 66.16 0.048 2.87 2.12 22.66 

18 DUKE ENERGY  USA 59 76.00 0.78 48.32 0.043 6.78 1.43 22.66 

19 IBERDROLA SPAGNA 35 78.00 0.25 32.88 0.013 22 1.14 22.66 

20 ENDESA SPAGNA 30 73.00 0.37 38.44 0.014 29.00 2.34 22.66 

           

max 73.30 95.80 1.59 66.16 0.08 29.00 2.58 22.66 

min 20.96 69.00 0.00 20.78 0.00 1.20 0.66 14.66 

 

The next step to evaluate the companies’ performances is to aggregate the normalized 

dataset.  
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In this study, the weighted sum (eq.(1)) has been used as value function to aggregate the 

alternatives’ evaluations on the elementary criteria (Section 1.4.1). 

In literature, several aggregation functions are known (see Langhans et al., 2014 and De 

Condorcet, 2014 for an exhaustive description of them) and the selection procedure for one 

or another, affects the whole assessment process according to their specific value and trade-

off properties (Langhans et al., 2014). 

The additive function is one of the most common aggregation functions used in MCDA 

studies (Keeney and Raiffa, 1976) and it is characterized by a full level of compensation. It 

is suitable when the preference values of the decision maker are linear. This means that 

criteria with low performances can be fully compensated by criteria with high performances, 

without changing his/her own preferences.  

In many real-world cases, however, the aggregation functions based on partial compensation 

(geometric, harmonic, minimum) are preferred to the full one, since they represent better the 

DMs’ preferences (Gasser et al., 2020). Nevertheless, they are not recommended when the 

lowest normalized values are negative or equal to 0, as in our case. Moreover, since the 

additive function can simply take into consideration different weights to aggregate values 

and the main aim of this study is to consider different scenarios according the DM’s 

preferences (Table 2.5), we have decided to use the linear weighted sum.  

Hence, Table 2.8 and Figure 2.2 show, respectively, the summary statistics and the boxplot 

of the scores obtained by employing the considered methodology:  

- Max is the maximum value of the scores obtained considering the 10,000 vectors of 

criteria weights; 

- Min is the minimum value of the scores obtained considering the 10,000 vectors of 

criteria weights; 

- Utility is the value of the scores that an alternative obtains on average; 

- Skewness is a measure of the asymmetry of the probability distribution of the scores 

about its mean; 

- Volatility is the standard deviations of the scores.  

Table 2.8 Summary Statistics in case (1) 

ALTERNATIVES MAX MIN UTILITY MODE MEDIAN SKEW. VOLATILITY 

a1 ENEL SPA 0.8072 0.1280 0.4328 0.1280 0.4421 -0.1899 0.1106 

a2 ENI 0.9844 0.0885 0.4675 0.0885 0.4512 0.4040 0.1548 

a3 EDISON SPA 0.8330 0.1283 0.3817 0.1283 0.3783 0.2562 0.1224 

a4 A2A SPA 0.7865 0.1222 0.5046 0.1222 0.5105 -0.3923 0.1106 

a5 IREN SPA 0.9455 0.1219 0.5353 0.1219 0.5514 -0.3273 0.1295 

a6 ACEA SPA 0.9794 0.0713 0.4500 0.0713 0.4295 0.5446 0.1501 

a7 GRUPPO HERA 0.9877 0.1113 0.5285 0.1113 0.5290 0.0861 0.1462 

a8 EDF 0.9806 0.0534 0.4673 0.0534 0.4585 0.2313 0.1767 

a9 ENGIE SA 0.8735 0.1499 0.4544 0.1499 0.4520 0.4705 0.0866 

a10 E.ON SE 0.9051 0.0603 0.4323 0.0603 0.4290 0.4728 0.1008 

a11 SSE PLC 0.9907 0.3897 0.6653 0.3897 0.6584 0.3886 0.0899 

a12 DRAX GROUP PLC 0.9606 0.1029 0.4721 0.1029 0.4539 0.5124 0.1295 

a13 RWE 0.7050 0.0945 0.3640 0.0945 0.3536 0.3371 0.1108 

a14 EXELON CORP. 0.6909 0.0457 0.3197 0.0457 0.3125 0.4001 0.1059 

a15 AMEREN 0.6009 0.0313 0.2917 0.0313 0.2859 0.1901 0.0979 

a16 DTE ENERGY COMP. 0.6833 0.0186 0.3427 0.0186 0.3456 0.0174 0.1089 

a17 XCEL ENERGY 0.6977 0.0172 0.3549 0.0172 0.3621 -0.0675 0.1134 

a18 DUKE ENERGY CORP. 0.5259 0.0289 0.2865 0.0289 0.2911 -0.1496 0.0819 

a19 IBERDROLA 0.7489 0.0620 0.4453 0.0620 0.4528 -0.3309 0.1129 

a20 ENDESA 0.9614 0.0708 0.4783 0.0708 0.4812 8,2742 0.1456 
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Figure 2.2 Boxplot of the alternatives’ score in case (1). 

At the end of all iterations, SMAA indices have been computed (Tervonen and Lahdelma, 

2007); specifically the rank acceptability index (RAI), the central weight vector (CWV), the 

confidence factor (CF), and the pairwise winning indices (PWI), which are commented in 

the next section.  

Moreover, Table 2.9 shows the rank acceptability index for case (1) and Figure 2.3 displays 

the probability distribution of each company arising from rank acceptability index, 

highlighting the interval of rank positions. More in detail, the value of the highest frequency 

of each company for a given position is represented by the peak of the probability 

distribution, while the downward rank acceptability indices are indicated in Figure 2.4 as 

line chart.  

Moreover, Table 2.10 displays the results of the Shannon entropy index computed for cases 

(1) and (2) and with respect to each macro-criterion.  

The overall results obtained in cases (1) and (2) are contained in the Appendix A. 

Specifically, Table A-1 and Table A-2  show, respectively, the rank acceptability index and 

the downward cumulative rank acceptability index in case (1) and case (2), assembling all 

scenarios (from the first to the seventh). Instead, Figure 2.5 displays the probability 

distribution arising from Table A-1, in order to observe each company’s trend arising 

simultaneously from all scenarios.  

Rank acceptability indices are presented in Table A-3 , Table A-4, Table A-5 and Table A-

6  in the Appendix A, with respect to the financial, sustainability, technical and market 

macro-criterion, respectively. 

2.5.1.1  Case (1) 

Case (1) is an uncertainty scenario in which the DM has not a precise system of preferences 

on criteria weights assigned to every macro-criterion.  
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Looking at the first scenario of Table A-2  in the Appendix A, we can observe that AMEREN 

can be considered as the best energy company because 𝑏≤2
15 = 41.95%.  It is also confirmed 

from Table 2.9, since it is the corporation with the highest probability (23.70%) to get the 

first position in the ranking, followed by DUKE ENERGY CORPORATION (19.66%) and 

RWE (11.10%). Furthermore, DUKE ENERGY CORPORATION and EXELON 

CORPORATION are two of the best companies, since 𝑏≤5
18 = 84.47% and 𝑏≤5

14 =

58.36% meaning that their ranks are stable for the first five positions (see Table A-2 ).  

Otherwise, from Table 2.9 it is possible to notice that SSE PLC presents the highest 

probability (46.08%) to be placed in the last position of the final ranking followed by EDF 

(13.04%) confirmed by the downward rank acceptability index  (𝑏≤19
11  , 𝑏≤19

8  are respectively 

about 50% and 80%, see Figure 2.4). These trends are more evident by looking at the graphs 

in Figure 2.3, illustrating the companies’ probability distribution among rank positions. 

Indeed, AMEREN and DUKE ENERGY CORPORATION display a decreasing probability 

distribution with rank position, showing a null probability from the 17th position to the last 

one for the first company and from the 12th position to the last one for the second company; 

EXELON and RWE have the same decreasing trends as AMAREN and DUKE ENERGY 

CORPORATION,  but less evident. Instead, SSE PLC and EDF show a very low and 

constant probability distribution up to the central positions, increasing abruptly towards the 

last positions.  

Generally, it is possible to classify companies into three groups according to the rank 

position: top positions (from the 1st to the 7th position), intermediate positions (from the 8th 

to the 14th position), and last positions (from the 15th to the 20th position). For the sake of 

clarity, this threefold classification has been displayed respectively with green, yellow and 

red colour, by considering a RAI greater than 0.06. Hence, the first group includes 

AMAREN, DUKE ENERGY, EXELON, RWE, DTE ENERGY, XCEL ENERGY; the 

second group is composed by ENGIE SA, E.ON SE, ENEL, EDISON SPA; some companies 

such as A2A SPA, ENDESA, IBERDROLA can be classified between the second and the 

third ones; finally the third group contains clearly, IREN SPA, ENI, ACEA SPA, GRUPPO 

HERA, DRAX GROUP, EDF and SSE PLC. 

Table 2.9 Case (1) “First Scenario”: Rank acceptability indices 

ALTERNATIVES\RANK 𝒃𝟏 𝒃𝟐 𝒃𝟑 𝒃𝟒 𝒃𝟓 𝒃𝟔 𝒃𝟕 𝒃𝟖 𝒃𝟗 𝒃𝟏𝟎 

a1 ENEL SPA 0 0.0011 0.0073 0.0288 0.0474 0.0608 0.0667 0.0656 0.0853 0.0680 

a2 ENI 0.0154 0.0449 0.0407 0.0411 0.0416 0.0357 0.0438 0.0446 0.0414 0.0464 

a3 EDISON SPA 0.0988 0.0423 0.0433 0.0505 0.0398 0.0601 0.0636 0.0701 0.0834 0.0958 

a4 A2A SPA 0 0 0 0.0006 0.0059 0.0142 0.0321 0.0392 0.0403 0.0462 

a5 IREN SPA 0 0 0.0001 0.0011 0.0024 0.0068 0.0133 0.0231 0.0354 0.0506 

a6 ACEA SPA 0.0554 0.0538 0.0547 0.0490 0.0443 0.0556 0.0497 0.0547 0.0467 0.0460 

a7 GRUPPO HERA 0.0091 0.0121 0.0062 0.0125 0.0177 0.0178 0.0292 0.0297 0.0378 0.0466 

a8 EDF 0.0963 0.0573 0.0380 0.0319 0.0276 0.0276 0.0319 0.0322 0.0339 0.0435 

a9 ENGIE SA 0.0010 0.0049 0.0071 0.0174 0.0225 0.0283 0.0399 0.0677 0.0838 0.0954 

a10 E.ON SE 0.0007 0.0039 0.0169 0.0323 0.0459 0.0648 0.0745 0.0935 0.0927 0.0804 

a11 SSE PLC 0 0 0 0 0 0 0 0.0003 0.0024 0.0055 

a12 DRAX GROUP  0.0169 0.0282 0.0301 0.0402 0.0375 0.0371 0.0453 0.0479 0.0416 0.0398 

a13 RWE 0.1110 0.0735 0.0604 0.0696 0.0738 0.0718 0.0618 0.0638 0.0541 0.0482 

a14 EXELON CORP. 0.0781 0.1090 0.1431 0.1259 0.1275 0.1046 0.0826 0.0586 0.0466 0.0301 

a15 AMEREN 0.2370 0.1825 0.1417 0.1127 0.0718 0.0558 0.0438 0.0373 0.0241 0.0203 

a16 DTE ENERGY  0.0725 0.0883 0.0949 0.0750 0.1016 0.0888 0.0784 0.0742 0.0578 0.0556 

a17 XCEL ENERGY 0.0084 0.0875 0.0829 0.1248 0.1042 0.1047 0.0906 0.0651 0.0520 0.0518 

a18 DUKE ENERGY  0.1966 0.1990 0.2033 0.1297 0.1161 0.0707 0.0388 0.0248 0.0135 0.0039 

a19 IBERDROLA 0.0028 0.0089 0.0182 0.0395 0.0359 0.0496 0.0524 0.0526 0.0635 0.0597 

a20 ENDESA 0 0.0028 0.0111 0.0174 0.0365 0.0452 0.0616 0.0550 0.0637 0.0662 
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ALTERNATIVES\RANK 𝒃𝟏𝟏 𝒃𝟏𝟐 𝒃𝟏𝟑 𝒃𝟏𝟒 𝒃𝟏𝟓 𝒃𝟏𝟔 𝒃𝟏𝟕 𝒃𝟏𝟖 𝒃𝟏𝟗 𝒃𝟐𝟎 

a1 ENEL SPA 0.0725 0.0740 0.0814 0.0658 0.0738 0.0687 0.0683 0.0524 0.0102 0.0019 

a2 ENI 0.0641 0.0443 0.0484 0.0519 0.0682 0.0658 0.0561 0.0606 0.0695 0.0755 

a3 EDISON SPA 0.0693 0.0631 0.0537 0.0495 0.0316 0.0290 0.0319 0.0234 0.0008 0 

a4 A2A SPA 0.0634 0.0640 0.0819 0.1057 0.1223 0.1013 0.0687 0.0639 0.1132 0.0371 

a5 IREN SPA 0.0450 0.0468 0.0568 0.0621 0.0823 0.1125 0.1210 0.1677 0.1028 0.0702 

a6 ACEA SPA 0.0401 0.0439 0.0422 0.0403 0.0484 0.0551 0.0764 0.0705 0.0586 0.0146 

a7 GRUPPO HERA 0.0497 0.0512 0.0523 0.0576 0.0744 0.0734 0.0912 0.0962 0.1194 0.1159 

a8 EDF 0.0415 0.0443 0.0431 0.0463 0.0364 0.0407 0.0416 0.0663 0.0892 0.1304 

a9 ENGIE SA 0.1081 0.0993 0.1004 0.0869 0.0597 0.0461 0.0347 0.0541 0.0386 0.0041 

a10 E.ON SE 0.0723 0.0695 0.0825 0.0654 0.0503 0.0480 0.0253 0.0379 0.0432 0 

a11 SSE PLC 0.0089 0.0125 0.0159 0.0205 0.0371 0.0630 0.0945 0.1138 0.1648 0.4608 

a12 DRAX GROUP  0.0431 0.0762 0.0579 0.0725 0.0679 0.0668 0.1025 0.0460 0.0609 0.0416 

a13 RWE 0.0468 0.0340 0.0388 0.0440 0.0531 0.0381 0.0367 0.0160 0.0042 0.0003 

a14 EXELON CORP. 0.0224 0.0190 0.0121 0.0095 0.0088 0.0078 0.0078 0.0038 0.0017 0.0010 

a15 AMEREN 0.0202 0.0185 0.0206 0.0127 0.0009 0.0001 0 0 0 0 

a16 DTE ENERGY  0.0496 0.0352 0.0257 0.0216 0.0287 0.0281 0.0197 0.0042 0.0001 0 

a17 XCEL ENERGY 0.0443 0.0536 0.0374 0.0242 0.0241 0.0259 0.0135 0.0040 0.0010 0 

a18 DUKE ENERGY  0.0036 0 0 0 0 0 0 0 0 0 

a19 IBERDROLA 0.0676 0.0926 0.0912 0.0949 0.0851 0.0826 0.0653 0.0307 0.0068 0.0001 

a20 ENDESA 0.0675 0.0580 0.0577 0.0686 0.0469 0.0470 0.0448 0.0885 0.1150 0.0465 

 

  RAI>0.06 in Top positions (1st group)  RAI>0.06 in Intermediate positions (2nd group)  RAI>0.06 in Last positions (3rd group) 

 

 

 

Figure 2.3 Case (1) “First Scenario”: Rank acceptability indices probability distributions. Authors ‘elaboration. 
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Figure 2.4 Case (1) Downward cumulative rank acceptability indices as line chart. 

2.5.1.2 Case (2) 

Case (2) is performed on the overall set of macro-criteria, considering the DM’s preference 

information as shown in Table 2.5. 

As explained in Section 2.4, six probability distributions of rankings (rank acceptability 

index) are obtained from this case. Looking at Table A-2  in Appendix A that summarizes 

the downward cumulative rank acceptability indices evaluated within cases (1) and (2) (from 

the first to the seventh scenario), we can observe that AMEREN is considered the company 

with the highest probability to get the first position in “second, third and fourth scenarios” 

since 𝑏≤2
15  vary among 38.02% and 55.04%. This is confirmed by Table A-1in which the 

rank acceptability index of AMEREN for the first position is 38.99%, 26.10% and 38.36%, 

respectively, for the second, third and fourth scenarios.  

Otherwise, DUKE ENERGY CORPORATION is the company with the highest probability 

to get the first position in the fifth scenario (23.67%), while EDISON in the sixth (22.74%) 

and seventh scenarios (23.31%). 

The company with the highest probability to be placed in the last position of the ranking is 

SSE PLC for “all the considered scenarios” where 𝑏≤19
11  vary between about 40% and 60%, 

followed by ENI and EDF, respectively, in the “second, third and fourth scenarios” (slightly 

above 80%) and in the “fifth, sixth and seventh scenarios” (slightly above 70%, see Figure 

2.4). 
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2.5.2 Further comments on the results 

Comparison of rank acceptability indices probability distributions deriving from all different 

scenarios of cases (1) and (2) is shown in Table A-1 and Figure 2.5  

 

Figure 2.5 Cases (1) and (2) “From first to Seventh Scenario”: Rank acceptability indices. Authors’ 

elaboration 

Two important findings arise from these cases. 

Firstly, by looking at Figure 2.5 , cases (1) and (2) provide the same global pattern on the 

rank acceptability indices probability distributions for half of the considered companies, 

regardless of the scenario and thus of DM’s preferences we are dealing with. This result is 

evident for companies like IREN SPA, GRUPPO HERA, EDF, SSE PLC, EXELON, 

AMEREN, XCEL ENERGY, DUKE ENERGY, IBERDROLA, ENDESA, confirming 

generally that DM’s preferences do not affect the final ranking results. 

Secondly, from the results of cases (1) and (2), it emerges a diversified picture among 

countries. American companies like EXELON, AMEREN, DTE ENERGY, XCEL 

ENERGY, DUKE ENERGY, show the highest probability to be placed in the first positions 

SCENARIO 1 SCENARIO 2 SCENARIO 3 SCENARIO 4 SCENARIO 5 SCENARIO 6 SCENARIO 7
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(1-7). Instead, European energy companies display two results: a high probability to be 

placed in the worst rank positions (17-20) for SSE PLC, EDF and ENI; and a diversified 

trend, according the scenario under consideration, for most of Italian and German companies 

(ENEL, EDISON, A2A SPA, ACEA SPA, ENGIE SA, E.ON SE, DRAX GROUP, RWE).  

Moreover, HSMAA has been implemented by considering each single dimension (financial, 

sustainability, technical and market) at a time, to provide useful insights into the evaluation 

process and to give a perspective at each node of the hierarchy of the criteria.  

Table A-3 , Table A-4, Table A-5 and Table A-6 in the Appendix A, present the rank 

acceptability indices considering singularly each macro-criterion. 

The outcomes obtained from this last implementation of HSMAA, are different from the 

previous ones of cases (1) and (2). Indeed, the companies with the highest probability to 

arrive first are RWE (60.61%) and EXELON CORPORATION (almost 40%), respectively, 

on the financial and the sustainability macro-criteria, EDISON (39.21% and 40.70%) on 

both the technical and the market macro-criteria. Otherwise, the energy corporation with the 

highest probability to be the worsts are ENI (54.12%), ACEA SPA (37.45%), A2A SPA 

(54.32%) and EDF (38.98%), respectively, on the financial, sustainability, technical and 

market macro-criteria.  

Finally, the Shannon entropy (𝑃𝑅𝐴𝐼𝑘) has been computed on data trimmed for case (1), case 

(2) and at each dimension and shown in Table 2.10. It represents a valuable mathematical 

tool in decision-making problems to measure the uncertainty degree of an information or an 

event (Lofti and Fallahnejad, 2010). In such cases as our, where uncertainty is expressed by 

a probability distribution, Shannon entropy can be useful to specify the quality and the clarity 

of evidence for each alternative to be placed in a certain rank position (Yin et al., 2018; Xiao, 

2019). Hence, the importance of 𝑃𝑅𝐴𝐼𝑘 to be added to the other aforementioned indices of 

this analysis and to be computed according to the formula (9) presented in Section 1.4.1.  

Thus, by looking at Table 2.10 it results that 0 < 𝑃𝑅𝐴𝐼𝑘 <
𝑙𝑜𝑔220

20
= 0.21609, while the 

average values of 𝑃𝑅𝐴𝐼𝑘 computed for cases (1) and (2) highlight how the alternative’s 

uncertainty to be assigned in a given rank position k is higher than in the case where the 

performance evaluation is assessed on each macro-criterion. Therefore, alternatives’ 

uncertainty is wider among different scenarios than at each single macro-criterion
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Table 2.10 Shannon entropy computed on data trimmed for case (1), case (2) and at each dimension. Authors’ 

elaboration. 

Shannon entropy 

Cases Case (1) Case (2) HSMAA implementation on each macro-

criterion Scenarios Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6 Scenario 7 

Criteria All criteria All criteria All criteria All criteria All criteria All criteria All criteria Financial Sustainability Technical Market 

𝐛𝟏 0.15532 0.11830 0.13506 0.11460 0.14674 0.15293 0.15069 0.04836 0.11224 0.08777 0.11058 

𝐛𝟐 0.169845 0.145912 0.160121 0.144753 0.153872 0.172029 0.174470 0.08181 0.148948 0.086440 0.15467 

𝐛𝟑 0.175190 0.160649 0.166035 0.152889 0.163250 0.177410 0.181018 0.11482 0.142515 0.114543 0.17509 

𝐛𝟒 0.189609 0.175662 0.185842 0.173852 0.184147 0.185790 0.185276 0.12355 0.144631 0.112341 0.17953 

𝐛𝟓 0.195534 0.181891 0.189643 0.179907 0.191837 0.194653 0.193301 0.12058 0.133250 0.144464 0.17243 

𝐛𝟔 0.201853 0.188141 0.191925 0.185808 0.200093 0.203041 0.202872 0.14864 0.149805 0.107330 0.17846 

𝐛𝟕 0.206998 0.193707 0.198101 0.193954 0.206134 0.206918 0.208358 0.14077 0.164764 0.136196 0.18390 

𝐛𝟖 0.208114 0.194965 0.200595 0.194348 0.207004 0.208949 0.209850 0.11990 0.169296 0.149769 0.18304 

𝐛𝟗 0.207089 0.192278 0.200896 0.189293 0.203926 0.208906 0.208048 0.13667 0.161081 0.126856 0.18049 

𝐛𝟏𝟎 0.206450 0.189060 0.202416 0.187114 0.204256 0.207487 0.206240 0.14863 0.137747 0.148709 0.18817 

𝐛𝟏𝟏 0.206489 0.186206 0.205234 0.189401 0.202278 0.207496 0.206085 0.08091 0.152988 0.135739 0.16972 

𝐛𝟏𝟐 0.204978 0.189987 0.203381 0.190979 0.196600 0.204972 0.204163 0.12639 0.113827 0.132387 0.16764 

𝐛𝟏𝟑 0.203847 0.189383 0.204283 0.188336 0.194732 0.205409 0.204502 0.08010 0.155814 0.133887 0.17371 

𝐛𝟏𝟒 0.202372 0.185709 0.203158 0.186694 0.192851 0.203904 0.202003 0.12640 0.140258 0.137671 0.16598 

𝐛𝟏𝟓 0.200525 0.176280 0.200208 0.180332 0.194333 0.200438 0.200337 0.14466 0.140614 0.110119 0.15126 

𝐛𝟏𝟔 0.200222 0.174819 0.197356 0.177573 0.194257 0.200633 0.200987 0.12782 0.138296 0.140805 0.14886 

𝐛𝟏𝟕 0.196172 0.172802 0.190342 0.167471 0.186918 0.197569 0.200060 0.10684 0.106454 0.144013 0.14576 

𝐛𝟏𝟖 0.187864 0.169767 0.169041 0.158273 0.178079 0.183074 0.180664 0.11264 0.123832 0.151502 0.12836 

𝐛𝟏𝟗 0.173636 0.157988 0.156657 0.153344 0.160554 0.159787 0.159759 0.07171 0.098618 0.142019 0.11873 

𝐛𝟐𝟎 0.126781 0.122312 0.115055 0.113989 0.107928 0.092707 0.099174 0.04975 0.107489 0.072477 0.08344 
            

min 0.126781 0.118308 0.115055 0.113989 0.107928 0.092707 0.099174 0.04836 0.098618 0.072477 0.08344 

max 0.208114 0.194965 0.205234 0.194348 0.207004 0.208949 0.209850 0.14864 0.169296 0.151502 0.18817 

mean 0.190945 0.173291 0.183768 0.171146 0.183490 0.188705 0.188893 0.11055 0.137124 0.125752 0.15799 

2.6 Conclusions and policy implications 

In this chapter, we have ranked twenty European and American listed corporations operating 

in the energy sector based on their performance. We have employed the HSMAA method, 

an extension of SMAA-2, to handle simultaneously with a hierarchical structure of criteria 

and Decision Maker’s uncertainty on the preference model parameters. The literature on 

firm’s performance evaluation has been enriched with the introduction of more specific 

energy criteria along three dimensions: sustainability, technical and the market criteria in 

addition to the usual financial ones.  Among these, one of the most important are the market 

criteria, which provide a good measure of the market profile in which the energy company 

is located, giving more exhaustiveness and reliability to the analysis of this complex sector. 

Moreover, to test the robustness of the ranking results, several uncertainty scenarios, which 

translate the DM’s preferences, have been considered. More specifically, two cases have 

been analysed, obtaining in total seven different scenarios, fully described in the previous 

Section. 

Two important findings derive from these cases. Firstly, cases (1) and (2), provide on half 

of the considered companies almost the same results on the rank acceptability indices 

distributions, regardless the DM’s preferences on criteria weights. Secondly, a diversified 

picture among countries; American companies show the highest probability to be placed in 

the first positions (1-7), while European energy companies either get the worst rank positions 

(17-19) or display a trend varying according to the scenario under consideration.  
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Therefore, in between bottom and top positions, we find that many companies’ rankings vary 

widely by the chosen set of criteria weights, exemplifying the need to rank companies based 

on multiple sets of criteria weights. 

Moreover, by implementing HSMAA on each single dimension at a time (financial, 

sustainability, technical and market), it gives different results than the previous ones, 

according to the DM’s perspective focused on a given macro-criterion or another. 

The methodology employed in this analysis is undoubtedly useful for all categories of 

stakeholders dealing with firm’s performance evaluation, such as investors, business leaders, 

and policy makers, for two kinds of reasons.  

Firstly, stakeholders can use cases (1) and (2) in their decision-making process, for 

examining several perspectives simultaneously. In particular, potential investors can direct 

their investment decisions more safely, taking into account all the most important aspects 

affecting the firm’s performance evaluation of energy companies. Instead, business leaders 

and policy makers can use this method to check strengths and weaknesses of companies’ 

performances within a given country, evaluating also the possible differences of 

implementation of energy policies among countries. Indeed, the ranking stability reached by 

some companies on uncertainty scenarios, give deep insights into their performances. The 

companies ranked in the first positions, whatever uncertainty scenario is considered, are 

good companies from all of the hierarchical structure criteria point of view: financial, 

sustainability, technical and market. Therefore, for these companies, any sort of policy 

intervention is needed to enhance their performances and to guarantee reliable services to 

customers. Similarly, the same considerations can be done for the companies in the last 

positions. In this case, policy makers can detect which companies are not wealthy on the 

whole set of criteria and may cause problems to customers, for example in the erogation of 

energy services. In this regard, the policy intervention is needful to ensure the continuity of 

the services. 

Instead, for the companies which are unstable in the rankings under the different scenarios, 

it can be useful for policy makers to analyse the scenarios in which a company has a 

good/bad position to emphasize its strengths and weaknesses and consequently to implement 

proper energy policies. For example, under the fifth scenario, where sustainability criteria 

are considered more important than financial criteria and market criteria are more important 

than technical criteria, the best two companies (with a downward cumulative rank 

acceptability index on the first five positions slightly more than 80%) are Exelon and 

Ameren. Their strengths are on the sustainability and market criteria; otherwise, their 

weaknesses are on technical and financial criteria. For these companies it would be advisable 

to preserve their potential on low levels of pollutants emissions and high rates of renewable 

energy resources employed in the production as well as their strong price to book ratio and 

to act with policies able to reinforce their technical inefficiency or the perception that 

customers have on the quality of delivered services. The companies involved in this study 

belong to different countries and it is difficult to consider a unique energy policy, which 

regard all the companies in the sample. For the sake of simplicity, we limit the analysis to 

European context considering, among different energy policies, one important document i.e 
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the EU Energy Roadmap for 2050 (EU Commission, 2011), which addresses three principal 

objectives: sustainability, competitiveness and energy security. Moreover, the EU Energy 

Roadmap illustrates alternative development paths with respect to different scenarios 

followed by companies of European energy system, to reduce greenhouse gas emissions by 

2050. The scenarios change in terms of energy sources and technologies, level of demand, 

reduction of technologies. It is worthy to note that the objectives of the EU Energy RoadMap 

are in line with the framework of criteria selected in this study. For this reason, it could be 

useful in the future to implement the methodology employed in different years to test if the 

scenarios considered by the Energy Roadmap can affect the companies in terms of overall 

performance of the European companies. 

Secondly, stakeholders can use HSMAA on each dimension to consider one perspective at 

once. For instance, potential investors may be interested in focusing one dimension that is 

the most viable for its own capital allocation purposes, achieving different solutions 

according the single criteria under observation. Instead, policy makers, by looking at one 

criteria at time, can understand if there are substantial differences among countries and 

formulate new energy policies based on each macro-criterion. They can have a wide range 

of options: expansive fiscal policies for financial aspect; financial subsidies for countries, 

which adopt clean technologies and contain greenhouse gases emissions for environmental 

perspective; significant infrastructure investments to reduce waste on the grid and 

transmission networks for technical elements; important actions to give reliability and 

affordability improvement to energy systems for market criteria.  

Understanding the general situation in which a country is, will be useful to formulate and 

then implement new energy policies to address towards those companies that are in the 

lowest positions of the final ranking, like the European ones.  

While our study focuses only on the performance evaluation of energy companies, it is 

conceivable that the adoption of this methodology could be implemented in other sectors, 

but it is crucial to consider the adequate set of criteria it thinks can affect the performance 

evaluation of the companies operating in that specific sector.  

We hope this study motivates future research on the implementation of MCDA models to 

assess the performance of companies taking into account also other perspectives than the 

single financial one. 

Moreover, it is worthy to notice that the employed method HSMAA has some limitations 

since it considers criteria with a monotone direction of preference even if this aspect is 

commonly shared by several multicriteria methods. Indeed, it is acknowledged in literature 

that some criteria have not a monotone direction of preference (see Doumpos, 2012) as for 

example the criterion  Electrical factor capacity considered in the real life problem of this 

study.  For example, it is clear that 80% is better than 20% (too much capacity sitting idle), 

but 100% is not better than 80%, meaning that the company cannot keep up with an increase 

in demand.  

Another limitation of the employed methodology is the selected method to normalize and 

aggregate the data, which can be affected respectively by the presence of outliers and by the 

full compensation level. With regard to the normalization method, here, the issue of the 
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outliers has been overcome by trimming the data, while the implicit trade-offs problem could 

arise by changing the min-max normalization method with another one (Carrino, 2017 and 

Gasser et al., 2019). Whereas, with regard to the aggregation of data, the main problem of 

the additive approach is the unenforceability to the real-world cases that might be solved by 

applying partial compensation based methods with normalization approaches including only 

positive values different from zero. 
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Chapter 3 

Assessment of a failure prediction model in the 

energy sector: a multicriteria discrimination 

approach with PROMETHEE based classification5 
 

 

In this chapter we presents the implementation of a non-parametric multiple criteria decision 

aiding (MCDA) model, the Multi-group Hierarchy Discrimination (M.H.DIS) model, with 

the Preference Ranking Organization Method for Enrichment Evaluations (PROMETHEE), 

on a dataset of 114 European unlisted companies operating in the energy sector. 

Firstly, the M.H.DIS model has been developed following a five-fold cross validation 

procedure to analyze whether the model explains and replicates a two-group pre-defined 

classification of companies in the considered sample, provided by Bureau van Dijk's 

Amadeus database. Since the M.H.DIS method achieves a quite limited satisfactory accuracy 

in predicting the considered Amadeus classification in the holdout sample, the 

PROMETHEE method has been performed then to provide a benchmark sorting procedure 

useful for comparison purposes.  

The analysis indicates that in terms of average accuracy, M.H.DIS model development with 

the PROMETHEE based classification provides consistently better results compared to the 

one obtained with the Amadeus classification in the majority of combinations, which have 

been built with the financial variables covering the main firm’s dimensions such as 

profitability, financial structure, liquidity and turnover. 

3.1 Background 

In last decades, some energy companies faced severe financial soundness issues due to 

flawed risk management actions of banks and deregulation processes introduced in the 

European energy industry on December 1996. For instance, the recent directives 

implemented to liberalize the European electricity sector, outlined in Section 1.2.1.1, were 

aimed to lower consumers’ prices and to create a more competitive context (Kočenda and 

Čábelka, 1998; Meyer, 2003). However, for the specific features of the energy sector such 

as the large infrastructure costs and the economic difficulties to replicate the transmission 

lines, the wholesale prices of energy market remained significantly high and their associated 

                                                 
5 This study is currently under review in the journal of “Expert Systems with Applications”. The present work 

is a combined effort of the two authors: Silvia Angilella and Maria Rosaria Pappalardo. However, Maria 

Rosaria Pappalardo contributed in conceptualization, data searching and analysis, writing; Silvia Angilella 

contributed in conceptualization and supervision.  
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sales volume low. Hence, several financial distresses have occurred within the energy sector. 

Various case studies across the world give examples of energy companies being challenged 

by deregulation processes (see Section 1.2.1.3 for a detailed description of energy 

companies’ failures). These failures generated serious effects on the economy of a country, 

which have been promptly faced by governments’ interventions, such as large expenses on 

the whole country’s economy where the crash has taken place.  

In order to prevent possible macro-economic effects, the monitoring of energy companies’ 

financial performances is crucial. 

In this regard, after deregulation processes, several studies have been mainly focused on the 

issue of assessing market (Denton et al., 2003), financial (Bjorgan, 1999) and price risk 

(Dahlgren et al., 2003). Despite the relevance of the topic, few studies have been specifically 

devoted to credit risk assessment of companies operating in this sector; the only one is the 

work of Silva and Pereira (2014) that assesses the credit risk of thirty renewable energy 

companies sited in Portugal employing a traditional linear regression model.  

The corporate failure prediction models mainly employed in literature, concern the 

traditional statistical, econometric and machine learning techniques. However, as 

highlighted in Section 1.3.3, these techniques lack of specific features that current experts 

increasingly require, such as the ordinal risk grades and the monotonicity assumptions, 

which instead fit well in multi-criteria decision aiding (MCDA) models. All these attributes 

along with their transparency, simplicity of use and incorporation of DM’s preferences, 

make these models more effective than traditional ones.  

For these reasons, and for their wide implementations to the issues of credit risk assessment 

in different fields such as banking, corporate and country analysis, the purpose of this chapter 

is to develop a Multi-criteria decision aiding (MCDA) model for credit risk analysis of a set 

of European unlisted companies operating in the energy sector.  

As detected in Section 1.3.3, since one of the most efficient multi-criteria discrimination 

model is the Multi-group Hierarchy Discrimination (M.H.DIS) technique elaborated by  

Zopounidis and Doumpos (2000), this chapter aims to apply this method to a balanced 

sample of 114 active and inactive energy companies for up to four years prior the financial 

distress occurred. In order to observe whether a pre-defined classification of companies in 

two categories, active and inactive ones, provided by Bureau van Dijk's Amadeus database 

is well replicated by the model, a five-fold cross validation has been performed on companies 

of the sample.  

Despite what we expect, the average accuracy rate of the M.H.DIS model developed on 

Amadeus classification is not quite satisfactory in the holdout sample of the analysis. 

Therefore, in this study we consider a further well-known multicriteria decision aid model, 

the Preference Ranking Organization Method for Enrichment Evaluations (PROMETHEE 

II) (presented for the first time in Mareschal et al., 1984), on which a classification of firms 

in the sample is based. Such classification acts as benchmark sorting on which to compare 

the accuracy of the discrimination model.  

To deal with this aim, we identify first six financial ratios that in our analysis result the most 

powerful in highly discriminating between the two categories of companies. Then, they have 
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been considered in all the possible combinations of subsets of three criteria and employed in 

turn in the building of PROMETHEE II classification first and M.H.DIS model development 

then.  

Thus, the contribution of this study is fourfold: 

 we address the literature gap in multicriteria sorting models (Section 1.3.3), 

enriching applications of the M.H.DIS model also on credit risk assessment of 

energy companies;  

 we extend the M.H.DIS model development with a well-established multicriteria 

outranking model, the PROMETHEE II method, to provide a benchmark sorting 

procedure to compare with the pre-defined classification given by Amadeus 

database;  

 we suggest a novel use of the proposed discrimination model to support the credit 

risk assessment process for firms lacking of a synthetic judgment provided by 

credit rating agencies (CRAs);  

 we provide a more consistent and robust discrimination model in terms of 

average and overall accuracy rate. The robustness is examined over time, under 

different combinations of financial variables, under different preference 

functions employed for PROMETHEE classification and simulating the criteria 

weights in different scenarios. 

The rest of the chapter is organized as follows. Section 3.2 presents the data used in the 

analysis and the sampling procedure. Section 3.3 discusses about the building of M.H.DIS 

model starting from a three steps selection procedure of the most predictive variables in 

discriminating between active and inactive companies. Section 3.4 shows the results of the 

M.H.DIS model in terms of accuracy for the AMADEUS classification, whereas Section 3.5 

develops a specific classification of companies according the PROMETHEE II method for 

comparison purposes. Section 3.6 summarizes the main findings. Section 3.7 concludes the 

study and discusses some future directions of research. 

3.2 Data collection 

The first step to develop a risk assessment model is the selection of the firms’ sample. The 

primary source for the collection was the database of Bureau van Dijk's Amadeus. We have 

looked for unlisted companies with the NACE code 35 used as filter, which covers the main 

industrial sectors in the energy sector. Within the NACE code 35, we have chosen 

specifically the code 351, indicating electricity, gas, steam and air conditioning supply 

sector, articulated in the electricity production, transmission, distribution and trade 

segments. Among the unlisted companies operating in the energy supply chain, only those 

located in the 28 countries of the European Union, with active and inactive status, have been 

selected. An inactive company is defined by Amadeus like the one that is in liquidation, 

bankruptcy or dissolved (merger, take-over, demerger). Thus, the original sample consists 

of 219 inactive companies and 5736 active companies that has been further cleaned up of all 
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missing values also in relation to the identified events of financial distress spanning the 

period 2013-2018 chosen in this study. Hence, inactive and active companies have been 

reduced respectively to 57 and 1551. Then a stratified resampling method, consisting of 

deriving the same number of failed and non-failed firms by matching them to the inactive 

ones of the same size, has been applied to the original sample, to avoid problems of 

inconsistent parameter estimation and under-valuate misclassification error rate that may 

arise with an unbalanced sample (Stanghellini, 2009). According to a careful screening 

process, the 1551 active companies have been classified into four groups (large, medium, 

small and micro-companies) with respect to their size, which is traditionally measured by 

three parameters: number of employees, annual revenues and annual assets. The four groups 

have been labelled as follows: Large (1), Medium (2), Small (3) and Micro (4). Thus, the 

number of active companies, denoted as 𝐴𝑐𝑡𝑖𝑣𝑒𝑗  with 𝑗 ∈ {1,2,3,4}, and belonging to each 

category, has been reduced by applying the following formula: 

𝐴𝑐𝑡𝑖𝑣𝑒𝑗 = 𝑇𝑜𝑡.  𝐼𝑛𝑎𝑐𝑡𝑖𝑣𝑒 ⋅ (
𝑛𝑗

𝑇𝑜𝑡.  𝐴𝑐𝑡𝑖𝑣𝑒
), (24) 

with  𝑛𝑗  denoting the number of large, medium, small and micro active companies, 

𝑇𝑜𝑡. 𝐼𝑛𝑎𝑐𝑡𝑖𝑣𝑒 and 𝑇𝑜𝑡. 𝐴𝑐𝑡𝑖𝑣𝑒 indicating, respectively, the total number of inactive and 

active companies. 

Thus, the final sample constructed through the above procedure involves 28 countries and 

consists of 114 unlisted European energy companies.  

Table 3.1 shows the balanced sample classified into inactive and active companies obtained 

after the stratified resampling method of 1551 active companies, whereas Table B-1 in the 

Appendix B displays the set of 114 Energy companies distributed per country. 

Table 3.1 Balanced sample after the stratified resampling method. Authors’ elaboration 

 SIZE OF COMPANIES  
STATUS OF ENERGY COMPANIES LARGE MEDIUM SMALL MICRO TOTAL 

INACTIVE 28 8 17 4 57 

ACTIVE 827 635 83 6 1551 

ACTIVE AFTER RESAMPLING METHOD 30.392 23.336 3.050 0.220 57 

ACTIVEj 30 23 3 1 57 

Moreover, a five-fold cross-validation has been performed in order to eliminate the problem 

of small sample and to develop the model adequately. Thus, the final balanced sample 

consisting of 114 energy companies has been split, in a random way, into five mutually 

exclusive folds of equal size composed respectively of training and test set in the proportion 

of 80% and 20%. Each fold contains a training set of 92 companies to fit the model and a 

test set of 22 companies for validation purposes. The average accuracy rate over all the five 

folds is the cross-validated accuracy rate. 
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3.3 M.H.DIS model building 

The Multi-group Hierarchy Discrimination model (M.H.DIS) of Zopounidis and Doumpos 

(2000) has been applied here to solve the sorting problem of the assignment of the selected 

energy companies into predefined ordered classes. 

We recall briefly the basic notation used in this model and detailed described in Section 

1.4.2:   

 𝐴 = {𝑎1,⋯ 𝑎𝑗 , ⋯ , 𝑎𝑚} is the set of finite alternatives; 

 𝐺 = {𝑔1,⋯ 𝑔i, ⋯ , 𝑔𝑛} is the set of consistent criteria with an increasing or decreasing 

direction of preference order;  

 𝑎𝑗𝑖  is the evaluation of alternative 𝑗 on criterion 𝑖; 

 C = {𝐶1 ≻ ⋯ ≻  𝐶𝑘 ⋯ ≻ 𝐶𝑝} is the set of 𝑝 ordered categories from the best (or 

healthiest) 𝐶1 to the worst (or riskiest) 𝐶𝑝; 

 B = {𝑏1, ⋯ 𝑏𝑟 , ⋯ , 𝑏𝑠} is the subset of alternatives 𝐴 composing the training sample, 

used for model development; 

 𝐷 = {𝑑1, ⋯𝑑𝑠, ⋯ , 𝑑𝑡} is the subset of alternatives composing the test sample, used 

for validation purposes with  𝐵 ∩ 𝐷 = Ø.  

In order to sort companies of training set, M.H.DIS model applies the following hierarchical 

technique. At stage 𝑘 = 1 the procedure considers the best category 𝐶1 to which companies 

of training set (𝑏r) can belong and a pair of additive utility functions are built by the model 

to discriminate companies belonging to the healthiest category 𝐶1 and companies belonging 

to the remaining riskier categories than 𝐶1 (i.e. 𝐶2 in our context). At this stage if the global 

score of the estimated additive utility function of healthiest category for alternative 𝑏r , is 

higher than the global score of the estimated additive utility function of the riskiest 

categories, then 𝑏r is classified to category 𝐶1; otherwise company 𝑏r does not belong to 

class 𝐶1 and the procedure will continue to stage 𝑘 = 2 analogously. The model will build 

as many pairs of additive utility functions as 𝑝 − 1 classes to which companies have to be 

sorted (see Section 1.4.2 and Section 1.4.2.1 for a full description of the M.H.DIS model 

development). 

Thus, once the final sample has been balanced (Table 3.1), the development of credit risk 

assessment model requires a careful selection of predictor variables able to well discriminate 

among active and inactive companies. In the next section, a literature review of independent 

variables most widely employed in failure prediction models is discussed, whereas Section 

3.3.2 involves a careful screening in three steps, able to detect variables with a high 

explanatory and discriminating power between active and inactive companies.  
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3.3.1 Independent variables selection: literature review in failure 

prediction models 

A large growing body of literature on failure prediction models based on Financial Ratios 

(FRs) is available for their easiness of assessment from the financial statements (Altman, 

1968; Beaver, 1966; Ohlson, 1980). Usually, the employed FRs have been grouped 

according to the main firms’ dimensions such as profitability, financial structure, liquidity, 

solvency, turnover and activity, which provide insights on how companies’ internal aspects 

affect their risk of failure.  

Generally, scholars have adopted a wide range of predictor variables in numerous scientific 

research studies; however, analytical predictive models have to comply with a tradeoff: a 

limited set of predictors to fit the model, able to represent all relevant information without 

creating overlapping, together with a low over-fitting on the training sample and a high 

performance on the test sample.  

For these reasons, a careful screening process has to be performed to provide more accuracy 

in the distress prediction model.  

This section deals with one of the initial steps in the development of a failure prediction 

model: the selection of the most predictive variables that could have a strong effect on the 

output (Saltelli et al., 2010; Saltelli et al., 2004). It consists of the review of the distress 

prediction literature with special attention to the most predictive variables employed in the 

energy sector (see for a literature review of FRs on failure prediction models: Xu et al., 2019; 

Liang et al., 2016; Du Jardin, 2016). Table 3.2 shows the set of 42 FRs derived from the 

literature review, which are classified according to six firms’ dimensions, together with their 

acronyms and definitions. The list includes also other FRs measuring the company size, 

because some scholars suggest that dimensional difference among companies is a key factor 

affecting the company’s default probability. To this aim, we include two other variables 

widely used in literature, namely total assets and total sales revenue as proxies for the firm 

size (Al-Khazali and Zoubi, 2005). Variables denoted with * have been eliminated from 

Table 3.2 because of abridgement of the information provided by the financial statements of 

Amadeus. Then the total number of FRs used for subsequent analysis has been reduced to 

37.  
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Table 3.2 Financial ratios derived from literature review of failure prediction models. 

FINANCIAL RATIOS (FRs) 

Acronym Variables Definition Tot. 

PROFITABILITY  

EBIT_TA EBIT/tot. assets Ebit/tot. assets 

11 

LTDR Long-term debt ratio Long-term debt/tot. assets 

OP_MARG Operating margin EBIT/net sales 

PROF_MARG Profit margin Net income/net sales 

ROE ROE Net income/stareholders’ equity 

ROA ROA Net income/ tot. assets 

ROCE ROCE EBIT/(currents assets-current liabilities) 

EBIT_EQ EBIT/shareholder funds EBIT/shareholder funds 

EBITDA_TA EBITDA/tot. assets EBITDA/tot. assets 

CF_TA Cash flow/tot. assets Cash flow/tot. assets 

CF_EQ Cash flow to equity Cash flow/shareholders' equity 

FINANCIAL STRUCTURE  

EQ_RATIO Equity ratio Tot. equity/ tot. assets 

7 

FAT Fixed asset turnover Net sales/ fixed assets 

*IC *Interest coverage *EBIT/interest expense 

TD_TA Tot. debts/ tot. assets (long-term debt + current liabilities)/tot. assets 

LTD_EP Long-term debt/ shareholder funds Long-term debt/shareholder funds 

NOWC Net op. work. capital/ tot. assets (current assets-current liabilities)/tot. assets 

TD_EQ Tot. debt/shareholder funds (long-term debt + current liabilities)/shareholder funds 

LIQUIDITY  

CA_TA Current assets/tot. assets Current assets/tot. assets 

10 

CR Current ratio Current asset/current liabilities 

DR Debt ratio Total liabilities/tot. assets 

WC_TA Working capital/total assets Working capital/tot. assets 

CASH_CL Cash/current liability Cash/current liability 

CASH_TA Cash/tot. assets Cash/tot. assets 

CL_TA Current liability/tot. assets Current liability/ tot. assets 

TLTA* 
One if total liabilities exceeds tot. assets, zero 

otherwise 

One if total liabilities exceeds tot. assets, zero 

otherwise 

CASH_CA Cash/current assets Cash/current assets 

CF_CL Cash flow/current liabilities Cash flow/current liabilities 

SOLVENCY  

FE_EBITDA Financial expenses/EBITDA Financial expenses/EBITDA 

3 FE_NI Financial expenses/net income Financial expenses/net income 

FE_TA Financial expenses/tot. assets Financial expenses/tot. assets 

TURNOVER  

CL_TS Current liabilities/tot. sales Current liabilities/tot. sales 

4 
CA_TS Current assets/tot. sales Current assets / tot. sales 

*NAT *Net asset turnover *Net sales/tot. assets 

WC_TS Work. Capital/tot. sales Work. Capital/tot. sales 

ACTIVITY/GROWTH  

CF_NS Cash flow/sales Cash flow/sales 

4 
GROW_TA Growth ratio of tot. assets (tot assets/tot. assets t-1)-1 

EBITDA_TS EBITDA/tot. sales EBITDA/tot. sales 

*NI_GROW *Net income growth *(Nit – NIt-1)/(|NIt|+ |NIt-1|), NIt : latest net income 

OTHERS  

*ORPE *Operating revenue per employee *Operating revenue/n.employee 

3 TA Tot. assets Tot. assets 

SALES Tot. sales revenue Tot. sales revenue 

Total FRs 42 

Moreover, for each firm, financial data have been collected for up to four years prior the 

financial distress occurred due to limited data availability on Amadeus Database and, for the 

sake of simplification in the final results, they have been indicated with year-1, year-2, year-

3, year-4. For instance, for a firm that faced financial distress in 2014, the collected financial 

data span the period 2013-2010 in which 2013 represents the year before its financial distress 

(year-1), corresponding also to the last year of available information on Amadeus database, 

and years 2010-2011-2012 represent respectively the year-2, year-3 and year-4 before the 
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company’s financial distress. Since the last available data cover a period between 2013 and 

2018, the current sample actually covers the period 2013-2018. 

Thus, each variable of Table 3.2 has been considered throughout four years’ time span and 

their selection, implemented only on the training sample, has been performed with the 

following stages:  

(1) A discriminatory power analysis of the 37 FRs through the information value for the 

four years considered;  

(2) The t-test t has been applied on the selected variables of the previous stage; 

(3) A correlation analysis has been also performed to eliminate the issue of overlapping 

information measuring the same characteristics.  

3.3.2 Independent variables selection: Information value, t-test and 

correlation analysis 

The sample identification of the variables over the four years considered with the highest 

explanatory relationship with the credit risk is composed of the three aforementioned steps 

that we discuss in detail in this section.   

Stage 1. Information Value (𝐼𝑉) has been often used in credit scoring model as benchmark 

value to distinguish variables with no or weak predictive power, useless for credit risk 

modelling, from those with medium or high predictive power, decisive in increasing the 

accuracy of the final model (see Yap et al., 2011 and Nikolic et al., 2013 for its application).  

Information Value is computed according to the following formula:  

𝐼𝑉𝑖 = ∑((𝑎𝑐𝑡𝑖𝑣𝑒𝑗 − 𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑗) ∙ 𝑊𝑂𝐸𝑗)

𝑚

𝑗=1

, (25) 

where 𝐼𝑉𝑖 is the information value of variable 𝑖 under consideration, 𝑚 is the total number 

of companies in the sample, 𝑎𝑐𝑡𝑖𝑣𝑒𝑗 and 𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑗 represent respectively the proportion of 

active and inactive companies for the variable 𝑖 over 𝑚, 𝑗 is the index relative to the company 

to evaluate and 𝑊𝑂𝐸 is the weight of evidence, calculated with the formula: 

𝑊𝑂𝐸𝑗 = 𝑙𝑛 (
𝑎𝑐𝑡𝑖𝑣𝑒𝑗

𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑗
). (26) 

Moreover, in order to determine if the predictive power of independent variables is poor, 

medium or high with respect to company’s creditworthiness, the thresholds values, as 

determined by Siddipi (2012), have been computed (see Table 3.3).  

Table 3.3 The predictive value of 𝐼𝑉 according to Siddipi (2012) interpretation. 

Predictive value 𝑰𝑽 

useless for prediction <0,05 

weak predictor 0,05<𝐼𝑉<0,01 

medium predictor 0,01<𝐼𝑉<0,25 

strong predictor 0,25<𝐼𝑉<0,50 

suspicious or too good to be true 𝐼𝑉>0,50 
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With respect to the previous analysis, three variables have been eliminated from information 

value analysis because of their null or weak predictive power (𝐼𝑉 < 0.1) in financial distress 

modelling in at least three years, namely: TD_EQ, CL_TA and FE_TA; otherwise variables 

in which the information value is predictive in at least two or three years, have been retained 

for stage 2, together with those variables in which 𝐼𝑉 is predictive in all the considered years. 

Stage 2. In this step, another useful discriminatory power indicator, the t-test, has been 

applied on the remaining 34 variables obtained at stage 1, in order to analyze which variables 

well discriminate on average between failed and not-failed companies.  A p-value less than 

10% has been considered as confidence interval to define high predictive variables in failure 

prediction model; otherwise, predictors with a not significant p-value for at least three years 

have been removed for a further analysis. In this stage, it results that only the following eight 

variables have been selected: ROA, EBITDA_TA and CF_TA regarding the profitability 

dimension; EQ_RATIO and TD_TA the financial structure; CA_TA and DR the liquidity 

condition and CA_TS the turnover aspect. 

From stage 2, it is worthy to notice that solvency and activity categories have not predictive 

power in determining the failure of companies operating in the energy sector as well as the 

size variables, introduced in this analysis to consider the difference among companies in 

terms of dimensions. This last result contradicts some credit scoring studies conducted in 

other sectors, suggesting the significant impact of firm’s size on the future companies’ 

probability to fail.  

Stage 3. Finally, a pairwise correlation analysis has been implemented on the eight variables 

selected in the previous step for each year of observation (year-1, year-2, year-3 year-4), to 

eliminate the potential issue of overlapping information leading to the high overfitting on 

training sample and low performance on test sample. A correlation coefficient greater or 

equal than |0.5| suggests a high correlation strength between each pair of variables. over all 

the considered years.  

Table 3.4 presents the results of the correlation analysis from which it is observed that the 

CF_TA and DR are highly correlated with at least two other variables over all the considered 

years.  

Table 3.4 Pearson correlation coefficients among financial variables selected in stage 2 for all periods 

considered. Source: Statistical Software Stata 

Year-1 
 ROA EBITDA_TA CF_TA EQ_RATIO TD_TA CA_TA DR CA_TS 

ROA 1        

EBITDA_TA -0.1373 1       

CF_TA 0.6866* -0.1062 1      

EQ_RATIO 0.4342 0.0957 0.5831* 1     

TD_TA -0.4037 -0.0832 -0.5880* -0.8448* 1    

CA_TA -0.2821 0.0911 -0.4155 -0.3310 0.3829 1   

DR -0.4342 -0.0957 -0.5831* -1.0000* 0.8448* 0.3310 1  

CA_TS -0.1349 -0.0509 -0.0930 -0.0541 0.0769 -0.0138 0.0541 1 

Year-2 

ROA 1        

EBITDA_TA 0.5359* 1       

CF_TA 0.6122* 0.9467* 1      

EQ_RATIO 0.2671 0.4566 0.5365* 1     

TD_TA -0.2010 -0.1583 -0.1930 -0.6910* 1    

CA_TA -0.0634 -0.2232 -0.2177 -0.2874 0.3823 1   

DR -0.2671 -0.4566 -0.5365 -1.0000* 0.6910* 0.2874 1  

CA_TS -0.0765 -0.0976 -0.0736 -0.0064 0.0417 -0.0030 0.0064 1 
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Year-3 

ROA 1        

EBITDA_TA 0.7513* 1       

CF_TA 0.4590 0.3496 1      

EQ_RATIO 0.3317 0.2121 0.1847 1     

TD_TA -0.2110 -0.2373 -0.1039 -0.7014* 1    

CA_TA -0.0261 -0.2426 0.0565 -0.2217 0.3151 1   

DR -0.3317 -0.2121 -0.1847 -1.0000* 0.7014* 0.2217 1  

CA_TS -0.0853 -0.2223 -0.0859 -0.0931 0.0329 -0.0225 0.0931 1 

Year-4 

ROA 1        

EBITDA_TA 0.7554* 1       

CF_TA 0.9081* 0.8129* 1      

EQ_RATIO 0.2990 0.1106 0.3160 1     

TD_TA -0.1754 -0.1331 -0.2141 -0.6974* 1    

CA_TA 0.0763 -0.1142 -0.1651 -0.1774 0.2130 1   

DR -0.2990 -0.1106 -0.3160 -1.0000* 0.6974* 0.1774 1  

CA_TS -0.1677 -0.2333 -0.1812 -0.1117 0.0738 -0.0245 0.1117 1 

* correlation coefficient ≥ |0.50| 

CF_TA and DR have been removed from further considerations in the analysis to avoid 

multi-collinearity problems with the development of M.H.DIS model.  

Thus, after performing the examined three steps procedure, six Financial Ratios have been 

retained covering different aspects of firms’ main features related to profitability (ROA and 

EBITDA_TA), financial structure (EQ_RATIO and TD_TA), liquidity (CA_TA) and 

turnover (CA_TS).  

Table B-2  in the Appendix B summarizes the results obtained from the previous steps.  

In what follows, we apply the M.H.DIS method using the selected variables, summarized in 

Table 3.5, as evaluation criteria.  

Table 3.5 List of the six financial variables selected through the three steps procedure. Authors’ elaboration 

Acronym Variables Category Preference direction 
ROA ROA profitability max 

EBITDA_TA EBITDA/tot. assets profitability max 

EQ_RATIO Equity ratio financial structure max 

TD_TA Tot. debts/tot. assets financial structure min 

CA_TS Current assets/tot. sales turnover min 

CA_TA Current assets/tot. assets liquidity max 

3.4 M.H.DIS model development and main results 

The M.H.DIS model proposed by Zopounidis and Doumpos (2000) has been developed 

through the following steps.  

Initially, a performance matrix has been built in order to organize the dataset in alternatives 

and criteria; the companies of the full sample constitute alternatives, whereas the six 

financial ratios selected with the explained three steps procedure, are the criteria under which 

alternatives are evaluated.  

Then criteria with a non-increasing preference direction, such as TD_TA and CA_TS, have 

been aligned to the criteria with an increasing preference direction, by multiplying the 

evaluation of alternatives with respect to these criteria for −1, and possible outliers have 

been smoothed through a data trimmed procedure. In this regard, outliers have been 

identified with the Interquartile Range method (IRQ), by verifying one of the following 

inequalities (Gasser et al., 2020):  

𝑔𝑖(𝑎𝑗) < Q1 − 1.5 (𝑄3 − 𝑄1)    or      𝑔𝑖(𝑎𝑗) > Q1 + 1.5 (𝑄3 − 𝑄1). (27) 
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Once data have been trimmed to the maximum or minimum values that are not outliers, a 

five-fold cross validation has been applied to the full sample for year-1. Thus for year-1, the 

training set of each fold has been used for model development and the test set of each fold 

has been used for validation purposes. 

Moreover, because of the lack for the suitable synthetic judgments released by credit rating 

agencies (CRAs) for unlisted European energy companies, in this study we consider the 

classification provided by Amadeus database annually, that sorts companies into two 

categories: active and inactive ones. 

Because of this two-class classification, the M.H.DIS method provides a pair of utility 

functions in one stage. 

In the first stage, the companies belonging to 𝐶1 are distinguished from the remaining firms 

of the other class and two additive utility functions are built according to the two 

mathematical programming techniques described in Section 1.4.2.1: the first one 

(𝑈1(�̅�(𝑏𝑟)) = ∑ ℎ1𝑢1𝑖(𝑔𝑖(𝑏𝑟))),
𝑛
𝑖=1   for 𝐶1 and the second one (𝑈∼1(�̅�(𝑏r)) =

∑ ℎ∼1𝑢∼1𝑖(𝑔𝑖(𝑏r))
𝑛
𝑖=1 ) for the riskier class than 𝐶1 (i.e. 𝐶2). If the global utility function on 

the first class is greater than the second utility function (𝑈1 > 𝑈∼1), then the company is 

classified into 𝐶1; otherwise it belongs to 𝐶2.  

Table 3.6 presents the set of weights of the financial ratios in the two global utility functions 

computed (ℎ1 and ℎ∼1). The results indicate that EBITDA_TA and CA_TA are the most 

significant criteria in discriminating companies of class 𝐶1 from companies of class 𝐶2.  

Table 3.6 Financial ratios weights in the utility function developed through M.H.DIS model. 

FRs h1i(%) h∼1i(%) 

ROA 13.57 50.54 

EBITDA_TA 42.79 4.69 

EQ_RATIO 8.21 2.22 

TD_TA 10.69 13.34 

CA_TA 23.55 7.29 

CA_TS 1.17 21.88 

Finally, Table 3.7 and Table 3.8 display the classification results of the discriminating model 

applied for year-1, year-2, year-3 and year-4 on the average of five folds assessed 

respectively for training and test set. More specifically, Table 3.7 shows the classification 

results in terms of companies belonging to each class, correctly or incorrectly predicted by 

the model. Whereas Table 3.8 shows the results in terms of average and overall accuracy 

rate.  

It is important to point out that according to the confusion matrix it is possible to provide the 

following definitions: 

 True Positive (TP): the number of correctly classified companies belonging to class 

𝐶1; i.e. companies that according to the Amadeus classification belong to 𝐶1 and are 

classified by the model to the same class 𝐶1; 

 True Negative (TN): the number of correctly classified companies belonging to class 

𝐶2, i.e. companies that according to the Amadeus classification belong to 𝐶2 and are 

classified by the model to the same class 𝐶2; 
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 False Positive (FP): the number of active companies misclassified as inactive (Type 

I error); i.e. companies that according to the Amadeus classification belong to 𝐶1 and 

are classified by the model to 𝐶2; 

 False Negative (FN): the number of inactive companies misclassified as active (Type II 

error), i.e. companies that according to the Amadeus classification belong to 𝐶2 and 

are classified by the model to 𝐶1. 

Moreover, TP and TN, i.e. the companies correctly classified by the model, are located in 

the main diagonal of the confusion matrix; while FP and FN, i.e. the companies misclassified 

by the model, are located outside the main diagonal of the matrix. To be more precise, in 

Table 3.7 we have denoted the aforementioned acronyms with apices.  

The main results of Table 3.7 suggest that on average the M.H.DIS model developed for 

year-1 estimates correctly 75 companies on training set (41 𝑇𝑃 + 35 𝑇𝑁), and 15 

companies on test set (8 𝑇𝑃 + 7 𝑇𝑁). Similarly, for year-2 on average the model estimates 

correctly 73 companies on training set (37 𝑇𝑃 + 36 𝑇𝑁), and 15 companies on test set 

(8 𝑇𝑃 + 7 𝑇𝑁). As expected, the number of companies correctly predicted by the model 

decreases in year-3 and year-4 in both training and test set.   

Moreover, the results of the model can be read with respect to the accuracy rate. The two 

most important measures are: the overall and the average accuracy rate.  

 Average accuracy rate (ACA): is the average of each accuracy per class. It is 

computed as (
𝑇𝑃

𝑇𝑃+𝐹𝑃
+

𝑇𝑁

𝑇𝑁+𝐹𝑁
) 𝑐𝑙𝑎𝑠𝑠𝑒𝑠;⁄  

 Overall accuracy rate (OCA): is the number of correctly predicted companies over 

the total companies to predict. It is computed as 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
. 

Hence, from Table 3.8 it is worth to note that on average the model developed for year-1 

estimates correctly the 83.36% (OCA) of companies of training set and less than the 70% of 

companies for the test set (OCA 68.18%).  This trend decreases with years, by reaching an 

overall accuracy rate of 56.36% for year-4. This result confirms what we expect, namely that 

on average the model estimates better companies where data are collected more recently than 

where data are collected from the past. The reason is quite intuitive since the predefined 

classification provided by Amadeus is more likelihood to be affected by the last balance 

sheet data (year-1) than the previous ones (year-2, year-3, year-4).  

Furthermore, the overall classification accuracy for year-1, in both training and test sample, 

is not quite satisfactory compared to other studies on M.H.DIS model applications. Indeed 

here, on average the M.H.DIS model classifies correctly 83.26% companies of basic sample 

and 68.18% of holdout sample against the percentage range of [100, 93.18] and [75.11, 69] 

respectively for training and test set of other similar studies in other sectors (Kosmidou et 

al., 2002; Doumpos and Zopounidis, 1999; Kosmidou et al., 2004). 
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Table 3.7 Classification results of M.H.DIS model in terms of companies belonging to each class for year-1, 

year-2, year-3, year-4 (average over 5-fold cross-validation for training and test set). Source: Matlab Software 

M.H.DIS MODEL ESTIMATED WITH AMADEUS CLASSIFICATION 

 TRAINING SET 

PREDEFINED  

CLASSIFICATION 

Companies belonging to each class 

Year-1 Year-2 Year-3 Year-4 

𝐶1 𝐶2 Tot 𝐶1 𝐶2 Tot 𝐶1 𝐶2 Tot 𝐶1 𝐶2 Tot 

𝐶1 41(TP) 5(FP) 46 37(TP) 9(FP) 46 40(TP) 6(FP) 46 37(TP) 9(FP) 46 

𝐶2 11(FN) 35(TN) 46 10(FN) 36(TN) 46 16(FN) 30(TN) 46 13(FN) 33(TN) 46 

Tot   92   92   92   92 

TEST SET  

PREDEFINED  

CLASSIFICATION 

Companies belonging to each class 

Year-1 Year-2 Year-3 Year-4 

𝐶1 𝐶2 Tot 𝐶1 𝐶2 Tot 𝐶1 𝐶2 Tot 𝐶1 𝐶2 Tot 

𝐶1 8(TP) 3(FP) 11 8(TP) 3(FP) 11 8(TP) 3(FP) 11 7(TP) 4(FP) 11 

𝐶2 4(FN) 7(TN) 11 4(FN) 7(TN) 11 6(FN) 5(TN) 11 6(FN) 5(TN) 11 

Tot   22   22   22   22 

     (TP)-True Positive; (TN)-True Negative; (FN)-False Negative; (FP)-False Positive 

Table 3.8 Classification results of M.H.DIS model in terms of Average and Overall accuracy rate for year-1, 

year-2, year-3, year-4 (average over 5-fold cross-validation for training and test set). Source: Matlab Software 

M.H.DIS MODEL ESTIMATED WITH AMADEUS CLASSIFICATION  

 TRAINING SET 

PREDEFINED  
CLASSIFICATION 

Accuracy (%) 

Year-1 Year-2 Year-3 Year-4 

𝐶1 𝐶2 𝐶1 𝐶2 𝐶1 𝐶2 𝐶1 𝐶2 

𝐶1 89.95 10.05 80.37 19.63 87.43 12,57 81.22 18.77 

𝐶2 23.36 76.64 21.21 78.79 34.57 65.43 29.46 70.53 

Average accuracy (%) 83.29 79.58 76.43 75.87 

Overall accuracy (%) 83.26 79.56 76.31 75.86 

TEST SET 

PREDEFINED  
CLASSIFICATION 

Accuracy (%) 

Year-1 Year-2 Year-3 Year-4 

𝐶1 𝐶2 𝐶1 𝐶2 𝐶1 𝐶2 𝐶1 𝐶2 

𝐶1 75.65 24.35 68.44 31.56 72.19 27.81 64.70 35.29 

𝐶2 38.12 61.88 35.83 64.17 57.35 42.65 52.09 47.90 

Average accuracy (%) 68.77 66.31 57.42 56.30 
Overall accuracy (%) 68.18 66.36 57.27 56.36 

 

It has to be pointed out that this not fully satisfactory result of M.H.DIS model might depend 

on the rough classification provided by Amadeus database rather than the one provided by 

credit rating agencies (CRAs). Indeed these latter usually provide an objective synthetic 

credit rating for each company that is surely more reliable than the one provided by Amadeus 

for applying the M.H.DIS model. Unfortunately, this type of information is not provided 

here since the original database is composed by unlisted companies. Hence, the 

PROMETHEE II model, an acknowledged MCDA model, has been further implemented on 

the same dataset, to realize whether the original balanced classification provided by 

Amadeus database, could vary with the application of this model.  

3.5 PROMETHEE based classification 

To overcome the issue that the M.H.DIS model also in the most recent year-1 does not 

achieve highly satisfactory results in the holdout sample and for comparison purposes, 

another two-class assignment of the energy companies in the considered sample has been 
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built on the basis of a well-known multi-criteria decision aid model, the PROMETHEE II 

method. 

PROMETHEE II method has been applied in this study, to provide a benchmark sorting 

procedure on which to compare the classification provided by Amadeus database. Although 

there are other PROMETHEE methods specifically developed for solving sorting problems, 

such as PROMETHEE TRI and PROMSORT, the PROMETHEE II method has been 

selected here for several practical reasons.  

From one side PROMETHEE TRI and PROMSORT present some important limits in terms 

of inputs needed for implementing the model. Both models indeed, require two important 

inputs to introduce: the reference alternatives and the limit profiles. Thus, a priori definition 

of these elements generates great constraints for practical applications, since it needs the 

assessment of industry experts. Although in PROMSORT model, the issue to have pre-

defined reference alternatives can be can be tackled with PROMETHEE I method (Araz and 

Ozkarahan, 2007), in PROMETHEE TRI such issue is still present (Figueira et al., 2004). 

Moreover, the PROMETHEE TRI model presents also the disadvantages to use only single 

criterion net flows as inputs rather than outranking relation between alternatives, giving back 

also not perfectly ordered categories. 

From the other side PROMETHEE II method presents some advantages in comparison to 

the aforementioned models, such as its easiness of implementation, its wide practical 

applications also to credit scoring models (Hu and Chen, 2011; Mousavi and Lin, 2020 ) and 

its feature to provide a complete ranking of alternatives.  

To implement PROMETHEE II method, firstly, from the six financial variables selected in 

previous stage, we have built all the subsets composed of three criteria i.e. 𝐶6,3 = 20. Then, 

for each subset we have considered its complement, forming a pair of disjoint subsets 

denoted as follows: 

𝒫 = (F, Fc)  ∀𝐹 ⊂ 𝐺  formed of three variables. (28) 

However, the twenty pairs of subsets composed of three criteria (denoted with 𝒫) have been 

reduced to eight, according to the following rules: 

(1) If  𝒫 is composed of subsets of criteria with a high pairwise correlation ( > |0.5|) 
then such pair has been removed. For example, in our sample the couples of 

criteria ROA and EBITDA_TA, EQ_RATIO and TD_TA show a high pairwise 

correlation (see Table 3.4);  

(2) If 𝒫 is composed of subsets of at least two criteria belonging to the same 

dimension, i.e. profitability, financial structure, liquidity or turnover, then it has 

been eliminated. Since the considered dimensions are four, according to the 

above rule every subset (and its complement) related to each 𝒫 is composed of 

three criteria representing three different company’s aspects. 

Applying these rules, eight of the twenty pairs have been retained. To achieve clarity in 

notation, we denote each of the eight pairs with a numerical label, i.e. 𝒫h = (𝐹ℎ, 𝐹ℎ
𝑐)  with 

ℎ ∈ {1, 2,⋯ ,8}.  
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Table 3.9 displays the eight pairs considered listing the three criteria for each subset and its 

complement.  The three criteria (or financial variables) belonging to each set 𝐹ℎ ∈  𝒫h have 

been used in PROMETHEE II as evaluation criteria on which companies’ classification is 

based, whereas the remaining three ones belonging to its relative complement 𝐹ℎ
𝑐 ∈  𝒫h, have 

been employed as evaluation criteria of M.H.DIS model development with respect to both 

the AMADEUS and PROMETHEE  based classification. 

Table 3.9 Pairs (𝒫) considered in our analysis. Authors’ elaboration. 

 
Criteria employed 

𝐹ℎ 

PROMETHEE II Classification 

𝐹ℎ
𝑐 

M.H.DIS Model development 

𝒫1 

ROA EBITDA_TA 

EQ_RATIO TD_TA 

CA_TS CA_TA 

𝒫2 

ROA EBITDA_TA 

EQ_RATIO TD_TA 

CA_TA CA_TS 

𝒫3 

ROA EBITDA_TA 

TD_TA TD_TA 

CA_TS CA_TA 

𝒫4 

ROA EBITDA_TA 

TD_TA EQ_RATIO 

CA_TA CA_TS 

𝒫5 

EBITDA_TA ROA 

EQ_RATIO TD_TA 

CA_TS CA_TA 

𝒫6 

EBITDA_TA ROA 

EQ_RATIO TD_TA 

CA_TA CA_TS 

𝒫7 

EBITDA_TA ROA 

TD_TA EQ_RATIO 

CA_TS CA_TA 

𝒫8 
EBITDA_TA ROA 

TD_TA EQ_RATIO 

CA_TA CA_TS 

This procedure has several advantages. Firstly, only those criteria that well discriminate 

companies’ dimensions are used to sort energy firms into classes, giving an increasing 

consistency to the PROMETHEE based companies’ classification than the one collected 

from the AMADEUS database.  

Secondly, by considering 𝐹ℎ
𝑐, relative to each 𝒫h, it is possible to develop the M.H.DIS 

model on the PROMETHEE based classification, which represents a benchmark to compare 

the classification performances of AMADEUS based classification in terms of overall 

accuracy.  

Thirdly, taking into account all the considered subsets of three criteria (𝐹ℎ
𝑐  with  ℎ ∈

{1, 2,⋯ ,8}), it is highlighted how the overall accuracy varies according to the pair 

considered, acting as robustness check if M.H.DIS model built with PROMETHEE 

classification achieves higher results than the ones obtained with AMADEUS classification 

for most of the pairs.   

PROMETHEE II, being founded on six types of preference functions, can potentially yield 

a different companies’ classification according to the preference function used; if the 

obtained classification does not vary very much, then the model is quite consistent regardless 

the preference function used, representing a further element of robustness.  
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Finally, by simulating different scenarios for criteria weights, we performed a robustness 

analysis also with respect to the assessment of the PROMETHEE evaluation of each 

company and consequently on its assignment to a class. 

3.6 Results and discussions of M.H.DIS model developed 

on the PROMETHEE based classification  

In this section, we discuss the results of the M.H.DIS model developed respectively with 

AMADEUS and PROMETHEE based classification, which we will build before applying 

the multicriteria discrimination model. To deal with this aim, once data have been trimmed 

and criteria with a non-increasing preference direction have been aligned to the ones with an 

increasing preference function as explained in Section 3.4, PROMETHEE II method has 

been applied with respect to the three criteria belonging to 𝐹ℎ  of each  𝒫h (Table 3.9, 2nd 

column) by considering the six type preference functions described in Section 2.2. For each 

Preference Function (PF), alternative (𝑎𝑗) and set of three criteria (𝐹ℎ ∈  𝒫h), we obtain a net 

flow 𝛷(𝑎𝑗) ∈ [−1,1]  that allows to rank alternatives from the best to the worst. In order to 

classify companies into two categories, the healthiest (𝐶1) and the riskiest class (𝐶2), we 

employ the median of the net flow of the all alternatives as a cut-off limiting the two classes. 

The choice of the median as cut-off threshold has been performed here, since it allows us to 

distribute equally the alternatives’ net scores between the two considered categories. In this 

framework, the six preference functions of PROMETHEE II have been considered for each  

set of criteria 𝐹ℎ ∈  𝒫h with ℎ ∈ {1, 2,⋯ ,8}. Thus, we get in total forty-eight classifications 

of companies obtained multiplying the eight subsets (𝐹ℎ) considered (see Table 3.9) by six 

type preference functions. Hence, the achieved classifications might differ each other 

according to the preference function and the set of criteria 𝐹ℎ considered. However, it has to 

be pointed out that the majority of preference functions (in at least four of the six type 

functions) classify companies in the same manner. In this regard, Table 3.10 shows the 

classification of companies into the healthiest and riskiest class according to the majority of 

the preference functions, with their relative and cumulative frequency for each combination. 

Table 3.10 Companies’ classification according to the most preference functions employed in PROMETHEE 

II. Authors’ elaboration. 

 

Classification of companies according to the majority of preference functions 

Class Number of companies Relative frequency (%) 

Cumulative 

frequency 

(%) 

𝐹1
c 

1 72 63.16 - 

2 40 35.09 63.16 

not perfectly determined by most of PF 2 1.75 98.25 

total 114 100 100 

𝐹2
c 

1 45 39.47 - 

2 65 57.01 39.47 

not perfectly determined by most of PF 4 3.50 96.49 

total 114 100 100 

𝐹3
𝑐 

1 82 71.92 - 

2 30 26.31 71.92 

not perfectly determined by most of PF 2 1.75 98.24 

total 114 100 100 
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𝐹4
𝑐 

1 58 50.87 - 

2 55 48.24 50.87 

not perfectly determined by most of PF 1 0.87 99.12 

total 114 100 100 

𝐹5
𝑐 

1 83 72.8 - 

2 29 25.43 72.80 

not perfectly determined by most of PF 2 1.75 98.24 

total 114 100 100 

𝐹6
𝑐 

1 70 61.40 - 

2 43 37.71 61.40 

not perfectly determined by most of PF 1 0.87 99.12 

total 114 100 100 

𝐹7
c 

1 90 78.94 - 

2 22 19.29 78.94 

not perfectly determined by most of PF 2 1.75 98.24 

total 114 100 100 

𝐹8
𝑐 

1 80 70.17 - 

2 30 26.31 70.17 

not perfectly determined by most of PF 4 3.50 96.49 

total 114 100 100 

Two main elements can be observed from Table 3.10:  

(1) the significant difference between the classification obtained with the 

PROMETHEE method and the one provided by AMADEUS database; 

(2) the robustness of the PROMETHEE II method to sort companies. 

With regard to the first point, PROMETHEE model classifies, in six of the eight 

combinations (Fh  
c with ℎ = 1, 3, 5, 6, 7 and 8), most of companies as healthiest with a 

relative frequency that ranges between 61.40% and 78.94%; on the contrary AMADEUS 

based classification is equally distributed among the two classes (see Table 3.1). 

With regard to the second point, PROMETHEE based method represents a robust tool to 

sort companies, since in each combination the majority of the preference functions (in at 

least four of the six type functions) provides a consistent classification regardless of the 

preference function employed. Moreover, those companies for which most preference 

functions are not able to determine with a strict preference the membership to healthiest or 

riskiest class, are limited to very few cases (from one to four companies). 

Table 3.12 presents the main results of M.H.DIS model for year-1, developed respectively 

for AMADEUS and PROMETHEE based classification. Furthermore, in order to compare 

the efficiency of the discrimination model on two different rating settings, different 

performance indicators are needed. Among the most widely applied to assess the 

performance of credit rating models (Sobehart and Keenan, 2001; Keenan and Sobehart, 

1999; Engelmann et al., 2003; Tinoco and Wilson, 2013) there are:  

 

 Cumulative Accuracy Profiles (CAP): is a graphical representation of two CAP 

curves that help to visualize the global performance of a model to discriminate two 

groups. However, to plot these curves it is necessary that companies have to be 

ranked by risk score. Random models display a curve coincident with the main 

diagonal of the graph; while perfect models show a line steeper to the left and closer 

to the point (0, 1); 
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 Sensitivity (SENS): is a measure of how well a model identifies True Positive. It is 

given by the number of non-defaulted companies evaluated correctly by the model 

(𝑇𝑃), over the total number of non-defaulted companies (𝑇𝑃 + 𝐹𝑃);  

 Specificity (SPEC): is a measure of how well a model identifies True Negatives. It is 

computed by the number of defaulted companies evaluated correctly by the model 

(TN) over the total number of defaulted companies (𝑇𝑁 + 𝐹𝑁); 

 Classification Accuracy (CA): it is a single summary measure that examines whether 

a company is classified correctly by the model without considering the magnitude of 

misclassification. It can be distinguished into average and overall accuracy rate 

(ACA and OCA); 

 Receiver Operating Characteristic (ROC): it is a graphical plot similar to the CAP 

that provides a sketch of rating scores’ distribution for active and inactive companies 

(Fawcett, 2006). However, it presents results that are more intuitive than CAP. The 

rating model’s performance is the better when the ROC curve is steeper to the left 

and closer to the point (0, 1); 

 Area Under the Receiver Operating Characteristic curve (AUROC): it is the 

summary statistic of the ROC curve and it is a standard measure for the predictive 

accuracy of the model. It represents the likelihood that an active company will obtain 

a higher credit score compared to an inactive company, by measuring the area 

between the curve and the diagonal of the Lorenz curve (Fawcett, 2006). AUROC 

values range between 0-1. The model assumes a value equal to 0.5 whether it is 

random or lacks discriminative power; while it takes a value equal to 1 whether it 

perfectly discriminates among groups. Generally, models takes values between 0.5 

and 1;  

 Gini Coefficient (GINI): it is widely used to assess the predictive accuracy of training 

and test set (Altman et al., 2010). It is easy to interpret and compute since it derives 

from AUROC, but differs for computing the full area below the curve. Hence, 

following the approach of Altman et al. (2020), it can be computed as 

(2 ∗ 𝐴𝑈𝑅𝑂𝐶) − 1. A Gini coefficient greater than 0.5 can be considered satisfactory;  

 Kolmogorov-Smirnov distance (KSD): it measures the maximum vertical deviation 

between two cumulative distributions functions. It has been mainly used to evaluate 

the predictive accuracy of USA rating systems jointly with other performance 

indicators (Andersen, 2007). Acceptable values of KS range between [20%, 70%]; 

if values are higher than 70%, the model is too good to be true (Mays, 2004);  

 F1_Score: is one of the most used indicators for machine learning applications not 

only for a binary classification, but also for multiple classification. It is a weighted 

harmonic mean of Recall and Precision test (Powers, 2015). Recall is the Sensitivity, 

while Precision is the Specificity. 

In this Chapter, the six performance indicators of Table 3.11 have been selected from the 

previous list to compare the discriminating performance of M.H.DIS model developed 

respectively with Amadeus and PROMETHEE based classification. More specifically, 
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following the approach of Doumpos et al. (2016), we have selected only those measures 

deriving from the main elements of confusion matrix (TP, TN, FP, FN) (Section 3.4) and 

endowed of higher computational intelligibility than graphical. Thus, performance indicators 

such as CAP, RO, KSD have been discarded because of their high graphic evidence; 

conversely SENS, SPEC, ACA, OCA, AUROC and Gini coefficient have been retained for 

their high quantitative evidence. Gini coefficient, in particular, has been included among 

these measures to check the consistency of the other performance indicators involved into 

the efficiency analysis.  

In Table 3.12, performance indicators with respect to each preference function, used to 

develop M.H.DIS model with PROMETHEE-based classification, that are lower than the 

ones obtained with AMADEUS, are denoted with asterisk (*).  

Table 3.11 Performance indicators used to evaluate the efficiency of M.H.DIS model. Authors’ elaboration. 

Performance Indicators 

Acronym Indicator's name Formula Value (%) Pref. direction 

SENS Sensitivity 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 [0-100] max 

SPEC Specificity 
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 [0-100] max 

ACA Average accuracy 
𝑆𝐸𝑁𝑆 + 𝑆𝑃𝐸𝐶

𝑐𝑙𝑎𝑠𝑠𝑒𝑠
 [0-100] max 

OCA Overall accuracy 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 [0-100] max 

AUROC Area under the receiving operating characteristic 
1

2
∗ (

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
+

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
) [50-100] max 

GINI Gini coefficient (2 ∗ 𝐴𝑈𝑅𝑂𝐶) − 1 [-100; 100] max 

Table 3.12 Results of M.H.DIS model for year-1 developed for AMADEUS and PROMETHEE classification 

(average over 5-fold cross-validation for training and test set).  

 

Criteria employed 

TRAINING 

AND TEST 

SET 

M.H.DIS MODEL 

YEAR-1 

𝐹ℎ 

PROMETHEE 

II 

𝐹ℎ
𝑐 

M.H.DIS 

Model 

Development 

PERFORMANCE 

INDICATORS 

AMADEUS 

CLASSIFICATION 

PROMETHEE CLASSIFICATION 

REGULAR U-SHAPE V-SHAPE LEVEL LINEAR GAUSSIAN 

𝒫1 

  

TRAINING 

SET 

SENS 86.00 94.79 94.56 92.46 95.50 86.76 86.76 
  SPEC 66.64 73.56 80.31 81.45 81.31 83.74 83.74 

ROA EBITDA_TA ACA 76.32 84.17 87.43 86.95 88.40 85.25 85.25 
  OCA 76.30 85.00 88.91 88.48 90.43 86.09 86.09 
  AUROC 77.64 86.57 89.34 87.97 90.93 79.99 79.99 

EQ_RATIO TD_TA GINI 55.28 73.14 78.68 75.94 81.87 59.98 59.98 
  

TEST SET 

SENS 70.62 84.21 87.64 87.06 87.26 82.93 82.93 
  SPEC 50.77 65.51 73.50 72.78 72.00 72.29 72.29 

CA_TS CA_TA ACA 60.70 74.86 80.57 79.92 79.63 77.61 77.61 
  OCA 60.91 74.55 80.91 80.00 80.00 79.09 79.09 
  AUROC 61.01 75.43 81.48 79.96 80.25 72.21 72.21 
  GINI 22.01 50.86 62.95 59.91 60.50 44.42 44.42 

𝒫2 

  

TRAINING 

SET 

SENS 86.86 86.42* 82.33* 87.05 85.65* 84.54* 87.96 
  SPEC 68.39 74.97 73.79 72.81 68.12* 71.61 66.90* 

ROA EBITDA_TA ACA 77.63 80.69 78.06 79.93 76.89* 78.07 77.43* 
  OCA 77.61 81.09 77.61 78.70 75.00* 76.31* 73.91* 
  AUROC 78.68 81.37 77.97* 79.18 76.12* 76.12* 74.78* 

EQ_RATIO TD_TA GINI 57.36 62.73 55.94* 58.37 52.25* 52.23* 49.56* 
  

TEST SET 

SENS 76.60 72.59* 63.07* 84.27 70.55* 71.31* 74.98* 
  SPEC 61.17 66.24 63.99 68.64 56.81* 57.31* 58.14* 

CA_TA CA_TS ACA 68.89 69.42 63.53* 76.46 63.68* 64.31* 66.56* 
  OCA 69.09 69.09 62.73* 74.55 62.73* 61.82* 64.55* 
  AUROC 69.23 70.05 64.08* 75.96 63.51* 63.28* 65.80* 
  GINI 38.47 40.10 28.16* 51.92 27.02* 26.56* 31.60* 
  SENS 79.73 94.92 93.36 86.09 89.03 90.14 90.37 
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𝒫3 

  

TRAINING 

SET 

SPEC 69.19 83.69 84.60 91.78 92.31 95.54 95.99 

ROA EBITDA_TA ACA 74.46 89.31 88.98 88.94 90.67 92.84 93.18 
  OCA 74.56 90.00 90.00 87.61 90.00 91.09 91.52 
  AUROC 75.38 90.73 90.15 83.66 87.09 83.79 85.83 

TD_TA TD_TA GINI 50.75 81.46 80.30 67.31 74.17 67.57 71.66 
  

TEST SET 

SENS 69.34 87.70 90.08 77.41 77.22 82.97 86.60 
  SPEC 55.92 73.53 65.29 68.00 74.79 79.29 80.29 

CA_TS CA_TA ACA 62.63 80.61 77.68 72.71 76.00 81.13 83.44 
  OCA 61.82 81.82 81.82 73.64 75.46 80.91 83.80 
  AUROC 62.95 81.72 83.29 68.90 71.41 73.32 79.24 
  GINI 25.90 63.45 66.57 37.80 42.82 46.64 58.47 

𝒫4 

  

TRAINING 

SET 

SENS 86.46 93.77 88.63 85.56* 83.25* 68.54* 67.96* 
  SPEC 68.87 80.32 74.79 80.38 76.77 81.11 79.71 

ROA EBITDA_TA ACA 77.67 87.05 81.71 82.97 80.01 74.83* 73.84* 
  OCA 77.61 87.82 81.52 83.04 80.00 75.44* 74.13* 
  AUROC 78.51 88.67 82.27 83.17 80.61 77.27* 76.45* 

TD_TA EQ_RATIO GINI 57.03 77.35 64.55 66.35 61.23 54.55* 52.89* 
  

TEST SET 

SENS 80.08 87.65 81.13 77.46* 77.68* 55.43* 58.89* 
  SPEC 52.84 67.00 64.18 70.99 68.62 64.38 60.51 

CA_TA CA_TS ACA 66.46 77.33 72.66 74.22 73.15 59.91* 59.70* 
  OCA 66.36 78.18 71.82 74.55 73.64 60.00* 60.00* 
  AUROC 67.65 78.96 73.40 74.66 73.26 60.16* 59.78* 
  GINI 35.30 57.93 46.80 49.32 46.53 20.31* 19.55* 

𝒫5 

  

TRAINING 

SET 

SENS 89.81 88.12* 81.17* 84.33* 84.33* 80.24* 77.28* 
  SPEC 60.52 84.60 95.31 90.23 90.23 87.43 89.41 

EBITDA_TA ROA ACA 75.16 86.36 88.24 87.28 87.28 83.83 83.34 
  OCA 75.22 86.52 85.65 85.87 85.87 82.17 80.00 
  AUROC 78.52 86.62 83.98 81.70 81.70 78.51* 77.10* 

EQ_RATIO TD_TA GINI 57.05 73.25 67.97 63.40 63.40 57.01* 54.21* 
  

TEST SET 

SENS 75.09 80.47 75.25 79.85 79.85 78.97 73.72* 
  SPEC 48.43 72.37 82.43 82.38 76.67 72.14 75.00 

CA_TS CA_TA ACA 61.76 76.42 78.84 81.12 78.26 75.56 74.36 
  OCA 61.82 76.36 77.27 79.09 77.27 73.64 71.82 
  AUROC 63.60 76.27 74.48 76.07 73.42 73.75 61.93* 
  GINI 27.20 52.54 48.95 52.15 46.84 47.51 23.86* 

𝒫6 

  

TRAINING 

SET 

SENS 88.12 93.90 92.05 84.35* 86.09* 85.64* 84.22* 
  SPEC 73.08 81.44 86.73 88.38 85.78 83.74 87.54 

EBITDA_TA ROA ACA 80.60 87.67 89.39 86.37 85.93 84.69 85.88 
  OCA 80.65 88.91 89.78 85.87 85.87 85.00 85.43 
  AUROC 81.62 89.37 90.35 82.60 85.43 85.36 85.77 

EQ_RATIO TD_TA GINI 63.25 78.74 80.71 65.20 70.85 70.72 71.55 
  

TEST SET 

SENS 75.09 79.35 78.35 69.25* 73.19* 72.32* 68.30* 
  SPEC 56.42 67.33 75.56 71.91 65.50 70.86 66.19 

CA_TA CA_TS ACA 65.76 73.34 76.95 70.58 69.35 71.59 67.25 
  OCA 65.46 74.55 76.37 70.00 70.91 69.09 67.27 
  AUROC 66.54 73.40 77.06 69.24 67.82 70.62 66.16* 
  GINI 33.07 46.81 54.13 38.49 35.65 41.23 32.33* 

𝒫7 

  

TRAINING 

SET 

SENS 90.13 89.81 82.32* 86.81 87.33 90.82 90.82 
  SPEC 57.41 83.19 91.59 87.93 86.70 82.11 82.11 

EBITDA_TA ROA ACA 73.77 86.50 86.96 87.37 87.01 86.46 86.46 
  OCA 73.91 86.96 85.22 87.17 87.39 89.35 89.35 
  AUROC 78.62 86.91 83.31 80.67 80.90 80.57 80.57 

TD_TA EQ_RATIO GINI 57.25 73.83 66.62 61.34 61.81 61.14 61.14 
  

TEST SET 

SENS 76.34 78.54 76.04* 79.67 80.99 85.53 85.53 
  SPEC 48.69 73.27 78.09 65.71 68.43 52.38 52.38 

CA_TS CA_TA ACA 62.51 75.90 77.07 72.69 74.71 68.95 68.95 
  OCA 61.82 75.45 75.45 74.54 76.36 79.09 79.09 
  AUROC 65.82 76.56 74.30 70.26 70.80 65.40* 65.40* 
  GINI 31.64 53.13 48.60 40.51 41.61 30.80* 30.80* 

𝒫8 

  

TRAINING 

SET 

SENS 92.15 92.16 94.14 88.19* 88.89* 89.44* 89.50* 
  SPEC 65.82 72.94 78.38 84.61 86.12 92.57 93.78 

EBITDA_TA ROA ACA 78.99 82.55 86.26 86.40 87.51 91.01 91.64 
  OCA 78.91 85.65 88.26 87.17 88.26 90.22 90.44 
  AUROC 81.12 84.91 88.48 84.17 83.88 85.73 84.66 

TD_TA EQ_RATIO GINI 62.23 69.81 76.95 68.35 67.76 71.45 69.31 
  

TEST SET 

SENS 82.21 85.90 85.38 84.88 84.57 87.81 86.27 
  SPEC 55.84 60.33 67.12 59.52 59.05 70.09 74.21 

CA_TA CA_TS ACA 69.03 73.12 76.25 72.20 71.81 78.95 80.24 
  OCA 69.09 77.27 78.18 78.18 79.09 83.64 82.73 
  AUROC 71.09 74.99 78.45 73.85 75.49 78.42 79.07 
  GINI 42.18 49.97 56.90 47.70 50.99 56.84 58.15 

Data on performance indicators are expressed in percentage. 

The results clearly show that the discrimination power of M.H.DIS model developed with 

PROMETHEE based classification is higher than the one obtained with AMADEUS 

classification, in most of the combinations of criteria relative to subsets Fh  
c with ℎ =

1, 3, 5, 6, 7 and 8 for both training and test sample. In these combinations the specificity, the 

average and the overall accuracy rate of M.H.DIS with PROMETHEE based classification 

are strictly higher than the ones obtained with AMADEUS classification, regardless the 

preference function used to develop the PROMETHEE model. Instead, the combinations of 
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criteria relative to subsets Fh  
c with ℎ = 2 and 4 do not achieve the same high-performance 

results especially with regard to the test set.  

However, it is observed that in no combination, the performance indicators relative to the 

AMADEUS classification achieve the maximum value as with PROMETHEE-based 

classification, but they take an intermediate value within the range of possible six values 

obtained according to the different preference functions employed in PROMETHEE 

classification. In other words, it exists at least one or more preference functions also for the 

less performing combinations 2 and 4, in which the M.H.DIS model performed with 

PROMETHEE-based classification, gives an accuracy rate that is higher than the one 

achieved with AMADEUS classification.  

Moreover, the combinations of criteria relative to subsets Fh  
c with ℎ = 1, 3, 5, 6, 7 and 8 with 

the highest accuracy rate present some important common features: 

 the PROMETHEE-based classification, on which M.H.DIS is developed, is not 

equally distributed among the two classes, but is more concentrated on the healthiest 

companies, with a relative frequency ranging between 61.40% and 78.94%; 

 the M.H.DIS model is developed by using at least two of the financial variables with 

a higher weight in discriminating between categories (see Table 3.5) such as:  

EBITDA_TA, CA_TA and ROA, with the only exception of the combination of 

criteria referred to F6  
c ; 

 three of the performance indicators, i.e. Sensitivity, Auroc and Gini coefficient, 

computed for the M.H.DIS model developed with PROMETHEE based 

classification achieve the lowest results whenever the preference function employed 

is more complex such as the level, the linear and Gaussian criterion (see 

PROMETHEE classification in the combinations of criteria relative to subsets 

Fh 
c with ℎ = 1, 3, 5, 6, 7 and 8).  

On the contrary, combinations of criteria relative to subsets F2     
c and F4     

c achieve a quite 

limited accuracy rate and share the following common aspects: 

 a PROMETHEE-based classification more equally distributed among categories of 

companies, such as the AMADEUS classification, with a relative frequency ranging 

between 39.47% and 50.87%; 

 the M.H.DIS model is developed on financial variables with a lower weight in 

discriminating between categories (see Table 3.5) such as: EQ_RATIO, TD_TA and 

CA_TS; 

 most of the performance indicators (including also the average and the overall 

accuracy rate) computed for the M.H.DIS model developed with PROMETHEE 

based classification achieve the lowest results whenever the preference function 

employed is more complex such as for the level, the linear and Gaussian ones.  

Finally, to prove the robustness of M.H.DIS model developed in PROMETHEE-based 

classification with respect to the AMADEUS one, M.H.DIS model developed for year-1 has 

been also applied to the training and test sample for year-2, year-3, year-4.   
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For the sake of simplification, in Table 3.13 the performances of two models have been 

presented in terms of average and overall accuracy rate. Moreover, only the minimum and 

maximum values of M.H.DIS model with PROMETHEE based classification, attained 

considering the six-preference functions on the average of 5-fold cross-validation, have been 

displayed. 

Table 3.13 Results of M.H.DIS model for year-1, year-2, year-3, year-4, developed for AMADEUS and 

PROMETHEE-based classification (average over 5-fold cross-validation for training and test set). 

 TRAINING 

AND TEST SET 

M.H.DIS MODEL 

YEAR-1 YEAR-2 YEAR-3 YEAR-4 

PERF. 

INDICATORS 

AMADEUS 

CLASSIF. 

PROMETHEE 

CLASSIF. 
AMADEUS 

CLASSIF. 

PROMETHEE 

CLASSIF. 
AMADEUS 

CLASSIF. 

PROMETHEE 

CLASSIF. 
AMADEUS 

CLASSIF. 

PROMETHEE 

CLASSIF. 

MIN MAX MIN MAX MIN MAX MIN MAX 

𝒫1 

TRAINING SET 
ACA 76.32 84.17 88.40 73.23 79.45 84.00 69.79 76.80 82.61 69.07 76.65 84.59 

OCA 76.30 85.00 90.43 73.26 79.35 86.52 69.78 79.35 83.04 69.13 72.17 85.22 

TEST SET 
ACA 60.70 74.86 80.57 63.88 62.66* 70.38 58.09 62.71 71.94 58.40 62.84 71.62 

OCA 60.91 74.55 80.91 63.64 68.18 71.82 58.18 67.27 72.73 58.18 64.54 72.73 

𝒫2 

TRAINING SET 
ACA 77.63 76.89* 80.69 76.65 78.00 84.33 73.97 74.30 83.70 72.11 71.19* 83.61 

OCA 77.61 73.91* 81.09 76.74 76.30* 84.57 73.91 70.65* 84.13 72.17 66.96* 83.91 

TEST SET 
ACA 68.89 63.53* 76.46 63.57 62.13* 70.49 60.95 62.32 75.34 60.40 54.60* 71.21 

OCA 69.09 61.82* 74.55 62.73 61.82* 70.91 60.91 60.00* 75.46 60.00 51.82* 71.82 

𝒫3 

TRAINING SET 
ACA 74.46 88.94 93.18 73.33 83.85 87.19 67.95 75.81 81.63 69.59 76.46 81.80 

OCA 74.56 87.61 91.52 73.26 82.17 86.52 68.04 75.22 81.52 69.78 71.96 81.52 

TEST SET 
ACA 62.63 72.71 83.44 61.80 68.18 83.95 58.62 59.49 75.38 58.57 64.03 70.75 

OCA 61.82 73.64 83.80 60.91 70.00 81.82 58.18 61.82 76.36 57.27 63.64 70.91 

𝒫4 

TRAINING SET 
ACA 77.67 73.84* 87.05 77.51 74.26* 84.40 73.89 71.35* 82.93 74.32 72.12* 81.25 

OCA 77.61 74.13* 87.82 77.61 75.00* 84.54 73.91 71.30* 82.61 74.35 72.17* 80.65 

TEST SET 
ACA 66.46 59.70* 77.33 63.98 64.28 75.82 60.44 53.00* 73.43 63.71 60.11* 72.90 

OCA 66.36 60.00* 78.18 62.73 63.64 75.46 60.00 52.73* 74.55 63.64 60.00* 72.73 

𝒫5 

TRAINING SET 
ACA 75.16 83.34 88.24 72.61 75.34 81.45 65.76 71.28 78.24 70.04 74.58 78.81 

OCA 75.22 80.00 86.52 72.61 75.65 80.87 65.65 75.87 79.56 70.00 73.48 78.70 

TEST SET 
ACA 61.76 74.36 81.12 66.08 68.50 77.47 55.55 55.33* 65.44 57.63 57.22* 64.97 

OCA 61.82 71.82 79.09 65.45 65.45 74.54 55.45 60.00 66.36 58.18 60.91 67.27 

𝒫6 

TRAINING SET 
ACA 80.60 84.69 89.39 73.13 82.78 87.16 72.57 78.41 86.09 74.90 80.86 86.68 

OCA 80.65 85.00 89.78 73.26 83.04 87.17 72.39 78.91 86.09 74.78 81.96 86.52 

TEST SET 
ACA 65.76 67.25 76.95 57.44 67.70 72.01 56.94 68.33 76.47 60.88 68.17 79.79 

OCA 65.46 67.27 76.37 56.36 66.37 71.82 57.27 67.27 75.46 60.91 70.00 80.00 

𝒫7 

TRAINING SET 
ACA 73.77 86.46 87.37 68.45 75.68 80.49 64.71 69.07 75.44 72.67 72.07* 79.39 

OCA 73.91 85.22 89.35 68.48 73.26 79.13 64.78 70.44 76.09 72.61 68.91* 78.70 

TEST SET 
ACA 62.51 68.95 77.07 55.65 64.75 76.66 58.96 57.56* 67.13 61.10 52.12* 66.90 

OCA 61.82 74.54 79.09 54.55 63.64 74.55 58.18 63.64 67.27 60.91 54.55* 65.45 

𝒫8 

TRAINING SET 
ACA 78.99 82.55 91.64 72.01 78.05 86.49 72.86 74.80 80.13 74.20 74.37 85.28 

OCA 78.91 85.65 90.44 72.17 73.48 82.61 72.83 73.70 78.70 74.13 73.70* 81.31 

TEST SET 
ACA 69.03 71.81 80.24 60.25 65.99 72.04 59.73 63.62 70.53 61.91 61.28* 76.59 

OCA 69.09 77.27 83.64 58.18 64.55 73.64 59.09 67.27 72.73 61.82 63.64 73.64 

Data on average and overall accuracy are expressed in percentage. 

According to the obtained results, the average and the overall accuracy rates decrease in 

years prior the financial distress, underlying that the model becomes less efficient with years 

in replicating a pre-specified classification. This trend is more evident in M.H.DIS model 

developed with AMADEUS classification than the one obtained with PROMETHEE 

method, especially for pairs 𝒫2 and 𝒫3 .  

Moreover, the higher performances of M.H.DIS model developed with PROMETHEE-

based classification in terms of accuracy rate is generally confirmed in the same previous  

combinations of criteria referred to subsets Fh  
c with ℎ = 1, 3, 5, 6, 7 and 8. Indeed, in these 

last combinations ACA and OCA of M.H.DIS model performed with PROMETHEE-based 

classification are always higher than the one achieved with AMADEUS classification, 

regardless the preference functions used except for the ACA of the following test set: 𝒫1 for 

year-2; 𝒫5 for year-3, year-4; and 𝒫8 for year-4. 

Similarly, in combinations 𝒫2  and 𝒫4 , the M.H.DIS model built on AMADEUS database, 

displays an ACA and OCA that are within intervals of the minimum and maximum value 
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attained through the multi-criteria discrimination model built with PROMETHEE method 

also for year-2, year-3, year-4, confirming the results obtained in year-1.  

Unclear case is combination 𝒫7 , where the results of year-4 are opposite to year-1. 

Specifically, the discrimination model performed with AMADEUS classification achieves 

in this last year, an accuracy rate that is higher than the minimum accuracy value obtained 

with PROMETHEE based classification in both training and test set, but never higher than 

its maximum, giving however robustness to the PROMETHEE method in classifying 

companies also for previous years to financial distress. 

3.7 Conclusions  

In light of the recent flawed risk management actions of banks and deregulation processes 

introduced in the European energy industry on December 1996, the development and use of 

more reliable and accurate failure prediction models is becoming of major importance for 

energy companies, in order to prevent financial repercussions that could be catastrophic for 

the economy of a country.  

While several statistical techniques are widely employed to deal with the issue of companies’ 

credit risk assessment, multicriteria models are often preferred to them thanks to their high 

comprehensibility, easiness of application and ability to incorporate the DM’s preferences.  

Thus, this study employs one of the most efficient multi-criteria failure prediction models, 

the Multi-group Hierarchy Discrimination (M.H.DIS) technique elaborated by Zopounidis 

and Doumpos (2000). It has been applied on a balanced sample of 114 active and inactive 

European unlisted energy companies for up to four years prior the financial distress occurred. 

Moreover, in order to avoid the issue of small sample and to develop the model adequately, 

a five-fold cross validation has been performed to analyze whether the pre-specified 

classification of companies provided by Amadeus database is well replicated by the model.  

Since the M.H.DIS method achieves a quite limited satisfactory accuracy in predicting the 

considered Amadeus classification in the holdout sample (68.18%), the PROMETHEE 

method has been performed then to provide a benchmark sorting procedure useful for 

comparison purposes. Thus, the six financial variables, previously selected to implement the 

M.H.DIS model with Amadeus based classification, have been considered in eight 

combinations and employed in turn in subsets of three criteria in the building of 

PROMETHEE classification first and M.H.DIS model development then.  

Through this twofold application of M.H.DIS model, respectively with Amadeus and 

PROMETHEE classification, it has been possible: 

 to observe if the classification built on PROMETHEE method differs from the one 

provided by Amadeus, acting as a benchmark sorting procedure; 

 to compare the results of M.H.DIS model developed with Amadeus and 

PROMETHEE classification in terms of accuracy rate.  

Consequently, the role of M.H.DIS model in this study is not to provide a final classification 

of companies into classes but to verify which of these two different classifications, inserted 
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as input in the model, are better replicated by the model on the basis of different performance 

indicators (Table 3.11). 

The evidences provided in this study highlight the robustness of M.H.DIS model developed 

with PROMETHEE based classification as consequence of the following three main results: 

(1) by considering all possible combinations of more powerful financial variables in well 

distinguishing the two classes, the discrimination power of M.H.DIS model 

developed with PROMETHEE based classification in year-1 is higher than the one 

obtained with AMADEUS classification on six of the eight pairs 𝒫h with ℎ =

1, 3, 5, 6, 7  and 8 for training and test set;  

(2) by taking into account the whole set of preference functions to build a PROMETHEE 

based classification, it is worthy to note that PROMETHEE model represents a robust 

tool to sort companies into categories since the majority of preference functions 

classify companies into the same healthiest and riskiest class. Moreover, the results 

of the M.H.DIS model developed with PROMETHEE based classification show a 

higher performance in terms of accuracy rate than AMADEUS one, regardless of the 

preference function used. Indeed, in all combinations, the performance indicators 

relative to AMADEUS based classification are never higher than the maximum 

accuracy value achieved with the six preference functions used in PROMETHEE 

based classification;  

(3) by simulating the weights of criteria in 10,000 different scenarios with the hit and 

run procedure, the final PROMETHEE based classification handles with the DM’s 

uncertainty on criteria weights providing a more robust assessment of the companies’ 

classification. This is further confirmed by the fact that cases with the highest 

accuracy rate (𝒫h with ℎ = 1, 3, 5, 6, 7  and 8) share common features such as: the 

not equally sample distribution between the two classes with a concentration in favor 

of class 𝐶1, the attainment of the lowest performance results where the preference 

functions is more complex (level, linear or Gaussian criterion), the development of 

the M.H.DIS model on at least two financial variables with a greater weight in 

discriminating between class 𝐶1 and 𝐶2 (Table 3.6).  

Moreover, if on the one side the efficiency of the M.H.DIS model decreases with years (year-

2, year-3, year-4), on the other side, the robustness of PROMETHEE based classification 

against the AMADEUS one is further confirmed in the same aforementioned combinations 

(𝒫h with ℎ = 1, 3, 5, 6, 7  and 8) and regardless of the preference function employed, even 

for years before financial distress occurred. Indeed, similarly to year-1, in all combinations 

of year-2, year-3 and year-4, the average and the overall accuracy rate of M.H.DIS model 

developed with AMADEUS based classification never exceed the maximum accuracy value 

obtained with the six preference functions employed in PROMETHEE based classification, 

taking otherwise an intermediate value within the range of possible six accuracy values. 

Therefore, the noteworthy results obtained in this study show that PROMETHEE based 

classification, used jointly with M.H.DIS model, enhances the performances of the 

discrimination model specifically for credit risk assessment of energy companies.  More 

generally, this approach is recommended in two cases:  
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 whenever the M.H.DIS model developed with a pre-specified classification give 

results not fully satisfactory in terms of overall accuracy; 

 whenever the sample under consideration is composed by alternatives for which the 

credit rating are not provided by credit rating agencies (CRAs) as in the case of 

unlisted or small and medium-sized enterprises (SMEs), even if a support to the 

credit risk assessment process is relevant also in this case.  
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Chapter 4 

Concluding remarks 
 

In this thesis, we employed three different Multi criteria Decision Aid (MCDA) models to 

address two research issues related to the energy sector: the performance evaluation and the 

credit risk assessment of energy companies.   

In Chapter 1, we highlighted the great importance of the energy industry for the modern 

economy and the recent effects of deregulation policies on energy markets (Section 1.2.1.2). 

Among the various consequences caused by liberalization directives, the failures of energy 

companies were the most crucial in terms of government interventions and public 

expenditures (Section 1.2.1.3). Thus, a constant monitoring of energy companies’ financial 

performances is fundamental as well as reliable credit risk assessment models able to predict 

corporate failure consistently and accurately. MCDA models helped to reach these aims 

thanks to their easiness of application and multi-faceted nature.  

With regard to the first issue, the evaluation of energy companies, it was emphasized that 

the available literature review on this topic is limited to the analysis of financial dimension 

(Section 1.3.3). To fill this research gap, the first aim of this thesis was to evaluate the 

complex structure of energy companies under several conflictual criteria.   

Thus, Chapter 2 proposed the performance assessment of a set of twenty listed energy 

companies under different criteria and uncertainty scenarios.  

More specifically, first we selected a coherent family of criteria to take into account all those 

dimensions that could affect the performances of the companies operating in this field 

(Section 2.3.2). 

The literature on firm’s performance evaluation has been enriched with the introduction of 

more specific energy criteria such as the sustainability, the technical and the market 

dimension, widely implemented in similar sector studies. They represented the crucial 

viewpoints that different decision makers have to analyze, in order to make decisions in line 

with their own purposes. Among these, the market criteria were definitely the most crucial 

one, since it determined a good measure of the market profile in which the company is 

located and therefore it gave more exhaustiveness and reliability to the analysis of this 

complex sector. 

Then the aforementioned four criteria have been structured hierarchically to provide a full 

assessment of each company expressed through a composite index (Section 2.4). Finally, we 

ranked the energy firms based on their performances (Section 2.5.1).   

In order to make the final result as robust as possible, different DM’s uncertainty parameters, 

reflecting the DM’s preferences, have been considered simulating seven different scenarios.  

On the methodological side, the Hierarchy Stochastic Multi Attribute Acceptability Analysis 

(HSMAA) elaborated by (De Matteis et al., 2019) was selected in this study as the most 

suitable model for energy companies’ performance assessment. Indeed, for its ability to 

handle simultaneously with a structure of criteria organized hierarchically and with the DMs’ 
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uncertainties on preference parameters, used to simulate different scenarios, it provided us 

more robust recommendation on final rank results than other MCDA models dealing with 

similar multi-level structure of criteria, such as the AHP model. 

The main findings of this research confirmed the reliability, the flexibility, and the usefulness 

of this model.  

This model is reliable because first and last positions of the considered energy companies 

are quite robust in all the considered scenario, while the rankings relative to the intermediate 

positions varied widely by the chosen set of weights, exemplifying the need to rank 

companies based on multiple set of criteria weights.  

This model is flexible because it is easily adaptable to different stakeholders’ needs. 

Depending on whether they are interested into performing a complete or a partial companies’ 

evaluation based respectively on the whole set of criteria (case (1) and (2)) or on a single 

point of view, this model allows stakeholders to make the most appropriate strategic choice.  

This model is useful for the significant policy implications that it determines. Indeed, it is 

aimed at all categories of stakeholders dealing with the firm performance evaluation, such 

as investors, business leaders and policymakers, representing a reliable support tool for their 

strategic decisions. Potential investors can use the results of case (1) and case (2) to make 

their investment decision-making process more safely; while the results on singular criteria 

if they are more interested, for instance, to evaluate the financial performances only. 

Business leaders and policymakers can use case (1) and case (2) to check the strengths and 

the weaknesses of companies’ performances within a country; while the results on singular 

criteria to implement specific strategies, such as expansive fiscal policies or infrastructural 

investments if the companies performed badly under the financial or the economic 

perspective respectively. 

However, the ranking stability reached by some companies on uncertainty scenarios, gave 

deep insights into their performances. Companies ranked in the first positions, regardless the 

scenario under consideration, were generally considered good companies and thus suitable 

for investment decisions (for investors) or to provide a benchmark to strive for (for 

policymakers). In this case, any sort of policy intervention is needed to improve their 

performances and to guarantee reliable services. Similarly, for companies ranked in the 

worst positions, regardless the scenario under consideration, they are generally considered 

not wealthy on the whole set of criteria and therefore policy interventions have to be 

guaranteed to ensure the continuity of the services to customers. Whereas, companies that 

are unstable in the ranking under different scenarios, it could be useful for police makers to 

analyze in which scenario the companies performed good/bad to highlight its strengths or 

weaknesses and therefore to implement proper energy policies that increase their 

performances. 

The second main issue emerged throughout this thesis, is represented by the serious episodes 

of energy companies’ failures occurred after liberalization policies. These generated serious 

economic losses as well as power outages that forced governments to intervene in order to 

straighten out the severely compromised situation. Thus it has been emphasized how proper 
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risk assessment model are needed in order to predict energy companies failures accurately 

and in advance.  

The literature on failure prediction is reached of credit risk models and it mainly includes 

statistical, econometric and machine learning techniques. However, these methods did not 

hold some significant features that analysts often requires to have, such as the ordinal risk 

grade and the monotonicity assumption.  

The thesis showed that MCDA models appear as the most suitable tools also to deal with 

this problem since they are comprehensible, easy to apply and include different DM’s 

preferences.  

In section 1.3.3, it has been highlighted how different MCDA models have been employed 

to solve sorting problems in credit risk assessment. Among the most applied ones, methods 

based on preference disaggregation functions, such as the M.H.DIS and the entire family of 

UTADIS model; methods based on outranking techniques, such as the ELECTRE TRI and 

its extensions and methods based on the rough set theory. 

Among these, M.H.DIS model has proven to be one of the most efficient discrimination 

methods for sorting problems. Its main strengths are the ability to discriminate among two 

or more than two categories, the progressive discrimination procedure on which it is based, 

the three different mathematical programming techniques used to estimate the “optimal” pair 

of additive utility functions and the computational speed.  

Despite its wide implementation on several fields, such as the banking sector, the corporate 

sector and the country analysis, the M.H.DIS model has never been applied to the energy 

sector to predict the financial distress of energy companies. 

Thus, for the great relevance that the energy sector has for the entire economy, the aim of 

Chapter 3 was to fill the aforementioned research gap by applying the M.H.DIS model 

elaborated by Zopounidis et Doumpos (2000), on a sample of 114 European unlisted energy 

companies. To avoid biased results arising from a small sample, the M.H.DIS model was 

developed following a five-fold cross validation procedure to analyze if the model explained 

and replicated a two groups pre-defined classification of companies into two classes, 

provided by Amadeus database.  

Since M.H.DIS model achieved a quite limited satisfactory accuracy in predicting the 

considered Amadeus classification in the test set, compared to similar M.H.DIS applications 

in other sectors (Section 3.4), the second aim of Chapter 3 was to provide a benchmark 

sorting procedure on which to compare the initial classification inserted in the model.  

In this regard, it has been pointed out that this balanced classification of companies into two 

categories, was rough since it derived from the Amadeus database rather than credit rating 

agencies (CRAs). Indeed these latter usually provide an objective synthetic credit rating for 

each company that is surely more reliable than the one provided by Amadeus for applying 

the M.H.DIS model. In this study, since unlisted companies composed the original sample, 

CRAs did not provide objective ratings and therefore the doubt about the roughness of 

companies’ classification provided by Amadeus database, has been confirmed by the not 

fully satisfactory results obtained by the application of the M.H.DIS model with Amadeus 

database.  
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In order to overcome this issue, in Chapter 3 the PROMETHEE 2 method has been employed 

on the same dataset, to realize whether the original balanced classification (Amadeus) could 

vary with the application of a well acknowledged MCDA model (Section 3.5).  

In this study PROMETHEE II has been employed to a classification problem, despite it was 

a specifically developed method for ranking problems. In this regard, it has been pointed out 

that this choice has depended by different reasons. Firstly, the very limited literature related 

on PROMETHEE TRI and PROMSORT, the main PROMETHEE models used specifically 

for classification issues, has demonstrated their weakness especially for practical 

applications. Secondly, their important limits in terms of inputs needed for implementing the 

specific sorting model that had to be fix a priori by industry experts. Thirdly, the advantages 

of PROMETHEE II methods in terms of easiness of implementation, spread of applications 

for credit scoring models and complete ranking of alternatives. Thus, through the obtained 

net score, it was possible to define the median value of all alternatives and to fix it as cut-off 

level to limit the two classes.  

By applying a robustness analysis with any possible combination of preference functions 

and the six criteria endowed of high highest discrimination power in well discriminating 

between the two categories of companies, PROMETHEE II method has returned an 

unbalanced classification of companies more shifted towards active companies for most of 

combinations (Table 3.10). Only two combinations of criteria (𝐹2
𝑐 and 𝐹4

𝑐) resulted to be 

more balanced among the two classes. Thus, our presumption about the roughness of 

Amadeus database was correct.  

The evidences provided in this study highlighted the robustness of M.H.DIS model 

developed with PROMETHEE based classification through the following main results: 

 the discriminatory power of M.H.DIS model developed with PROMETHEE based 

classification in year-1 was higher than the one obtained with AMADEUS 

classification for six out of eight combinations for both training and test set; 

 in all combinations, the performance indicators relative to AMADEUS based 

classification was never higher than the maximum accuracy value achieved with the 

six preference functions  used in PROMETHEE based classification; 

 the final PROMETHEE based classification handles with the DM’s uncertainty on 

criteria weights by applying the Hit and Run sampling procedure on weights; 

 the discriminatory power of M.H.DIS model developed with PROMETHEE based 

classification was higher than the one developed with Amadeus classification also 

for previous years (year-2,-3,-4), in the same combinations (𝑃ℎ with ℎ = 1,3,5,6,7,8) 

and the average and overall accuracy rate never exceed the maximum accuracy value 

obtained with the six preference functions employed in M.H.DIS with 

PROMETHEE based classification. 

Therefore, Chapter 3 showed that: 

  M.H.DIS used jointly with PROMETHEE II methods enhances the performances of 

the discrimination model specifically for credit risk assessment of energy companies 
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 this approach is recommended for cases in which either the M.H.DIS model 

developed with a pre-specified classification gives results not fully satisfactory in 

terms of accuracy rate or whenever the sample to assess is composed of alternatives 

for which the CRAs does not provide an objective rating such as unlisted companies 

or small and middle enterprises. 

Finally, we envisage some possible directions for future research. These directions have been 

collected according to their relevance to the main chapters of this thesis. With regard to 

Chapter 2: 

 Related to the dataset: in this study, we evaluated the performance of twenty European 

and American energy listed companies. For future directions of research it could be 

interesting to implement the HSMAA model on an extended data set of alternatives, 

in order to observe how the inclusion of other energy listed companies located in other 

countries, could affect the rank stability of the initial alternatives considered;  

 Related to the set of criteria: in this thesis, we performed the assessment of energy 

companies based on a hierarchical set of four criteria: sustainability, economic, 

technical and market criteria. Potential future directions of research related to the set 

of criteria could focus on two main directions: 

- include new sub-criteria among the pre-existent ones: for instance to consider 

measures that look at the life-cycle implications (LCA) among the environmental 

criteria, measures that look to the energy reliability (SAIDI) among the technical 

criteria and measure that look to the ability to deliver secure energy (EAPI) among 

the market criteria.  

LCA is a tool, widely applied in practice, to evaluate the environmental impact and 

resources used during the power plant’s life cycle, from raw material extraction to 

waste management. However, it is a time-consuming procedure since it requires 

several data to collect and several phases to perform (Finnveden et al., 2009). In order 

to include LCA as future direction, the Graph-Based Model proposed by Yu et al., 

2015 could be performed in our analysis, since it allows to simplify its traditional 

time-consuming procedure and to check the potential changes that could be realized 

in the final evaluation of alternatives. In this way, it can be carried out what is defined 

environmental burden shifting approach (Yu et al., 2015). 

SAIDI is the acronym of System Average Interruption Duration index and represents 

the ratio between the total duration of customer interruption over the total number of 

customers served. Since it represents a measure of energy reliability for electricity 

distribution, it could affect the performance of energy companies.  

EAPI stands for global Energy Architecture Performance Index and it is a composite 

index created by the collaboration between the World Economic Forum and 

Accenture to benchmark the performance of national energy systems and compare 

nations based on energy access and security, environmental sustainability, economic 

growth and development (Mundial, 2017). For future developments, it could be 

interesting to understand how EAPI index could vary among companies located in 
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different countries, and therefore how it could affect the entire energy companies’ 

performances;  

- extend the original set of criteria with new ones: for instance to include also 

qualitative criteria, such as internal attributes of corporate governance, in the decision 

making process. In this regard, some empirical studies demonstrate that qualitative 

criteria are positively related to the financial performance of companies. Examples 

of possible qualitative criteria considered for future analysis could be: board size, 

outside directors, managerial ownership, ownership concentration, managerial skills 

and qualifications of the considered companies (Sheikh et al., 2013). Their inclusions 

into the list of criteria could lead to revise the HSMAA into the AHP model as 

suitable MCDA model for its ability to handle simultaneously with a structure of 

criteria organized hierarchically and to manage qualitative and quantitative data; 

 Related to the stakeholders’ preferences elicitation: in this study, HSMAA was 

performed with and without the DM’s preferences on macro-criteria weights. In 

particular, in case (2) we indirectly elicited six different preferences on macro-

criteria weights, reaching in total seven different scenarios. A possible future 

direction of research could consist of taking into consideration different 

stakeholders’ preference information directly through questionnaires or the deck of 

card method (DCM) if information is not necessarily complete and imprecise. A 

suitable method to collect and manage this last type of information is ELECTRE 

(Figueira and Roy, 2002); 

 Related to the period considered: in this study, we collected data for 2017, the latest 

fiscal year for which data are fully available. Future researches could be devoted to 

analyse data in other periods, to take into account the significant events occurred in 

the European energy market, such as the liberalization process of 1996 and test 

simultaneously the principal European policy implications; 

 Related to the MCDA model applied: in this study, we performed the HSMAA model 

to handle simultaneously with a hierarchical criteria structure and uncertainties of 

DMs. More specifically, we employed the min-max procedure to normalize indicators 

that generated problems with outliers. To overcome the issue of outliers without using 

the IRQ method (Gasser et al., 2020), future researches could focus on the application 

of other multi-criteria methods, such as the ELECTRE III methods, for its ability to 

deal with inaccurate, imprecise and uncertainty of data. The main aim of this 

application is to highlight how final companies’ rank changes according to the Multi-

criteria method employed, without normalize the criteria evaluations; 

 Related to the robustness: in this study, we tested the robustness of the ranking results 

with several uncertainty scenarios, which translate the DM’s preferences. A possible 

future direction related to the robustness, could be implemented by considering 

several combinations of normalization methods (such as the min-max approach, the 

standardization and the distance to a reference country, specifically useful for 

environmental issues) and aggregation approaches (such as the geometric, harmonic, 

minimum, median, Condorcet method, the mixed, the reverse and mixed). In this way, 

https://www.sciencedirect.com/science/article/pii/S0377221720308407#bib0021
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the obtained ranking results could be compared each other, giving more reliability to 

the analysis. Moreover, the DMs could identify their final rank position with more 

confidence and successful strategies could be implemented to reach the alternative 

with the best performance.  

While future research could extend the proposed methodology of Chapter 3: 

 Related to variables: in this study, we employed only financial variables to evaluate 

the creditworthiness of energy companies. Future researches could be devoted to 

investigate whether soft variables, such as management, market and macro-economic 

variables, could affect the creditworthiness of energy companies or could improve 

the predictive accuracy of the distress model.  

Moreover, it might be interesting to consider the multidimensional nature of the 

energy companies’ assessment that requires the definition of a hierarchical structure 

of criteria including elements such as the environmental, the technical and the market 

criteria, to observe whether the accuracy of the two combined models performed on 

this evaluation could increase against externally assigned ratings; 

 Related to the dataset: in this study, unlisted European energy companies composed 

the sample and the lack of synthetic rating judgement provided by CRAs has been 

highlighted for this sample. Therefore, a possible future direction could consider a 

set of alternatives composed by listed energy companies in order to compare the 

results obtained through our proposed methodology, i.e. the combination of M.H.DIS 

and PROMETHEE II model, and the M.H.DIS developed with the pre-defined 

classification issued by credit rating agencies (CRAs). In this way, it could be 

possible to observe which of two classifications is better replicated by the 

discrimination model. 
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Appendix A 
 

Table A-1 Cases (1) and (2) “From first to Seventh Scenario”: Rank acceptability indices (All the data are 

expressed in percent) 

ALTERNATIVES 
RANKS/ 

SCENARIO 
𝐛𝟏 𝐛𝟐 𝐛𝟑 𝐛𝟒 𝐛𝟓 𝐛𝟔 𝐛𝟕 𝐛𝟖 𝐛𝟗 𝐛𝟏𝟎 

𝐚𝟏 
ENEL  

SPA 

SCEN. 1 0 0.0011 0.0073 0.0288 0.0474 0.0608 0.0667 0.0656 0.0853 0.0680 

SCEN. 2 0 0.0027 0.0201 0.0446 0.0679 0.0854 0.0978 0.0950 0.1184 0.0968 

SCEN. 3 0 0 0 0 0.0001 0.0018 0.0127 0.0247 0.0506 0.0571 

SCEN. 4 0 0.0010 0.0057 0.0363 0.0736 0.0757 0.0901 0.0933 0.1045 0.0865 

SCEN. 5 0 0.0015 0.0079 0.0415 0.0743 0.1019 0.1137 0.1069 0.1212 0.0770 

SCEN. 6 0 0 0 0.0020 0.0066 0.0248 0.0326 0.0386 0.0635 0.0500 

SCEN. 7 0 0 0 0.0009 0.0049 0.0280 0.0369 0.0459 0.0773 0.0676 

𝐚𝟐 ENI 

SCEN. 1 0.0154 0.0449 0.0407 0.0411 0.0416 0.0357 0.0438 0.0446 0.0414 0.0464 

SCEN. 2 0.0054 0.0030 0.0048 0.0125 0.0094 0.0150 0.0256 0.0291 0.0282 0.0289 

SCEN. 3 0.0009 0.0120 0.0359 0.0462 0.0433 0.0463 0.0359 0.0384 0.0336 0.0396 

SCEN. 4 0.0040 0.0034 0.0056 0.0067 0.0091 0.0147 0.0222 0.0207 0.0284 0.0217 

SCEN. 5 0.0293 0.0886 0.0568 0.0402 0.0423 0.0407 0.0507 0.0551 0.0495 0.0513 

SCEN. 6 0.0240 0.1111 0.0897 0.0793 0.0842 0.0754 0.0624 0.0690 0.0582 0.0559 

SCEN. 7 0.0191 0.0953 0.0897 0.0863 0.0846 0.0688 0.0568 0.0664 0.0666 0.0673 

𝐚𝟑 
EDISON  

SPA 

SCEN. 1 0.0988 0.0423 0.0433 0.0505 0.0398 0.0601 0.0636 0.0701 0.0834 0.0958 

SCEN. 2 0.0043 0.0033 0.0099 0.0158 0.0196 0.0279 0.0528 0.0838 0.1022 0.1390 

SCEN. 3 0.0859 0.0342 0.0239 0.0312 0.0248 0.0299 0.0338 0.0398 0.0635 0.0681 

SCEN. 4 0 0.0023 0.0085 0.0151 0.0185 0.0354 0.0563 0.0779 0.0989 0.1273 

SCEN. 5 0.1332 0.0553 0.0689 0.0632 0.0561 0.1082 0.0801 0.0968 0.0943 0.0962 

SCEN. 6 0.2274 0.0800 0.0704 0.0820 0.0560 0.0898 0.0575 0.0608 0.0464 0.0457 

SCEN. 7 0.2331 0.0761 0.0735 0.0814 0.0508 0.0596 0.0706 0.0652 0.0520 0.0516 

𝐚𝟒 
A2A  

SPA 

SCEN. 1 0 0 0 0.0006 0.0059 0.0142 0.0321 0.0392 0.0403 0.0462 

SCEN. 2 0 0 0 0 0 0 0 0.0001 0.0033 0.0105 

SCEN. 3 0 0 0 0.0001 0.0040 0.0205 0.0276 0.0211 0.0269 0.0219 

SCEN. 4 0 0 0 0 0 0 0.0008 0.0013 0.0046 0.0148 

SCEN. 5 0 0 0 0.0025 0.0122 0.0135 0.0429 0.0619 0.0580 0.0825 

SCEN. 6 0 0 0 0.0025 0.0193 0.0305 0.0732 0.0768 0.0761 0.0688 

SCEN. 7 0 0 0 0.0026 0.0175 0.0325 0.0512 0.0675 0.0680 0.0682 

𝐚𝟓 
IREN 

 SPA 

SCEN. 1 0 0 0.0001 0.0011 0.0024 0.0068 0.0133 0.0231 0.0354 0.0506 

SCEN. 2 0 0 0 0 0 0 0 0.0001 0.0044 0.0095 

SCEN. 3 0 0 0 0 0 0.0002 0.0020 0.0098 0.0135 0.0293 

SCEN. 4 0 0 0 0 0 0 0 0 0 0 

SCEN. 5 0 0.0006 0.0003 0.0022 0.0044 0.0119 0.0197 0.0354 0.0517 0.0658 

SCEN. 6 0 0.0002 0.0003 0.0019 0.0038 0.0150 0.0212 0.0456 0.0752 0.1053 

SCEN. 7 0 0 0.0002 0.0024 0.0049 0.0164 0.0263 0.0460 0.0844 0.1091 

𝐚𝟔 
ACEA 

 SPA 

SCEN. 1 0.0554 0.0538 0.0547 0.0490 0.0443 0.0556 0.0497 0.0547 0.0467 0.0460 

SCEN. 2 0 0.0016 0.0240 0.0249 0.0311 0.0351 0.0574 0.0405 0.0505 0.0444 

SCEN. 3 0.1247 0.1312 0.0684 0.0639 0.0613 0.0596 0.0660 0.0599 0.0541 0.0450 

SCEN. 4 0.0054 0.0237 0.0264 0.0204 0.0295 0.0382 0.0481 0.0450 0.0512 0.0388 

SCEN. 5 0.0067 0.0113 0.0325 0.0243 0.0293 0.0421 0.0505 0.0342 0.0453 0.0455 

SCEN. 6 0.1308 0.1040 0.0744 0.0705 0.0600 0.0661 0.0705 0.0527 0.0525 0.0481 

SCEN. 7 0.0898 0.1012 0.0871 0.0719 0.0614 0.0699 0.0663 0.0559 0.0566 0.0541 

𝐚𝟕 
GRUPPO  

HERA 

SCEN. 1 0.0091 0.0121 0.0062 0.0125 0.0177 0.0178 0.0292 0.0297 0.0378 0.0466 

SCEN. 2 0 0 0.0003 0.0013 0.0008 0.0022 0.0104 0.0222 0.0309 0.0371 

SCEN. 3 0.0173 0.0210 0.0170 0.0151 0.0225 0.0217 0.0175 0.0228 0.0273 0.0251 

SCEN. 4 0 0 0 0.0024 0.0015 0.0035 0.0071 0.0130 0.0219 0.0268 

SCEN. 5 0.0082 0.0033 0.0036 0.0154 0.0190 0.0303 0.0401 0.0413 0.0447 0.0454 

SCEN. 6 0.0377 0.0266 0.0193 0.0302 0.0405 0.0427 0.0419 0.0456 0.0543 0.0556 

SCEN. 7 0.0324 0.0249 0.0199 0.0207 0.0267 0.0319 0.0503 0.0566 0.0551 0.0609 

𝐚𝟖 EDF 

SCEN. 1 0.0963 0.0573 0.0380 0.0319 0.0276 0.0276 0.0319 0.0322 0.0339 0.0435 

SCEN. 2 0.0465 0.0723 0.0454 0.0416 0.0409 0.0364 0.0393 0.0543 0.0537 0.0612 

SCEN. 3 0.1566 0.1134 0.0553 0.0417 0.0334 0.0358 0.0346 0.0295 0.0266 0.0397 

SCEN. 4 0.0479 0.1021 0.0509 0.0429 0.0405 0.0345 0.0404 0.0446 0.0432 0.0584 

SCEN. 5 0.0484 0.0250 0.0254 0.0232 0.0255 0.0220 0.0216 0.0272 0.0306 0.0308 

SCEN. 6 0.1264 0.0344 0.0315 0.0223 0.0228 0.0218 0.0219 0.0182 0.0195 0.0192 

SCEN. 7 0.1044 0.0399 0.0268 0.0235 0.0248 0.0229 0.0219 0.0186 0.0213 0.0193 

𝐚𝟗 
ENGIE  

SA 

SCEN. 1 0.0010 0.0049 0.0071 0.0174 0.0225 0.0283 0.0399 0.0677 0.0838 0.0954 

SCEN. 2 0.0007 0.0035 0.0060 0.0103 0.0129 0.0307 0.0476 0.0710 0.1091 0.1356 

SCEN. 3 0 0.0001 0.0038 0.0128 0.0183 0.0340 0.0581 0.1155 0.1554 0.1492 

SCEN. 4 0 0 0.0019 0.0042 0.0106 0.0336 0.0557 0.1083 0.1588 0.1752 

SCEN. 5 0 0.0016 0.0049 0.0346 0.0287 0.0235 0.0315 0.0369 0.0458 0.0715 

SCEN. 6 0 0.0022 0.0062 0.0281 0.0359 0.0298 0.0392 0.0470 0.0488 0.0477 

SCEN. 7 0.0029 0.0095 0.0156 0.0279 0.0279 0.0273 0.0298 0.0410 0.0369 0.0380 
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𝐚𝟏𝟎 
E.ON  

SE 

SCEN. 1 0.0007 0.0039 0.0169 0.0323 0.0459 0.0648 0.0745 0.0935 0.0927 0.0804 

SCEN. 2 0.0011 0.0080 0.0212 0.0423 0.0506 0.0650 0.0944 0.1186 0.1237 0.1006 

SCEN. 3 0.0001 0.0040 0.0305 0.0654 0.0922 0.1091 0.1018 0.1080 0.0872 0.0862 

SCEN. 4 0.0005 0.0048 0.0307 0.0620 0.0566 0.0750 0.0869 0.1228 0.1097 0.0875 

SCEN. 5 0 0.0002 0.0026 0.0053 0.0107 0.0321 0.0418 0.0515 0.0757 0.0762 

SCEN. 6 0 0.0002 0.0048 0.0121 0.0210 0.0473 0.0488 0.0631 0.0651 0.0768 

SCEN. 7 0 0.0014 0.0040 0.0069 0.0184 0.0335 0.0541 0.0651 0.0631 0.0711 

𝐚𝟏𝟏 SSE PLC 

SCEN. 1 0 0 0 0 0 0 0 0.0003 0.0024 0.0055 

SCEN. 2 0 0 0 0 0 0 0 0.0001 0.0012 0.0029 

SCEN. 3 0 0 0 0 0 0 0 0.0018 0.0030 0.0138 

SCEN. 4 0 0 0 0 0 0 0 0.0042 0.0027 0.0098 

SCEN. 5 0 0 0 0 0 0 0 0 0 0 

SCEN. 6 0 0 0 0 0 0 0 0 0 0.0037 

SCEN. 7 0 0 0 0 0 0 0 0 0 0 

𝐚𝟏𝟐 

DRAX 

GROUP 

PLC 

SCEN. 1 0.0169 0.0282 0.0301 0.0402 0.0375 0.0371 0.0453 0.0479 0.0416 0.0398 

SCEN. 2 0.0025 0.0040 0.0058 0.0093 0.0161 0.0281 0.0290 0.0395 0.0369 0.0331 

SCEN. 3 0.0134 0.0387 0.0373 0.0475 0.0479 0.0315 0.0432 0.0435 0.0494 0.0388 

SCEN. 4 0.0002 0.0002 0.0003 0.0010 0.0057 0.0153 0.0295 0.0445 0.0429 0.0385 

SCEN. 5 0.0089 0.0185 0.0175 0.0169 0.0218 0.0338 0.0550 0.0610 0.0657 0.0586 

SCEN. 6 0.0247 0.0637 0.0715 0.0675 0.0620 0.0458 0.0592 0.0562 0.0586 0.0479 

SCEN. 7 0.0363 0.0616 0.0698 0.0586 0.0654 0.0528 0.0557 0.0487 0.0536 0.0446 

𝐚𝟏𝟑 RWE 

SCEN. 1 0.1110 0.0735 0.0604 0.0696 0.0738 0.0718 0.0618 0.0638 0.0541 0.0482 

SCEN. 2 0.2200 0.1109 0.1080 0.1412 0.1158 0.0931 0.0774 0.0585 0.0330 0.0232 

SCEN. 3 0.2062 0.1293 0.0829 0.0558 0.0588 0.0636 0.0528 0.0493 0.0372 0.0317 

SCEN. 4 0.2587 0.1137 0.0942 0.1115 0.0870 0.1054 0.0888 0.0622 0.0361 0.0253 

SCEN. 5 0.0208 0.0230 0.0296 0.0652 0.0584 0.0789 0.0664 0.0662 0.0719 0.0660 

SCEN. 6 0.0039 0.0346 0.0283 0.0213 0.0321 0.0268 0.0303 0.0399 0.0510 0.0595 

SCEN. 7 0.0040 0.0070 0.0281 0.0348 0.0366 0.0355 0.0410 0.0514 0.0575 0.0566 

𝐚𝟏𝟒 EXELON CORP. 

SCEN. 1 0.0781 0.1090 0.1431 0.1259 0.1275 0.1046 0.0826 0.0586 0.0466 0.0301 

SCEN. 2 0.0917 0.1214 0.1632 0.1941 0.1704 0.1114 0.0649 0.0480 0.0235 0.0092 

SCEN. 3 0.0010 0.0266 0.0421 0.1106 0.1329 0.1162 0.1181 0.1063 0.0769 0.0621 

SCEN. 4 0.0993 0.1382 0.1522 0.1647 0.1506 0.1004 0.0713 0.0490 0.0320 0.0218 

SCEN. 5 0.1624 0.1885 0.2392 0.1318 0.1002 0.0757 0.0436 0.0271 0.0131 0.0102 

SCEN. 6 0.0469 0.0713 0.1195 0.0872 0.0942 0.0992 0.0911 0.0780 0.0615 0.0580 

SCEN. 7 0.0225 0.0828 0.1002 0.1149 0.1418 0.1306 0.0995 0.0687 0.0559 0.0466 

𝐚𝟏𝟓 AMEREN 

SCEN. 1 0.2370 0.1825 0.1417 0.1127 0.0718 0.0558 0.0438 0.0373 0.0241 0.0203 

SCEN. 2 0.3899 0.1605 0.1316 0.1218 0.0806 0.0471 0.0318 0.0202 0.0101 0.0044 

SCEN. 3 0.2610 0.1192 0.0809 0.1081 0.0778 0.0561 0.0691 0.0508 0.0332 0.0303 

SCEN. 4 0.3836 0.1638 0.1409 0.1203 0.0767 0.0311 0.0388 0.0292 0.0091 0.0040 

SCEN. 5 0.1826 0.2458 0.2017 0.1061 0.0715 0.0355 0.0324 0.0321 0.0156 0.0213 

SCEN. 6 0.0768 0.1790 0.1255 0.1143 0.0741 0.0699 0.0651 0.0537 0.0376 0.0430 

SCEN. 7 0.1225 0.1436 0.1344 0.1162 0.0873 0.0808 0.0631 0.0426 0.0360 0.0386 

𝐚𝟏𝟔 

DTE 

 ENERGY 

COMP. 

SCEN. 1 0.0725 0.0883 0.0949 0.0750 0.1016 0.0888 0.0784 0.0742 0.0578 0.0556 

SCEN. 2 0.0299 0.0940 0.0784 0.0808 0.1060 0.1333 0.1154 0.1073 0.0806 0.0813 

SCEN. 3 0.0026 0.0473 0.0994 0.0634 0.0742 0.0853 0.0783 0.0799 0.0706 0.0746 

SCEN. 4 0.0173 0.0776 0.0838 0.0890 0.1083 0.1259 0.1094 0.1028 0.0784 0.0868 

SCEN. 5 0.1371 0.1195 0.1043 0.0856 0.1227 0.0857 0.0795 0.0619 0.0433 0.0363 

SCEN. 6 0.0929 0.0841 0.1161 0.0778 0.0954 0.0575 0.0477 0.0422 0.0407 0.0317 

SCEN. 7 0.0818 0.1081 0.0995 0.0756 0.0854 0.0647 0.0587 0.0502 0.0431 0.0384 

𝐚𝟏𝟕 
XCEL 

 ENERGY 

SCEN. 1 0.0084 0.0875 0.0829 0.1248 0.1042 0.1047 0.0906 0.0651 0.0520 0.0518 

SCEN. 2 0.0179 0.1485 0.0990 0.0999 0.1165 0.1283 0.1151 0.0717 0.0549 0.0395 

SCEN. 3 0.0025 0.0627 0.0848 0.1290 0.1381 0.1649 0.0981 0.0587 0.0454 0.0437 

SCEN. 4 0.0184 0.1185 0.0988 0.1422 0.1563 0.1663 0.1080 0.0480 0.0362 0.0285 

SCEN. 5 0.0237 0.0548 0.0671 0.1531 0.1096 0.0978 0.0813 0.0580 0.0460 0.0467 

SCEN. 6 0.0043 0.0286 0.0586 0.1071 0.0866 0.0891 0.0815 0.0648 0.0668 0.0649 

SCEN. 7 0.0039 0.0520 0.0821 0.0963 0.0696 0.0805 0.0635 0.0605 0.0598 0.0600 

𝐚𝟏𝟖 
DUKE ENERGY 

CORP. 

SCEN. 1 0.1966 0.1990 0.2033 0.1297 0.1161 0.0707 0.0388 0.0248 0.0135 0.0039 

SCEN. 2 0.1891 0.2590 0.2524 0.1030 0.0753 0.0754 0.0230 0.0159 0.0067 0.0002 

SCEN. 3 0.1278 0.2552 0.3193 0.1322 0.0930 0.0323 0.0150 0.0140 0.0097 0.0015 

SCEN. 4 0.1647 0.2504 0.2832 0.1154 0.0952 0.0595 0.0182 0.0098 0.0036 0 

SCEN. 5 0.2367 0.1518 0.1140 0.1422 0.1505 0.0829 0.0505 0.0344 0.0190 0.0091 

SCEN. 6 0.2000 0.1577 0.1541 0.1466 0.1390 0.0773 0.0474 0.0346 0.0224 0.0091 

SCEN. 7 0.2055 0.1589 0.1513 0.1467 0.1457 0.0746 0.0450 0.0323 0.0200 0.0039 

𝐚𝟏𝟗 IBERDROLA 

SCEN. 1 0.0028 0.0089 0.0182 0.0395 0.0359 0.0496 0.0524 0.0526 0.0635 0.0597 

SCEN. 2 0.0010 0.0041 0.0093 0.0219 0.0247 0.0251 0.0430 0.0444 0.0467 0.0614 

SCEN. 3 0 0.0051 0.0145 0.0690 0.0489 0.0550 0.0790 0.0738 0.0788 0.0709 

SCEN. 4 0 0.0001 0.0010 0.0401 0.0252 0.0279 0.0457 0.0516 0.0499 0.0635 

SCEN. 5 0.0020 0.0100 0.0153 0.0250 0.0327 0.0472 0.0481 0.0568 0.0551 0.0580 

SCEN. 6 0.0042 0.0223 0.0285 0.0445 0.0587 0.0725 0.0783 0.0766 0.0662 0.0677 

SCEN. 7 0.0084 0.0285 0.0340 0.0345 0.0466 0.0638 0.0620 0.0727 0.0632 0.0599 

𝐚𝟐𝟎 ENDESA 

SCEN. 1 0 0.0028 0.0111 0.0174 0.0365 0.0452 0.0616 0.0550 0.0637 0.0662 

SCEN. 2 0 0.0032 0.0206 0.0347 0.0614 0.0605 0.0751 0.0797 0.0820 0.0812 

SCEN. 3 0 0 0.0040 0.0080 0.0285 0.0362 0.0564 0.0524 0.0571 0.0714 
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SCEN. 4 0 0.0002 0.0159 0.0258 0.0551 0.0576 0.0827 0.0718 0.0879 0.0848 

SCEN. 5 0 0.0007 0.0084 0.0217 0.0301 0.0363 0.0506 0.0553 0.0535 0.0516 

SCEN. 6 0 0 0.0013 0.0028 0.0078 0.0187 0.0302 0.0366 0.0356 0.0414 

SCEN. 7 0 0.0010 0.0041 0.0065 0.0184 0.0260 0.0386 0.0404 0.0340 0.0395 

 

 

ALTERNATIVES 
RANKS/ 

SCENARIO 
𝐛𝟏𝟏 𝐛𝟏𝟐 𝐛𝟏𝟑 𝐛𝟏𝟒 𝐛𝟏𝟓 𝐛𝟏𝟔 𝐛𝟏𝟕 𝐛𝟏𝟖 𝐛𝟏𝟗 𝐛𝟐𝟎 

𝐚𝟏 
ENEL  

SPA 

SCEN. 1 0.0725 0.0740 0.0814 0.0658 0.0738 0.0687 0.0683 0.0524 0.0102 0.0019 

SCEN. 2 0.1030 0.0880 0.0723 0.0361 0.0205 0.0192 0.0148 0.0163 0.0010 0.0001 

SCEN. 3 0.0866 0.1110 0.1310 0.1114 0.1190 0.0967 0.1117 0.0610 0.0195 0.0051 

SCEN. 4 0.1030 0.1064 0.0925 0.0568 0.0328 0.0298 0.0120 0 0 0 

SCEN. 5 0.0430 0.0327 0.0348 0.0386 0.0474 0.0738 0.0421 0.0392 0.0024 0.0001 

SCEN. 6 0.0557 0.0582 0.0708 0.0885 0.1237 0.1198 0.1225 0.1112 0.0243 0.0072 

SCEN. 7 0.0769 0.0717 0.0766 0.0771 0.0900 0.1021 0.0925 0.1251 0.0243 0.0022 

𝐚𝟐 ENI 

SCEN. 1 0.0641 0.0443 0.0484 0.0519 0.0682 0.0658 0.0561 0.0606 0.0695 0.0755 

SCEN. 2 0.0365 0.0419 0.0532 0.0591 0.0891 0.0938 0.0820 0.0996 0.1344 0.1485 

SCEN. 3 0.0437 0.0428 0.0513 0.0585 0.0633 0.0613 0.0695 0.0672 0.0849 0.1254 

SCEN. 4 0.0301 0.0360 0.0499 0.0587 0.0891 0.0837 0.1073 0.0961 0.1150 0.1976 

SCEN. 5 0.0662 0.0442 0.0415 0.0545 0.0606 0.0527 0.0542 0.0482 0.0414 0.0320 

SCEN. 6 0.0713 0.0416 0.0386 0.0386 0.0388 0.0278 0.0160 0.0093 0.0054 0.0034 

SCEN. 7 0.0737 0.0466 0.0374 0.0390 0.0345 0.0380 0.0183 0.0100 0.0016 0 

𝐚𝟑 
EDISON  

SPA 

SCEN. 1 0.0693 0.0631 0.0537 0.0495 0.0316 0.0290 0.0319 0.0234 0.0008 0 

SCEN. 2 0.1286 0.1096 0.0942 0.0749 0.0390 0.0290 0.0344 0.0313 0.0004 0 

SCEN. 3 0.0708 0.1002 0.0894 0.0917 0.0744 0.0601 0.0506 0.0251 0.0026 0 

SCEN. 4 0.1096 0.1166 0.1040 0.0877 0.0446 0.0325 0.0319 0.0324 0.0005 0 

SCEN. 5 0.0746 0.0355 0.0239 0.0076 0.0040 0.0017 0.0003 0.0001 0 0 

SCEN. 6 0.0304 0.0224 0.0224 0.0284 0.0323 0.0283 0.0129 0.0058 0.0011 0 

SCEN. 7 0.0393 0.0295 0.0268 0.0260 0.0247 0.0177 0.0180 0.0024 0.0017 0 

𝐚𝟒 
A2A  

SPA 

SCEN. 1 0.0634 0.0640 0.0819 0.1057 0.1223 0.1013 0.0687 0.0639 0.1132 0.0371 

SCEN. 2 0.0168 0.0403 0.0810 0.1674 0.2248 0.1871 0.0933 0.0945 0.0796 0.0013 

SCEN. 3 0.0230 0.0250 0.0399 0.0501 0.0840 0.1130 0.0978 0.0871 0.2964 0.0616 

SCEN. 4 0.0272 0.0494 0.0695 0.1566 0.2048 0.1795 0.0762 0.0759 0.1393 0.0001 

SCEN. 5 0.1082 0.1138 0.1184 0.1372 0.1273 0.0741 0.0250 0.0168 0.0057 0 

SCEN. 6 0.0921 0.0780 0.0607 0.0451 0.0455 0.0420 0.0449 0.0457 0.1484 0.0504 

SCEN. 7 0.0780 0.0737 0.0685 0.0633 0.0574 0.0632 0.0700 0.0707 0.1088 0.0389 

𝐚𝟓 
IREN 

 SPA 

SCEN. 1 0.0450 0.0468 0.0568 0.0621 0.0823 0.1125 0.1210 0.1677 0.1028 0.0702 

SCEN. 2 0.0134 0.0216 0.0278 0.0427 0.1128 0.1359 0.1466 0.1762 0.1687 0.1403 

SCEN. 3 0.0288 0.0278 0.0309 0.0492 0.0779 0.1347 0.1600 0.3096 0.0971 0.0292 

SCEN. 4 0.0005 0.0086 0.0188 0.0347 0.0951 0.1396 0.2020 0.2466 0.1575 0.0966 

SCEN. 5 0.0594 0.0769 0.0756 0.0748 0.0821 0.1214 0.1051 0.0847 0.0681 0.0599 

SCEN. 6 0.0859 0.0869 0.0797 0.0758 0.0758 0.0884 0.0841 0.1310 0.0238 0.0001 

SCEN. 7 0.0904 0.0819 0.0773 0.0771 0.0677 0.0632 0.0693 0.1034 0.0536 0.0264 

𝐚𝟔 
ACEA 

 SPA 

SCEN. 1 0.0401 0.0439 0.0422 0.0403 0.0484 0.0551 0.0764 0.0705 0.0586 0.0146 

SCEN. 2 0.0617 0.0500 0.0419 0.0567 0.0613 0.0807 0.1201 0.1054 0.0874 0.0253 

SCEN. 3 0.0431 0.0438 0.0346 0.0392 0.0493 0.0389 0.0146 0.0024 0 0 

SCEN. 4 0.0541 0.0461 0.0482 0.0588 0.0733 0.0810 0.1091 0.1190 0.0717 0.0120 

SCEN. 5 0.0422 0.0419 0.0536 0.0583 0.0593 0.0749 0.1190 0.1242 0.0840 0.0209 

SCEN. 6 0.0404 0.0406 0.0384 0.0359 0.0299 0.0332 0.0260 0.0175 0.0085 0 

SCEN. 7 0.0470 0.0397 0.0391 0.0260 0.0267 0.0312 0.0516 0.0191 0.0052 0.0002 

𝐚𝟕 
GRUPPO  

HERA 

SCEN. 1 0.0497 0.0512 0.0523 0.0576 0.0744 0.0734 0.0912 0.0962 0.1194 0.1159 

SCEN. 2 0.0241 0.0325 0.0329 0.0452 0.0704 0.0819 0.1128 0.1597 0.1926 0.1427 

SCEN. 3 0.0316 0.0440 0.0529 0.0701 0.0988 0.0859 0.1192 0.0982 0.1011 0.0909 

SCEN. 4 0.0178 0.0271 0.0353 0.0552 0.0764 0.0797 0.1321 0.1654 0.2140 0.1208 

SCEN. 5 0.0524 0.0545 0.0491 0.0440 0.0574 0.0593 0.0818 0.1086 0.1499 0.0917 

SCEN. 6 0.0669 0.0612 0.0564 0.0576 0.0633 0.0648 0.0649 0.0499 0.0687 0.0519 

SCEN. 7 0.0743 0.0708 0.0593 0.0631 0.0666 0.0674 0.0464 0.0424 0.0600 0.0703 

𝐚𝟖 EDF 

SCEN. 1 0.0415 0.0443 0.0431 0.0463 0.0364 0.0407 0.0416 0.0663 0.0892 0.1304 

SCEN. 2 0.0684 0.0678 0.0684 0.0632 0.0371 0.0336 0.0374 0.0445 0.0331 0.0549 

SCEN. 3 0.0516 0.0435 0.0426 0.0320 0.0305 0.0350 0.0361 0.0402 0.0491 0.0728 

SCEN. 4 0.0688 0.0745 0.0718 0.0599 0.0383 0.0375 0.0225 0.0316 0.0365 0.0532 

SCEN. 5 0.0339 0.0422 0.0464 0.0453 0.0341 0.0458 0.0397 0.0901 0.1300 0.2128 

SCEN. 6 0.0213 0.0204 0.0242 0.0302 0.0303 0.0366 0.0502 0.0987 0.1341 0.2160 

SCEN. 7 0.0232 0.0229 0.0293 0.0297 0.0365 0.0442 0.0631 0.1016 0.1204 0.2057 

𝐚𝟗 
ENGIE  

SA 

SCEN. 1 0.1081 0.0993 0.1004 0.0869 0.0597 0.0461 0.0347 0.0541 0.0386 0.0041 

SCEN. 2 0.1781 0.1677 0.1036 0.0664 0.0214 0.0158 0.0099 0.0063 0.0034 0 

SCEN. 3 0.1004 0.0749 0.0683 0.0717 0.0332 0.0292 0.0215 0.0315 0.0219 0.0002 

SCEN. 4 0.1487 0.1159 0.0825 0.0536 0.0206 0.0193 0.0084 0.0026 0.0001 0 

SCEN. 5 0.0811 0.0825 0.1152 0.0924 0.0910 0.0561 0.0395 0.0908 0.0663 0.0061 

SCEN. 6 0.0532 0.0515 0.0887 0.0902 0.0716 0.0649 0.0574 0.1303 0.1013 0.0060 

SCEN. 7 0.0425 0.0548 0.0918 0.1114 0.0878 0.0703 0.0632 0.1151 0.0979 0.0084 

𝐚𝟏𝟎 
E.ON  

SE 

SCEN. 1 0.0723 0.0695 0.0825 0.0654 0.0503 0.0480 0.0253 0.0379 0.0432 0 

SCEN. 2 0.0831 0.0659 0.0866 0.0599 0.0341 0.0191 0.0091 0.0115 0.0052 0 
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SCEN. 3 0.0785 0.0643 0.0495 0.0411 0.0311 0.0217 0.0156 0.0096 0.0041 0 

SCEN. 4 0.0840 0.0706 0.0813 0.0603 0.0427 0.0215 0.0023 0.0007 0.0001 0 

SCEN. 5 0.0696 0.0709 0.0974 0.1028 0.0860 0.0732 0.0431 0.0671 0.0938 0 

SCEN. 6 0.0680 0.0773 0.0882 0.0859 0.0683 0.0688 0.0525 0.0699 0.0819 0 

SCEN. 7 0.0738 0.0846 0.0855 0.0833 0.0760 0.0642 0.0456 0.0871 0.0823 0 

𝐚𝟏𝟏 SSE PLC 

SCEN. 1 0.0089 0.0125 0.0159 0.0205 0.0371 0.0630 0.0945 0.1138 0.1648 0.4608 

SCEN. 2 0.0086 0.0228 0.0309 0.0290 0.0655 0.0821 0.1463 0.1120 0.0969 0.4017 

SCEN. 3 0.0201 0.0289 0.0352 0.0403 0.0401 0.0436 0.0531 0.0657 0.1301 0.5243 

SCEN. 4 0.0145 0.0285 0.0348 0.0350 0.0482 0.0726 0.1158 0.0904 0.0980 0.4455 

SCEN. 5 0 0.0009 0.0013 0.0023 0.0207 0.0578 0.1135 0.1278 0.1757 0.5000 

SCEN. 6 0.0045 0.0036 0.0093 0.0074 0.0176 0.0500 0.0482 0.0870 0.1924 0.5763 

SCEN. 7 0 0.0010 0.0046 0.0065 0.0182 0.0429 0.0589 0.1100 0.2058 0.5521 

𝐚𝟏𝟐 

DRAX 

GROUP 

PLC 

SCEN. 1 0.0431 0.0762 0.0579 0.0725 0.0679 0.0668 0.1025 0.0460 0.0609 0.0416 

SCEN. 2 0.0437 0.0558 0.0691 0.0982 0.0839 0.0823 0.1014 0.0754 0.1062 0.0797 

SCEN. 3 0.0442 0.0489 0.0523 0.0551 0.0718 0.0538 0.0622 0.0521 0.0994 0.0690 

SCEN. 4 0.0497 0.0776 0.0805 0.0935 0.0947 0.0987 0.0849 0.0626 0.1091 0.0706 

SCEN. 5 0.0605 0.1242 0.0770 0.0847 0.0758 0.0797 0.1120 0.0164 0.0098 0.0022 

SCEN. 6 0.0510 0.0844 0.0567 0.0493 0.0423 0.0369 0.0934 0.0141 0.0113 0.0035 

SCEN. 7 0.0435 0.0762 0.0536 0.0468 0.0516 0.0435 0.0924 0.0224 0.0183 0.0046 

𝐚𝟏𝟑 RWE 

SCEN. 1 0.0468 0.0340 0.0388 0.0440 0.0531 0.0381 0.0367 0.0160 0.0042 0.0003 

SCEN. 2 0.0104 0.0041 0.0023 0.0021 0 0 0 0 0 0 

SCEN. 3 0.0317 0.0271 0.0250 0.0188 0.0258 0.0251 0.0288 0.0324 0.0150 0.0027 

SCEN. 4 0.0128 0.0040 0.0002 0.0001 0 0 0 0 0 0 

SCEN. 5 0.0829 0.0485 0.0540 0.0725 0.0793 0.0610 0.0497 0.0051 0.0006 0 

SCEN. 6 0.0718 0.0661 0.0763 0.0893 0.1194 0.0979 0.0893 0.0419 0.0175 0.0028 

SCEN. 7 0.0609 0.0659 0.0727 0.0927 0.1231 0.0918 0.0906 0.0320 0.0156 0.0022 

𝐚𝟏𝟒 
EXELON 

CORP. 

SCEN. 1 0.0224 0.0190 0.0121 0.0095 0.0088 0.0078 0.0078 0.0038 0.0017 0.0010 

SCEN. 2 0.0020 0.0002 0 0 0 0 0 0 0 0 

SCEN. 3 0.0481 0.0403 0.0282 0.0218 0.0202 0.0153 0.0183 0.0072 0.0045 0.0033 

SCEN. 4 0.0151 0.0040 0.0012 0.0002 0 0 0 0 0 0 

SCEN. 5 0.0058 0.0023 0.0001 0 0 0 0 0 0 0 

SCEN. 6 0.0447 0.0370 0.0312 0.0243 0.0200 0.0125 0.0137 0.0063 0.0027 0.0007 

SCEN. 7 0.0370 0.0287 0.0212 0.0172 0.0137 0.0079 0.0080 0.0015 0.0008 0.0005 

𝐚𝟏𝟓 AMEREN 

SCEN. 1 0.0202 0.0185 0.0206 0.0127 0.0009 0.0001 0 0 0 0 

SCEN. 2 0.0009 0.0006 0.0005 0 0 0 0 0 0 0 

SCEN. 3 0.0285 0.0266 0.0387 0.0174 0.0018 0.0003 0.0002 0 0 0 

SCEN. 4 0.0015 0.0008 0.0002 0 0 0 0 0 0 0 

SCEN. 5 0.0176 0.0113 0.0090 0.0169 0.0006 0 0 0 0 0 

SCEN. 6 0.0396 0.0407 0.0461 0.0309 0.0033 0.0004 0 0 0 0 

SCEN. 7 0.0380 0.0330 0.0366 0.0245 0.0026 0.0002 0 0 0 0 

𝐚𝟏𝟔 

DTE 

 ENERGY 

COMP. 

SCEN. 1 0.0496 0.0352 0.0257 0.0216 0.0287 0.0281 0.0197 0.0042 0.0001 0 

SCEN. 2 0.0485 0.0235 0.0112 0.0052 0.0037 0.0005 0.0004 0 0 0 

SCEN. 3 0.0779 0.0370 0.0409 0.0355 0.0394 0.0434 0.0371 0.0128 0.0004 0 

SCEN. 4 0.0741 0.0220 0.0113 0.0048 0.0069 0.0013 0.0003 0 0 0 

SCEN. 5 0.0251 0.0277 0.0225 0.0122 0.0234 0.0066 0.0048 0.0018 0 0 

SCEN. 6 0.0341 0.0470 0.0353 0.0406 0.0544 0.0430 0.0422 0.0170 0.0003 0 

SCEN. 7 0.0334 0.0416 0.0414 0.0386 0.0483 0.0440 0.0378 0.0091 0.0003 0 

𝐚𝟏𝟕 
XCEL 

 ENERGY 

SCEN. 1 0.0443 0.0536 0.0374 0.0242 0.0241 0.0259 0.0135 0.0040 0.0010 0 

SCEN. 2 0.0373 0.0514 0.0152 0.0048 0 0 0 0 0 0 

SCEN. 3 0.0411 0.0286 0.0239 0.0219 0.0182 0.0248 0.0095 0.0029 0.0012 0 

SCEN. 4 0.0277 0.0373 0.0092 0.0044 0.0002 0 0 0 0 0 

SCEN. 5 0.0452 0.0562 0.0430 0.0325 0.0340 0.0327 0.0172 0.0011 0 0 

SCEN. 6 0.0541 0.0523 0.0563 0.0432 0.0498 0.0524 0.0282 0.0089 0.0025 0 

SCEN. 7 0.0545 0.0587 0.0593 0.0520 0.0472 0.0592 0.0301 0.0078 0.0029 0.0001 

𝐚𝟏𝟖 

DUKE 

ENERGY 

CORP. 

SCEN. 1 0.0036 0 0 0 0 0 0 0 0 0 

SCEN. 2 0 0 0 0 0 0 0 0 0 0 

SCEN. 3 0 0 0 0 0 0 0 0 0 0 

SCEN. 4 0 0 0 0 0 0 0 0 0 0 

SCEN. 5 0.0088 0.0001 0 0 0 0 0 0 0 0 

SCEN. 6 0.0114 0.0004 0 0 0 0 0 0 0 0 

SCEN. 7 0.0105 0 0 0 0 0 0 0 0 0 

𝐚𝟏𝟗 IBERDROLA 

SCEN. 1 0.0676 0.0926 0.0912 0.0949 0.0851 0.0826 0.0653 0.0307 0.0068 0.0001 

SCEN. 2 0.0657 0.0977 0.1466 0.1235 0.0948 0.0959 0.0534 0.0282 0.0125 0.0001 

SCEN. 3 0.0796 0.1035 0.0833 0.0842 0.0599 0.0542 0.0310 0.0060 0.0033 0 

SCEN. 4 0.0836 0.1024 0.1425 0.1148 0.0877 0.0760 0.0492 0.0253 0.0132 0.0003 

SCEN. 5 0.0615 0.0874 0.0867 0.0744 0.0698 0.0840 0.1052 0.0661 0.0142 0.0005 

SCEN. 6 0.0651 0.0757 0.0569 0.0588 0.0538 0.0639 0.0760 0.0288 0.0015 0 

SCEN. 7 0.0636 0.0760 0.0652 0.0687 0.0657 0.0928 0.0741 0.0185 0.0018 0 

𝐚𝟐𝟎 ENDESA 

SCEN. 1 0.0675 0.0580 0.0577 0.0686 0.0469 0.0470 0.0448 0.0885 0.1150 0.0465 

SCEN. 2 0.0692 0.0586 0.0623 0.0656 0.0416 0.0431 0.0381 0.0391 0.0786 0.0054 

SCEN. 3 0.0707 0.0818 0.0821 0.0900 0.0613 0.0630 0.0632 0.0890 0.0694 0.0155 

SCEN. 4 0.0772 0.0722 0.0663 0.0649 0.0446 0.0473 0.0460 0.0514 0.0450 0.0033 

SCEN. 5 0.0620 0.0463 0.0505 0.0490 0.0472 0.0452 0.0478 0.1119 0.1581 0.0738 
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SCEN. 6 0.0385 0.0547 0.0638 0.0800 0.0599 0.0684 0.0776 0.1267 0.1743 0.0817 

SCEN. 7 0.0413 0.0425 0.0538 0.0570 0.0617 0.0562 0.0701 0.1218 0.1987 0.0884 

 

Table A-2 Cases (1) and (2) “From first to Seventh Scenario”: Downward cumulative rank acceptability 

indices (All the data are expressed in percent). 

SCENARIO 1 

RANK/ 

ALTERN. 

𝐚𝟏 𝐚𝟐 𝐚𝟑 𝐚𝟒 𝐚𝟓 𝐚𝟔 𝐚𝟕 𝐚𝟖 𝐚𝟗 𝐚𝟏𝟎 

ENEL SPA ENI EDISON SPA A2A SPA IREN SPA ACEA SPA GRUPPO HERA EDF ENGIE SA E.ON SE 

≤𝒃𝟏 0.00 1.54 9.88 0.00 0.00 5.54 0.91 9.63 0.10 0.07 

≤𝒃𝟐 0.11 6.03 14.11 0.00 0.00 10.92 2.12 15.36 0.59 0.46 

≤𝒃𝟑 0.84 10.10 18.44 0.00 0.01 16.39 2.74 19.16 1.30 2.15 

≤𝒃𝟒 3.72 14.21 23.49 0.06 0.12 21.29 3.99 22.35 3.04 5.38 

≤𝒃𝟓 8.46 18.37 27.47 0.65 0.36 25.72 5.76 25.11 5.29 9.97 

RANK/ 

ALTERN. 

𝐚𝟏𝟏 𝐚𝟏𝟐 𝐚𝟏𝟑 𝐚𝟏𝟒 𝐚𝟏𝟓 𝐚𝟏𝟔 𝐚𝟏𝟕 𝐚𝟏𝟖 𝐚𝟏𝟗 𝐚𝟐𝟎 

SSE PLC 
DRAX 

GROUP 
RWE EXELON  AMEREN 

DTE 

ENERGY 

XCEL 

ENERGY 
DUKE 

ENERGY 
IBERDROLA ENDESA 

≤𝒃𝟏 0.00 1.69 11.10 7.81 23.70 7.25 0.84 19.66 0.28 0.00 

≤𝒃𝟐 0.00 4.51 18.45 18.71 41.95 16.08 9.59 39.56 1.17 0.28 

≤𝒃𝟑 0.00 7.52 24.49 33.02 56.12 25.57 17.88 59.89 2.99 1.39 

≤𝒃𝟒 0.00 11.54 31.45 45.61 67.39 33.07 30.36 72.86 6.94 3.13 

≤𝒃𝟓 0.00 15.29 38.83 58.36 74.57 43.23 40.78 84.47 10.53 6.78 

SCENARIO 2 

RANK/ 

ALTERN. 

𝐚𝟏 𝐚𝟐 𝐚𝟑 𝐚𝟒 𝐚𝟓 𝐚𝟔 𝐚𝟕 𝐚𝟖 𝐚𝟗 𝐚𝟏𝟎 

ENEL SPA ENI EDISON SPA A2A SPA IREN SPA ACEA SPA GRUPPO HERA EDF ENGIE SA E.ON SE 

≤𝒃𝟏 0.00 0.54 0.43 0 0 0 0 4.65 0.07 0.11 

≤𝒃𝟐 0.27 0.84 0.76 0 0 0.16 0.00 11.88 0.42 0.91 

≤𝒃𝟑 2.28 1.32 1.75 0 0 2.56 0.03 16.42 1.02 3.03 

≤𝒃𝟒 6.74 2.57 3.33 0 0 5.05 0.16 20.58 2.05 7.26 

≤𝒃𝟓 13.53 3.51 5.29 0 0 8.16 0.24 24.67 3.34 12.32 

RANK/ 

ALTERN. 

𝐚𝟏𝟏 𝐚𝟏𝟐 𝐚𝟏𝟑 𝐚𝟏𝟒 𝐚𝟏𝟓 𝐚𝟏𝟔 𝐚𝟏𝟕 𝐚𝟏𝟖 𝐚𝟏𝟗 𝐚𝟐𝟎 

SSE PLC 
DRAX 

GROUP 
RWE EXELON  AMEREN 

DTE 

ENERGY 

XCEL 

ENERGY 

DUKE 

ENERGY 
IBERDROLA ENDESA 

≤𝒃𝟏 0 0.25 22.00 9.17 38.99 2.99 1.79 18.91 0.10 0 

≤𝒃𝟐 0 0.65 33.09 21.31 55.04 12.39 16.64 44.81 0.51 0.32 

≤𝒃𝟑 0 1.23 43.89 37.63 68.20 20.23 26.54 70.05 1.44 2.38 

≤𝒃𝟒 0 2.16 58.01 57.04 80.38 28.31 36.53 80.35 3.63 5.85 

≤𝒃𝟓 0 3.77 69.59 74.08 88.44 38.91 48.18 87.88 6.10 11.99 

SCENARIO 3 

RANK/ 

ALTERN. 

𝐚𝟏 𝐚𝟐 𝐚𝟑 𝐚𝟒 𝐚𝟓 𝐚𝟔 𝐚𝟕 𝐚𝟖 𝐚𝟗 𝐚𝟏𝟎 

ENEL SPA ENI EDISON SPA A2A SPA IREN SPA ACEA SPA GRUPPO HERA EDF ENGIE SA E.ON SE 

≤𝒃𝟏 0 0.09 8.59 0 0 12.47 1.73 15.66 0 0.01 

≤𝒃𝟐 0 1.29 12.01 0 0 25.59 3.83 27.00 0.01 0.41 

≤𝒃𝟑 0 4.88 14.40 0 0 32.43 5.53 32.53 0.39 3.46 

≤𝒃𝟒 0 9.50 17.52 0.01 0 38.82 7.04 36.70 1.67 10.00 

≤𝒃𝟓 0.01 13.83 20.00 0.41 0 44.95 9.29 40.04 3.50 19.22 

RANK/ 

ALTERN. 

𝐚𝟏𝟏 𝐚𝟏𝟐 𝐚𝟏𝟑 𝐚𝟏𝟒 𝐚𝟏𝟓 𝐚𝟏𝟔 𝐚𝟏𝟕 𝐚𝟏𝟖 𝐚𝟏𝟗 𝐚𝟐𝟎 

SSE PLC 
DRAX 

GROUP 
RWE EXELON  AMEREN 

DTE 

ENERGY 

XCEL 

ENERGY 

DUKE 

ENERGY 
IBERDROLA ENDESA 

≤𝒃𝟏 0 1.34 20.62 0.10 26.10 0.26 0.25 12.78 0 0 

≤𝒃𝟐 0 5.21 33.55 2.76 38.02 4.99 6.52 38.30 0.51 0.00 

≤𝒃𝟑 0 8.94 41.84 6.97 46.11 14.93 15.00 70.23 1.96 0 

≤𝒃𝟒 0 13.69 47.42 18.03 56.92 21.27 27.90 83.45 8.86 1.20 

≤𝒃𝟓 0 18.48 53.30 31.32 64.70 28.69 41.71 92.75 13.75 4.05 

SCENARIO 4 

RANK/ 

ALTERN. 

𝐚𝟏 𝐚𝟐 𝐚𝟑 𝐚𝟒 𝐚𝟓 𝐚𝟔 𝐚𝟕 𝐚𝟖 𝐚𝟗 𝐚𝟏𝟎 

ENEL SPA ENI EDISON SPA A2A SPA IREN SPA ACEA SPA GRUPPO HERA EDF ENGIE SA E.ON SE 

≤𝒃𝟏 0 0.40 0 0 0 0.54 0 4.79 0 0.05 

≤𝒃𝟐 0.10 0.74 0.23 0 0 2.91 0 15.00 0 0.53 

≤𝒃𝟑 0.67 1.30 1.08 0 0 5.55 0 20.09 0.19 3.60 

≤𝒃𝟒 4.30 1.97 2.59 0 0 7.59 0.24 24.38 0.61 9.80 

≤𝒃𝟓 11.66 2.88 4.44 0 0 10.54 0.39 28.43 1.67 15.46 

RANK/ 

ALTERN. 

𝐚𝟏𝟏 𝐚𝟏𝟐 𝐚𝟏𝟑 𝐚𝟏𝟒 𝐚𝟏𝟓 𝐚𝟏𝟔 𝐚𝟏𝟕 𝐚𝟏𝟖 𝐚𝟏𝟗 𝐚𝟐𝟎 

SSE PLC 
DRAX 

GROUP 
RWE EXELON  AMEREN 

DTE 

ENERGY 

XCEL 

ENERGY 

DUKE 

ENERGY 
IBERDROLA ENDESA 

≤𝒃𝟏 0 0.02 25.87 9.93 38.36 1.73 1.84 16.47 0 0 

≤𝒃𝟐 0 0.04 37.24 23.75 54.74 9.49 13.69 41.51 0.01 0.02 

≤𝒃𝟑 0 0.07 46.66 38.97 68.83 17.87 23.57 69.83 0.11 1.61 

≤𝒃𝟒 0 0.17 57.81 55.44 80.86 26.77 37.79 81.37 4.12 4.19 

≤𝒃𝟓 0 0.74 66.51 70.50 88.53 37.60 53.42 90.89 6.64 9.70 
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SCENARIO 5 

RANK/ 

ALTERN. 

𝐚𝟏 𝐚𝟐 𝐚𝟑 𝐚𝟒 𝐚𝟓 𝐚𝟔 𝐚𝟕 𝐚𝟖 𝐚𝟗 𝐚𝟏𝟎 

ENEL SPA ENI EDISON SPA A2A SPA IREN SPA ACEA SPA GRUPPO HERA EDF ENGIE SA E.ON SE 

≤𝒃𝟏 0 2.93 13.32 0 0 0.67 0.82 4.84 0 0 

≤𝒃𝟐 0.15 11.79 18.85 0 0.06 1.80 1.15 7.34 0.16 0.02 

≤𝒃𝟑 0.94 17.47 25.74 0.00 0.09 5.05 1.51 9.88 0.65 0.28 

≤𝒃𝟒 5.09 21.49 32.06 0.25 0.31 7.48 3.05 12.20 4.11 0.81 

≤𝒃𝟓 12.52 25.72 37.67 1.47 0.75 10.41 4.95 14.75 6.98 1.88 

RANK/ 

ALTERN. 

𝐚𝟏𝟏 𝐚𝟏𝟐 𝐚𝟏𝟑 𝐚𝟏𝟒 𝐚𝟏𝟓 𝐚𝟏𝟔 𝐚𝟏𝟕 𝐚𝟏𝟖 𝐚𝟏𝟗 𝐚𝟐𝟎 

SSE PLC 
DRAX 

GROUP 
RWE EXELON  AMEREN 

DTE 

ENERGY 

XCEL 

ENERGY 

DUKE 

ENERGY 
IBERDROLA ENDESA 

≤𝒃𝟏 0 0.89 2.08 16.24 18.26 13.71 2.37 23.67 0.20 0 

≤𝒃𝟐 0 2.74 4.38 35.09 42.84 25.66 7.85 38.85 1.20 0.07 

≤𝒃𝟑 0 4.49 7.34 59.01 63.01 36.09 14.56 50.25 2.73 0.91 

≤𝒃𝟒 0 6.18 13.86 72.19 73.62 44.65 29.87 64.47 5.23 3.08 

≤𝒃𝟓 0 8.36 19.70 82.21 80.77 56.92 40.83 79.52 8.50 6.09 

SCENARIO 6 

RANK/ 

ALTERN. 

𝐚𝟏 𝐚𝟐 𝐚𝟑 𝐚𝟒 𝐚𝟓 𝐚𝟔 𝐚𝟕 𝐚𝟖 𝐚𝟗 𝐚𝟏𝟎 

ENEL SPA ENI EDISON SPA A2A SPA IREN SPA ACEA SPA GRUPPO HERA EDF ENGIE SA E.ON SE 

≤𝒃𝟏 0 2.40 22.74 0 0 13.08 3.77 12.64 0.00 0.00 

≤𝒃𝟐 0 13.51 30.74 0 0.02 23.48 6.43 16.08 0.22 0.02 

≤𝒃𝟑 0 22.48 37.78 0 0.05 30.92 8.36 19.23 0.84 0.50 

≤𝒃𝟒 0.20 30.41 45.98 0.25 0.24 37.97 11.38 21.46 3.65 1.71 

≤𝒃𝟓 0.86 38.83 51.58 2.18 0.62 43.97 15.43 23.74 7.24 3.81 

RANK/ 

ALTERN. 

𝐚𝟏𝟏 𝐚𝟏𝟐 𝐚𝟏𝟑 𝐚𝟏𝟒 𝐚𝟏𝟓 𝐚𝟏𝟔 𝐚𝟏𝟕 𝐚𝟏𝟖 𝐚𝟏𝟗 𝐚𝟐𝟎 

SSE PLC 
DRAX 

GROUP 
RWE EXELON  AMEREN 

DTE 

ENERGY 

XCEL 

ENERGY 

DUKE 

ENERGY 
IBERDROLA ENDESA 

≤𝒃𝟏 0.00 2.47 0.39 4.69 7.68 9.29 0.43 20.00 0.42 0 

≤𝒃𝟐 0.00 8.84 3.85 11.82 25.58 17.70 3.29 35.77 2.65 0 

≤𝒃𝟑 0.00 15.99 6.68 23.77 38.13 29.31 9.15 51.18 5.50 0.13 

≤𝒃𝟒 0.00 22.74 8.81 32.49 49.56 37.09 19.86 65.84 9.95 0.41 

≤𝒃𝟓 0.00 28.94 12.02 41.91 56.97 46.63 28.52 79.74 15.82 1.19 

SCENARIO 7 

RANK/ 

ALTERN. 

𝐚𝟏 𝐚𝟐 𝐚𝟑 𝐚𝟒 𝐚𝟓 𝐚𝟔 𝐚𝟕 𝐚𝟖 𝐚𝟗 𝐚𝟏𝟎 

ENEL SPA ENI EDISON SPA A2A SPA IREN SPA ACEA SPA GRUPPO HERA EDF ENGIE SA E.ON SE 

≤𝒃𝟏 0 1.91 23.31 0 0 8.98 3.24 10.44 0.29 0.00 

≤𝒃𝟐 0 11.44 30.92 0 0 19.10 5.73 14.43 1.24 0.14 

≤𝒃𝟑 0 20.41 38.27 0 0.02 27.81 7.72 17.11 2.80 0.54 

≤𝒃𝟒 0.09 29.04 46.41 0.26 0.26 35.00 9.79 19.46 5.59 1.23 

≤𝒃𝟓 0.58 37.50 51.49 2.01 0.75 41.14 12.46 21.94 8.38 3.07 

RANK/ 

ALTERN. 

𝐚𝟏𝟏 𝐚𝟏𝟐 𝐚𝟏𝟑 𝐚𝟏𝟒 𝐚𝟏𝟓 𝐚𝟏𝟔 𝐚𝟏𝟕 𝐚𝟏𝟖 𝐚𝟏𝟗 𝐚𝟐𝟎 

SSE PLC 
DRAX 

GROUP 
RWE EXELON  AMEREN 

DTE 

ENERGY 

XCEL 

ENERGY 

DUKE 

ENERGY 
IBERDROLA ENDESA 

≤𝒃𝟏 0 3.63 0.40 2.25 12.25 8.18 0.39 23.89 0.84 0 

≤𝒃𝟐 0 9.79 1.10 10.53 26.61 18.99 5.59 40.60 3.69 0.10 

≤𝒃𝟑 0 16.77 3.91 20.55 40.05 28.94 13.80 53.70 7.09 0.51 

≤𝒃𝟒 0 22.63 7.39 32.04 51.67 36.50 23.43 67.51 10.54 1.16 

≤𝒃𝟓 0 29.17 11.05 46.22 60.40 45.04 30.39 80.21 15.20 3.00 

 

 

Table A-3 Rank acceptability indices on Financial macro-criterion  

ALTERNATIVES\RANK 𝐛𝟏 𝐛𝟐 𝐛𝟑 𝐛𝟒 𝐛𝟓 𝐛𝟔 𝐛𝟕 𝐛𝟖 𝐛𝟗 𝐛𝟏𝟎 

𝐚𝟏 ENEL SPA 0 0 0 0 0 0 0 0 0 0 

𝐚𝟐 ENI 0 0 0 0 0 0 0 0 0 0 

𝐚𝟑 EDISON SPA 0 0 0 0 0 0 0 0.1295 0.0314 0.1149 

𝐚𝟒 A2A SPA 0 0 0 0 0 0 0 0 0 0 

𝐚𝟓 IREN SPA 0 0 0 0 0 0 0 0 0 0 

𝐚𝟔 ACEA SPA 0 0 0.2828 0.0701 0.1232 0.1452 0.0124 0.0060 0.1994 0.1609 

𝐚𝟕 GRUPPO HERA 0 0 0 0 0 0 0 0 0 0 

𝐚𝟖 EDF 0 0.4536 0.0101 0.0029 0.0573 0.0562 0.0875 0.0011 0.0218 0.1036 

𝐚𝟗 ENGIE SA 0 0 0 0 0.2625 0.0756 0.1794 0.3339 0.1486 0 

𝐚𝟏𝟎 E.ON SE 0 0 0 0.2289 0.0038 0.1872 0.0626 0.0143 0.0546 0.1576 

𝐚𝟏𝟏 SSE PLC 0 0 0 0 0 0 0 0.1466 0.0135 0.0458 

𝐚𝟏𝟐 DRAX GROUP PLC 0 0 0 0 0 0 0 0 0 0 

𝐚𝟏𝟑 RWE 0.6061 0.0168 0.0943 0.0539 0.0039 0.1203 0.1047 0 0 0 

𝐚𝟏𝟒 EXELON CORP. 0 0 0 0 0 0.2416 0.0524 0.1981 0.3114 0.1965 

𝐚𝟏𝟓 AMEREN 0.3939 0.1146 0.0102 0.0147 0.1407 0.0160 0.0159 0.1645 0.1295 0 

𝐚𝟏𝟔 DTE ENERGY COMP. 0 0 0 0 0 0 0 0 0 0.0152 

𝐚𝟏𝟕 XCEL ENERGY  0 0.3903 0.1460 0.1559 0.0453 0.0209 0.2416 0 0 0 

𝐚𝟏𝟖 DUKE ENERGY CORP. 0 0.0247 0.3184 0.3040 0.3452 0.0077 0 0 0 0 

𝐚𝟏𝟗 IBERDROLA 0 0 0.1382 0.1696 0.0181 0.0246 0.0158 0.0051 0.0772 0.1083 

𝐚𝟐𝟎 ENDESA 0 0 0 0 0 0.1047 0.2277 9.0000e-04 0.0126 0.0972 
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 ALTERNATIVES\RANK 𝐛𝟏𝟏 𝐛𝟏𝟐 𝐛𝟏𝟑 𝐛𝟏𝟒 𝐛𝟏𝟓 𝐛𝟏𝟔 𝐛𝟏𝟕 𝐛𝟏𝟖 𝐛𝟏𝟗 𝐛𝟐𝟎 

𝐚𝟏 ENEL SPA 0 0 0.6578 0.0962 0.0556 0.1904 0 0 0 0 

𝐚𝟐 ENI 0 0 0 0 0.1904 0.0893 0.0144 0.0735 0.0912 0.5412 

𝐚𝟑 EDISON SPA 0.0068 0.1190 0.0041 0.0617 0.0305 0.0484 0.0079 0.4458 0 0 

𝐚𝟒 A2A SPA 0 0 0 0 0 0.3904 0.1911 0.0509 0.3676 0 

𝐚𝟓 IREN SPA 0 0 0.1512 0.2034 0.1500 0.1050 0.3904 0 0 0 

𝐚𝟔 ACEA SPA 0 0 0 0 0 0 0 0 0 0 

𝐚𝟕 GRUPPO HERA 0 0 0 0.3985 0.1603 0.1127 0.2791 0.0494 0 0 

𝐚𝟖 EDF 0.2059 0 0 0 0 0 0 0 0 0 

𝐚𝟗 ENGIE SA 0 0 0 0 0 0 0 0 0 0 

𝐚𝟏𝟎 E.ON SE 0.0084 0.1931 0.0895 0 0 0 0 0 0 0 

𝐚𝟏𝟏 SSE PLC 0.0651 0.0430 0.0083 0.0444 0.0720 0.0150 0.0053 0.0652 0.0170 0.4588 

𝐚𝟏𝟐 DRAX GROUP PLC 0 0.0895 0.0714 0.0851 0.0598 0.0227 0.0768 0.0705 0.5242 0 

𝐚𝟏𝟑 RWE 0 0 0 0 0 0 0 0 0 0 

𝐚𝟏𝟒 EXELON CORP. 0 0 0 0 0 0 0 0 0 0 

𝐚𝟏𝟓 AMEREN 0 0 0 0 0 0 0 0 0 0 

𝐚𝟏𝟔 DTE ENERGY COMP. 0.6341 0.3507 0 0 0 0 0 0 0 0 

𝐚𝟏𝟕 XCEL ENERGY  0 0 0 0 0 0 0 0 0 0 

𝐚𝟏𝟖 DUKE ENERGY CORP. 0 0 0 0 0 0 0 0 0 0 

𝐚𝟏𝟗 IBERDROLA 0.0471 0.0820 0.0119 0.0695 0.2326 0 0 0 0 0 

𝐚𝟐𝟎 ENDESA 0.0326 0.1227 0.0058 0.0412 0.0488 0.0261 0.0350 0.2447 0 0 

 

Table A-4 Rank acceptability indices on Sustainability macro-criterion  

ALTERNATIVES\RANK 𝐛𝟏 𝐛𝟐 𝐛𝟑 𝐛𝟒 𝐛𝟓 𝐛𝟔 𝐛𝟕 𝐛𝟖 𝐛𝟗 𝐛𝟏𝟎 

𝐚𝟏 ENEL SPA 0 0.1573 0.3220 0.2167 0.1014 0.0511 0.0493 0.0519 0.0465 0.0038 

𝐚𝟐 ENI 0.0309 0.0067 0.0045 0.0087 0.0151 0.0155 0.0658 0.0687 0.0313 0.0301 

𝐚𝟑 EDISON SPA 0 0 0 0 0 0 0 0.0201 0.1774 0.3479 

𝐚𝟒 A2A SPA 0 0 0 0 0 0 0 0 0 0 

𝐚𝟓 IREN SPA 0 0 0 0 0 0 0 0 0 0 

𝐚𝟔 ACEA SPA 0 0 0 0 0 0 0 0 0 0 

𝐚𝟕 GRUPPO HERA 0 0 0 0 0 0 0.0471 0.0112 0.0329 0.0278 

𝐚𝟖 EDF 0 0 0 0 0 0 0.0288 0.1371 0.0994 0.0604 

𝐚𝟗 ENGIE SA 0 0 0 0 0 0 0 0 0 0 

𝐚𝟏𝟎 E.ON SE 0 0.0300 0.0340 0.0391 0.0175 0.0266 0.0191 0.0498 0.2882 0.1439 

𝐚𝟏𝟏 SSE PLC 0 0 0 0 0 0 0 0 0 0 

𝐚𝟏𝟐 DRAX GROUP PLC 0.0067 0.0336 0.0227 0.0238 0.0513 0.1696 0.0331 0.0578 0.0209 0.0456 

𝐚𝟏𝟑 RWE 0 0.0307 0.0621 0.1240 0.4277 0.0731 0.0644 0.0211 0.0681 0.0499 

𝐚𝟏𝟒 EXELON CORP. 0.3917 0.0822 0.0477 0.1119 0.1368 0.0259 0.0835 0.0689 0.0514 0 

𝐚𝟏𝟓 AMEREN 0.2324 0.1504 0.2192 0.2863 0.0124 0.0611 0.0382 0 0 0 

𝐚𝟏𝟔 DTE ENERGY COMP. 0.0977 0.2881 0.1190 0.0781 0.0685 0.1480 0.0877 0.0789 0.0247 0.0093 

𝐚𝟏𝟕 XCEL ENERGY  0.0435 0.0446 0.0425 0.0171 0.0290 0.0498 0.2494 0.1929 0.0578 0.0907 

𝐚𝟏𝟖 DUKE ENERGY CORP. 0.1916 0.0762 0.0543 0.0571 0.1069 0.2906 0.0447 0.1256 0.0530 0 

𝐚𝟏𝟗 IBERDROLA 0 0 0 0 0 0 0 0 0 0 

𝐚𝟐𝟎 ENDESA 0.0055 0.1002 0.0720 0.0372 0.0334 0.0887 0.1889 0.1160 0.0484 0.1906 

 
ALTERNATIVES\RANK 𝐛𝟏𝟏 𝐛𝟏𝟐 𝐛𝟏𝟑 𝐛𝟏𝟒 𝐛𝟏𝟓 𝐛𝟏𝟔 𝐛𝟏𝟕 𝐛𝟏𝟖 𝐛𝟏𝟗 𝐛𝟐𝟎 

𝐚𝟏 ENEL SPA 0 0 0 0 0 0 0 0 0 0 

𝐚𝟐 ENI 0.0318 0.0214 0.0717 0.0251 0.0438 0.1244 0.0396 0.1737 0.0909 0.1003 

𝐚𝟑 EDISON SPA 0.3122 0.0620 0.0248 0.0326 0.0215 0.0015 0 0 0 0 

𝐚𝟒 A2A SPA 0.0244 0.0933 0.1392 0.3292 0.3531 0.0608 0 0 0 0 

𝐚𝟓 IREN SPA 0 0 0 0 0.0608 0.2134 0.0446 0.2825 0.1675 0.2312 

𝐚𝟔 ACEA SPA 0.0218 0.0071 0.0032 0.0043 0.0240 0.0268 0.0295 0.0722 0.4366 0.3745 

𝐚𝟕 GRUPPO HERA 0.0125 0.0084 0.0219 0.0179 0.0346 0.0195 0.0436 0.2699 0.2664 0.1863 

𝐚𝟖 EDF 0.1168 0.0494 0.0855 0.1596 0.0400 0.0237 0.0340 0.0218 0.0358 0.1077 

𝐚𝟗 ENGIE SA 0.1414 0.5907 0.1893 0.0326 0.0381 0.0079 0 0 0 0 

𝐚𝟏𝟎 E.ON SE 0.1262 0.0217 0.1027 0.1012 0 0 0 0 0 0 

𝐚𝟏𝟏 SSE PLC 0 0 0 0.0036 0.2256 0.2079 0.4928 0.0701 0 0 

𝐚𝟏𝟐 DRAX GROUP PLC 0.0299 0.0236 0.0706 0.0548 0.0290 0.0629 0.2641 0 0 0 

𝐚𝟏𝟑 RWE 0.0259 0.0180 0.0086 0.0264 0 0 0 0 0 0 

𝐚𝟏𝟒 EXELON CORP. 0 0 0 0 0 0 0 0 0 0 

𝐚𝟏𝟓 AMEREN 0 0 0 0 0 0 0 0 0 0 

𝐚𝟏𝟔 DTE ENERGY COMP. 0 0 0 0 0 0 0 0 0 0 

𝐚𝟏𝟕 XCEL ENERGY  0.0794 0.0715 0.0318 0 0 0 0 0 0 0 

𝐚𝟏𝟖 DUKE ENERGY CORP. 0 0 0 0 0 0 0 0 0 0 

𝐚𝟏𝟗 IBERDROLA 0.0107 0.0138 0.2348 0.2034 0.1217 0.2512 0.0518 0.1098 0.0028 0 

𝐚𝟐𝟎 ENDESA 0.0670 0.0191 0.0159 0.0093 0.0078 0 0 0 0 0 
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Table A-5 Rank acceptability indices on Technical macro-criterion  

ALTERNATIVES\RANK 𝐛𝟏 𝐛𝟐 𝐛𝟑 𝐛𝟒 𝐛𝟓 𝐛𝟔 𝐛𝟕 𝐛𝟖 𝐛𝟗 𝐛𝟏𝟎 

𝐚𝟏 ENEL SPA 0 0 0 0 0 0 0 0 0 0 

𝐚𝟐 ENI 0 0 0.1785 0.4330 0.0595 0.1085 0.0135 0.2070 0 0 

𝐚𝟑 EDISON SPA 0.3921 0.0195 0.0330 0.0607 0.0061 0.0004 0.0212 0.0239 0.0185 0.0114 

𝐚𝟒 A2A SPA 0 0 0 0 0 0.2157 0.0228 0.0277 0.0526 0.0332 

𝐚𝟓 IREN SPA 0 0 0 0 0 0 0 0 0.1746 0.0964 

𝐚𝟔 ACEA SPA 0.0561 0.5278 0.0524 0.0780 0.0983 0.0140 0.1734 0 0 0 

𝐚𝟕 GRUPPO HERA 0 0.2661 0.0976 0.0248 0.0318 0.0136 0.0331 0.0392 0.0122 0.0167 

𝐚𝟖 EDF 0.3540 0.0621 0.0277 0.0509 0.0096 0.0030 0.0417 0.0219 0.0066 0.0418 

𝐚𝟗 ENGIE SA 0 0 0 0 0 0 0 0 0 0.0287 

𝐚𝟏𝟎 E.ON SE 0 0 0 0 0.0915 0.4480 0.2868 0.1737 0 0 

𝐚𝟏𝟏 SSE PLC 0 0 0 0 0 0 0 0 0 0 

𝐚𝟏𝟐 DRAX GROUP PLC 0.1978 0.1245 0.4116 0.0427 0.2234 0 0 0 0 0 

𝐚𝟏𝟑 RWE 0 0 0 0 0.1874 0.0118 0.0078 0.1165 0.0321 0.0576 

𝐚𝟏𝟒 EXELON CORP. 0 0 0 0 0 0 0 0 0 0 

𝐚𝟏𝟓 AMEREN 0 0 0 0 0 0 0.2363 0.1763 0.0099 0.0424 

𝐚𝟏𝟔 DTE ENERGY COMP. 0 0 0.1992 0.0242 0.1808 0.0154 0.0314 0.0214 0.0092 0.0225 

𝐚𝟏𝟕 XCEL ENERGY  0 0 0 0 0 0 0 0 0 0 

𝐚𝟏𝟖 DUKE ENERGY CORP. 0 0 0 0.2857 0.1116 0.1696 0.1320 0.0349 0.0916 0.1746 

𝐚𝟏𝟗 IBERDROLA 0 0 0 0 0 0 0 0.1575 0.3113 0.2602 

𝐚𝟐𝟎 ENDESA 0 0 0 0 0 0 0 0 0.2814 0.2145 

 
ALTERNATIVES\RANK 𝐛𝟏𝟏 𝐛𝟏𝟐 𝐛𝟏𝟑 𝐛𝟏𝟒 𝐛𝟏𝟓 𝐛𝟏𝟔 𝐛𝟏𝟕 𝐛𝟏𝟖 𝐛𝟏𝟗 𝐛𝟐𝟎 

𝐚𝟏 ENEL SPA 0 0 0 0 0.6198 0.0903 0.2210 0.0584 0.0105 0 

𝐚𝟐 ENI 0 0 0 0 0 0 0 0 0 0 

𝐚𝟑 EDISON SPA 0.0254 0.0143 0.0129 0.0030 0.0453 0.0536 0.0240 0.0113 0.2234 0 

𝐚𝟒 A2A SPA 0.0058 0.0065 0.0047 0.0293 0.0269 0.0085 0.0036 0.0001 0.0194 0.5432 

𝐚𝟓 IREN SPA 0.0856 0.0166 0.0395 0.0435 0.0219 0.0461 0.2572 0.1197 0.0989 0 

𝐚𝟔 ACEA SPA 0 0 0 0 0 0 0 0 0 0 

𝐚𝟕 GRUPPO HERA 0.0146 0.0194 0.0182 0.0144 0.0248 0.0116 0.0571 0.0380 0.0212 0.2456 

𝐚𝟖 EDF 0.0042 0.0033 0.0042 0.0400 0.0215 0.1114 0.0658 0.0959 0.0344 0 

𝐚𝟗 ENGIE SA 0.1863 0.2159 0.3727 0.1873 0.0091 0 0 0 0 0 

𝐚𝟏𝟎 E.ON SE 0 0 0 0 0 0 0 0 0 0 

𝐚𝟏𝟏 SSE PLC 0 0 0.2393 0.0897 0.0445 0.3004 0.0379 0.1148 0.1734 0 

𝐚𝟏𝟐 DRAX GROUP PLC 0 0 0 0 0 0 0 0 0 0 

𝐚𝟏𝟑 RWE 0.0437 0.0075 0.0307 0.0487 0.0310 0.0100 0.0051 0.1350 0.2751 0 

𝐚𝟏𝟒 EXELON CORP. 0 0.3343 0.0164 0.0069 0.0438 0.0744 0.1492 0.1030 0.0608 0.2112 

𝐚𝟏𝟓 AMEREN 0.0380 0.1319 0.0764 0.2888 0 0 0 0 0 0 

𝐚𝟏𝟔 DTE ENERGY COMP. 0.0194 0.0121 0.0295 0.0041 0.0294 0.0532 0.0671 0.2594 0.0217 0 

𝐚𝟏𝟕 XCEL ENERGY  0.3878 0.0166 0.0305 0.0050 0.0820 0.2405 0.1120 0.0644 0.0612 0 

𝐚𝟏𝟖 DUKE ENERGY CORP. 0 0 0 0 0 0 0 0 0 0 

𝐚𝟏𝟗 IBERDROLA 0.1024 0.1686 0 0 0 0 0 0 0 0 

𝐚𝟐𝟎 ENDESA 0.0868 0.0530 0.1250 0.2393 0 0 0 0 0 0 

 

 

Table A-6 Rank acceptability indices on Market macro-criterion  

ALTERNATIVES\RANK 𝐛𝟏 𝐛𝟐 𝐛𝟑 𝐛𝟒 𝐛𝟓 𝐛𝟔 𝐛𝟕 𝐛𝟖 𝐛𝟗 𝐛𝟏𝟎 

𝐚𝟏 ENEL SPA 0 0 0 0 0 0.0257 0.0392 0.0608 0.0212 0.0631 

𝐚𝟐 ENI 0 0.2364 0.1625 0.0690 0.0947 0.0163 0.0326 0.0486 0.0893 0.1089 

𝐚𝟑 EDISON SPA 0.4070 0.1038 0.0559 0.0394 0.0200 0.0472 0.0327 0.1295 0.0680 0.0776 

𝐚𝟒 A2A SPA 0 0 0.0057 0.0865 0.1652 0.0985 0.1331 0.1268 0.0988 0.1156 

𝐚𝟓 IREN SPA 0 0.0433 0.0745 0.0969 0.1292 0.2090 0.1477 0.1429 0.0878 0.0592 

𝐚𝟔 ACEA SPA 0.0489 0.0720 0.0718 0.0759 0.0348 0.0808 0.0556 0.0656 0.0589 0.0716 

𝐚𝟕 GRUPPO HERA 0 0 0 0 0 0.0133 0.1655 0.1203 0.2074 0.1340 

𝐚𝟖 EDF 0.0036 0.0323 0.0274 0.0207 0.0390 0.0161 0.0149 0.0063 0.0148 0.0064 

𝐚𝟗 ENGIE SA 0 0 0.0222 0.1007 0.0338 0.0252 0.0156 0.0161 0.0155 0.0263 

𝐚𝟏𝟎 E.ON SE 0 0 0 0 0 0 0 0 0 0 

𝐚𝟏𝟏 SSE PLC 0 0 0 0 0 0 0 0 0 0 

𝐚𝟏𝟐 DRAX GROUP PLC 0.1017 0.0717 0.0641 0.0284 0.0162 0.0158 0.0154 0.0160 0.0118 0.0193 

𝐚𝟏𝟑 RWE 0 0 0 0 0 0 0 0 0 0 

𝐚𝟏𝟒 EXELON CORP. 0.1058 0.0786 0.1286 0.1931 0.0908 0.1000 0.1115 0.0588 0.0743 0.0585 

𝐚𝟏𝟓 AMEREN 0.0042 0.2328 0.1180 0.0495 0.0380 0.0589 0.0461 0.0417 0.0384 0.0479 

𝐚𝟏𝟔 DTE ENERGY COMP. 0.2786 0.0334 0.0223 0.0416 0.0509 0.0255 0.0321 0.0262 0.0300 0.0446 

𝐚𝟏𝟕 XCEL ENERGY  0 0 0.1279 0.0824 0.0545 0.0864 0.0224 0.0372 0.0310 0.0486 

𝐚𝟏𝟖 DUKE ENERGY CORP. 0 0.0539 0.0632 0.0722 0.1903 0.0612 0.0573 0.0779 0.1257 0.0972 

𝐚𝟏𝟗 IBERDROLA 0.0502 0.0418 0.0559 0.0437 0.0426 0.1201 0.0313 0.0225 0.0175 0.0175 

𝐚𝟐𝟎 ENDESA 0 0 0 0 0 0 0.0470 0.0028 0.0096 0.0037 
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ALTERNATIVES\RANK 𝐛𝟏𝟏 𝐛𝟏𝟐 𝐛𝟏𝟑 𝐛𝟏𝟒 𝐛𝟏𝟓 𝐛𝟏𝟔 𝐛𝟏𝟕 𝐛𝟏𝟖 𝐛𝟏𝟗 𝐛𝟐𝟎 

𝐚𝟏 ENEL SPA 0.0304 0.0256 0.1258 0.1473 0.0927 0.1001 0.0533 0.2045 0.0103 0 

𝐚𝟐 ENI 0.1173 0.0122 0.0122 0 0 0 0 0 0 0 

𝐚𝟑 EDISON SPA 0.0099 0.0090 0 0 0 0 0 0 0 0 

𝐚𝟒 A2A SPA 0.1442 0.0256 0 0 0 0 0 0 0 0 

𝐚𝟓 IREN SPA 0.0095 0 0 0 0 0 0 0 0 0 

𝐚𝟔 ACEA SPA 0.0956 0.0809 0.1581 0.0295 0 0 0 0 0 0 

𝐚𝟕 GRUPPO HERA 0.1449 0.1704 0.0442 0 0 0 0 0 0 0 

𝐚𝟖 EDF 0.0154 0.0175 0.0176 0.0117 0.0526 0.0375 0.0365 0.0673 0.1726 0.3898 

𝐚𝟗 ENGIE SA 0.0128 0.0221 0.1557 0.0814 0.0519 0.0426 0.0417 0.1033 0.2102 0.0229 

𝐚𝟏𝟎 E.ON SE 0 0.0898 0.0881 0.1387 0.0890 0.1414 0.0775 0.1505 0.2250 0 

𝐚𝟏𝟏 SSE PLC 0 0 0 0 0.0727 0.0689 0.0679 0.2426 0.1847 0.3632 

𝐚𝟏𝟐 DRAX GROUP PLC 0.0162 0.1907 0.0799 0.0485 0.0396 0.0313 0.2334 0 0 0 

𝐚𝟏𝟑 RWE 0 0 0.0103 0.0906 0.3123 0.2968 0.2686 0.0214 0 0 

𝐚𝟏𝟒 EXELON CORP. 0 0 0 0 0 0 0 0 0 0 

𝐚𝟏𝟓 AMEREN 0.0714 0.0413 0.0396 0.1722 0 0 0 0 0 0 

𝐚𝟏𝟔 DTE ENERGY COMP. 0.0521 0.0867 0.0427 0.0341 0.1795 0.0197 0 0 0 0 

𝐚𝟏𝟕 XCEL ENERGY  0.0614 0.0584 0.1005 0.0463 0.0321 0.1804 0.0305 0 0 0 

𝐚𝟏𝟖 DUKE ENERGY CORP. 0.1944 0.0067 0 0 0 0 0 0 0 0 

𝐚𝟏𝟗 IBERDROLA 0.0198 0.1615 0.0642 0.1023 0.0393 0.0350 0.1348 0 0 0 

𝐚𝟐𝟎 ENDESA 0.0047 0.0016 0.0611 0.0974 0.0383 0.0463 0.0558 0.2104 0.1972 0.2241 
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Table B-1 Energy companies in the final balanced sample after the stratified resampling method distributed 

per country. Authors’ elaboration 

COUNTRY 

ELECTRIC COMPANIES 

ACTIVE 
Relative 

frequency 
INACTIVE 

Relative 

frequency 

GERMANY 

STADTWERKE BONN GMBH (SWB) 

19.30% 

EEV BIOENERGIE GMBH & CO. KG 

5.26% 

STADTWERKE WEIßENBURG GMBH OVAG ENERGIE AG 

STADTWERKE PRENZLAU GMBH MT-BIOMETHAN GMBH 

STADTWERKE SCHWEINFURT GMBH 

 

STADTWERKE GREIFSWALD GESELLSCHAFT MIT 

BESCHRÄNKTER HAFTUNG 

ENERGIEVERSORGUNG SEHNDE GMBH 

ENERGIEEINKAUFS- UND -HANDELSGESELLSCHAFT 

MECKLENBURG-VORPOMMERN MBH 

STADTWERKE EBERBACH 

STADTWERKE HUSUM GMBH 

STADTWERKE WERL GMBH 

STADTWERKE ERDING GMBH 

SPAIN 

SUN EUROPEAN INVESTMENTS EOLICO OLIVILLO SA. 

15.79% 

SIBERIA SOLAR SL 

8.77% 

MOLINOS DEL EBRO SA SERRA DO MONCOSO-CAMBAS SL 

CONTOURGLOBAL LA RIOJA SL X-ELIO REAL ESTATE ENERGY SL. 

EVOLUCION 2000 SOCIEDAD LIMITADA. ALTEN POZOHONDO SOCIEDAD LIMITADA 

M TORRES DESARROLLOS ENERGETICOS SL PARQUE SOLAR LA ROBLA SL 

SOLYNOVA VALVERDON SL ALTEN ALANGE SL 

BIO OILS ENERGY SA AUDAX ENERGIA SA 

TECNOHUERTAS SA PLANSOFOL SL 

GRANSOLAR DESARROLLO Y CONSTRUCCION SL.  

ITALY 

C.V.A. VENTO S.R.L. 

22.80% 

EVIVA S.P.A. IN LIQUIDAZIONE 

52.63% 

SOCIETA' ELETTRICA IN MORBEGNO SOCIETA' 

COOPERATIVA PER AZIONI 
ELECTRA ITALIA S.P.A. 

EOLICA SANTOMENNA S.R.L. ENERGHE S.P.A. 

ERMES GAS & POWER SOCIETA' A RESPONSABILITA' 

LIMITATA 
TRADECOM S.P.A 

SOCIETA' ENERGIE RINNOVABILI 1 SOCIETA' PER 

AZIONI 
E.S.TR.A. ELETTRICITA' S.P.A. 

ENOMONDO S.R.L. AEVV ENERGIE S.R.L. 

AGSM ENERGIA S.P.A. ENERGIA E TERRITORIO – SRL 

ORSA MAGGIORE PV S.R.L. 
AZIENDA ENERGETICA VALTELLINA VALCHIAVENNA 

S.P.A. 

ALPERIA VIPOWER SPA AP ENERGIA S.R.L. - IN LIQUIDAZIONE 

ENERGIA UNO S.R.L. ESPERIA SOCIETA' PER AZIONI IN LIQUDAZIONE 

TG MASSERIA GIORGINI S.R.L. HOLDING FORTORE ENERGIA S.R.L. 

IMPIANTO ALPHA S.R.L. LINEA RETI E IMPIANTI S.R.L. 

OTTANA SOLAR POWER S.P.A. UNIPOWER ITALIA S.R.L. 

 

GENERAL POWER S.R.L. IN LIQUIDAZIONE 

HELIOS ITA 3 S.R.L. 

SOLAR ENERGY ITALIA 7 SRL 

EMMECIDUE S.R.L. IN LIQUIDAZIONE 

VENUSIA SRL 

PARCO EOLICO GIRIFALCO S.R.L. 

VARSI FOTOVOLTAICO SRL 

GREENSOURCE S.P.A. 

S5 SRL 

EN & EN - ENERGIE PER ENERGIA S.R.L. 

EF AUGUSTA S.R.L. 

VILLA CASTELLI WIND S.R.L. 

IDREG-PIEMONTE - S.P.A. 

ITALBREVETTI SOCIETA' A RESPONSABILITA' LIMITATA 

STS SOCIETA' TERMOELETTRICA SEDRINA S.R.L 

SUNSHIRE S.R.L. 

FILOVERDE S.P.A. 

FRANCE 

CENTRALE EOLIENNE DE PRODUCTION D'ENERGIE DE 

HAUT CHEMIN 

5.26% 

ENGIE NUCLEAR DEVELOPMENT 

7.01% EWZ PARC EOLIEN EPINETTE FORCES HYDRAULIQUES DE MEUSE 

ELICIO VENT D'OUEST LA COMPAGNIE DU VENT 
 ALBIOMA CARAIBES 

SWEDEN 

KRISTINEHAMNS ELNÄT AB 

7.01%  0% 
SKÅNSKA ENERGI NÄT AKTIEBOLAG 

HÄRRYDA ENERGI AKTIEBOLAG 

AB BORLÄNGE ENERGI ELNÄT 

FINLAND 

VOIMAPATO OY 

5.26%  0% PARIKKALAN VALO OY 

LAPPEENRANNAN ENERGIAVERKOT OY 

GREECE 
GREEK ENVIRONMENTAL & ENERGY NETWORK Α.Ε. 

3.50%  0% 
ΗΡΩΝ ΘΕΡΜΟΗΛΕΚΤΡΙΚΗ Α.Ε. 

DANMARK 
VESTJYSKE NET 60 KV A/S 

3.50%  0% 
GRINDSTED EL- OG VARMEVÆRK A.M.B.A 

ROMANIA 

OET ROMANIA LTD BULGARIA SUCURSALA 

BUCURESTI 
3.50% 

SOCIETATEA COMERCIALA DE PRODUCERE A ENERGIEI 

ELECTRICE SI TERMICE "TERMOELECTRICA" 
1.75% 

SOCIETATEA DE DISTRIBUŢIE A ENERGIEI ELECTRICE 

TRANSILVANIA SUD. 
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PORTUGAL 

TEJO ENERGIA - PRODUÇÃO E DISTRIBUIÇÃO DE 

ENERGIA ELÉCTRICA, S.A. 3.50%  0% 

BIOELÉCTRICA DA FOZ, S.A. 

BULGARIA 
ТОПЛОФИКАЦИЯ РУСЕ ЕАД 

3.50% 
ТОПЛОФИКАЦИЯ ПЕТРИЧ ЕАД 

3.50% 
ЕЛЕКТРОЕНЕРГИЕН СИСТЕМЕН ОПЕРАТОР ЕАД ЕНЕРГИЙНА ФИНАНСОВА ГРУПА АД 

BELGIUM ESSENT BELGIUM 1.75% 
INTERCOMMUNALE MAATSCHAPPIJ VOOR 

ENERGIEVOORZIENING ANTWERPEN 
1.75% 

SLOVENIA 
ELEKTRO MARIBOR, PODJETJE ZA DISTRIBUCIJO 

ELEKTRIČNE ENERGIJE, D.D. 
1.75%  0% 

LATVIA AUGSTSPRIEGUMA TĪKLS AS 1.75%  0% 

POLAND 
EOLOS POLSKA SP. Z O.O. 

1.75% 
PARK WIATROWY TYCHOWO SP. Z O.O. 

3.50%  PARK WIATROWY NOWY STAW SP. Z O.O. 

HUNGARY  0% 

VEOLIA SZOLGÁLTATÓ KÖZPONT MAGYARORSZÁG KFT 

7.01% 

MISTRAL ENERGETIKA VILLAMOSENERGIA-TERMELŐ 

KFT 

KAPTÁR SZÉLERŐMŰ KERESKEDELMI ÉS SZOLGÁLTATÓ 

KFT 

MVM ÉSZAK-BUDAI KOGENERÁCIÓS FŰTŐERŐMŰ KFT 

CZECHIA  0% MORAVIA GREEN POWER S.R.O. 1.75% 

SLOVAKIA  0% LUMIUS SLOVAKIA, S.R.O. V LIKVIDÁCII 1.75% 

 

Table B-2 Stages performed to select independent variables of the sample introduced in the failure prediction 

model. Authors’ elaboration. 

INDEPENDENT VARIABLES (FRs) Stage 1 Stage 2 Stage 3 

PROFITABILITY Year 𝐼𝑉 Value Predictive power t-test p value Predictive power Correlation analysis 

EBIT_TA 

-1 0.7226 SUSPICIOUS S 0.4934 NS NS 

-2 0.4472 STRONG S 0.0123 S NS 

-3 0.1583 MEDIUM S 0.1536 NS NS 

-4 0.4165 STRONG S 0.4381 NS NS 

LTDR 

-1 0.4621 STRONG S 0.1904 NS NS 

-2 0.2118 MEDIUM S 0.4909 NS NS 

-3 0.1907 MEDIUM S 0.6455 NS NS 

-4 0.0825 WEAK NS 0.8063 NS NS 

OP_MARG 

-1 0.8934 SUSPICIOUS S 0.2695 NS NS 

-2 0.2635 STRONG S 0.0219 S NS 

-3 0.097 WEAK NS 0.4368 NS NS 

-4 0.3002 STRONG S 0.1694 NS NS 

PROF_MARG 

-1 1.0343 SUSPICIOUS S 0.0223 S NS 

-2 0.4354 STRONG S 0.0284 S NS 

-3 0.2902 STRONG S 0.4255 NS NS 

-4 0.324 STRONG S 0.1405 NS NS 

ROE 

-1 0.6102 SUSPICIOUS S 0.0223 S NS 

-2 0.2479 MEDIUM S 0.7253 NS NS 

-3 0.2014 MEDIUM S 0.683 NS NS 

-4 0.0961 WEAK NS 0.2315 NS NS 

ROA 

-1 1.0723 SUSPICIOUS S 0.0018 S S 

-2 0.4323 STRONG S 0.0088 S S 

-3 0.2449 MEDIUM S 0.0717 S S 

-4 0.4779 STRONG S 0.05 S S 

ROCE 

-1 0.8736 SUSPICIOUS S 0.1202 NS NS 

-2 0.4537 STRONG S 0.1502 NS NS 

-3 0.128 MEDIUM S 0.9242 NS NS 

-4 0.2545 STRONG S 0.9431 NS NS 

EBIT_EQ 

-1 0.4227 STRONG S 0.6235 NS NS 

-2 0.3912 STRONG S 0.3479 NS NS 

-3 0.3932 STRONG S 0.2048 NS NS 

-4 0.2014 MEDIUM S 0.2434 NS NS 

EBITDA_TA 

-1 0.4583 STRONG S 0.448 NS S 

-2 0.7929 SUSPICIOUS S 0.0053 S S 

-3 0.5576 SUSPICIOUS S 0.0275 S S 

-4 0.5049 SUSPICIOUS S 0.049 S S 

CF_TA 

-1 0.769 SUSPICIOUS S 0.0012 S NS 

-2 0.6866 SUSPICIOUS S 0.007 S NS 

-3 0.5734 SUSPICIOUS S 0.659 NS NS 

-4 0.7187 SUSPICIOUS S 0.0008 S NS 

CF_EQ 

-1 0.4227 STRONG S 0.0877 S NS 

-2 0.3981 STRONG S 0.3296 NS NS 

-3 0.2279 MEDIUM S 0.271 NS NS 

-4 0.3912 STRONG S 0.2598 NS NS 

FINANCIAL STRUCTURE  

EQ_RATIO 

-1 0.4235 STRONG S 0.0023 S S 

-2 0.5111 SUSPICIOUS S 0.0131 S S 

-3 0.459 STRONG S 0.0229 S S 

-4 0.3624 STRONG S 0.0747 S S 

FAT 

-1 0.1932 MEDIUM S 0.23 NS NS 

-2 0.1875 MEDIUM S 0.5129 NS NS 

-3 0.1586 MEDIUM S 0.7108 NS NS 

-4 0.2236 MEDIUM S 0.8005 NS NS 
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TD_TA 

-1 0.4185 STRONG S 0.0007 S S 

-2 0.5272 SUSPICIOUS S 0.0022 S S 

-3 0.0035 USELESS NS 0.0071 S S 

-4 0.4218 STRONG S 0.0051 S S 

LTD_EQ 

-1 0.6287 SUSPICIOUS S 0.0488 S NS 

-2 0.2837 STRONG S 0.227 NS NS 

-3 0.3403 STRONG S 0.2849 NS NS 

-4 0.0828 WEAK NS 0.487 NS NS 

NOWC 

-1 0.9949 SUSPICIOUS S 0.0006 S NS 

-2 0.244 MEDIUM S 0.0267 S NS 

-3 0.1328 MEDIUM S 0.2129 NS NS 

-4 0.1017 MEDIUM S 0.1974 NS NS 

TD_EQ 

-1 0.2479 MEDIUM S NS NS NS 

-2 0 USELESS NS NS NS NS 

-3 0 USELESS NS NS NS NS 

-4 0.0946 WEAK NS NS NS NS 

LIQUIDITY  

CA_TA 

-1 0.1946 MEDIUM S 0.0798 S S 

-2 0.2994 STRONG S 0.0467 S S 

-3 0.2646 STRONG S 0.0494 S S 

-4 0.024 USELESS NS 0.1674 NS S 

CR 

-1 0.5679 SUSPICIOUS S 0.4555 NS NS 

-2 0.1948 MEDIUM S 0.3666 NS NS 

-3 0.0887 WEAK NS 0.1555 NS NS 

-4 0.2882 STRONG S 0.4258 NS NS 

DR 

-1 0.4235 STRONG S 0.0023 S NS 

-2 0.5111 SUSPICIOUS S 0.0131 S NS 

-3 0.459 STRONG S 0.0229 S NS 

-4 0.3624 STRONG S 0.0747 S NS 

WC_TA 

-1 0.5326 SUSPICIOUS S 0.0175 S NS 

-2 0.5181 SUSPICIOUS S 0.0526 S NS 

-3 0.128 MEDIUM S 0.8698 NS NS 

-4 0.3182 STRONG S 0.3793 NS NS 

CASH_CL 

-1 0.5987 SUSPICIOUS S 0.009 S NS 

-2 0.3538 STRONG S 0.0206 S NS 

-3 0.2226 MEDIUM S 0.2166 NS NS 

-4 0.3615 STRONG S 0.5139 NS NS 

CASH_TA 

-1 0.3164 STRONG S 0.1324 NS NS 

-2 0.1141 MEDIUM S 0.1524 NS NS 

-3 0.1137 MEDIUM S 0.1594 NS NS 

-4 0.123 MEDIUM S 0.8282 NS NS 

CL_TA 

-1 0.0035 USELESS NS NS NS NS 

-2 0.0035 USELESS NS NS NS NS 

-3 0.0946 WEAK NS NS NS NS 

-4 0.0065 USELESS NS NS NS NS 

CASH_CA 

-1 0.3685 STRONG S 0.0073 S NS 

-2 0.2922 STRONG S 0.0478 S NS 

-3 0.1981 MEDIUM S 0.1055 NS NS 

-4 0.1999 MEDIUM S 0.4105 NS NS 

CF_CL 

-1 1.0513 SUSPICIOUS S 0.1834 NS NS 

-2 1.1251 SUSPICIOUS S 0.2161 NS NS 

-3 0.6668 SUSPICIOUS S 0.4845 NS NS 

-4 0.6798 SUSPICIOUS S 0.1408 NS NS 

SOLVENCY  

FE_EBITDA 

-1 0.6828 SUSPICIOUS S 0.4209 NS NS 

-2 0.5668 SUSPICIOUS S 0.796 NS NS 

-3 0.0946 WEAK NS 0.0106 S NS 

-4 0.2036 MEDIUM S 0.1563 NS NS 

FE_NI 

-1 0.9736 SUSPICIOUS S 0.4022 NS NS 

-2 0.2189 MEDIUM S 0.8175 NS NS 

-3 0.038 USELESS NS 0.1887 NS NS 

-4 0.5069 SUSPICIOUS S 0.0711 NS NS 

FE_TA 

-1 0.0957 WEAK NS NS NS NS 

-2 0.0329 USELESS NS NS NS NS 

-3 0.0329 USELESS NS NS NS NS 

-4 0.0946 WEAK NS NS NS NS 

TURNOVER  

CA_TS 

-1 0.0325 USELESS NS 0.0271 S S 

-2 0.4823 STRONG S 0.0146 S S 

-3 0.4127 STRONG S 0.0444 S S 

-4 0.1295 MEDIUM S 0.1626 NS S 

CL_TS 

-1 0.0035 USELESS NS 0.0748 S NS 

-2 0.4745 STRONG S 0.1159 NS NS 

-3 0.3306 STRONG S 0.0663 S NS 

-4 0.3152 STRONG S 0.2084 NS NS 

WC_TS 

-1 0.5606 SUSPICIOUS S 0.6022 NS NS 

-2 0.1321 MEDIUM S 0.7 NS NS 

-3 0.1292 MEDIUM S 0.2822 NS NS 

-4 0.2479 MEDIUM S 0.3865 NS NS 
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ACTIVITY  

CF_NS 

-1 0.6786 SUSPICIOUS S 0.3012 NS NS 

-2 0.7162 SUSPICIOUS S 0.03 S NS 

-3 0.3497 STRONG S 0.455 NS NS 

-4 0.3488 STRONG S 0.5297 NS NS 

GROW_TA 

-1 0.4537 STRONG S 0.51 NS NS 

-2 0.5116 SUSPICIOUS S 0.9802 NS NS 

-3 0.0387 USELESS NS 0.3038 NS NS 

-4 0.0961 WEAK NS 0.5249 NS NS 

EBITDA_TS 

-1 0.2189 MEDIUM S 0.1205 NS NS 

-2 0.5168 SUSPICIOUS S 0.0653 S NS 

-3 0.2806 STRONG S 0.5821 NS NS 

-4 0.2871 STRONG S 0.2843 NS NS 

SIZE  

TA 

-1 0.1802 MEDIUM S 0.2417 NS NS 

-2 0.1318 MEDIUM S 0.2944 NS NS 

-3 0.1069 MEDIUM S 0.3636 NS NS 

-4 0.1009 MEDIUM S 0.323 NS NS 

SALES 

-1 0.2152 MEDIUM S 0.5979 NS NS 

-2 0.2719 STRONG S 0.9897 NS NS 

-3 0.2236 MEDIUM S 0.7313 NS NS 

-4 0.2776 STRONG S 0.8508 NS NS 
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