
i
i

“output” — 2021/1/10 — 14:51 — page 1 — #1 i
i

i
i

i
i

UNIVERSITÀ DEGLI STUDI DI MESSINA

DEPARTMENT OF ENGINEERING

DOCTORAL PROGRAMME IN

“CYBER PHYSICAL SYSTEMS”

STUDY AND EVALUATION OF

SERVICE-ORIENTED APPROACHES AND

TECHNIQUES TO MANAGE AND FEDERATE

CYBER-PHYSICAL SYSTEMS

Doctoral Dissertation by:
Eng. Giuseppe Tricomi

Advisor:
Prof. Antonio Puliafito

Co-Advisor:
Dr. Giovanni Merlino

Chair of the Doctoral Programme:
Prof. Antonio Puliafito

XXXIII Cycle
Academic Year 2019-2020

i
i

“output” — 2021/1/10 — 14:51 — page 2 — #2 i
i

i
i

i
i

i
i

“output” — 2021/1/10 — 14:51 — page I — #3 i
i

i
i

i
i

Abstract

I
N recent years, the world in which we live has been deeply

modified by the advent of the Internet of Things, filling the

environment with devices able to interact through TCP/IP.

These devices are commonly connected to sensors and actuators, enabling

the remote management and monitoring of physical environments. This

way, it is possible to manage the physical processes via software; the

environments enhanced by IoTs are called Cyber-Physical Systems.

Cyber-Physical Systems are able to produce huge volumes of data,

used by applications running on a CPS as input for any applications’

duties. CPSs features can be shared with other CPSs through cooperation,

enabling complex workflows to manage the environments better than it

would be possible without any such cooperation. Typical examples of

I

i
i

“output” — 2021/1/10 — 14:51 — page II — #4 i
i

i
i

i
i

II

cooperating CPSs are Smart Buildings and Smart Cities. The former are

environments hosting one or more CPSs, supporting their residents, and

the latter are aggregations of environments that host IoT devices to create

an especially pervasive instance of a CPS (in some cases, multiple CPSs)

that support citizens across their daily routines.

At the same time, the devices composing a CPS are capable to pro-

vide some computational power, that is typically not used to the fullest,

and that can be exploited to “disseminate” the computation across the

environment, possibly placing most computation near where the request

originates. This way, a double face benefit is achieved: on the one hand,

service times get smaller, because this approach avoids, or minimizes,

network latencies and, on the other hand, it optimizes both power con-

sumption and network bandwidth overall.

This dissertation aims to provides clues about the recent and ongoing

investigations about cooperation among CPSs, with the overarching goal

to exploit a number of established and emerging computing paradigms

to enhance the services provided to citizens living in the environments

under the coverage of such cooperating systems.

i
i

“output” — 2021/1/10 — 14:51 — page III — #5 i
i

i
i

i
i

Contents

1 Introduction 1

2 State of the Art 15

2.1 Computing Technologies and Paradigms 15

2.1.1 Cloud Computing 16

2.1.1.1 Key Features 19

2.1.1.2 Categories of Cloud Services 20

2.1.2 Cloud and Fog computing in IoT 24

2.1.3 Fog Computing 25

2.1.4 Edge Computing 26

2.1.5 Computing Continuum 29

2.1.6 Serverless Techniques 30

2.1.6.1 Serverless vs. Function-as-a-Service (FaaS) 31

III

i
i

“output” — 2021/1/10 — 14:51 — page IV — #6 i
i

i
i

i
i

IV CONTENTS

2.1.6.2 Fog/Edge computing and Serverless/FaaS 32

2.2 Computing Cooperation: Definition & Patterns 35

2.2.1 Peer cooperation 36

2.2.2 Hybrid cooperation 37

2.2.3 Brokered cooperation 38

2.2.4 Federation . 39

2.2.5 Federation Versus Multi-Cloud 42

2.3 Cyber Physical Systems 44

2.3.1 Smart Building 47

2.3.1.1 Software-Defined Buildings 48

3 Management of federated computing environments 51

3.1 EU Projects Overview 52

3.2 Algorithm for the best Selection 59

3.2.1 Frameworks and Architectures 61

3.2.2 Algorithms . 65

3.2.2.1 Multi-Criteria Evaluation 65

3.2.2.2 Selection 68

3.2.2.3 MatchMaking 70

3.2.3 Optimization . 73

4 Enabling technologies and solutions 75

4.1 OpenStack Cloud Management Framework 76

4.2 Stack4Things . 81

i
i

“output” — 2021/1/10 — 14:51 — page V — #7 i
i

i
i

i
i

CONTENTS V

4.3 Arancino board . 85

5 CPS Application: Smart Room 91

6 CPS Application: Smart Vehicle 101

6.1 SCICC Algorithm . 105

6.2 SCINaS Algorithm . 110

7 CPS as set of computational units 119

8 Cooperating CPS Application: Dynamic Intrusion Surveillance

System 127

8.1 Software-Defined I/O 133

8.2 Use Case and Evaluation 135

9 Cooperating CPS Application: Federated Fire Protection System 141

10 Cooperating Cyber-Physical Systems: A template for Smart Cities 151

11 Conclusions 159

Bibliography 165

i
i

“output” — 2021/1/10 — 14:51 — page VI — #8 i
i

i
i

i
i

i
i

“output” — 2021/1/10 — 14:51 — page VII — #9 i
i

i
i

i
i

List of Figures

1.1 An example of coexisting CPSs in a classical Smart Building. 6

1.2 An example of coexisting CPSs in a Software-Defined

Building. 7

1.3 An example of a Smart Area. 13

2.1 Cloud Computing Overview: Visual Model of NIST Work-

ing Definition of Cloud Computing. 21

2.2 Cloud Computing service Model Overview: a) Service

Model and user control in relation [1]. b) Services man-

aged by the customer and by the provider in the service

model [2] . 22

2.3 Peer Cooperation Schema 37

2.4 Hybrid Cooperation Schema 38

VII

i
i

“output” — 2021/1/10 — 14:51 — page VIII — #10 i
i

i
i

i
i

VIII LIST OF FIGURES

2.5 Brokered Cooperation Schema 40

2.6 Kurze’s Federation reference architecture [3] 41

2.7 Cyber Physical System taxonomy [4] 45

3.1 Taxonomy Tree related to SLA-based Approaches. . . . 61

3.2 a) Taxonomy, b) Approaches used in the analyzed works. 62

4.1 OpenStack Logical Architecture [5]. 76

4.2 An example of a basic OpenStack Architecture exploiting

self service networking features [5]. 79

4.3 Stack4Things core subsystems. 82

4.4 Stack4Things FaaS Cloud-side subsystem design. 83

4.5 Stack4Things FaaS Edge/Fog-side subsystem design. . . 85

4.6 Architecture of an Arancino.cc system. 87

5.1 SHIRS Architecture [6] 96

5.2 Data acquisition and transmission schema [6]. 98

5.3 Dashboard for data presentation [6]. 100

6.1 Architectural overview of vehicular node and Smart City

presented for SCINaS [7]. 105

6.2 SCICC experiments results: a) NEDC and SC-NEDC

speed comparison; b) Fuel Consumption; c) CO2 emissions. 109

6.3 SCINaS Traffic Light cycles and definition [7]. 112

i
i

“output” — 2021/1/10 — 14:51 — page IX — #11 i
i

i
i

i
i

LIST OF FIGURES IX

6.4 SCINaS Algorithm’s Flow chart minimizing the city traver-

sal time [7]. 113

6.5 SCINaS Algorithm’s fragment minimizing the city traver-

sal time [7]. 113

6.6 SCiNaS experiments results: traffic light states. a) NEDC’s

traversal time; b) SCiNaS’s traversal time. 115

6.7 SCiNaS experiments results: a) NEDC’s emission of CO2;

b) SCiNaS’s emission of CO2; c) NEDC’s Fuel Consump-

tion; d) SCiNaS’s Fuel Consumption. 116

6.8 Average execution times of SCiNaS’s algorithm for each

segments and for each combination of RAM and CPU. . 117

6.9 Execution time Standard Deviation of SCiNaS’s algorithm

for each segments and for each combination of RAM and

CPU. 117

7.1 The edge-based FaaS system architecture [8]. 122

7.2 Stack4Things FaaS Cloud-side subsystem design [8]. . . 123

7.3 Stack4Things FaaS Edge/Fog-side subsystem design [8]. 123

7.4 Overview of a use case when the edge-based FaaS system

can be deployed for enhanced tasks management [8]. . . 125

8.1 Approaches for Cyber-Physical System Functions Virtual-

ization (CPSFV) [9] . 129

8.2 High Level architecture of Software Defined City. [9] . . 130

i
i

“output” — 2021/1/10 — 14:51 — page X — #12 i
i

i
i

i
i

X LIST OF FIGURES

8.3 Intrusion Surveillance System use case scenario [9]. . . . 136

8.4 Command propagation time with respect to the number of

federated smart environments and IoT nodes involved. . 138

9.1 High Level architecture of the factory FFPS [10]. 144

9.2 SB schematics [10]. a) Floor view. b) Whole SB view. . 147

10.1 High Level architecture of the TOO(L)SMART template. 155

10.2 Examples of the map developed through tools available in

the template. 157

i
i

“output” — 2021/1/10 — 14:51 — page XI — #13 i
i

i
i

i
i

List of Tables

2.1 Difference among Fog and Edge Computing Model . . . 28

5.1 Performance metrics comparison [6]. 99

6.1 Segment’s parameter passed to SCiNaS in order to com-

pute the speed profile. 115

XI

i
i

“output” — 2021/1/10 — 14:51 — page XII — #14 i
i

i
i

i
i

i
i

“output” — 2021/1/10 — 14:51 — page 1 — #15 i
i

i
i

i
i

CHAPTER1

Introduction

C
YBER PHYSICAL SYSTEMS (CPS) are complex, het-

erogeneous distributed systems where the cooperation

among cyber components (e.g., sensors, actuators, and con-

trol centers) and physical processes (e.g., temperature, fire) is deeply

intertwined. A CPS is defined as a system where computation, network-

ing, and physical processes are integrated to monitor and control physical

environments [4]. The adoption of CPSs is due to the advent of the Inter-

1

i
i

“output” — 2021/1/10 — 14:51 — page 2 — #16 i
i

i
i

i
i

CHAPTER 1. INTRODUCTION

net of Things (IoT). IoT devices are systems with limited computational

capabilities that are able to expose their services to the Internet, as long

as a TCP/IP stack [11] is available. Sundmaeker et al. [12] state that IoT

devices were born in the 1999 in the MIT Auto-ID Lab as technologies

including bar codes, smart cards, sensors, voice recognition, and biomet-

rics. In 2005 Srivastava [13] identifies the trend pushing technologies in

general towards a pervasive dimension, and in particular moving “things”

in that direction as well. Sundmaeker again, in [12], deeply analyzes the

IoT concepts and perspectives from several points of views, providing

an interesting categorization. IoT devices may be equipped with MCU

and/or MPU (see 4.3) exploiting their facilities to manage the physical

devices (sensors: smoke, gas, fire, presence, camera, and so on; actuators:

light, valve, traffic lights, motors, and so on) during their life-cycle; at the

same time, they may run programs that pre-process the physical signal to

produce data useful for several purposes. For example, a single smoke

sensor is not enough to identify fire (a cigarette could deceive it). A

traditional fire system delivers the signal perceived to a central process-

ing system that correlates the signals and decides if it has to activate the

alarms, also informing firefighters or surveillance. In this scenario, the

need for a unified scheme enabling CPS interactions with IoT devices

without resorting to ad-hoc infrastructure, is obvious. Nevertheless, CPSs

2 Eng. Giuseppe Tricomi

i
i

“output” — 2021/1/10 — 14:51 — page 3 — #17 i
i

i
i

i
i

are not isles surrounded by “plain” 1 environments, but they are placed

side by side with a multitude of other CPS (e.g., Vehicles, Factories,

Buildings, Hospital, Street, and more). The pursue to provide a unified

solution to manage any kind of CPS is not actually achievable, for several

reasons, as detailed in the following.

∙ Administrative constraints: environments belong to several owners,

Private or Public, that are free to make choices, in relation to exclu-

sive usage and/or sharing of resources, according to various factors:

financial, legal, etc.

∙ Technology advancements: CPSs realized in different moments may

adopt significantly diverse technologies.

∙ Incompatibility with previously deployed (e.g., possibly legacy)

technologies.

As a consequence, research activities were focused on identifying a

methodology able to manage such environments (see section 2.3), and ac-

cording to the literature, the most common solution used is represented by

systems able to manage, coordinate, and organize sensors and actuators,

host resources and provide support to the development and maintenance

of high-level services [14], in a nutshell, a Cloud-like experience. Ear-

liest examples of CPS are Smart Buildings (SB), historically defined in
1In this context, when referring to “plain” environments, we are talking about systems that do

not leverage IoT device capabilities beyond mere sensing data collection, in summary, that cannot be
categorized as Smart environments.

Eng. Giuseppe Tricomi 3

i
i

“output” — 2021/1/10 — 14:51 — page 4 — #18 i
i

i
i

i
i

CHAPTER 1. INTRODUCTION

1981 with the term Intelligent Building, coined by the United Technology

Building Systems Corporation, then implemented into the City Place

Building in Hartford, Connecticut [15]. These “Smart” buildings are

mostly customized controlling systems able to provide basic automatic

management facilities of the installed devices (e.g., smoke and fire sen-

sors, ventilation peripherals, heating systems, etc.). The advent of IoT

pushes towards Smart Environments and specifically Smart Buildings.

As highlighted in [16], it is hard to construct a unique view of a Smart

Building with a commonly accepted definition. In 2009 the European

Commission’s Information Society provides a long and complex defini-

tion of Smart Building [17] (see section 2.3.1); in summary it may be

explained as in the following: a Smart Building is an integrated system

based on IoT and Ubiquitous Computing facilities able to take advantage

of a range of computational and communications infrastructure and tech-

niques. The Smart Building concept is easily adaptable in accordance

with several scenarios, modifying system behaviour to achieve a range

of results. For example, an SB specialization is related to the industrial

context, where the physical processes commonly monitored by an SB

(e.g., HVAC, fire, and intrusion control systems) are added to the controls

related to the production processes. This way, the system will be able

to monitor and quickly react to emergencies coming from the safety

systems, but at the same time, it can face production chain issues that

are continuously analyzed by the Factory. This is usually indicated as a

4 Eng. Giuseppe Tricomi

i
i

“output” — 2021/1/10 — 14:51 — page 5 — #19 i
i

i
i

i
i

Smart Factory [18–20].

Until now, we have discussed of CPSs involving private environments,

but another category of CPSs very relevant and interesting is that of

public environments. Streets, public buildings, subways, and so on

are commonly considered part of the Smart City [14]. Several entities

spent energies in this direction, both at the institutional level (as the EU

community) and at the academic and industrial levels as well, with models

useful to provide new services, such as: optimizing vehicular traffic flows,

enhancing the safety of citizens outdoors, monitoring air pollution levels,

enrich public transportation systems, make rescue operations faster and

safer, and so on. The CPSs discussed until now are self-consistent; they

are able to complete their duties, simply by interacting with IoT devices

available within their infrastructure. Furthermore, it is common to find

SB composed of several IoT-based systems that are not integrated with

others available in the same environment, as shown in figure 1.1. These

systems can be identified in a wider environment where other CPSs

(buildings or in general Smart environments) are available; if they are

not physically isolated, it will be possible to interconnect them realizing

a new CPS. This way, we obtain a kind of puzzle game composed of

several tiles where each one is represented by a Smart Building. As

the tiles of a puzzle game, each element has to be interconnected with

the other exchanging data, raw or pre-processed, enabling workflows

involving the city to support everyday citizens’ lives. With regards to the

Eng. Giuseppe Tricomi 5

i
i

“output” — 2021/1/10 — 14:51 — page 6 — #20 i
i

i
i

i
i

CHAPTER 1. INTRODUCTION

HVAC ISS Env. MGMT

Coordination
and

Management

Coordination
and

Management

Coordination
and

Management

Infrastructure Infrastructure Infrastructure

Figure 1.1: An example of coexisting CPSs in a classical Smart Building.

realization of such interconnections, the following question rises: Are the

CPSs belonging to the same administrative domain? The answer guides

us towards one of the following two solutions:

∙ If the answer is affirmative, we can model our interconnection in

a tightly coupled way; adopting the Software-Defined Building

approach (see section 2.3.1.1, and chapters 5,8, and 9 even if SDB

approach is not the main focus).

∙ If negative we are bound to consider a loosely coupled interaction,

where not all the capabilities of the systems are shareable, adopting

a federated cooperative approach (see section 2.2.4)

In the following, we briefly introduce these two approaches.

A Software-Defined Building (see figure 1.2) can be defined as a build-

ing where, in line with the Software-Defined principles, the infrastructure

6 Eng. Giuseppe Tricomi

i
i

“output” — 2021/1/10 — 14:51 — page 7 — #21 i
i

i
i

i
i

HVAC ISS Env. MGMT

Coordination and Management

Infrastructure

Figure 1.2: An example of coexisting CPSs in a Software-Defined Building.

and its composing devices are managed in a common way, offering to

the upper layer the functionalities to be managed. The upper layer is the

management layer, where several facilities are available:

∙ Control and Manage devices of the lower layer,

∙ Orchestrate, aggregate, filter, and preprocess data coming from the

infrastructure layer,

∙ Provide facilities, exploitable by applications, where the former

expose abstractions of the IoT devices available in the infrastructure

layer.

With regards to the federated cooperative approach, we are referring to

a complex CPS composed of several smaller CPSs belonging to different

administrative domains (such as different private owners, or a mix of

Eng. Giuseppe Tricomi 7

i
i

“output” — 2021/1/10 — 14:51 — page 8 — #22 i
i

i
i

i
i

CHAPTER 1. INTRODUCTION

private and public owners). In this scenario, a crucial topic is how the

shared CPSs facilities are exploited [9,21]. During the federating process,

the domains involved have to sign a sort of agreement that defines the

facilities being shared and a typical Service Level Agreement (SLA) used

for the cooperation [22–25]. The cooperation system has to avoid SLA’s

overwhelming limitations defined and agreed by the involved entities. For

this reason, coordination and cooperation patterns for service selection

are also evaluated, having a look at the approaches adopted in literature,

both in the cases of brokered and decentralized ones (see chapter 3). In

particular, a complex CPS representing a further step lies in the Smart

City research domain. This aggregation of CPSs, as shown in Figure 1.3,

represents a new dimension for Smart Cities, that is anyway applicable

to an even wider range of environments. As an example, it can represent

a Smart Metro Area (composed by an aggregation of Smart Cities), or

Smart Country, and so on. A federated cooperation among CPSs enables

several advantages:

∙ increase the amount and diversity of data available for applications

running on CPSs,

∙ enables the sharing of computation resources among CPSs,

∙ creates an infrastructure enabling the exploitation of Cloud, Fog,

Edge, Cloud Continuum approaches (see sections 2.1.1, 2.1.3, 2.1.4,

and 2.1.5) without increasing costs for the CPS owner.

8 Eng. Giuseppe Tricomi

i
i

“output” — 2021/1/10 — 14:51 — page 9 — #23 i
i

i
i

i
i

All the advantages discussed till now about the cooperation among

CPSs make the realization of platforms and applications possible, en-

abling simplified cross-pollination between service providers, simplifying

new developments and reducing the time-to-market for services overall,

that translate into advantages for the end user as well. The applications

exploitable in a similar scenario are countless. They range from ad-

vanced traffic monitoring, management, and driving utilities (see chapter

6, to the realization of enhanced Intrusion Surveillance System based

on neighborhood surveillance systems (see chapter 8), cooperative emer-

gency management that supports rescue activities (such as the firefighters’

activities as described in chapter 9).

Another interesting aspect related to CPSs and, in particular, to co-

operating ones, is the distribution of computation among the available

computing elements. Let us make an analogy among a human and a CPS:

we can assume that the eyes and the hands of a CPS are represented by

the IoTs, while the body and the brain are equivalent to the Cloud. In

this way, the CPS becomes a perfect infrastructure where it is possible to

apply the Cloud Continuum2 principles [26]; in particular, we must refer

to Fog/Edge and Cloud computing technologies to complete the analogy

mentioned above.

Fog and Edge computing [27, 28] are paradigms of computing that

2Cloud Continuum represents the paradigms in which the computation is distributed on the whole
CPS exploiting Cloud, Fog, and Edge computing facilities (see section 2.1.5).

Eng. Giuseppe Tricomi 9

i
i

“output” — 2021/1/10 — 14:51 — page 10 — #24 i
i

i
i

i
i

CHAPTER 1. INTRODUCTION

operate near the peripheral of a system. Indeed, they differ for where

(on earth) and in which (part of the) system the computation occurs. The

latter makes its elaboration into or near the Edge devices (commonly

IoTs, but it is exploited also on gateways, or similar). Instead, the former

moves the computation to processors connected in the same area network

or into the networking gear itself (router, access point, repeater, and so

on).

These techniques, supported by new emergent computing paradigms

[29] such as Serverless computing (see section 2.1.6), enable the CPS to

be easily exploited by the applications previously under discussion. In

this sense, I have made some preliminary investigations [8] with some

prototypes to evaluate some assumptions of how the application of the

serverless technique simplifies the setup and the re-configuration of IoT

devices through simple function invocations. During my Ph.D. activities,

I have organized my main research line to create “a new dimension” for

an environment made of cooperating CPSs. This ambitious endeavour

took the best part of the time I devoted to research activities during the

PhD programme, thus, to better organize my studies, I have structured

my research activity as follows:

∙ Literature review.

∙ Hands-on experience about CPSs.

∙ Methods to distribute computation across CPSs.

10 Eng. Giuseppe Tricomi

i
i

“output” — 2021/1/10 — 14:51 — page 11 — #25 i
i

i
i

i
i

∙ Models and applications for cooperation among CPSs.

∙ Definition of a Template framework to quickly transfer the “smarts”

to new environments.

To better describe my research path, in the following each step will be

discussed.

In this research trajectory, cooperation schemes and techniques for

the selection of resource providers are important issues to be addressed.

A literature review to understand the differences among brokered and

decentralized Federated Cloud Service Providers is available in [30].

Thanks to the European project BEACON3 [31], experience was

matured with typical Cyber-Physical Systems, such as Smart Buildings

and Smart Cities.

Another step of my research path has been devoted to face real prob-

lems generated in the interaction with a real CPS (small, bigger, or

even born by aggregation of other CPSs), taking care of the comput-

ing facilities hosted by the CPS itself and other externally available

facilities. In chapters 5 and 6, several use cases have been thoroughly

analyzed [6], [32], and [7]. The former presents a system to check the

level of people occupancy in a room or, more generally, in a closed envi-

ronment, exploiting IoT devices for air quality monitoring. The other two

works are related to Smart vehicles enhancements, through a constant
3In BEACON the federation techniques for networking resources were implemented to distribute

resource computation among Cloud Service providers.

Eng. Giuseppe Tricomi 11

i
i

“output” — 2021/1/10 — 14:51 — page 12 — #26 i
i

i
i

i
i

CHAPTER 1. INTRODUCTION

interaction with other CPSs available across the Smart City.

Another relevant aspect studied during my research activities is related

to the management of Fog/Edge computing systems that absolve complex

tasks by creating pipelines. To explore this specific scenario, I first

realized a system able to support the computation distribution upon

a cloud-based environment [33]. Then, I used the previous studied

“pipeline-based compute distribution techniques” to create workflows

running on top of the IoT infrastructure [8]. So, Serverless techniques are

applied on a Fog/Edge computing scenario to distribute the application’s

workload on the whole CPS and not only on the Cloud.

Finally, I focused my research activities on complex CPSs, by explor-

ing applications and systems operating upon multiple CPSs [9] and [10].

This part of the research is related to the use of the Software-Defined

Building approach, respectively, in a neighborhood for security purposes

and in an industrial district to enhance fire-fighting systems and to sup-

port the firemen. I also focused my attention working on projects where

the aggregation of multiple CPSs was extremely important [34, 35], i.e.

the #SmartMe and the TOO(L)SMART projects (see chapter 10).

To cover in detail my Ph.D. research activities, the remainder of the

thesis is structured as follows. Chapter 2 presents the state of the Art,

introducing the technologies, the definitions, and the paradigms useful for

my research about cooperative CPSs. Chapter 3 briefly presents a view

of the literature review made on cooperation among Cloud Environment.

12 Eng. Giuseppe Tricomi

i
i

“output” — 2021/1/10 — 14:51 — page 13 — #27 i
i

i
i

i
i

Mobile Smart
Environment

Mobile Smart
Environment

Smart
Factory

Smart City A

Smart
Factory

Smart City B

City A

City B

Smart Area

Smart Cities

Smart
Hospital

Smart
Building

Figure 1.3: An example of a Smart Area.

Chapter 4, introduces the tools and the devices most used during my

research. Chapters 5 and 6 describe the applications implemented in

the context of a single CPS; then Chapter 7 follows, that presents the

investigation on serverless paradigms applied on CPS environments.

Chapters 8 and 9 present applications on cooperative CPSs. Finally,

Chapter 10 describes the template defined for the Smart Cities useful to

enable cooperation among CPSs. The last Chapter recaps the work made

and outlines some future directions for my research plan going forward.

Eng. Giuseppe Tricomi 13

i
i

“output” — 2021/1/10 — 14:51 — page 14 — #28 i
i

i
i

i
i

i
i

“output” — 2021/1/10 — 14:51 — page 15 — #29 i
i

i
i

i
i

CHAPTER2

State of the Art

2.1 Computing Technologies and Paradigms

O
VER the last thirty years the IT world has been sig-

nificantly reshaped by the advent of the Internet. The

opportunities to easily interconnect systems have pushed

forward both the technologies and the techniques available to the system

designers and software designers, but at the same time even the problems

to be faced have grown with them. This way, new business opportunities

15

i
i

“output” — 2021/1/10 — 14:51 — page 16 — #30 i
i

i
i

i
i

CHAPTER 2. STATE OF THE ART

and new computing paradigms has emerged and has changed the face of

telecommunications and business infrastructures and at the same time, it

has modified deeply the culture of those peoples who have got in touch

with it. In this chapter the most relevant paradigms and techniques are

presented.

2.1.1 Cloud Computing

I
N recent years, IT researchers and developers focused their at-

tention on developing a new computing paradigm, the so-called

Cloud Computing. The technological progress and the IT services evolu-

tion allows to offer to the end-user more and more efficient large scale

services leading inevitably to an increase in management costs for the

providers of such services. For this reason, IT managers has adopted

more effective strategies to meet different needs. Indeed, there is a con-

tinuously increasing request of QoS (Quality of Service), and the need of

lower costs to manage a growing user basin. This is the context where

the Cloud Computing is placed.

With Cloud Computing, users and companies accede to computing

resources, storage and software applications without the need to manage

and to maintain the physical resources where them are hosted. These

resources, in fact, do not reside locally into a user PC or office cluster

anymore, but they are allocated within the cloud, dynamically virtualized

16 Eng. Giuseppe Tricomi

i
i

“output” — 2021/1/10 — 14:51 — page 17 — #31 i
i

i
i

i
i

2.1. COMPUTING TECHNOLOGIES AND PARADIGMS

and mapped to physical hosts distributed throughout the network in a

totally transparent manner to the end-user. This technology takes the

name Cloud to highlight the absence of information about where the

services are instantiated.

So, when someone refers to the expression "cloud computing", he is

talking about technologies that allows storing and / or processing data,

using virtualization technologies to offer hardware or software resources

through the network following the user’s demand. The resource are

offered in form of services that are modelled typically with a client-server

model. These services are accessible to requesting users through interface

(e.g., REST API, GUI, and so on) that serves both to provide Access

Control facilities to offered services, and also to hide the underlying

hardware and software architecture or features used in the execution. In

a nutshell, the Cloud Computing paradigm:

1. it provides an abstraction of the hardware and software technologies

that the user has requested, guaranteeing a certain level of reliability

and system availability, enabling enterprises to concentrate on busi-

ness without having the need to assign capital, and human resources,

in the purchase and maintenance of hardware and software resources

representing the cornerstone of their applications;

2. it provides a reduction of costs to the provider (and thus to the

users), because the resource management is carried out in a dis-

Eng. Giuseppe Tricomi 17

i
i

“output” — 2021/1/10 — 14:51 — page 18 — #32 i
i

i
i

i
i

CHAPTER 2. STATE OF THE ART

tributed manner by algorithms allowing to optimally manage the

computational capabilities of the machines, and then to minimize

the costs of energy consumption, maintenance and so on;

3. the large companies exploit it in order to create their own private

cloud computing system to be used inside company administrative

domain. So, it can benefit for all the reasons of reliability, avail-

ability, energy saving and maintenance of the above mentioned

machines, without facing the risk to fall into the data security and

privacy issues.

The virtualization is the key concept on which the cloud computing

is based. Virtualization consists in a technology that enables running a

virtual instance of a resource (e.g., computer hardware, storage devices,

computer networks, etc.) in a layer abstracted from the actual hardware,

thus enabling features like compatibility, portability and migration of

applications for administrators, and security, reliability and performance

to the end user.

Commonly, the resources virtualized are entire systems (called Virtual

Machine, VM) that runs on a software “layer”, called Virtual Machine

Monitor, VMM (also known as Hypervisor) that separates physical re-

sources from the virtual environments that require them. The Hypervisor

can be executed on the physical systems exploiting the resources of the

host to produce virtual entities offered to the end-user. Thus, a virtual

18 Eng. Giuseppe Tricomi

i
i

“output” — 2021/1/10 — 14:51 — page 19 — #33 i
i

i
i

i
i

2.1. COMPUTING TECHNOLOGIES AND PARADIGMS

machine (VM) can be understood as a logical representation of a physical

machine (PM) consisting of hardware and firmware. VMMs assign phys-

ical resources dynamically so that the virtualized environments can use

them, and at the same time, they provide other advantages of virtualiza-

tion, those are the ability to make backups and status updates, migrations

of virtual machines from a host or server to another that, by saving the

VM state, will be able to continue its running as if nothing happened.

2.1.1.1 Key Features

I N the 2011th the NIST has released a definition for the cloud

computing in the article [36] listing its five essential characteristics that

are resumed in the list below:

∙ On-demand self-service. The user can request and use autonomously

the services offered by the cloud, this means that any human inter-

action between the user and service provider is required.

∙ Broad network access. Services have to be available through the Net-

work and they have to be accessible through a standard mechanism,

thus they can be used on different platforms.

∙ Resource pooling. The provider’s computing resources are pooled to

serve multiple consumers using a multi-tenant model. Moreover, the

users have no vision of how them resources are allocated, they have

Eng. Giuseppe Tricomi 19

i
i

“output” — 2021/1/10 — 14:51 — page 20 — #34 i
i

i
i

i
i

CHAPTER 2. STATE OF THE ART

only to concentrate on a logical abstraction of the services without

having care of how physical and virtual resources are dynamically

allocated by the provider.

∙ Rapid elasticity. In order to allow easy system scalability, the virtual

and physical resources MUST be provided as fast and dynamically

as possible; this could appear to the users’ eyes as the providers

have unlimited resources.

∙ Measured service. The resource usage is measured to apply the fees

for the services used. The resources provided by the Cloud have to

be adapted to the typology of services acquired.

2.1.1.2 Categories of Cloud Services

C LOUD computing is still one of the major research topics in the IT

world and, even if the research has bring it towards several evolution it is

still one of the most used and useful computation paradigms. Therefore

a standard that represents its architecture doesn’t exist it is possible to

classify the main offered services as IaaS, SaaS and PaaS. The Figure 2.1

shows the general vision of the cloud computing with respect the NIST

definitions.

Instead, in Figure 2.2.a are shown how the three service-model are

connected as function of the control on the system owned by the end-

20 Eng. Giuseppe Tricomi

i
i

“output” — 2021/1/10 — 14:51 — page 21 — #35 i
i

i
i

i
i

2.1. COMPUTING TECHNOLOGIES AND PARADIGMS

Figure 2.1: Cloud Computing Overview: Visual Model of NIST Working Definition of
Cloud Computing.

user, in Figure 2.2.b are compared the functionalities are managed by

customers or to the providers. At the base of the pyramid there is the IaaS

(Infrastructure as a Service). The IaaS is the lowest level of abstraction

and it provides to the users a virtual computing infrastructure for the

execution of users’ system (e.g., entire platforms or specific application).

According to Cloud Computing Rapid Elasticity feature the virtual in-

frastructure could dynamically grow or decrease as a function of the

actual load and of the requests to be served. Moreover the pay-per-use

infrastructure includes all of the hardware needed on the network, for

example servers, firewalls, switches with certain characteristics.

On the virtual infrastructure provided, the users will install, configure,

manage, and use remotely their frameworks or applications, while the

Cloud Provider must ensure the service provided by means the infrastruc-

ture configuration, in order to allow its use to the customer. The Cloud

Eng. Giuseppe Tricomi 21

i
i

“output” — 2021/1/10 — 14:51 — page 22 — #36 i
i

i
i

i
i

CHAPTER 2. STATE OF THE ART

(a)

(b)

Figure 2.2: Cloud Computing service Model Overview: a) Service Model and user
control in relation [1]. b) Services managed by the customer and by the provider in
the service model [2]

Provider, moreover, had to guarantee the system maintenance and its

replacement in case of damage to the machines; the latter is the repre-

sentation of the characteristic of the IaaS layer called scalability. This

way, computing power and storage resources could be added without

22 Eng. Giuseppe Tricomi

i
i

“output” — 2021/1/10 — 14:51 — page 23 — #37 i
i

i
i

i
i

2.1. COMPUTING TECHNOLOGIES AND PARADIGMS

the users’ need to reconfigure everything; so the user could manage its

business without the need of estimate the infrastructure costs and jump in

the market without the risk of the loss of big capital for the infrastructure

that may be unused and thus unnecessary and avoids the user to replace

the machines in the future. The second layer of the service model is

the PaaS (Platform as a Service), according to this service model the

companies offer to the customers hardware and software infrastructures

for running their applications without the need to configure them, it is

a kind of intermediate service between IaaS and SaaS. A PaaS provider

offers to its customers an useful environment for develops, tests and

maintains their applications, oblige them only to accept some restrictions

on the available tools, APIs and platforms that are balanced by great

scalability and lack of the infrastructure management. The higher layer

of the cloud stack is the SaaS (Software as a Service). The purpose is

to allow remote access, typically via Web, to the services and functions

offered by software, the use of which, also in this case, is subjected to

the pay-per-use paradigm. The users of this service model, don’t need

to install anything or to use particular hardware resources on his local

machine, to exploit the most of the SaaS potential.

Eng. Giuseppe Tricomi 23

i
i

“output” — 2021/1/10 — 14:51 — page 24 — #38 i
i

i
i

i
i

CHAPTER 2. STATE OF THE ART

2.1.2 Cloud and Fog computing in IoT

I
N recent years, big efforts have been put in promoting the Cloud

paradigm as a suitable solution for managing IoT environments.

Indeed, several methods and techniques have been introduced to deal with

the management of a remote and resources’ constrained infrastructure.

In this context, issues have been addressed in the literature, such as

scalability, device accessibility, and personalization of services. To have

an extensive insight into the challenges facing the integration of the Cloud

and IoT, readers may refer to [37, 38]. In the same perspective, several

platforms were introduced to merge IoT deployments within the Cloud

management scope [39].

Despite the wide range of benefits the Cloud paradigm provides (e.g.,

in terms of storage and computing resources), novel constraints in terms

of Quality of Service (QoS), dictated by current and forthcoming appli-

cations, make the Cloud unfit to meet the corresponding requirements.

To work around these intrinsic limitations, the Fog/Edge computing

paradigms have been introduced to push resources, such as storage and

compute, to the network edge, to be as close as possible to data producers.

The fact that Fog computing nodes are bound to be close to data sources

is a key enabler of advanced applications [40] that were not feasible when

relying only on the faraway Cloud infrastructure.

24 Eng. Giuseppe Tricomi

i
i

“output” — 2021/1/10 — 14:51 — page 25 — #39 i
i

i
i

i
i

2.1. COMPUTING TECHNOLOGIES AND PARADIGMS

2.1.3 Fog Computing

C
ISCO made the first introduction of the term Fog Computing

in 2012 [27]. The basic idea behind the Fog Computing is to

place light-weight facilities (that instead have to be executed inside the

Cloud) at the mobile users’ proximity. This way, a preliminary advantage

is provided to the system from the characteristics of the connection

implemented: with Fog, the connection towards the mobile users is

shorter and with less congestion respect the case of the Cloud where the

connection path is longer and potentially heavily congested [41]. Other

advantages owned by Fog computing, but according to [42], some of the

others are:

∙ Low latency and real-time interactions,

∙ Save bandwidth,

∙ Support for mobility,

∙ Geographical distribution.

Thanks to the Fog computing model, the data elaboration could be

done with a local area network breath, reducing latency into the data

and the response delivery; at the same time, it reduces the consumption

of bandwidth from the Fog node to Cloud. The Fog model supports,

both the mobile than the static devices (even in case of geographically

Eng. Giuseppe Tricomi 25

i
i

“output” — 2021/1/10 — 14:51 — page 26 — #40 i
i

i
i

i
i

CHAPTER 2. STATE OF THE ART

spread devices), the shifting of the computation in a Fog node near

the device position. Into the survey [42], the authors state that most

Fog computing architectures are derived by the three-layer structure

extending the Cloud computing with the introduction of a Fog layer

between Cloud and IoT devices. This way, the Fog server could be a

generic virtualized equipment with onboard computing, communication,

and storage capabilities to provide services to its users [41].

2.1.4 Edge Computing

E
DGE computing refers to a technology that moves the compu-

tation (and the storage in some cases) from a centralized element,

such as a cloud computing resource, to the network edge near the data

source. This way, not only reduces the latency suffered by the data

transmission from the data source to the place in which the decisions

are taken, but it increases the data source owner’s privacy avoiding that

some data could be delivered in the Cloud maintaining them near the

devices. An edge device in this model has the double-role of data pro-

ducer and data consumer, so they become not only an appendix of the

Cloud but even active elements that could request and offer services to the

cloud [43]; this is identifiable with a fine mesh of computational resource

abilities [44]. The concept of Edge device has a wide scope that can range

from an IoT gateway to a campus network or to an edge compute node

26 Eng. Giuseppe Tricomi

i
i

“output” — 2021/1/10 — 14:51 — page 27 — #41 i
i

i
i

i
i

2.1. COMPUTING TECHNOLOGIES AND PARADIGMS

co-located with a cellular base station; this makes, as highlighted above,

the Edge computing as a sort of panacea for the issue related both to

network latency and management challenges posed by real-time services.

Moreover, Edge computing addresses scalability challenges by exploiting

the hierarchical architecture of end-device and computational resources

from the Edge compute nodes to the central Cloud compute resources.

This way, the system may easily avoid network bottlenecks towards the

central compute location scaling with the clients’ number. Often, Edge

and Fog computing are confused as it is possible to see in [45]. Still,

even if they have the same primary target, the main difference stays in

the main focus: the Edge focuses more on IoT peripheral side, while Fog

focuses on the infrastructural side [43]. Their differences are shown in

Table 2.1, [42], [46].

To complete this overview about Edge Computing a mention is in

order for an emerging approach pushed by Telco scientists and by the

advent of 5G, which aims to exploit a particular category of edge devices:

the highly capable end-devices (e.g., mobile phones and tablets). ETSI

promotes this activity, 1,which has standardized the Mobile Edge Com-

puting (MEC) [47]. The ETSI MEC group Industry Specification Group

(ISG) objective is to create an open environment across multi-vendor

cloud platforms located at the edge of the Radio Access Network. This

will be accessible by application/service providers and third parties aim-

1https://www.etsi.org/technologies/multi-access-edge-computing

Eng. Giuseppe Tricomi 27

i
i

“output” — 2021/1/10 — 14:51 — page 28 — #42 i
i

i
i

i
i

CHAPTER 2. STATE OF THE ART

Parameter Fog Computing Edge Computing
Resources Limited More Limited
Proximity to End-Device Near End-Device In the End-Device
Focus Infrastructure Level Thing Level
Multiple IoT Application Supported Unsupproted
Location of data Network edge Devices Edge Devices

Table 2.1: Difference among Fog and Edge Computing Model

ing to overcome the challenges related to centralized cloud computing

environments, especially in terms of both latency and assurance of higher

speeds [48]. The intensive data tasks are pushed towards the edge, locally

processing data in proximity to the users, to reach these goals. This way,

the mobile network operator can avoid or reduce the traffic bottlenecks

in the core and backhaul networks while assisting in the offloading of

heavy computational tasks from power-constrained User Equipment (UE)

to the edge. The purpose of this initiative is to realize a decentralized

cloud architecture that can constitute a technology pillar for the emerging

5G systems, transforming legacy mobile base stations by offering cloud

computing abilities and an IT service environment at the edge of the

network. Since September 2016, ETSI ISG has dropped the ’Mobile’

out of MEC, renaming it as Multi-access Edge Computing in order to

broaden its applicability to heterogeneous networks including WiFi and

fixed access technologies [49].

28 Eng. Giuseppe Tricomi

i
i

“output” — 2021/1/10 — 14:51 — page 29 — #43 i
i

i
i

i
i

2.1. COMPUTING TECHNOLOGIES AND PARADIGMS

2.1.5 Computing Continuum

T
HE computing technology field after the advent of IoT was per-

vaded by a plethora of devices and applications that has to be

managed often via the same infrastructure. So Virtualization, Cloud

computing and its evolution (Fog and Edge, introduced in the previous

sections) are employed to orchestrate the resources involved in homoge-

neous way exploiting as much as possible the hierarchical structure that

characterizes this computing techniques. We refer to this as Cloud Com-

puting Continuum. According to Bittencourt et al. [50], this technology

is in literature is analyzed in several works that could be categorized in

three main categories:

∙ infrastructure,

∙ management,

∙ application.

The management, among the others is most interesting category for

our study. Indeed the cooperation among CPSs, even if it is based on

federation or not, involves several aspects that are hot topic in literature.

Bittencourt [50] identifies a series of works related to the management

that are focusing mainly on specific aspects, such as:

∙ resource allocation and optimization,

Eng. Giuseppe Tricomi 29

i
i

“output” — 2021/1/10 — 14:51 — page 30 — #44 i
i

i
i

i
i

CHAPTER 2. STATE OF THE ART

∙ serverless computing,

∙ data management and locality.

The first one, resource allocation and optimization, it is a challenging

problem became more complex from the new architecture generated by

this new computational paradigms. Scheduling problem (NP-Complete)

and techniques proposed in literature are sensitive to the application and

the infrastructure characteristics [51]. Advent of IoT and Fog comput-

ing has introduced a new way allocate the resources, indeed the Fog

computing is expecting to fulfill the requirements not managed by the

Cloud platforms, but relaying on them to for the others [52, 53]. About

Serverless computing, we will go deeper in the section 2.1.6, we could

say that it has modified the traditional cloud-based approach, moving it

from the batch-oriented to real-time processing of data. Management

of data is an hot topic in literature, anyway only recently the locality of

data management has gain relevance being adopted in geo-distributed

data centers exploiting Cloud computing continuum (Cloud-Fog-Edge

computing) [54–56].

2.1.6 Serverless Techniques

S
ERVERLESS techniques are meant to offer at the end user the

chance to run operations without have care of the server (virtu-

alized or physically instantiated) where the operation are executed, in

30 Eng. Giuseppe Tricomi

i
i

“output” — 2021/1/10 — 14:51 — page 31 — #45 i
i

i
i

i
i

2.1. COMPUTING TECHNOLOGIES AND PARADIGMS

few word the reader could consider the serverless paradigm as one of

the evolution of the Cloud computing techniques that are focused on the

execution of tasks.

2.1.6.1 Serverless vs. Function-as-a-Service (FaaS)

M OST investigations around this topic, for long have treated these

techniques indistinctly as Serverless and Function-as-a-Service, FaaS.

This technology is referring to the resources virtualization, introduced

by Cloud Computing and its evolution, but according to how virtual-

ization activities are managed, we can specifically refer to one or the

other. Until 2017, authors confuse these two techniques, referring to

them without discriminating whether a full-stack environment, or the

execution of a simple function, is required, as in [29], [57], and in a

few other works. An interesting definition is provided by Gilkson et

al. in [58], where serverless is considered as “a software architecture

where an application is decomposed into ’triggers’ (events) and ’actions’

(functions), and there is a platform that provides a seamless hosting

and execution environment”, this definition is interesting but it is not

useful to distinguish the differences among the two approaches. Several

other publications are discussing about the differences existing among

the two approaches and even the respective advantages/disadvantages,

as in [59], [60], and [61]. In particular, the latter two are respectively

Eng. Giuseppe Tricomi 31

i
i

“output” — 2021/1/10 — 14:51 — page 32 — #46 i
i

i
i

i
i

CHAPTER 2. STATE OF THE ART

discussing about the serverless approach, and about the trends those are

rewarding the FaaS approach. At this point, the researcher has started to

identify the difference that characterize these two concepts but any well

definition was released.

In the 2018 the Cloud Native Computing Foundation (CNCF) [62]

resolve the doubts related to the serverless computing introducing the

concept of Backend-as-a-Service (BaaS) in the loop. CNFN defines that

Serverless techniques as a technology composed by BaaS and by FaaS,

where these two techniques are defined as follow: i) FaaS provides small

units of code, representing event-driven computing facilities, where the

functions get instantiated and triggered from an external source, typically

through commonplace HTTP requests; ii) BaaS, instead, is an approach

to handle specific common backend-tasks without any customer’s in-

volvement in their management.

2.1.6.2 Fog/Edge computing and Serverless/FaaS

W ITH the evolution of Cloud solutions, all major Cloud service

providers nowadays have a Serverless computing platform in their offer-

ing. For instance, Amazon Web Services (AWS) has AWS Lambda2 that

makes consumers able to run their code without provisioning the infras-

tructure. IBM as well provides a Serverless platform named IBM Cloud

2https://aws.amazon.com/lambda/

32 Eng. Giuseppe Tricomi

i
i

“output” — 2021/1/10 — 14:51 — page 33 — #47 i
i

i
i

i
i

2.1. COMPUTING TECHNOLOGIES AND PARADIGMS

Functions3 which is built on top of Apache OpenWhisk [63]. The same

for Microsoft Azure and Google that propose Cloud Serverless plans

using Azure Functions4 and Google Functions5 respectively thus, their

consumers can deploy their functions on the Cloud. With the proliferation

of IoT devices, the amount of data generated at the network edge has

experiences an immense growth. Examples include sensor data, events

generated by IoT devices and gateways, multimedia files such as cameras’

images. To make use of this data and provide new services/applications

with added values, the incumbent Cloud players are showing immense

interest in the Fog/Edge paradigms and promote the Serverless/FaaS

approaches as suited solutions to be adopted at the network edge. In fact,

Microsoft has released a Fog/Edge platform for IoT called Microsoft

Azure IoT Edge [64] that extends the Cloud Serverless paradigm towards

the network edge using the containerization technology. Likewise, Ama-

zon and IBM extended their pre-existing proprietary Cloud solutions to

the network edge using AWS Greengrass [65] and IBM Watson IoT [66]

platforms respectively. AWS Greengrass, for instance, make users able

to run AWS Lambda functions on edge devices hence, they can deploy

customized applications on the IoT devices.Although opting for Server-

less offerings from public Cloud service providers is a widely adopted

strategy to deploy applications, one of the biggest issues related to public

3https://cloud.ibm.com/functions/
4https://azure.microsoft.com/en-us/services/functions/
5https://firebase.google.com/

Eng. Giuseppe Tricomi 33

i
i

“output” — 2021/1/10 — 14:51 — page 34 — #48 i
i

i
i

i
i

CHAPTER 2. STATE OF THE ART

Cloud Serverless solutions is definitely vendor lock-in. Indeed, Cloud

providers can impose their own choices for strongly (user-)restrictive

configuration settings, e.g., caps for execution duration of functions,

or concurrent executions. Moreover, data privacy, sovereignty and, ul-

timately, control, on owned infrastructure as well, are, in this setting,

relinquished and cannot be easily reclaimed back by the IoT owner and/or

IoT-hosted service user. Such concerns can be addressed and solved if the

Serverless paradigm is deployed using a private Cloud environment. It is

within this context that our S4T middleware comes in, by providing an

open source solution, based on industry-standard protocols and services,

that can run on-premises and without relying on third-party datacenters.

An administrator can deploy his/her own self-controlled private Cloud

and thus, he/she can have total control over the deployment settings and

configurations. In the literature, a number of works target the use of the

Serverless/FaaS paradigms in IoT deployments, considering the consider-

able level of flexibility and efficiency they provide. For instance, authors

in [67] proposed a Fog-based Serverless system that supports data-centric

IoT services, in particular, they focused their work on a smart parking use

case. In the same context, authors in [68] introduced a platform named

Kappa that can be used to deploy functions on devices at the network

edge.

34 Eng. Giuseppe Tricomi

i
i

“output” — 2021/1/10 — 14:51 — page 35 — #49 i
i

i
i

i
i

2.2. COMPUTING COOPERATION: DEFINITION & PATTERNS

2.2 Computing Cooperation: Definition & Patterns

R
EGARDLESS of the used computing technology involved,

the computing technology may refer to one of the following

definition of operating context, valid for Cloud as it is valid for its

evolutions:

∙ Public Cloud: This computing infrastructure is publicly accessible

on the Web. Customers pay for the services used, reducing the

CapEX assigned normally to the case of "on-premise" services.

Examples of these services are Amazon EC2, Azure IoT Edge [64],

AWS Greengrass [65], IBM Watson IoT [66], and so on.

∙ Private Cloud: This computing infrastructure, in opposition to the

previous, has both suppliers and consumers belonging to the same

organization. Even if this approach does not produce a CapEX

reduction, the advantages, in terms of reliability availability, and

the possibility to use the same infrastructure for multiple projects

without having the privacy issues introduced by the Public Cloud,

justify the adoption of this kind of infrastructure.

∙ Hybrid Cloud: This infrastructure is a compromise between the

previous two: it is publicly accessible even if there are several

limitations, and it tries to take advantage of both typologies.The

resulting system is more complex of the previous both from the

Eng. Giuseppe Tricomi 35

i
i

“output” — 2021/1/10 — 14:51 — page 36 — #50 i
i

i
i

i
i

CHAPTER 2. STATE OF THE ART

realization point of view than from the management aspects. For

example, a company might decide to use their private infrastructure

to store and manage critical data, and instead to exploit the pub-

lic cloud services for storing and managing non-critical data and

information.

∙ Cloud Federation: This solution is an evolution of the Hybrid one.

Here, several providers may be public, private, or hybrid systems

accepting to share resources and services with each other. Cloud

Federation is what the IT world is heading, but this target opposes

various technical and legal nature difficulties.

The rest of this chapter will analyze the pattern available for the

designer that wants to realize a system based on cooperative computation.

2.2.1 Peer cooperation

P
EER cooperation pattern is a tightly coupled architecture (see

Figure 2.3) in which the Service Providers usually managed with

the same technology (e.g.,OpenStack, OpenNebula, and so on), and

belonging to the same (or closely coordinated) administrative domain.

According to this configuration, each Cloud Manager has the full control

over remote resources (e.g., placement control, full monitoring, or VM

lifecycle management and migration control). This way, for each Cloud

is possible to implement other advanced features as the creation and

36 Eng. Giuseppe Tricomi

i
i

“output” — 2021/1/10 — 14:51 — page 37 — #51 i
i

i
i

i
i

2.2. COMPUTING COOPERATION: DEFINITION & PATTERNS

Resources Manager

Resources

Resources Manager

Resources

Cloud Manager Cloud Manager

Network Manager Network Manager

Storage Manager Storage Manager

VM VMVM VMS1 S2

Interconnection Network

Figure 2.3: Peer Cooperation Schema

management of a cross-site networks, the cross-site/domain migration of

VMs, High-Availability techniques among cloud instances, the creation

of virtual storage systems across different Clouds, and so on.

The interaction between entities manager (as example: Cloud Man-

ager, Network Manager, Storage Manager) is usually made through

administration level API’s. On top of the CM there could be a SM to

simplify service definition, deployment and management.

2.2.2 Hybrid cooperation

H
YBRID cooperation pattern is a more loosely coupled archi-

tecture (see Figure 2.4) than the peer one. It combines multiple

independent Clouds (without have care about if they are Public or Private

Clouds) [69] [70] [71].

Eng. Giuseppe Tricomi 37

i
i

“output” — 2021/1/10 — 14:51 — page 38 — #52 i
i

i
i

i
i

CHAPTER 2. STATE OF THE ART

Resources Manager

Resources

Resources

Cloud Manager

Network Manager

Storage Manager

VM

VM

VM

VM

S1

S2

Cloud 1

Resources
VM

S3

Cloud 2

VM
U

ser A
P

Is

Figure 2.4: Hybrid Cooperation Schema

This cooperation approach could also be called the cloud bursting

model because it combines external resources from remote clouds to

extend resources to face the growth of computational/storage needs due

to a burst of requests from customers. Due to the different kind of

agreement requested by this approach, the management of resources is

done through the user’s API; this reduces the action available by the

Cloud Manager requesting.

2.2.3 Brokered cooperation

T
HE Brokered cooperation pattern, as it is understandable from its

name, is based on a coordinator element called Broker (see Figure

2.5). This element is able to orchestrate several Public (Private or both)

38 Eng. Giuseppe Tricomi

i
i

“output” — 2021/1/10 — 14:51 — page 39 — #53 i
i

i
i

i
i

2.2. COMPUTING COOPERATION: DEFINITION & PATTERNS

indipendent Clouds [72], [73]. The broker can deploy virtual resources

in the managed Clouds according to the criteria defined by the user that

has requested the resources (e.g., location restrictions, cost restrictions,

and so on), and should also provide networking capabilities to enable

the interconnection of different resources deployed in geographically

dispersed clouds [31]. This cooperation pattern could be realized even

with decentralized brokering schemes where several brokering element

interacting each other to increase the resilience of the whole system. This

way, we assume that, the cloud broker is a multi-cloud Service Manager

responsible for managing application and network services across clouds.

Similar to the hybrid cloud federation architecture, this architecture is

also loosely coupled, since the broker interacts with the different clouds

using public cloud interfaces (user level API’s, such as Amazon AWS

EC2 API[17] or OCCI[18]) even if these interfaces usually do not allow

advanced control over the virtual resources deployed.

2.2.4 Federation

T
HE Cloud Federation represents a specific architecture in which

several Clouds cooperates to constitute a single pool of resources

that, according to [3], supports three basic features resource migration,

redundancy, and combination of complementary resources. This could

be achieved both throughout Horizontal (one level of the Cloud stack)

Eng. Giuseppe Tricomi 39

i
i

“output” — 2021/1/10 — 14:51 — page 40 — #54 i
i

i
i

i
i

CHAPTER 2. STATE OF THE ART

Figure 2.5: Brokered Cooperation Schema

and/or Vertical federation (the application stack spans on multiple levels).

Anyway, a federation architecture (see Figure 2.6) is another example

of loosely coupled cooperation schema combining multiple independent

cloud, both Public and Private clouds. This architecture could be consid-

ered a hybrid cloud [69], [70], or a specific case of the federation called

inter-cloud federation. This is linked to the cloud bursting model, which

combines the existing local cloud infrastructure (e.g., a private cloud

managed by a CM, such as OpenNebula or OpenStack) with external

resources from public clouds (e.g., Amazon EC2, Digital Ocean, etc.),

or partner clouds (managed by the same or a different CM). Similarly to

the previous, this architecture is loosely coupled, since the local cloud

40 Eng. Giuseppe Tricomi

i
i

“output” — 2021/1/10 — 14:51 — page 41 — #55 i
i

i
i

i
i

2.2. COMPUTING COOPERATION: DEFINITION & PATTERNS

Figure 2.6: Kurze’s Federation reference architecture [3]

has no advanced control over the virtual resources deployed in external

clouds, beyond the basic operations allowed by the federated providers.

The interaction between the local Cloud Manager and the various remote

clouds could be made via public cloud interfaces (user-level APIâs) and

data models (e.g., Amazon AWS EC2 API or OCCI). As in the previous

architecture, there could be a Service Manager on top of the Cloud Man-

ager. This architecture is the most appropriate to deploy hybrid solutions:

support location aware elasticity and build and deploy highly scalable

applications distributed over multiple public cloud providers.

Eng. Giuseppe Tricomi 41

i
i

“output” — 2021/1/10 — 14:51 — page 42 — #56 i
i

i
i

i
i

CHAPTER 2. STATE OF THE ART

2.2.5 Federation Versus Multi-Cloud

N
O universally accepted terminology has been defined to iden-

tify a Cloud computing scenario where each Cloud service

provider collaborates “horizontally” or “vertically” with other Cloud

service providers.

However, in our opinion, there are two terms that primarily identify

scenarios where multiple Cloud providers interact each other with the

aim of improving the service levels provided to users: Cloud Federation

and Multi-Cloud. These terms refer to two such scenarios differ both in

terms of the interaction between existing Cloud providers and in terms of

operating modes .

In a Cloud Federation context, basically a Cloud service provider

shares its (currently unused) own resources with other Cloud service

providers participating in the same Federation. In this way a Cloud

service provider is able to transparently and dynamically enlarge and

optimize its own resource capabilities by instantiation of new virtual en-

vironments to keep up with incoming user requests. Thus, such a Cloud

service provider does not plan to ever deny service or reject requests from

their clients, thus keeping a high level of QoS. This interaction is com-

pletely transparent to the end-user, completely unaware that her Cloud

provider is requesting additional resources from other Cloud providers.

Moreover the user is not aware whether his service is hosted by his

42 Eng. Giuseppe Tricomi

i
i

“output” — 2021/1/10 — 14:51 — page 43 — #57 i
i

i
i

i
i

2.2. COMPUTING COOPERATION: DEFINITION & PATTERNS

reference Cloud provider or across multiple federated Cloud providers.

For this reason, we can state that it is reasonable to affirm that the

concept of Cloud Federation is Cloud-oriented and not enduser-oriented.

In other words, from a Federation perspective, the users of the system

are the federated Clouds operating within the Federation and not the end

user that asked for service (IaaS, Paas or SaaS).

Cloud Federation is meant to give additional benefits and new business

opportunities to Cloud Service Providers. Conversely, the end-user is

actually the consumer of any service in a Multi-Cloud scenario. More

in detail, we can define a Multi-Cloud as a user-centric solution where

a user is aware about the presence of different Clouds, and either the

user or another third party is able to make choices about the selection of

the Cloud where services or resources will be instantiated. In Petcu et

al. [74] a distinction between the concept of Federation and Multi-Cloud

is provided.

Generally, there is a Service Provider (a Broker) which is responsi-

ble for the provisioning of services for its users. The Service Provider

picks out the services from different Cloud Providers taking into con-

sideration the users’ requests. In this scenario there is no collaboration

or interaction among the Cloud providers engaged by the user. The

Broker performs management, negotiation, deployment, monitoring and

migration operations only, in order to fulfill the users’ requirements.

Eng. Giuseppe Tricomi 43

i
i

“output” — 2021/1/10 — 14:51 — page 44 — #58 i
i

i
i

i
i

CHAPTER 2. STATE OF THE ART

2.3 Cyber Physical Systems

C
Yber-physical systems (CPSs) are systems born from the

interaction occurring among “engineered computing and com-

municating systems” and the physical world. The Berkeley CPS research

group provides a complete definition of a CPS:

“Cyber-Physical Systems (CPS) are integrations of computation, net-

working, and physical processes. Embedded computers and networks

monitor and control the physical processes, with feedback loops where

physical processes affect computations and vice versa. The economic and

societal potential of such systems is vastly greater than what has been

realized, and major investments are being made worldwide to develop

the technology. The technology builds on the older (but still very young)

discipline of embedded systems, computers and software embedded in

devices whose principle mission is not computation, such as cars, toys,

medical devices, and scientific instruments. CPS integrates the dynamics

of the physical processes with those of the software and networking, pro-

viding abstractions and modeling, design, and analysis techniques for

the integrated whole.” [4].

As it is possible to see from the taxonomy shown by figure 2.7, The

diffusion of IoT devices has involved all the everyday life environments,

making these scenarios fertile ground for the establishment of Cyber

Physical Systems where application aiming to exploit CPS’ facilities can

44 Eng. Giuseppe Tricomi

i
i

“output” — 2021/1/10 — 14:51 — page 45 — #59 i
i

i
i

i
i

2.3. CYBER PHYSICAL SYSTEMS

easily run producing value for their users. The studies on CPSs began a

Figure 2.7: Cyber Physical System taxonomy [4]

long time ago, and to this day, this continuously evolving concept has not

been fully explored, and it continues to be a current issue. The interest in

CPS starts in 2004 when the European Union (EU) began the ARTEMIS6

6Advanced Research Technology for Embedded Intelligence and Systems

Eng. Giuseppe Tricomi 45

i
i

“output” — 2021/1/10 — 14:51 — page 46 — #60 i
i

i
i

i
i

CHAPTER 2. STATE OF THE ART

project, which was interested in the structural challenges pursued by the

European industries [75]. Analogously, the National Science Foundation

(NSF) since 2006 has founded a research project titled “Science of Inte-

gration for CPSs”. Several research entities and Universities, to mentions

some “UC Berkeley,” and “General Motors Research and Development

Center” have joined in this project [76, 77] Researchers have focused

their studies on CPS, starting from the theoretical foundations, design

and implementation, real-world applications, and education. Next, the

researches spread out to energy management, network security, data

transmission and management, model-based design, control technique,

system resource allocation, and applications.

A complete overview of CPSs is provided by Wan et al. in 2011; in

their review [78], they analyze the research made in the several fields

such as Energy Management, Network Security, Data Transmission and

Management, Model-based Design, Control Technique, System Resource

Allocation, Applications. Nowadays, several challenges are opened and

under analysis, even if uncountable researches were done in this field.

Among others, Smart-Cities and more in general “Smart” Environments

are the most common scenarios in relation to CPSs. Anyway, we cannot

forget, among open challenges, unmanned vehicles, real-time systems,

and similar research topics, connected to CPSs, that are central in people’s

lives.

46 Eng. Giuseppe Tricomi

i
i

“output” — 2021/1/10 — 14:51 — page 47 — #61 i
i

i
i

i
i

2.3. CYBER PHYSICAL SYSTEMS

2.3.1 Smart Building

T
HE history of Smart Buildings began in 1981, with the term In-

telligent Building coined by United Technology Building Systems

Corporation, then implemented into the City Place Building in Hartford,

Connecticut [15]. The first examples of Smart Buildings are sort of

controlling systems able to manage in an automatic way the building

devices (e.g., smoke and fire sensor, ventilation peripheral, heating sys-

tems, etc.). More or less around the early 1990s with the first examples

of communication protocols enabling the Smart Building’s autonomous

control systems: BACnet and LonWorks, that respectively through direct

connection with a set of certified devices or the mediation of Neuron chip

can interconnect the devices to the controller to manage the former. In

particular,in [79] is presented a comparison of those two systems. The

advent of the IoT devices pushes towards Smart Environments and specif-

ically Smart Buildings. As highlighted in [16], it is hard to construct

a unique view of Smart Building with a definition commonly accepted.

Anyway, citing the European Commission’s Information Society is possi-

ble to define a Smart Building as a “building empowered by ICT in the

context of the merging Ubiquitous Computing and the Internet of Things:

the generalisation in instrumenting buildings with sensors, actuators,

micro-chips, micro- and nano-embedded systems will allow to collect,

filter and produce more and more information locally, to be further con-

Eng. Giuseppe Tricomi 47

i
i

“output” — 2021/1/10 — 14:51 — page 48 — #62 i
i

i
i

i
i

CHAPTER 2. STATE OF THE ART

solidated and managed globally according to business functions and

service” [17]. Trying to simplify the previously definition is possible

to say that a Smart Building is an integrated system based on IoT and

Ubiquitous Computing facilities able to take advantage of a range of

computational and communications infrastructure and techniques.

From the literature we have identified several approaches used to study

the Smart Buildings: in [80] the authors analyze a set projects concerning

Smart Home projects concerning three main topics: Comfort, Health-

care, and Security; in [81] the authors examine two kinds of works from

the point of view of efficient energy consumption: Intelligent Building

and Small Residential Buildings.

2.3.1.1 Software-Defined Buildings

The vast majority of the papers discussed in the literature present ap-

proaches that are tightly coupled to the building structure and didn’t take

into account the advantages provided by a Software-Defined approach.

The research group of Berkeley [82] made some steps in this direction, In

particular they define their approach as follow: “develop software-defined

buildings, to shatter existing stovepipe architectures, dramatically re-

duce the effort to add new functions and applications without “forklift

upgrades,” and expand communications and control capabilities beyond

a single stand-alone building to enable groups of buildings to behave

cooperatively and in cooperation with the energy grid”; one of the most

48 Eng. Giuseppe Tricomi

i
i

“output” — 2021/1/10 — 14:51 — page 49 — #63 i
i

i
i

i
i

2.3. CYBER PHYSICAL SYSTEMS

exciting works related to Berkeley’s research in Software-Defined Build-

ing are related to definition of a Building Operating System as shown

in [83], [84] and [85]. As stated above, the main enabling technology

behind a smart building are those related to IoT.

Eng. Giuseppe Tricomi 49

i
i

“output” — 2021/1/10 — 14:51 — page 50 — #64 i
i

i
i

i
i

i
i

“output” — 2021/1/10 — 14:51 — page 51 — #65 i
i

i
i

i
i

CHAPTER3

Literature analysis: Study on Cloud

cooperation approaches and on

services/providers selection techniques.

T
HE best way to identify the right approach to enable

CPSs to cooperate among them is understand from

literature how the same issues are managed in adjacent

contexts, such as Cloud Service Provider (CSP) selection. Indeed, the

51

i
i

“output” — 2021/1/10 — 14:51 — page 52 — #66 i
i

i
i

i
i

CHAPTER 3. MANAGEMENT OF FEDERATED COMPUTING
ENVIRONMENTS

challenges of building a cooperation-based computing environment are

easily compared with those related to the construction of a cooperation-

based cloud environment; so my first step is to analyze the literature

about this topic. The IT sector’s academics are continuously looking for

new solutions, technologies, and protocols to construct a valid computing

cooperative system composed of computing environments, essentially

Clouds, belonging to different owners.

The first part of my literature analysis concerns the publications pro-

duced by the European Union (EU) projects and other published works

about Federation or Multi-Cloud topics. The key concepts identified from

the preliminary analysis of EU projects are used during the literature

review made in the second step. This way, a classification of the papers

reviewed used in the selection process is provided.

3.1 EU Projects Overview

I
N the following, a systematic overview of the most

relevant EU project is provided. In the end, a summary

of the lesson learned and of the concepts adaptable to CPS

environments will be provided. Moreover, the knowledge acquired by

this analysis is used to filter the remaining literature review, shown in

section 3.2.

RESERVOIR: Resources and Services Virtualization without Barri-

52 Eng. Giuseppe Tricomi

i
i

“output” — 2021/1/10 — 14:51 — page 53 — #67 i
i

i
i

i
i

3.1. EU PROJECTS OVERVIEW

ers is funded by the European Commission in the Seventh Framework

Programme (FP7/2006-2013). The project began in November 2007, and

it was concluded in January 2011 [86].

The project aims to extend, integrate, and combine the following

technologies: Virtualization, GRID computing, and Business Service

Management. This project’s results generated much interest in high-

performance scientific computing because it enhanced the job scheduling

(typical in grid-computing) with the capabilities related to the virtual

computing resources. In a few words, RESERVOIR made “virtualization-

aware” the grid computing. The goals of the project RESERVOIR are

mainly two: infrastructure and VM placement. Infrastructure was de-

signed to enable the dynamic relocation of a VM in any grid node without

having care of location, network configuration, and administrative do-

mains. This project uses federation concepts to define where a VM has

to be placed according to the best mapping criteria.

StratusLab [87] is funded by the European Commission in the Sev-

enth Framework Programme (FP7/2006-2013). The project began in June

2010, and it was a 24-months project. StratusLab is meant to provide

mechanisms to efficiently exploit computing resources for the system

administrators and resource providers. It follows a Hybrid architecture

model to leverage the external resources to the requesting entities.

BonFIRE [88] is funded by the European Commission in the Sev-

enth Framework Programme (FP7/2006-2013); it ran from June 2010 to

Eng. Giuseppe Tricomi 53

i
i

“output” — 2021/1/10 — 14:51 — page 54 — #68 i
i

i
i

i
i

CHAPTER 3. MANAGEMENT OF FEDERATED COMPUTING
ENVIRONMENTS

December 2013. BonFIRE was a project aimed to design, implement,

and manage multiple cloud environments supporting research in the field

of the Future Internet (FI). According to [89], BonFIRE project offers

a test infrastructure to the Internet of Services community useful to do

experiments about the distributed applications and services. It was based

on a federated approach enabling interconnection and interoperation

between novel services and geo-distributed testbeds; it owned several

geographically distributed testbeds across Europe, offering storage and

networking resources. The coordination activities are made by a broker-

based Cloud federation model where the broker was the intermediation

point among the experimenters and the different infrastructures. The

BonFIRE is a broker-based Cloud federation model where a broker com-

ponent interacts among the user requests, the experimenters, and the

different infrastructures. To expose all the Clouds and network features

as resources to the user, it provides a common OCCI-based interface used

both for interaction occurring with the users and with the Cloud [90].

CONTRAIL [91] is funded by the European Commission in the Sev-

enth Framework Programme (FP7/2006-2013). The project started in

October 2010 and ran until January 2014. It was a project focused on

Open Computing Infrastructures for Elastic Services meant to provide

federation of all types of Clouds. The main innovation was related to the

introduction of a Platform-as-a-Service layer allowing easy management

and deployment of applications and data storage [92]. CONTRAIL and

54 Eng. Giuseppe Tricomi

i
i

“output” — 2021/1/10 — 14:51 — page 55 — #69 i
i

i
i

i
i

3.1. EU PROJECTS OVERVIEW

RESERVOIR have different affinity points. Both are exploiting Cloud

Federation. They are part of the same picture in which the former was

mainly related to identity management. The latter instead was focused

on resource migration among federated Clouds.

VISION Cloud: Virtualized Storage Services Foundation for the Fu-

ture Internet [93] is funded by the European Commission in the Seventh

Framework Programme (FP7/2006-2013). The project began in October

2010, and it was concluded in December 2013. VISION was a project

aiming to design a scalable and flexible storage cloud architecture that

managed massive simultaneous users by enabling the delivery of differ-

ent types of storage services. The VISION Cloud Storage environment

was built using an underneath infrastructure that can exploit worldwide

distributed data centers. A data center to be exploitable by the VISION’s

infrastructure is made by storage clusters containing physical resources

with computational, storage, and network capabilities; those are included

in the infrastructure for the environment management duties.

MOSAIC [94] Multi-Modal Situation Assessment and Analytics Plat-

form project began in April 2011 and was successfully completed in

July 2014. It was a project devoted to the Cloud-based application de-

velopers, maintainers, and users, allowing them the specifying of the

service requirements in terms of Cloud ontologies. This way, the pre-

sented multi-agent brokering mechanism-based framework was used to

find best-fitting Cloud services to users’ actual needs and outsourcing

Eng. Giuseppe Tricomi 55

i
i

“output” — 2021/1/10 — 14:51 — page 56 — #70 i
i

i
i

i
i

CHAPTER 3. MANAGEMENT OF FEDERATED COMPUTING
ENVIRONMENTS

efficiently computation tasks. MOASIC was designed not only to identify

the best-fitting but even to make a service composition if no direct hit is

found.

CloudWave: Agile Service Engineering for the Future Internet [95]

is funded by the European Commission in the Seventh Framework Pro-

gramme (FP7-ICT-2013-10). The project began in November 2013, and

it was concluded in October 2016. CloudWave project aimed to provide

the cornerstone for the development, deployment, and management of a

new generation of Cloud-aware services. Thanks to Cloudwave results,

service quality, and service optimization are obtained, the enablement

of the Cloud providers to dynamically adapts the services to the envi-

ronment. To reach this goal, CloudWave automatically selects the best

adaptation method among the available such as adding more resources to

the cloud application or migrating application components [96].

The French project CompatibleOne project [97] aimed to realize an

open-source services broker to orchestrate cloud services into heteroge-

neous cloud service providers. This project exploited an object-based

description model of Cloud resources called CORDS (CompatibleOne

Resource Description System); it was based on the OCCI standard. Com-

patibleOne was meant to offer IaaS and PaaS resources from different

providers that were selected according to Service Level Agreement (SLA);

it made a matching among the SLA requested by the end-users and the

one offered by the providers managed.

56 Eng. Giuseppe Tricomi

i
i

“output” — 2021/1/10 — 14:51 — page 57 — #71 i
i

i
i

i
i

3.1. EU PROJECTS OVERVIEW

BEACON [31], [98], Enabling Federated Cloud Networking, was

funded by the European Commission in the Horizon 2020(H2020) Re-

search and Innovation Programme. It started in February 2015 and ran

until October 2017. BEACON aimed to obtain a management Cloud

layer based on a federated cooperation schema able to build a solution

to federate Cloud network resources where federated Cloud applica-

tions can be deployed in an efficient and secure way. The project was

based on a brokered architecture to support the automated deployment of

applications and services across different Clouds and datacenters.

SUNFISH [99] aimed to solve the lack of infrastructure and technol-

ogy to integrate computing clouds. It started in January 2015 and ran

until December 2017. A secure federation of private clouds belonging to

different Entities and following the “Public Sector” requirements was the

result produced by SUNFISH. This way, thanks to SUNFISH, it is possi-

ble to transparently share data and services without losing security levels.

As a side effect, this project improved security in federated “cross-border”

clouds opening for Cloud computing market new branches characterized

by a high level of privacy and control of information propagation.

SUPERCLOUD [100], User-Centric Management of Security and

Dependability in Clouds of Clouds, is a project that was funded by the

H2020 programme and it ran from February 2015 until January 2018. It

proposed a security approach for infrastructure management, both user-

centric or self-managed, for a“clouds of clouds” system or as commonly

Eng. Giuseppe Tricomi 57

i
i

“output” — 2021/1/10 — 14:51 — page 58 — #72 i
i

i
i

i
i

CHAPTER 3. MANAGEMENT OF FEDERATED COMPUTING
ENVIRONMENTS

defined Multi-Cloud. The system uses policies running on a specific layer

(SuperCloud Distribution Layer) that coordinates the appliance provided

by Cloud Service Providers.

FIESTA [101], is a project called Federated Interoperable Semantic

IoT/cloud Testbeds and Applications, which was funded by the H2020

programme and it ran from February 2015 until June 2018. The activities

of FIESTA produced a federated system for the interconnection and the

interoperability of different IoT testbeds. The federated architecture

is used to collect and analyze semantically before to expose them via

FIESTA-IoT System.

The European project analysis has highlighted that when multiple ac-

tors are involved in a cooperation activity, it is preferable to intermediate

the interaction activities monitoring the operations done according to

agreements and constraints defined among infrastructure providers and

the cooperative framework/platform. From the analyzed project, some

characteristics are recurrent, such as:

∙ common (or unified) interfaces exposed by the infrastructure and/or

exploited by the aggregation system,

∙ a system to enable the feature/service discovery from the aggrega-

tion system,

∙ well-defined Service Level Agreement (SLA) among the involved

parties.

58 Eng. Giuseppe Tricomi

i
i

“output” — 2021/1/10 — 14:51 — page 59 — #73 i
i

i
i

i
i

3.2. ALGORITHM FOR THE BEST SELECTION

Then in the next section, I will concentrate on publications exploiting

SLA based mechanisms of selection, mostly related to the federated

systems.

3.2 SLA-based Algorithm Classification for the Cloud Provider

Selection

T
HE literature analysis made in [30] transversally an-

alyzes different CPS selection algorithms. Moreover, I

will discuss a subset of this work concerning the publica-

tions that account for the SLA as selection policies.

Commonly SLA (Service Level Agreement) represents a policy based

on a priori agreements existing between cooperating parties that regulate

the interactions. The agreement may involve characteristics (or param-

eters) or is related to a subset of resources (infrastructure or services)

that owner wants to release with some constraints. Figure 3.1 shown the

taxonomy related to the publications referring to SLAs, and organizing

them as a function of the topic analyzed by the paper, namely: “Frame-

works and Architectures”, “Algorithms”, and “Optimization”. This pre-

liminary categorization highlights the works presenting approaches and

techniques useful specifically for my investigations on Cyber-Physical

Systems. Indeed, the two categories, “Frameworks and Architectures”

and “Optimization”, contain design principles and optimization-oriented

Eng. Giuseppe Tricomi 59

i
i

“output” — 2021/1/10 — 14:51 — page 60 — #74 i
i

i
i

i
i

CHAPTER 3. MANAGEMENT OF FEDERATED COMPUTING
ENVIRONMENTS

algorithms. The remaining category includes a broader range of algo-

rithms further categorized in subsections. More in detail, the category

“Algorithms” is split into three subcategories representing the approaches

pursued by the authors; Selection, Multi-Criteria evaluation functions,

and Matchmaking.

Furthermore, Figure 3.1 provides a visual categorization of papers in

terms of SLA perspective analyzed: i) provider’s SLA, ii) user’s SLA,

and iii) not specified explicitly. This further categorization is related to

the perspective of the Federation and Multi-Cloud. As discussed in 2.2.5,

the papers related to the provider’s SLA analyze the cooperation among

CSP from the federation point of view, and conversely, the paper labeled

as user’s SLA are exploiting the multi-cloud observation point. In more

detail, the taxonomy tree contains two categorizations that are shown in

Figure 3.2.a. In Figure 3.2.b, details about approaches used in the papers

for each taxonomy’s category are also shown.

The taxonomy tree, Figure 3.1, also highlights the percentage of an oc-

currence described in [30]: 65.71% for Selection, 42.86% Optimization,

25.71% Matchmaking, 11% Framework & Architecture, 17.14% Mathe-

matical Models, 8.57% Multi-criteria evaluation; in general Algorithm

branch contains 82.85% of publications.

According to the taxonomy tree (see figure 3.1), the works analyzed

are presented in the three main groups:“Frameworks and Architectures”,

“Algorithms”, and “Optimization”.

60 Eng. Giuseppe Tricomi

i
i

“output” — 2021/1/10 — 14:51 — page 61 — #75 i
i

i
i

i
i

3.2. ALGORITHM FOR THE BEST SELECTION

SLA

OptimizationAlgorithms
Frameworks and

Architectures

Focused on Storage
Focused on Vm

Hierarchical Approach

105

109

120,
122 121

Inferential analysis
Semantic Approach

124,
125

118

88E

Clusterization Approach

111 106

103123

11955E

16

110

102

114

113

54E

108

107

112

126,
127

14

Provider’s SLA

User’s SLA

Both/ Not specified

MatchMakingSelection

115,
116

Multi-Criteria
Evaluation

15,59E,
17

104

101

117

Mathematical Models

Figure 3.1: Taxonomy Tree related to SLA-based Approaches.

3.2.1 Frameworks and Architectures

T
HIS category contains 11% of the analyzed works. These pub-

lications provide as the principal contribution to the proposal of a

Frameworks or an Architecture. The first framework discussed is named

“SMICloud”, and it was published by in Garg et al. [102] This is a Broker-

based framework that is able to support the user in the choice of Cloud

providers’ offering that meets the user’s requirements. To support the

user the framework monitoring the Cloud services, firstly, it measures

the SMI (Service Measurement Index) attributes of a service, and after it

Eng. Giuseppe Tricomi 61

i
i

“output” — 2021/1/10 — 14:51 — page 62 — #76 i
i

i
i

i
i

CHAPTER 3. MANAGEMENT OF FEDERATED COMPUTING
ENVIRONMENTS

Figure 3.2: a) Taxonomy, b) Approaches used in the analyzed works.

creates a ranking useful to support the users of SMICLoud.

Following the previous approach based on SMI, Subramanian et al.

[103] present a framework based again on SMI-index, but that is en

enhancement respect the previous. Architecture is based on a Broker

aiming to provide an optimal virtual resource placement in a multi-cloud

environment, and it also exploits an element called Service Catalogue.

This catalog is managed by the framework that pairs each cloud service

offering with its SMI. When the broker receives a request, and after a

preliminary analysis, it identifies a set of cloud that is able to satisfy the

user requests. In the end, an SMI-based evaluation of the Cloud Providers

is performed, and a cost-optimized placement is developed.

Another interesting framework-based solution is presented by Kurdi

62 Eng. Giuseppe Tricomi

i
i

“output” — 2021/1/10 — 14:51 — page 63 — #77 i
i

i
i

i
i

3.2. ALGORITHM FOR THE BEST SELECTION

et al. [104]. Their solution was able to compose services among multiple-

clouds, thanks to the combinatorial optimization ability provided by a

component called cloud combiner, and by the service composer. The

former selects the suitable set of clouds and composes a “combination

list” of the cloud starting from the previously selected set. The latter

determine which services can be hosted by each element of the “combi-

nation list” of the cloud, so the best combination fulfills the user request

is identified. Finally, starting from a set of service files provided by

the users, it produces a service composition sequence. The selection

algorithm, used by the service composer, aims to select a combination of

services minimizing the overhead, and therefore maximizing the service

performances besides a financial charge reduction.

The last framework discussed is presented by Caballer et al. [105],

and it is meant to manage VMI (Virtual Machine Infrastructure). The

architecture of this framework is based on a repository called Virtual Ma-

chine Image Repository and Catalog(VRMC), and on an Infrastructure

Manager. The former is used to find the available VMIs that are able to

satisfy the users’ requirements; the latter is the central part composed of

three main components: the “Cloud Selector” , the “Cloud Connector”

and the “Configuration Manager”. The “Cloud Selector” performs the

selection process to selects the best combination of VMIs and Cloud

Providers by querying the VRMC. A relevant aspect is the use of a spe-

cific language to define the requirements of the virtual infrastructure, the

Eng. Giuseppe Tricomi 63

i
i

“output” — 2021/1/10 — 14:51 — page 64 — #78 i
i

i
i

i
i

CHAPTER 3. MANAGEMENT OF FEDERATED COMPUTING
ENVIRONMENTS

RADL “Resource and Application Description Language”.

As lessons learned by the analysis of the previous works, I have col-

lected the properties, mechanisms, structures that may be useful in an

environment composed of cooperating CPSs. According to [102, 103] a

good approach to make easier the management of the services offered

by a CPS infrastructure (e.g., sensing and actuation, but moreover the

approach is still valid for availability, reliability, accuracy, and other

parameters that qualifies the IoT device involved), is the exploitation of

“Indexes”. Similarly to “SMI” of [102], an index or a collection of indexes

stored and listed in a service catalog [103], improves the cooperation and

the quality of the services running on cooperating CPSs. This is perfectly

compatible with the definition of a description language as done by [105],

and with the architecture used by [104] with two specifics components:

one analyzes the services available (in our case the facilities shared by

the devices), and the other composes a service, offered as a combination

of tasks launched in several CPSs.

64 Eng. Giuseppe Tricomi

i
i

“output” — 2021/1/10 — 14:51 — page 65 — #79 i
i

i
i

i
i

3.2. ALGORITHM FOR THE BEST SELECTION

3.2.2 Algorithms

3.2.2.1 Multi-Criteria Evaluation

T HIS work branch is not wide, but it represents the third most popu-

lated category (8.57% of all publication in taxonomy) of the Algorithms

branch. The works in these categories try to select the solution that

satisfies multiple criteria (e.g., QoS, cost, network optimization, and

so on). Some works are mathematical models or algorithmic solutions

taking into account multiple input parameters to select the Cloud Service

Provider able to better satisfy all criteria.

The first work analyzed is proposed by Duan et al. [106], in which

the goal is represented by a multi-factor performance optimization. The

solution proposed works upon multiple Clouds, and is structured on mul-

tiple layers. The system, called SDCE, provides a selection of network

and Cloud services in a SDN environment, that compose the services

requested inside the managed federated environment. The architecture

exploits software-defined paradigm (both computing and networking)

and it is composed by five layers. In particular one of these five layers,

the one called “Service Layer” provides the features about the service

selection and the orchestration, it composes the service having care of

the users’ requirements meeting the specified QoS. However in the paper

the term “federated” is referred to the resulting composite service and

Eng. Giuseppe Tricomi 65

i
i

“output” — 2021/1/10 — 14:51 — page 66 — #80 i
i

i
i

i
i

CHAPTER 3. MANAGEMENT OF FEDERATED COMPUTING
ENVIRONMENTS

not to a federation among several Cloud providers.

Rehman et al. [107] propose a selection methodology that considers a

multi-factor performance optimization. Rehman made the Mathematical

formalization of the problem through a comparison between the descrip-

tor vectors of the service and the users’ requirements. The algorithm

will select the service which has the descriptor vector that best matches

with the user’s requirement vector. This work is relevant because the

algorithm is general and can consider any kind of requirements, both

functional and non-functional.

Carvalho et al. [108] starts from the PacificClouds architecture in

which the main focus is hosting (i.e., deploying and managing) appli-

cations based on microservices. The authors define microservices as

a set of autonomous, independent, self-contained services, where each

service has a single goal, is loosely coupled, and interact to build a dis-

tributed application. This makes an analogy among microservices and

IoT resources quite natural in Edge Computing. Similarly to previous

works, also Carvalho proposes a selection method to compare the user

and the microservice requirements (i.e., constraints) for the selection of

the Cloud providers. To do this, the Simple Additive Weighting (SAW)

method is introduced to rank the Cloud providers that are candidated to

host services. The parameters that have been considerd in the service

model formalization are the application response time (execution time

plus delay), Cloud availability and the application execution cost. All

66 Eng. Giuseppe Tricomi

i
i

“output” — 2021/1/10 — 14:51 — page 67 — #81 i
i

i
i

i
i

3.2. ALGORITHM FOR THE BEST SELECTION

parameters are based on user-defined thresholds. Although the authors do

not explicitly refer to the use of a broker, we can deduce their algorithm

can be implemented at a centralized broker.

The lessons learned by the study made of multi-criteria algorithms

are multiple. In the following, I have collected the interesting properties,

mechanisms, and structures applicable to an environment composed of

cooperating CPSs. Following the approach of [107], the definition of a

generalized algorithm makes easier the inclusion of functional and non-

functional requirements into the selection process. This characteristic,

the versatility of an algorithm thus realized, makes it perfectly suitable to

a CPSs scenario in which technology and devices are extremely variable.

At the same time, during the design phase, it is important to look at each

actor’s requirements as made by [108]. Here a solution with a multi-

dimensional comparison (done via “description Vector") is performed to

accounts for all the requirements considered.

According to [106], when the selection process depends on multiple

factors, a solution with multiple layers is needed; this way, the duties

separation enables better management of a heterogeneous environment

as it is a CPS.

Eng. Giuseppe Tricomi 67

i
i

“output” — 2021/1/10 — 14:51 — page 68 — #82 i
i

i
i

i
i

CHAPTER 3. MANAGEMENT OF FEDERATED COMPUTING
ENVIRONMENTS

3.2.2.2 Selection

T HE algorithm’s category "Selection" is the most populated (65.71%

of all publication in taxonomy); for this reason I will discuss only few of

the following [22,23,25] [109–115], an extensive dissertation is provided

in [30].

The first algorithm that we are going to describe is proposed by Barreto

et al. [23]. The algorithm is meant to work in a federated environment

and analyzes the CSPs selection problem from the user’s perspective. A

user of the federation formalizes his requests in the form of a contract

and delivery them to the “Federation Support” (FS). This federation’s

component derives the SLA from the user proposal of contract and

creates a lightweight broker to negotiate with the Cloud providers. This

broker publishes the users’ request on the “Resource Panel", where every

federated Cloud Provider (CP) can automatically analyze it and send a

response message describing the resources offered to the requesting user.

The broker fulfills the request, also, as a composition of several CPs’

offers. The final decision uses optimizing criteria (e.g., costs) aiming to

select the option that generates better benefits for the Cloud users.

In a work of mine, [25], is proposed a brokered solution for Cloud

cooperative environments (both for federated and Multi-Cloud environ-

ments). The broker manages the application deployment according to

68 Eng. Giuseppe Tricomi

i
i

“output” — 2021/1/10 — 14:51 — page 69 — #83 i
i

i
i

i
i

3.2. ALGORITHM FOR THE BEST SELECTION

the application descriptor. The application descriptor (called BEACON

Service Manifest) contains each application component’s Cloud Service

ARchive (CSAR, defined in TOSCA standard), for each CSAR is defined

a geographical area in which deploy it. The broker identifies all the clouds

where a CSAR can be deployed (geographical constraints described in the

BEACON Service Manifest) and after it selects the cloud where deploy

the CSAR. The selection process aims to improve scalability, minimize

cost, maximize performance.

Another approach useful for the selection of the best CSP satisfying

the user’s request is presented by Lin et al. [109]. The solution exploits an

indexing system for the Cloud services, so when it has to place a request,

it selects the Cloud searching in the indexed tree, the best candidates

satisfying the parameters characterizing the request (e.g., cost, type, QoS,

instance size and so on).

Farokhi et al [115] presents a solution for a hierarchical management

of SLA-based service selection (HS4MC). The service selection happens

in two moments: in a first phase the SLA are constructed from the

providers’ requirements (regarding QoS, the requirements are divided

functional and not-functional); in the second phase, the system selects

the appropriate services that satisfy the request.

This branch of the taxonomy analysis has provided several hints for

my study on cooperation among CPSs. Due to the intrinsically distributed

nature of the CPS’s devices, according to [25] the selection or better the

Eng. Giuseppe Tricomi 69

i
i

“output” — 2021/1/10 — 14:51 — page 70 — #84 i
i

i
i

i
i

CHAPTER 3. MANAGEMENT OF FEDERATED COMPUTING
ENVIRONMENTS

involvement of a device respect another is strongly depending on the

device’s geographical location. This means that the location of a device

is a fundamental aspect to consider. It is clear that for this reason, some

mechanism as the one presented in [23], where an ad-hoc negotiation

system is activated for each pair of requestor and provider of some

functionality. In an analogy with this in cooperation among CPS, a

kind of automatism that negotiates the access to some CPS’s features

from another CPS can become revenue for the owner and encourage

cooperation among different CPS owners. Moreover, what said in till

now is extendable to a hierarchical scenario as made in [115] for the

Cloud Service Providers, which is perfectly matching with figure 1.3.

Another (recurring) hints are related to the feature indexing system, as

described by [109].

3.2.2.3 MatchMaking

T HE Algorithm’s sub-category "MatchMaking" is the second as

number of publications(25.71% of all publication in taxonomy) among

the other sub-categories. It contains In this section I will discuss only the

most interesting of the following [24] [116–120]; an extensive disserta-

tion is provided in [30].

Jrad et al. in [116, 117] presents their solution based on a broker per-

forming, among other tasks, a MatchMaking algorithm called “Sieving".

70 Eng. Giuseppe Tricomi

i
i

“output” — 2021/1/10 — 14:51 — page 71 — #85 i
i

i
i

i
i

3.2. ALGORITHM FOR THE BEST SELECTION

The Sieving algorithm performs a one by one comparison between the

user requirement parameters and the “SLA” metrics of the Cloud Provides

which are the two inputs of the algorithm.

Esposito et al. [118] presents a solution based on a fuzzy-inference-

based mathematical matching algorithm to accomplish the storage service

provider selection. The point of interest of this research is that this

algorithm also has care of users’ preferences. Another interesting aspect

is that this general algorithm could be applied to a single cloud, federation,

or multi-cloud scenario. The authors proved that it works both with a

central broker or in the decentralized version.

Another interesting solution comes from a project named “Cloud4SOA",

D’Andria et al. [119] presented the solution used in the project that is

interesting because it used a semantic-based approach to do matchmaking

among Cloud Providers offers and users’ requests. Authors have used a

semantic engine to help developers exploiting CPSs’ PaaS facilities in

an agnostic way. This way, it makes easier the work of the “Migration”

module that has to semantically translate the application requirements in

a new application descriptor compatible with the new PaaS Provider.

The last work of this category is the one presented by Kertesz et

al. [24]. They propose a solution to manage a federated environment

with a distributed brokered system. Each Cloud Service Provider owns a

Broker able to manage its infrastructure. At the same time, they interact

with them through a component called “meta-brokering", which is a

Eng. Giuseppe Tricomi 71

i
i

“output” — 2021/1/10 — 14:51 — page 72 — #86 i
i

i
i

i
i

CHAPTER 3. MANAGEMENT OF FEDERATED COMPUTING
ENVIRONMENTS

kind of interface that can interconnect different Brokers together. The

selection procedure is done with matchmaking by the meta-brokering

layer that receives the users’ service calls, checks if the service exists

in a kind register called GSR, and selects a suitable Broker able to

satisfy the request. The Cloud Federation is built by the GMBS (Generic

Meta-Broker Service) that interconnects all the Clouds (via their broker)

together.

Several insights have been provided by the analysis of the papers

related to the section on matchmaking algorithms. In [116, 117] a reader

can found a solution, based on the algorithm “Sieving", that is applicable

on CPSs to identify a set IoTs useful to satisfy incoming requests. To ex-

tend the previous idea, it is possible to learn from [118]. Here, the authors

address the need to select in which Cloud Storage Service Provider store

the data according to the user’s preferences. This is exploitable by a CPS

environment to address both the owners of the IoT and users requesting

CPS facilities. The work [119] presents a scenario in which a platform

enables the migration of the services. For our purpose, it is interesting for

the migration concept. Indeed, suppose some task for some reason needs

to be migrated from a CPS to another (for example, enhanced intrusion

surveillance systems, see [9]). In that case, the migration of the task

becomes a central element.

72 Eng. Giuseppe Tricomi

i
i

“output” — 2021/1/10 — 14:51 — page 73 — #87 i
i

i
i

i
i

3.2. ALGORITHM FOR THE BEST SELECTION

3.2.3 Optimization

T
HE category "Optimization" is the second as number of publi-

cations(42.86% of all publication in taxonomy). It contains the

works [121–128] but I will discuss only the most interesting, anyway an

extensive dissertation is provided in [30].

The first work discussed is due to Papaioannou et al. [122]. Here is in-

troduced Scalia, an architecture based on a broker aiming to continuously

adapt the placement of the stored data among several Cloud Providers, ac-

cording to the users’ SLA requirements and the access pattern to the data.

The solution decomposes data to be stored in chunks, and it is also able

to reconstruct a complete copy of the data from an “m-subset” of Clouds.

The architecture proposed is based on three layers: (i) Engine Layer, (ii)

Caching Layer (iii) Database Layer. The first layer is responsible for the

selection; it is made by multiple engine components able to manage the

selection algorithm independently. The algorithm considers the object

access history that represents useful statistics for the algorithm.

The contribution of Hadji et al. [124] is interesting because it performs

the selection and placement decisions for the best allocation, taking

into account several cost factors. It uses a graphical representation for

the requests; the selection algorithm analyzes those. This graphical

representation represents weighted vectors representing the application.

This way, computational and networking constraints are analyzed to

Eng. Giuseppe Tricomi 73

i
i

“output” — 2021/1/10 — 14:51 — page 74 — #88 i
i

i
i

i
i

CHAPTER 3. MANAGEMENT OF FEDERATED COMPUTING
ENVIRONMENTS

deploy VMs near to the user.

Negru et al. [127] present a mathematical algorithm to optimally select

a set of Clouds where it is possible to store a large amount of data coming

from different sources geographically distributed. Negru’s solution can

store data coming from each source in a different destination, and after

data are moved in a centralized location to be computed. The algorithm is

based on a matrix enabling the analysis according to the cost and latency

constraints.

The papers of this taxonomy branch provide several hints and lessons.

In [122] is presented “Scalia", a solution relying on multiple engine

components able to manage the selection algorithm independently. This

approach could be useful to scale the computational charge of CPSs’

management engine. Accordingly, to the extreme variability of the

application’s needs insisting on a CPS when it is opened to the users’

interaction (as it happens in a Smart City), the [122] becomes really

interesting due to the adaptability of the system.

From [124, 127], two approaches to distributing critical application or

compute tasks are provided for a federated environment. The concepts

are easily mapped on a CPS in which the applications or the compute

tasks are related to the IoTs facilities, both “sensing/actuation” and Edge

computing.

74 Eng. Giuseppe Tricomi

i
i

“output” — 2021/1/10 — 14:51 — page 75 — #89 i
i

i
i

i
i

CHAPTER4

Enabling technologies and solutions

I
N this Chapter will be presented all the main technolo-

gies and tools used during the research activities and to

develop the application about CPS described in the next

chapters.

75

i
i

“output” — 2021/1/10 — 14:51 — page 76 — #90 i
i

i
i

i
i

CHAPTER 4. ENABLING TECHNOLOGIES AND SOLUTIONS

4.1 Openstack: an Open Source Cloud Management Frame-

work

T
HE OpenStack framework provides a Cloud Infras-

tructure as a Service platform using the cooperation of

several services, each one dedicated to the provisioning

of a specific service. Most of the services are composed of agents who

use different plugins to add new features or be compliant with a specific

technology. Moreover, every service has its API to expose its functions.

Basically, the infrastructure provides three kinds of resources: compute,

network, and storage; this goal is accomplished with the projects/services

shown in Figure 4.1. The most famous are:

∙ Nova (compute service): manages the Virtual Machines controlling

Figure 4.1: OpenStack Logical Architecture [5].

76 Eng. Giuseppe Tricomi

i
i

“output” — 2021/1/10 — 14:51 — page 77 — #91 i
i

i
i

i
i

4.1. OPENSTACK CLOUD MANAGEMENT FRAMEWORK

and supervising the hypervisors distributed in a dedicated computed

node which gave the hardware computational resource.

∙ Neutron (networking service): provides an API for users to define

networks and the attachments into them. The agents also provide

typical network services such as routing (between VMs and between

VM and external network), DHCP, firewall, load-balancing.

∙ Keystone (identity service): provides authentication and authoriza-

tion service for the other OpenStack service. Every external request

(the REST ones) must be validated using a token generated by Key-

stone according to the role of the one (service or human) who is

trying to communicate with the infrastructure.

∙ Glance (image service): stores and provides the images used as a

base for the VMs that are managed by Nova.

Those four services represent the main core of Openstack. It means

that a minimal Openstack scenario can be risen up with just only Nova,

Neutron Keystone, and Glance. A more complete and powerful infras-

tructure can be set up using these other services:

∙ Horizon (dashboard service): provides a web-based GUI for the

administration and tenants user. It uses the REST API of each

service to send commands in a more friendly way.

Eng. Giuseppe Tricomi 77

i
i

“output” — 2021/1/10 — 14:51 — page 78 — #92 i
i

i
i

i
i

CHAPTER 4. ENABLING TECHNOLOGIES AND SOLUTIONS

∙ Cinder (block storage service): provides and manages the persistent

storage for the VMs using volumes that can be attached directly to

the running VMs.

∙ Swift (object storage service): it is pure storage of objects that

can be exported using the REST API. It provides mechanisms of

redundancy on a scalable architecture.

∙ Ceilometer (telemetry service): provides the monitoring of the

OpenStack resources of every service for billing, scalability, and

statistical purpose.

∙ Heat (orchestration service): provides the orchestration of the re-

source using a file (HOT template format). With this service, dif-

ferent virtual scenarios and applications can be configured and

monitored automatically, just writing down the file, which describes

the resources and their interaction.

∙ Trove (database service): provides a Database as a service that is

useful for both relational and non-relational database engine. It is

the youngest service introduced into the last OpenStack releases.

The architecture is very flexible, and all the services can be spread in

different machines. Basically, this architecture has a dedicated controller

node in which there are all the centralized components of the services

(see figure 4.2), several compute nodes that can manage the visualization,

78 Eng. Giuseppe Tricomi

i
i

“output” — 2021/1/10 — 14:51 — page 79 — #93 i
i

i
i

i
i

4.1. OPENSTACK CLOUD MANAGEMENT FRAMEWORK

Figure 4.2: An example of a basic OpenStack Architecture exploiting self service
networking features [5].

a dedicated network node which provides to the VMs the routing for

the external network and server storage node servers for storing images

and volumes guaranteeing the redundancy. The controller node is the

one in which resides also the SQL database for each service and the

Message Broker (generally using AMQP) that manages all the messages

the services exchange to communicate each others. The compute node

should be the ones with the powerful hardware because the hypervisor

is installed on them. The default hypervisor is KVM, but it is able to

Eng. Giuseppe Tricomi 79

i
i

“output” — 2021/1/10 — 14:51 — page 80 — #94 i
i

i
i

i
i

CHAPTER 4. ENABLING TECHNOLOGIES AND SOLUTIONS

be interfaced with other hypervisor managed by Nova using the right

plugin. In relation to Cloud and Datacenter federation, OpenStack only

supports identity federation, whereas it supports several mechanisms for

segregating cloud resources such as cells, regions, availability zones, or

host aggregates, as well as cloud bursting, through either vendor-specific

offerings or DIY1 approaches that can build on community resources,

such as Chef cookbooks and Puppet configurations. Commercial vendor-

agnostic multi-cloud management platforms are also available. With

regards to the OpenStack networking subsystem (Neutron), that we will

use underneath in several studies, it deals with all systems administration

features for the Virtual Networking Infrastructure (VNI) and the entrance

layer parts of the Physical Networking Infrastructure in OpenStack. Neu-

tron allows dedicated static IP addresses or DHCP. It also allows Floating

IP addresses to let traffic be dynamically rerouted. Clients can utilize

software-defined networking (SDN) advancements like OpenFlow to help

multi-occupancy and scale. OpenStack systems administration can send

and deal with extra system administrations, for example, interruption

location frameworks (IDS), load adjusting, firewalls, and virtual private

systems (VPN). Users can use software-defined networking (SDN) tech-

nologies like OpenFlow to support multi-tenancy and scale. OpenStack

networking can deploy and manage additional network servicesâsuch

as intrusion detection systems (IDS), load balancing, firewalls, and vir-

1Do It by Yourself

80 Eng. Giuseppe Tricomi

i
i

“output” — 2021/1/10 — 14:51 — page 81 — #95 i
i

i
i

i
i

4.2. STACK4THINGS

tual private networks. The modular architecture is the main strength of

Neutron: one of its most used plugins is the Modular Layer 2 (ML2)

one, a framework that supports a wide range of layer two networking

technologies. It provides APIs for drivers to interact with, for which two

variants exist:

∙ Network Type: VLAN, VXLAN, GRE, FLAT, etc.

∙ Mechanism: Open vSwitch, Linux Bridge, etc.

4.2 Stack4Things: an OpenSource IoT Management Plat-

form based on OpenStack

T
HE middleware Stack4Things (S4T) [129] is a research

project that aims at extending the open-source and broadly

adopted Cloud management platform, namely OpenStack,

to support the management of IoT deployments as well. The S4T middle-

ware implements several capabilities and features to make IoT deploy-

ments involved in an edge-extended IaaS/PaaS Cloud. In particular, the

project goal is to provide users the ability to use the IoT devices and their

I/O resources (e.g., sensors and actuators) through APIs as the case for

standard Cloud resources [130].

This paradigm, called I/Ocloud [131], provides IoT virtualization

features, alongside plain IaaS (computing and storage) virtualization. It

uses the concept of Virtual Nodes (VNs) that can host the business logic

Eng. Giuseppe Tricomi 81

i
i

“output” — 2021/1/10 — 14:51 — page 82 — #96 i
i

i
i

i
i

CHAPTER 4. ENABLING TECHNOLOGIES AND SOLUTIONS

S4T IoTronic

S4T IoTronic
command line

client

S4T lightning-rod

Web browser

node OS tools,
services, and
IoT resources

Users

OS level calls

REST communication

Service forwarding (WS-tunneled)

Stack4Things Cloud

...

WAMP control channel

Virtual networking (WS-tunneled)

OpenStack servicesOpenStack servicesOpenStack servicesOpenStack services

OpenStack
command line

clients

Edge/Fog
device

Figure 4.3: Stack4Things core subsystems.

and makes use of the attached I/O resources, akin to a real IoT device.

The VNs can be deployed either at the datacenter-level infrastructure or

on the physical IoT nodes at the edge, depending on the service context

(e.g., being time-sensitive or not, computational resources needed, etc.).

The S4T deployment design is split between two sides: a Cloud data

center (managed by a component called IoTronic) and a set of IoT devices

(managed by a component called Lightning-Rod), as shown in Figure 4.3.

Regarding the IoT nodes’ hardware configuration, we are making use of

Single-Board Computers such as Arduino, Raspberry Pi, or Arancino.

The latter is the combination of the previous two devices (introduced in

section 4.3). They are suited to host a (minimal in case of a constrained

device as Arduino) Linux distribution (e.g., OpenWRT, or modified

82 Eng. Giuseppe Tricomi

i
i

“output” — 2021/1/10 — 14:51 — page 83 — #97 i
i

i
i

i
i

4.2. STACK4THINGS

s4t
IoTronic
database

s4t
IoTronic

conductor

s4t
command
line client IoTronic

AMQP
queues

WAMP
router

s4t
IoTronic

WAMP
agent

Web
browser

s4t IoT
ron

ic A
PIs

s4t
dashbo

ard

s4t WS
tunnel
agent

Data and
commands

to/from boards

Bare-metal
(boards)
virtual

networking

Communication
to/from board
internal services

WAMP control channel

Virtual networking (WS-tunneled)

Services forwarding (WS-tunneled)

REST communication

AMQP pub/sub and RPC

Figure 4.4: Stack4Things FaaS Cloud-side subsystem design.

version both of Debian and Ubuntu). Accordingly, they are able to host a

set of Linux-based tools as well as different runtime environments such

as Python and Node.js that are required by the node side S4T agent,

Lightning-Rod(LR).

The S4T subsystem, called IoTronic, runs on the Cloud-side of the

system. It is designed concerning the standard architecture of OpenStack

services, as depicted in Figure 4.4 (red components) that illustrates the

organization of IoTronic. This subsystem’s design ensures its full com-

patibility with other OpenStack subsystems (e.g., Keystone, Neutron,

Qinling, etc.). Regarding the node-side, the LR agent represents a key

component in the S4T design that links the IoT devices, even when de-

ployed behind NATs or strict firewalls, to the S4T infrastructure where

Eng. Giuseppe Tricomi 83

i
i

“output” — 2021/1/10 — 14:51 — page 84 — #98 i
i

i
i

i
i

CHAPTER 4. ENABLING TECHNOLOGIES AND SOLUTIONS

the IoTronic is deployed. The networking middleboxes (e.g., NATs and

firewalls) are bypassed thanks to the exploitation of WebSocket (WS)

technology used to set up the interconnections between the Cloud and

the devices. In particular, S4T exploits the Web Application Messaging

Protocol (WAMP), which is a subprotocol of WS, to establish a full-

duplex messaging channel used to route traffic streams (e.g., commands)

between the Cloud and the distributed IoT devices. Indeed, WAMP

provides two meaningful features, namely publish/subscribe (pub/sub)

messages as well as Remote Procedure Calls (RPCs). The S4T middle-

ware makes the users able to expose internal services (e.g., SSH, VNC)

of an IoT device through the Cloud. For this purpose, the middleware

deploy WS tunnels using a reverse mechanism (rtunnel2) as the IoT de-

vices that initiate the communications to the Cloud (yellow arrows in

Figures 4.3, 4.4, and 4.5). When a service request reaches the Cloud

on a specific port, it is forwarded to the S4T IoTronic WS tunnel agent

that is a kind of "wrapper" controlling the WS server on which the de-

vice is connected, exploiting the wstunnel libraries (Figure 4.5). The

same approach based on rtunnels is used to deploy overlays between

distributed IoT devices, thus making them able to reach each other and

the Cloud-based instances(i.e., VMs, containers) as they were on the

same LAN [132]. LR, after the establishment of the connection between

a device and the Cloud, is charged with all the operations to be executed

2https://github.com/MDSLab/wstun

84 Eng. Giuseppe Tricomi

i
i

“output” — 2021/1/10 — 14:51 — page 85 — #99 i
i

i
i

i
i

4.3. ARANCINO BOARD

Virtual
Networking

WAMP control
channel

MCU

Low-level I/O
primitives

MPU

Edge/Fog node
(MPU+MCU)

mcuio
kernel

modules

mcuio sysfs

s4t mcuio sysfs lib

s4
t W

A
M

P
li

b

s4t
lightning-rod

engine

s4t wstunnel plugin

OS
tools

s4t lightning-rod

...

board
pins

...

plugin

s4t plugin
loader

IoTronic
service
forwarding

REST communication
AMQP (pub/sub, RPC)
other communication

Engine

Compute
agent

reverse
proxy

sensors
and

actuators

Figure 4.5: Stack4Things FaaS Edge/Fog-side subsystem design.

on the IoT devices, and even of management operations as interaction

aoocurring among sensors and actuators.

4.3 The Arancino board: a brain for IoT microcontrollers

T
HE system called ArancinoTM is an innovative embed-

ded system produced by an academic spin-off company

(smartme.IO). This kind of device can be used in applica-

tions ranging from simple temperature sensing to applications in the

automotive sector, artificial intelligence, machine learning, neural net-

works, cloud, big data analysis, predictive maintenance, etc. The board

comprises two main parts that, in analogy to the left and right hemispheres

of the human brain, can be conceptually identified in a microprocessor

and a microcontroller. The connectivity between the two “hemispheres”

Eng. Giuseppe Tricomi 85

i
i

“output” — 2021/1/10 — 14:51 — page 86 — #100 i
i

i
i

i
i

CHAPTER 4. ENABLING TECHNOLOGIES AND SOLUTIONS

is Arancino’s “corpus callosum”. To clarify the concept, while the cal-

lous body that transfers information between an Arduino board and a

Raspberry board is an external physical cable, that of Arancino is im-

plemented on-board (Figure 4.6). In this analogy, the left hemisphere

is dominant for the functions of calculation, mathematical, and logical

ability (Data Management, Planning); the right hemisphere is dominant

for the ability to recognize faces, spatial abilities and images (Real-time,

Interaction). The activity of the two hemispheres is coordinated thanks

to the continuous exchange of information that takes place through the

corpus callosum, the element that connects them (Shared Memory). The

different specializations of the two hemispheres allow them to work

together more effectively. The two parts work together and one takes

the “control of the operations” according to the cases. The Arancino

architecture simplifies cloud-IoT interaction and facilitates the implemen-

tation of Cyber Physical Systems. It also takes advantage of edge and fog

computing and is perfectly suited to artificial intelligence and machine

learning solutions.

These systems feature the joint on-board availability of one (or more)

micro-processors (MPUs) alongside one (or more) microcontroller(MCUs),

in order to assign workloads and peripherals (e.g.,sensors) according to

the unique features of each and every module, specialized for certain du-

ties, whilst making room for the two subsystems to work closely enough

to cooperate. In particular, on the MCU side Arancino’s host, in their

86 Eng. Giuseppe Tricomi

i
i

“output” — 2021/1/10 — 14:51 — page 87 — #101 i
i

i
i

i
i

4.3. ARANCINO BOARD

Figure 4.6: Architecture of an Arancino.cc system.

base configuration, an Atmel SAMD 32-bit part, which acts as a bridge

between sensors and the MPU, where most logic is going to run. In terms

of MPU, there is a socket able to host, e.g., a Raspberry Pi 3 Compute

Module, making Arancinos, when the socket is populated, equivalent to,

(and exceeding) in functionality, a Single-Board Computer, including

the capability to run a minimal Linux-based environment. A simple

Eng. Giuseppe Tricomi 87

i
i

“output” — 2021/1/10 — 14:51 — page 88 — #102 i
i

i
i

i
i

CHAPTER 4. ENABLING TECHNOLOGIES AND SOLUTIONS

click enables Arancino’s microcontroller to communicate with the on-

board Compute Module. To extend the system’s flexibility, Arancinos

are also equipped with a LoRa R○RF technology-based transceiver op-

erating at a sub-gigahertz frequency of 868MHz. This way, it features

an embedded stack, compliant with a LoRaWAN Class A, able to pro-

vide long-range spread spectrum communication, with high interference

immunity. Arancinos are equipped with one (or more) cryptographic co-

processors (cryptochips), which act as tamper-proof hardware-based key

storage and support crypto primitives on-chip. When battery-powered

duty-cycling techniques [133] are being evaluated for future iterations.

Following some of the technical characteristics of the system:

1. Microcontroller:

∙ ARM Cortex M0+ running at 48MHz

∙ 256kB Flash

∙ 32kB SRAM

2. Microprocessor:

∙ CPU: Broadcom BCM2837 @ 1.2GHz *

∙ RAM: 1 GB di RAM LPDDR2 *

∙ STORAGE: 4 GB eMMC. *

3. I/O and Devices:

88 Eng. Giuseppe Tricomi

i
i

“output” — 2021/1/10 — 14:51 — page 89 — #103 i
i

i
i

i
i

4.3. ARANCINO BOARD

∙ Up to 32 GPIO

∙ Up to 6x 350ksps 12-bit ADC with programmable gain

∙ 1x 10-bit 350ksps DAC

∙ 12 Channels DMA Controller

∙ 12 Channels Event System

∙ Programmable interrupt Controller

∙ 32-bit Real Time Clock and calendar

∙ 3 x 24-bit Timer/Counter

∙ Watchdog Timer (WDT)

∙ 3x USB Full-Speed 2.0 port

∙ 2x I2C Interface

∙ 2x SPI Interface

∙ 1x I2S Interface

∙ 2x UART

4. Expansions

∙ 2x Arancino.cc Connector

Eng. Giuseppe Tricomi 89

i
i

“output” — 2021/1/10 — 14:51 — page 90 — #104 i
i

i
i

i
i

i
i

“output” — 2021/1/10 — 14:51 — page 91 — #105 i
i

i
i

i
i

CHAPTER5

Room as a CPS: Headcount through Air

Quality Monitoring systems

O
NE of the first step in my research aims to realize a

system working in a real environment, or at least, on

quasi-real ones.

A study made upon the indoor environment represents the first step in

studying a concrete instance of CPS. To do this, interaction is realized

with one of the most common CPS (the HVAC) of a Smart Building (see

91

i
i

“output” — 2021/1/10 — 14:51 — page 92 — #106 i
i

i
i

i
i

CHAPTER 5. CPS APPLICATION: SMART ROOM

figure 1.1).

In that field, WSN and IoT appear to be the most sustainable tech-

nologies for environmental sensing and monitoring, whether it is about

size-limited deployments or large-scale monitoring, thanks to the ad-hoc

wireless connectivity, inherent scalability, and ease of implementation

they provide, as discussed in [134]. Specifically, in [135] the authors

proposed a system named Polluino aiming to monitor air pollution using

low-cost embedded devices (i.e., Arduino boards). In [136], a simi-

lar approach is followed to realize an intelligent Indoor Environmental

Monitoring System (iDEMS) developed on top of an OpenStack cloud

platform. Thus, through access to the, virtually unlimited, resources (e.g.,

compute and storage) in a Cloud instance, managing IoT-related tasks

(e.g., data management, analytics) becomes more manageable, even if the

number of devices and data produced increases dramatically. However,

although the Cloud approach may count on management systems with

ubiquitous capabilities, relaying at all times on the remote Cloud bears

several issues (e.g., latency, bandwidth consumption, data storage cost).

In this context, Edge computing has emerged as a new paradigm that

solves most of the aforementioned issues by pushing selected computing

tasks to the network edge as outlined in [137]. Following this trend,

authors in [138] exploited an edge-based WSN architecture for Indoor

Air Quality monitoring. They introduced a computing data aggregator

algorithm deployed at the network edge to decrease the total amount of

92 Eng. Giuseppe Tricomi

i
i

“output” — 2021/1/10 — 14:51 — page 93 — #107 i
i

i
i

i
i

data sent towards the Cloud platform using a data fusion model. They

also proved the efficiency of the aggregation algorithm through a moni-

toring use case. Yet, they did not tackle the programmability or the future

updates required by such a system (e.g., due to forthcoming improve-

ments to the algorithm).

Although several works have proposed Edge-based IoT architectures

for monitoring, implementing complex processing on the Edge, while

addressing, at the same time, the management of the IoT nodes (pro-

grammability, business logic updates, pooling, placement, orchestration)

has not been well investigated in the literature. Indeed, considering

the high dynamicity of such environments, as an administrator may ad-

d/remove sensors, a system for infrastructure management is critical.

Moreover, the remote (re)programmability of the devices is crucial to

meet the ever-shifting demands of the users and preserve flexibility of

the applications.

Trying to fill these gaps and focusing on Quality of Life (QoL) goals,

the research [6] was meant to improve the Indoor Air Quality (IAQ),

acting on the smaller environment shareable in a building: the "Room".

The idea was to create an intelligent system able to maintain the level

of IAQ automatically. The solution proposed is called SHIRS: Smart

and Healthy Intelligent Room System. It is equipped with IoT boards

driving specific sensors able to probe air quality and also actuators (even

pre-installed ones) to control room-level facilities (e.g., HVACs, or even

Eng. Giuseppe Tricomi 93

i
i

“output” — 2021/1/10 — 14:51 — page 94 — #108 i
i

i
i

i
i

CHAPTER 5. CPS APPLICATION: SMART ROOM

motorized shutters for windows). The boards act as an IoT data gateway,

collecting, storing, and processing air quality data. This way, the sensed

data are processed to decide the counteractions to take to preserve the

IAQ. In more detail, SHIRS aims to supervise different environmental

air parameters inside buildings that may affect people’s comfort, safety,

performance. In fact, poor air quality can inflict several medical issues

known as "Sick Building Syndrome" (SBS) [139]. In particular, Carbon

Dioxide (CO2) can potentially cause severe fatigue with nose and throat

irritation; Carbon Monoxide (CO) can inflict headaches, impaired vision,

nausea, and reduction of mental functioning. In this monitoring, even

other indoor air pollutants have to be monitored, such as Environmental

Tobacco Smoke (ETS), Ozone (O3), and Nitrogen Oxides (NO2) as well

as particles. Moreover, IAQ plays a relevant role in reducing or containing

bacterial and viral infections, possibly decreasing the risk for outbreaks.

To preserve IAQ, the local system exploits the facilities offered by an ML

construct able to identify possible risky situation caused by overcrowding

of a room, then the ML construct act as a headcount app, processing air

quality data, infer the number of people occupying a room, and taking

countermeasures available(activate ventilation system, opening windows,

activate a light signal warning the people to reduce the usage of the room,

and so on). The solution identified is based on the Edge Computing

facility; it runs the headcount application in-place, on the IoT board

94 Eng. Giuseppe Tricomi

i
i

“output” — 2021/1/10 — 14:51 — page 95 — #109 i
i

i
i

i
i

exploiting its MPU1 to execute the ML-based workloads. SHIRS also

exploits the full runtime personalization and (re)-programmability of

the device provided by robust mechanisms for remote code injection

provided by Stack4Things(S4T) [140], [141], an I/O cloud-driven [142]

Things-as-a-Service platform.

The SHIRS’s architecture is composed by three layers (see figure 5.1):

∙ The device layer is where the raw data is processed and exposes the

Middleware layer’s functionality to manage and coordinate device

activities. The device layer’s activities rely mainly on powerful

single-board computers such as the Arancino boards4.3, that are

equipped with both Microprocessor (MPU) and Microcontroller

(MCU) units. The MPU of this device enables it to host a minimal

Linux distro (e.g., OpenWRT) together with a set of Linux-based

tools. The MCU instead enables the real-time interactions with the

sensors and actuators they may host. The device layer’s component

is the board-side counterpart of the IoT management system used,

Lightning-rod, a component of S4T.

∙ The Middleware layer is where the infrastructure activities are

made mainly via a component called Stack4Things 4.2. The SHIRS’s

Middleware Layer exposes and leverages the Device Layer’s capa-

bilities to the upper layers. S4T is fully compliant with the Open-
1MPU: Micro Processing Unit.

Eng. Giuseppe Tricomi 95

i
i

“output” — 2021/1/10 — 14:51 — page 96 — #110 i
i

i
i

i
i

CHAPTER 5. CPS APPLICATION: SMART ROOM

Stack Cloud platform. This layer provides: i) Authentication/Au-

thorization, ii) Remote Customization and access, and iii) Virtual

Networking.

∙ The application layer is where the applications run, providing

graphical IAQ indexes representation. Simultaneously, it produces

a set of functions for the development of event-based applications

also be distributed to manage the building rooms. It is also charged

with the presentation of data to the end-user.

OpenStack
Cloud

S4T IoTronic
command line

client

Web browser

Users

OS level calls

REST communication

Service forwarding

WAMP control channel

Virtual networking

OpenStack
command line

clients

S4T
IoTronic

Keystone Trove

Other
OpenStack

services
OpenStack Cloud

...

D
ev

ic
e

La
ye

r
M

id
dl

ew
ar

e
La

ye
r

...

IoT nodes

Sensors
&

actuators

MCU
Low-

level I/O

MPU

Pins

Other protocols

A
pp

li
ca

ti
on

La

ye
r

Board
Filesystem

S4T
Lightning-

Rod

Plugins
(ML scripts)

Figure 5.1: SHIRS Architecture [6]

The experimental part connected to this study is related to monitoring

a room used for meetings, laboratories, seminars, and presentations of

96 Eng. Giuseppe Tricomi

i
i

“output” — 2021/1/10 — 14:51 — page 97 — #111 i
i

i
i

i
i

various kinds in our Engineering Department at University. This is to

validate the SHIRS’s functionalities in a real scenario, establishing a

starting point for applying our infrastructure and methodology. To realize

the Device layer as said previously, we used an Arancino MPU-MCU

based board that is able to satisfy at the same time, the requirements due

to sensing-derived needs and the computing-related needs. The board

has two slots for host "click standard" sensors, but in the cases in which

more than two sensors have to be managed, each pin can be used as a

traditional input. Moreover, the board is provided with a WiFi module

to simplify the device’s placement by avoiding the Ethernet connectivity.

The sensors used in our experiments are used to perceive gases in the

air; in particular, I refer to steam water, CO, dust, CO2, and temperature

and atmospheric pressure. The first is mostly generated by the human

presence in a room (i.e., breath, sweat), even the CO2 is due to the human

breathing; the correlation of CO and CO2 produced useful information

related to the combustion (e.g., the smoke of cigarettes). Moreover, a dust

sensor can help in identifying the kind of activity, as any person entering

or leaving a room naturally lifts dust in the air. Finally, temperature

and atmospheric pressure are used to measure and identify the perceived

data’s deviation due to environmental conditions. A schema of the Edge

node contained on the Device layer is shown in figure 5.2.

The IoT node is managed by the "Middleware layer" that is able to

remotely inject new code/plugin on the device, modifying the behavior of

Eng. Giuseppe Tricomi 97

i
i

“output” — 2021/1/10 — 14:51 — page 98 — #112 i
i

i
i

i
i

CHAPTER 5. CPS APPLICATION: SMART ROOM

Figure 5.2: Data acquisition and transmission schema [6].

the computation element. This activity is Cloud-driven, and it enables the

injection of custom Machine Learning code in all the IoT nodes managed

by the SB at runtime. Thanks to the remote management facilities, an

administrator may modify the behavior according to the need, so it is

possible to contextualize the device to the environment characteristics.

Moreover, this mechanism enables the IoT devices to run multiple parallel

tasks because the plugin injected is an independent (either synchronous

or asynchronous) process spawned by the LR agent on the IoT device.

For our purposes, we inject an ML code based on opensource libraries

and frameworks (e.g., Keras, Tensor-Flow) that is able to recognize the

number of persons present in a room from the data perceived by the

sensor shown in figure 5.2. The selection of the ML model to use in

this application was made through performance comparison made on

98 Eng. Giuseppe Tricomi

i
i

“output” — 2021/1/10 — 14:51 — page 99 — #113 i
i

i
i

i
i

Models Acc.(%) MSE Hyper-parameters
𝑀𝐿𝑃 56.4 0.127 𝑂𝑝𝑡𝑚𝑖𝑧.(𝐴𝑑𝑎𝑚), 𝐴𝑐𝑡.𝐹𝑢𝑛𝑐.(𝑅𝑒𝐿𝑈), 𝐻𝐿(4),

𝑁𝑒𝑢𝑟𝑜𝑛𝑠([25, 20, 15, 10]), 𝑅𝑒𝑔𝑢𝑙𝑎𝑟.(0.01)

𝐿𝑅(0.001), 𝐿𝑜𝑠𝑠(𝑐𝑎𝑡𝑒𝑔. 𝑐𝑟𝑜𝑠𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑦),

𝐸𝑝𝑜𝑐ℎ𝑠(500), 𝑂𝑢𝑡𝑝𝑢𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑠𝑜𝑓𝑡𝑚𝑎𝑥)

𝑅𝐹 82.3 0.454 𝑅𝑎𝑛𝑑. 𝑠𝑡𝑎𝑡𝑒(0), 𝐶𝑟𝑖𝑡𝑒𝑟.(𝑔𝑖𝑛𝑖), 𝑀𝑎𝑥 𝑑𝑒𝑝𝑡ℎ(2),

𝑀𝑎𝑥 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝑎𝑢𝑡𝑜), 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠(100)

𝑆𝑉𝑀 96.1 0.235 𝐾𝑒𝑟𝑛𝑒𝑙(𝑟𝑏𝑓), 𝐶(1.0), 𝑌 (𝑎𝑢𝑡𝑜)

𝐾𝑁𝑁 97.3 0.037 𝑁. 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(1), 𝑊𝑒𝑖𝑔ℎ𝑡𝑠(𝑢𝑛𝑖𝑓𝑜𝑟𝑚),

𝐴𝑙𝑔.(𝑎𝑢𝑡𝑜), 𝑀𝑒𝑡𝑟𝑖𝑐(𝑚𝑖𝑛𝑘𝑜𝑤𝑠𝑘𝑖), 𝑛_𝑗𝑜𝑏𝑠(1)

Table 5.1: Performance metrics comparison [6].

our dataset, using 70% of the training data to evaluate the model and

determine the optimal values to accurately represent our physical system.

The comparison was made on four standard classification algorithms for

this kind of problems: Multilayer Perceptron (MLP), k-nearest neighbors

(KNN) algorithm, Support Vector Machine (SVM), and Random Forest

(RF). We tested all the models on the test data (30% of the whole dataset)

comparing one another in terms of accuracy, thus evaluating the ability to

generate acceptable predictions when run on previously unseen samples.

Finally, the model, here injected on the device, was able to reflect the

accuracy reached by the tests carried out on the Cloud side, as shown in

Table 5.1. An example of the data collected and presented by the system

is shown in figure 5.3.

Eng. Giuseppe Tricomi 99

i
i

“output” — 2021/1/10 — 14:51 — page 100 — #114 i
i

i
i

i
i

CHAPTER 5. CPS APPLICATION: SMART ROOM

Figure 5.3: Dashboard for data presentation [6].

100 Eng. Giuseppe Tricomi

i
i

“output” — 2021/1/10 — 14:51 — page 101 — #115 i
i

i
i

i
i

CHAPTER6

Vehicles as CPSs supporting drivers

through interaction with city

infrastructure.

A
. N interesting work on CPS is the one related to the

vehicles. A “vehicle” is a system rich of IoT devices that

aggregates on a central control unit the data perceived by

the peripheral devices to monitor the vehicle’s status, such as the security

101

i
i

“output” — 2021/1/10 — 14:51 — page 102 — #116 i
i

i
i

i
i

CHAPTER 6. CPS APPLICATION: SMART VEHICLE

system’s status, vehicle’s speed, motor’s rpm, consumption estimation

(fuel and CO2 emission), and so on. Until now, a vehicle is a totally

isolated CPS.

In this research step, even if we can not yet talk about first full cooper-

ation among CPSs, I have presented some algorithms acting on a similar

scenario to enhance the assisted drive. These works’ cornerstone is a

change of perspective because the vehicle is not considered an isolated

environment. However, it is considered a CPS moving inside and through

environments: compounds, cities, and countries. In the studies described

in [7, 32], the environments did not represent CPSs cooperating with the

vehicle but are considered a data source is offering useful services to the

vehicles.

In particular, a reader can distinguish a two folds motivating scenario

for this research. On the one hand, the intent to address the issues related

to smart mobility infrastructures and services targets traffic monitor-

ing, mobility as a service, route planning, autonomous vehicles, supply

chain management, multi-modal transport, and generally any Intelligent

Transportation System (ITS). On the other hand, the smart environment

mainly focuses on global warming, acid rain, air pollution, urban sprawl,

waste disposal, ozone layer depletion, water pollution, climate change,

recycling, clean energy, and many more.

These studies are moving into the intersection of these two broad

areas, intending to leverage the smart city infrastructure to implement a

102 Eng. Giuseppe Tricomi

i
i

“output” — 2021/1/10 — 14:51 — page 103 — #117 i
i

i
i

i
i

green/environmental smart mobility service that addresses both mobility

and environmental issues.

The basic idea is to implement a system able to identify a route

planning application that considers the information collected by both the

smart city facilities and the vehicle. The proposed solutions are based on

heuristics based on the exploitation of existing optimization algorithms

already implemented by the cruise control system on-board the vehicle.

The high-level control logic interacting with the Smart City facilities

can help the driving system reduce gas emission and fuel consumption

through a travel time balancement, or vice versa, reduce the traversal

time balancing the emission and fuel consumption.

The architecture exploited by the two works is more or less reducible

to the figure 6.4. The Smart City(SC) is equipped with a traffic man-

agement system based on a smart traffic lights system, connected to SC

computing facilities for collecting, storing, and processing data, thus

controlling traffic by acting on traffic lights and other devices (dynamic

road signs, toll stations, smart parking devices, and so on). SC identifies

each segment of a street delimited by two traffic lights as an oriented

segment, and contextually circle, cross, and an intersection with other

streets not regulated by traffic light are represented by the SC with a set

of oriented segments sharing a portion of their path. A proper id uniquely

identifies each simple road segment between two traffic lights.

A vehicular node (a generic vehicle) is modeled with an automatic

Eng. Giuseppe Tricomi 103

i
i

“output” — 2021/1/10 — 14:51 — page 104 — #118 i
i

i
i

i
i

CHAPTER 6. CPS APPLICATION: SMART VEHICLE

gearbox and an advanced Cruise Control system, by which setting up

speed and other vehicle travel parameters. Moreover, the vehicle interacts

with the Smart City Infrastructure(SCI) through the specific system’s

interactions at the core of the approach. The Controller (see figure

6.4) is the component in which the algorithms run according to what is

defined in [7, 32]. It is hosted into the vehicular node (a smart-board or

similar) interacting both with the on-board Cruise Control and with the

SC through a wide area networking system as could be a Metropolitan

Area Network. The connection manager communicates with the Smart

City Computing Facilities. It uses both synchronous and asynchronous

messages to query the SC about “static route parameters” and “traffic-

lights timing” related to the whole vehicle’s path and the latter vehicle’s

position in the path established. So the data received from the Smart

City become the inputs for the Route Control component, which is the

component where the algorithms run. It produces the navigation speed

to be used by the vehicle. The Cruise Control system receives from

Route Control the computed values to set up its cruise speed, assuming

an automatic gearbox vehicle, enforcing factory optimization on fuel

consumption and CO2 emissions. To reduce the impact of unexpected

events, the vehicle frequently interacts with the SC.

As a result of the two works about vehicular CPS, a two-level intelli-

gent cruise control system is obtained. This system proved quite effective

in a case study of a conventional c-segment car of the internal combustion

104 Eng. Giuseppe Tricomi

i
i

“output” — 2021/1/10 — 14:51 — page 105 — #119 i
i

i
i

i
i

6.1. SCICC ALGORITHM

Smart City
Computing Facilities

SCI Nodes

Connection
Manager

Route Control

Cruise Control

Tr
af

fic
 M

on
ito

rin
g

S
ys

te
m

s

S
m

ar
t T

ra
ffi

c
Li

gh
t S

ys
te

m
s

O
th

er
 D

ev
ic

es

Metropolitan
Area

Network

SCiNaS

Wide Area Network

Vehicular
 Nodes

Controller

Figure 6.1: Architectural overview of vehicular node and Smart City presented for
SCINaS [7].

engine in terms of emissions, travel time, and fuel consumption.

6.1 SCICC Algorithm

U
. NTIL now, the advancement of these two works

was parallel; the difference indeed stays in the al-

gorithm used to regulate the vehicle’s city traversal.

SCICC, Smart City Intelligent Cruise Control, is oriented to the reduc-

tion of fuel consumption and CO2 emission minimization. In Algorithms

1,2 are presented the two main functions used by SCICC [32], to guide

the cruise control in its duties.

Starting from the distance to the next traffic light and from the data

about the traffic flow, SCICC applies the Algorithm 1 to assess the

traversal speed aiming to implement the virtually continuous green wave.

Eng. Giuseppe Tricomi 105

i
i

“output” — 2021/1/10 — 14:51 — page 106 — #120 i
i

i
i

i
i

CHAPTER 6. CPS APPLICATION: SMART VEHICLE

When the vehicle is in proximity to the current segment traffic light, the

SCICC system also considers the information of the next segment in the

evaluation. The Route Control Algorithm 1 interacts with the Cruise Con-

trol through the functions 𝐷𝑒𝑐𝑟𝑒𝑎𝑠𝑒_𝑆𝑝𝑒𝑒𝑑(𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑝𝑒𝑒𝑑, 𝑛𝑒𝑤𝑆𝑝𝑒𝑒𝑑)

and 𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒_𝑆𝑝𝑒𝑒𝑑(𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑝𝑒𝑒𝑑, 𝑛𝑒𝑤𝑆𝑝𝑒𝑒𝑑, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒) returning a

data entry containing i) the vehicle final speed according to the request

(𝑛𝑒𝑤𝑆𝑝𝑒𝑒𝑑) and the acceleration (deceleration) profile and ii) the ex-

pected time to reach 𝑛𝑒𝑤𝑆𝑝𝑒𝑒𝑑, if enforced (𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒 == 𝑡𝑟𝑢𝑒). the

Algorithm 2 computes the traversal speed for the segment as a function

of the flow1 and of the segment parameters, according to the naviga-

tion system constraints. The traffic flow evaluation is performed by the

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑇𝑟𝑎𝑓𝑓𝑖𝑐() function based on the smart city traffic flows of the

subsegments composing the segment of interest.

To evaluate the impact of SCICC on the vehicle gas emissions and

fuel consumption, a simulation model working with Simulink was real-

ized [32]. It computes the the quantities of fuel and CO2 produced been

evaluated on a well known driving cycle, the New European Driving

Cycle (NEDC)2, a standard cycle used to measure vehicle fuel consump-

tion and gas emissions in EU. This is used to compare the advantages

produced by SCICC’s Algorithm, as shown in 6.2.

1Each city define its own threshold used to describe the traffic congestion in the segments.
2https://web.archive.org/web/20050909051753/http://www.europarl.eu.int/commonpositions/1999/pdf/c5-

0028-99_en.pdf

106 Eng. Giuseppe Tricomi

i
i

“output” — 2021/1/10 — 14:51 — page 107 — #121 i
i

i
i

i
i

6.1. SCICC ALGORITHM

Algorithm 1 SCICC’s Segment Analysis Coordination Algorithm
1: function SAA(vown, SegPars, SegnextPars) ◁ This function coordinates the analysis of the segment

parameters in the evaluation of the segment traversal speed. vown= current speed of the vehicle, SegPars and SegnextPars
contain: d=distance to the traffic light, trr=residual red time, tv= green time, tr=red time, vmax= max speed, flow= traffic
flow.

2: var k = EstimateTraffic();
3: if (SegPars.d ≥ min-distance-to-traffic-lights) then
4: if (vown ≤ SegPars.vmax) then
5: Structtravs = TravSpeed(SegPars,k);
6: vseg = Structtravs.vseg;
7: if (vown = 0) then
8: Structacc/dec = Increase_Speed(vown,vseg,False);
9: Structtravs = TravSpeed(SegPars,k);

10: vseg = structtravs.vseg;
11: end if
12: else:
13: Structacc/dec.vown = Decrease_speed(vown,SegPars.vmax);
14: SegPars.d = compute_distance();
15: structtravs = TravSpeed(SegPars,k);
16: vseg = Structtravs.vseg;
17: end if
18: else:
19: vsegnext = SAA(vown,SegPars,SegnextPars);
20: Structtravs = TravSpeed(SegPars,k);
21: vseg = Structtravs.vseg;
22: if ((vsegnext ≥ vseg) & (vsegnext ≤ SegPars.vmax)) then
23: Structacc/dec = Increase_Speed(vseg,vsegnext,True);
24: end if
25: if (vsegnext ≤ vseg) then
26: Structacc/dec.vown = Decrease_speed(vown,vsegnext);
27: end if
28: end if
29: Return [vesg,vown];
30: end function

Eng. Giuseppe Tricomi 107

i
i

“output” — 2021/1/10 — 14:51 — page 108 — #122 i
i

i
i

i
i

CHAPTER 6. CPS APPLICATION: SMART VEHICLE

Algorithm 2 SCICC’s Traversal Speed computation Algorithm
1: function TRAVSPEED(SegPars,k) ◁
2: This function evaluates the traversal speed for the segment. k is a threshold used by the city to identify the congestion;

SegPars contains: d=distance to the traffic light, trr=residual red time, tv= green time, tr=red time, vmax= max speed,
flow= traffic flow, NavTime= traversal time estimated by Navigator.

3: if (SegPars.flow ≥ k) then
4: Struct.vseg = SegPars.d / (SegPars.trr+SegPars.tv+SegPars.tr);
5: time = (SegPars.trr+SegPars.tv+SegPars.tr);
6: else:
7: vseg = (SegPars.d / SegPars.trr);
8: if (vseg ≥ SegPars.vmax) then
9: if (SegPars.NavTime ≤ (SegPars.trr+(3*SegPars.tv/4))) then

10: if (SegPars.NavTime ≥ (SegPars.trr)) then
11: vseg = SegPars.d / SegPars.NavTime;
12: time = SegPars.NavTime;
13: end if
14: else:
15: vseg = SegPars.d / (SegPars.trr+(3*SegPars.tv/4))
16: time = (SegPars.trr+(3*SegPars.tv/4));
17: if (vseg ≥ SegPars.vmax) then
18: Struct.vseg = SegPars.d / (SegPars.trr+SegPars.tv+SegPars.tr);
19: time = (SegPars.trr+SegPars.tv+SegPars.tr);
20: end if
21: Struct.vseg = vseg;
22: end if
23: end if
24: end if
25: if (SegPars.NavTime ≤ time) then
26: Struct.compliantNav = False;
27: else:
28: Struct.compliantNav = True;
29: end if
30: Return Struct;
31: end function

108 Eng. Giuseppe Tricomi

i
i

“output” — 2021/1/10 — 14:51 — page 109 — #123 i
i

i
i

i
i

6.1. SCICC ALGORITHM

(a)

URBAN EXTRA
URBAN

Av
er

ag
e

Fu
el

 c
on

su
m

pt
io

n
[l

/1
00

K
m

]

Distance
[m]40262178 10991330 1100 3102 5104 6028 7106 8030 9108 10032

(b)

URBAN EXTRA
URBAN

40262178 10991330 1100 3102 5104 6028 7106 8030 9108 10032

(c)

Figure 6.2: SCICC experiments results: a) NEDC and SC-NEDC speed comparison;
b) Fuel Consumption; c) CO2 emissions.

Eng. Giuseppe Tricomi 109

i
i

“output” — 2021/1/10 — 14:51 — page 110 — #124 i
i

i
i

i
i

CHAPTER 6. CPS APPLICATION: SMART VEHICLE

6.2 SCINaS Algorithm

I
. N SCiNaS, Smart City Navigation System the goal

is to reduce the traversal time aiming to balance the CO2

emission and fuel consumption. The Route Control (RC)

identifies the traversal time valid for the traversed segment (Tsmin in

Figure 6.3), enabling the vehicle to avoid stopping due to the traffic

light. This activity is strongly dependant on the starting condition. For

SCiNaS’s algorithm, the starting condition is represented by the traffic

light status when the vehicle begins the segment (or when the vehicle

makes the computation). These conditions are depending on the value of

two (green and red) remaining time parameters received by the SC, trg,

and trr, respectively. The one greater than zero represents the traffic light

status at query time. As shown in Figure 6.3, the traversal time computed

at the beginning of the computation in some cases may correspond to

red light. To avoid this, the RC has to increase the traversal time of an

additional time (Tadd in Figure 6.3).

In order to enable the Route Control to compute the additional time,

we have to make some assumptions:

∙ Traffic light cycle begins with a green period, and it contains even

the yellow one if any.

∙ The Residual time, Tres, represents the time needed by the traffic

110 Eng. Giuseppe Tricomi

i
i

“output” — 2021/1/10 — 14:51 — page 111 — #125 i
i

i
i

i
i

6.2. SCINAS ALGORITHM

light to reach the beginning of the first traffic light cycle (if 𝑡𝑟𝑟 > 0

𝑇𝑟𝑒𝑠 = 𝑡𝑟𝑟, else 𝑇𝑟𝑒𝑠 = 𝑡𝑟𝑔 + 𝑇𝑡𝑙𝑟).

∙ The algorithm verifies if the value of the variable td (see Figure 6.3)

is lower or higher than zero, to compute a prediction of the status

assumed by the traffic light at the end of the segment. A positive

value indicates a red light.

∙ The final traversal time proposed by the RC is equal to the sum of

the previous traversal time, and the td value if greater than zero.

The computation made by the RC for the speed profile computation

begins analyzing as a first option a segment traversal made at the maxi-

mum speed. The output obtained could result in a march with constant

velocity (Vmax) or a uniform accelerated motion that depends on the

vehicle’s speed when the computation is done. This first option could

break the vehicle’s constraint about the minimum speed admitted in the

vehicle’s first gear (the engine idle speed). In this case, a tentative to

identify a suitable deceleration pattern is made, and if it does not produce

any result, the vehicle is forced to stop its march. When the vehicle’s

speed constraint is not broken, the system verifies if the profile is able to

get the green light. Then the Cruise Control actuates the profile received

by the RC. In opposition to the latter case, if the profile is not able to

drive the vehicle towards a green light, it is re-computed changing the

Tsmin used; this is done by adding the value Tadd (described above

Eng. Giuseppe Tricomi 111

i
i

“output” — 2021/1/10 — 14:51 — page 112 — #126 i
i

i
i

i
i

CHAPTER 6. CPS APPLICATION: SMART VEHICLE

and shown in Figure 6.3). The algorithm tries to split the profile into

two parts as a solution to the profile identification problem. In the first

one, the vehicle accelerates (or decelerates) with a uniformly accelerated

motion. The decision about the acceleration depends on the threshold:

∙ 1 m/s2 if the initial speed is below the engine idle speed,

∙ 0.5 m/s2 if the initial speed is higher than previous but below stan-

dard urban speed limitation (50 km/h),

∙ 0.25m/s2 in the other cases.

A constant velocity motion instead characterizes the second part for the

remaining time. Data about both motion profiles are tested to verify if

the resulting profile can get a green light. If not, the system computes

a profile again based on the previous hypothesis of traversal time, the

new one, and re-iterates the profile identification. Figure 6.5 shows some

code snippets implementing the algorithm mentioned above.

td
Ttlr

T=Ttlg+Ttlr

Ttlg

trr

 trg

Tsmin

Tres

t

Tadd

Definitions:
Tres=trg+Ttlr
Tsmin=N*T+Tres
Tadd=Ttlr-td
td=Tsmin-Tres-(N*T)-Ttlg

Figure 6.3: SCINaS Traffic Light cycles and definition [7].

Even in the SCiNaS case, to evaluate the algorithm’s impact on the

vehicle gas emissions and fuel consumption, a simulation model working

112 Eng. Giuseppe Tricomi

i
i

“output” — 2021/1/10 — 14:51 — page 113 — #127 i
i

i
i

i
i

6.2. SCINAS ALGORITHM

Figure 6.4: SCINaS Algorithm’s Flow chart minimizing the city traversal time [7].

Figure 6.5: SCINaS Algorithm’s fragment minimizing the city traversal time [7].

with Simulink was realized [7]. It computes the quantities of fuel and CO2

produced been evaluated on a well known driving cycle, the NEDC. The

Eng. Giuseppe Tricomi 113

i
i

“output” — 2021/1/10 — 14:51 — page 114 — #128 i
i

i
i

i
i

CHAPTER 6. CPS APPLICATION: SMART VEHICLE

comparison among consumption (fuel and CO2 emission) produced by

SCiNaS’s Algorithm and NEDC is shown in figures 6.6, and 6.7. Trying

to investigate the computational overhead of the SCINAS algorithm, we

tried to execute it 100 times on the same path (segments composing

the path are described in Table 6.1), the one representing the NEDC

cycle that we already evaluate during the simulation discussed before.

To analyze the impact on the Route Control of the analysis, we run the

experiments on constrained LXC containers modifying the RAM and

the number of CPUs available to the underneath system (i.,e., an Ubuntu

18.04 server containerized and running on a laptop equipped with an

Intel i7 6500U CPU and 8GB of RAM). The experiments are done on

containers that are assigned 1 to 2 CPUs and 32Mb to 256 Mb of RAM.

On the graph 6.8, it is possible to see that the algorithm execution doesn’t

benefit from the increment of resources both in RAM and the number of

CPUs available (for every segment and in any container configuration,

the execution times are comparable). In graph 6.9, the standard deviation

of the experimental data obtained on each segments’ elaboration is very

low, except for some segments (e.g., segments 2, 6, and 7).

114 Eng. Giuseppe Tricomi

i
i

“output” — 2021/1/10 — 14:51 — page 115 — #129 i
i

i
i

i
i

6.2. SCINAS ALGORITHM

Seg.ID Lenght

Vmax:
Maximum
Admitted
Speed

Trr:
Red
Residual
Time

Trg :
Green
Residual
Time

Ttlr:
Traffic
Light
Red
duration

Ttlg:
Traffic
Light
Green
duration

Ttl:
Traffic
Light
Cycle
duration

1 54.166667 13.88 0 16 33 27 60
2 317.576 13.88 0 17 33 27 60
3 659.722 13.88 24 0 33 27 60
4 54.166667 13.88 10 0 33 27 60
5 317.576 13.88 7 0 33 27 60
6 659.722 13.88 8 0 33 27 60
7 54.166667 13.88 0 26 33 27 60
8 317.576 13.88 4 0 33 27 60
9 659.722 13.88 10 0 33 27 60
10 54.166667 13.88 1 0 33 27 60
11 317.576 13.88 5 0 33 27 60
12 659.722 13.88 20 0 33 27 60
13 6865.279 36.11 0 18 33 27 60

Table 6.1: Segment’s parameter passed to SCiNaS in order to compute the speed profile.

(a)

(b)

Figure 6.6: SCiNaS experiments results: traffic light states. a) NEDC’s traversal time;
b) SCiNaS’s traversal time.

Eng. Giuseppe Tricomi 115

i
i

“output” — 2021/1/10 — 14:51 — page 116 — #130 i
i

i
i

i
i

CHAPTER 6. CPS APPLICATION: SMART VEHICLE

(a)

(b)

(c)

(d)

Figure 6.7: SCiNaS experiments results: a) NEDC’s emission of CO2; b) SCiNaS’s
emission of CO2; c) NEDC’s Fuel Consumption; d) SCiNaS’s Fuel Consumption.

116 Eng. Giuseppe Tricomi

i
i

“output” — 2021/1/10 — 14:51 — page 117 — #131 i
i

i
i

i
i

6.2. SCINAS ALGORITHM

Figure 6.8: Average execution times of SCiNaS’s algorithm for each segments and for
each combination of RAM and CPU.

Figure 6.9: Execution time Standard Deviation of SCiNaS’s algorithm for each seg-
ments and for each combination of RAM and CPU.

Eng. Giuseppe Tricomi 117

i
i

“output” — 2021/1/10 — 14:51 — page 118 — #132 i
i

i
i

i
i

i
i

“output” — 2021/1/10 — 14:51 — page 119 — #133 i
i

i
i

i
i

CHAPTER7

CPS as set of computational units:

Exploitation of Serverless paradigms to

deploy pipelines on CPS

T
HE Serverless paradigm (see section 2.1.6), in par-

ticular the FaaS one, is a computing style in which the

computation is made through the execution of functions

somewhere that producing an output to the requestor. Behind the defini-

119

i
i

“output” — 2021/1/10 — 14:51 — page 120 — #134 i
i

i
i

i
i

CHAPTER 7. CPS AS SET OF COMPUTATIONAL UNITS

tion of this paradigm, there is the idea that reduces the computation tasks

requested (by an application) into a series of functions considering all

inputs received to produce an output. It is clear that function becomes

blocks composing an application, and their execution in pipeline pro-

duces the aimed results. In a CPS’s application, the IoT devices perceive

the physical values used as inputs, and they implement the actuation

actions required by the computation’s results. The inputs perceived are

not computed in the same step, but for some application, the choice of

an input source may depend on a previous computation’s step. To under-

stand better, a reader can imagine the situation in which a temperature

sensor perceives a high temperature, and it engages the smoke sensor

in a workflow to understand if there is a fire in the room or the nearest

environments. At this point, if the smoke sensor does not perceive any

warning, maybe it is an issue with the air-conditioner, of the environment,

and it can shut off the air-conditioner, and open the window. This makes

the CPS’s application the perfect candidate to exploit the FaaS paradigm.

Another reason making the CPS the perfect candidate to work in this

scenario is due to the computational power owned by the IoT node. As

explained in the previous sections 2.1.4, 2.1.5, and 2.3, a CPS is ex-

ploitable for a distributed computation able to react in real-time, avoiding

network latency.

The previous consideration about the CPS and the FaaS paradigm’s

consideration become a research cue for this study. So an infrastruc-

120 Eng. Giuseppe Tricomi

i
i

“output” — 2021/1/10 — 14:51 — page 121 — #135 i
i

i
i

i
i

ture implementing the Edge computing principle to host the functions

related to a FaaS-based pipeline was presented in [8]. It is an extension

of the OpenStack environment obtained from the cooperation put in

place among several OpenStack’s projects, in particular: Qinling [143]1,

Stack4Things4.2, and Zun [144]2.

As it is possible to see in figure 7.1 the system is based on three main

sections:

∙ Interface section represents the point of access where the adminis-

trators define their application; it is used to provide commands to

Cloud section components that will physically set up the application

running on the Edge worker node, then on the CPS.

∙ Cloud section contains all the coordination components used to

orchestrate the functions delivered on the IoTs. It also configures

all the infrastructure, physical and virtualized exploited by both the

Edge worker node and CPS’s applications.

∙ Edge Worker section contains the components running on the IoT

devices to execute the functions.

The solution is realized using IoTronic, and modified version of Qin-

ling and Zun subsystems, so the OpenStack framework can provide FaaS

services using distributed IoT devices located at the Edge of the network.
1Qinling is a project of Openstack meant to implement Function as a Services paradigm.
2ZUN is a project of Openstack meant to act as a Container Orchestration Environment, then it

orchestrates and manages the Containers during their lifecycle on the computational nodes.

Eng. Giuseppe Tricomi 121

i
i

“output” — 2021/1/10 — 14:51 — page 122 — #136 i
i

i
i

i
i

CHAPTER 7. CPS AS SET OF COMPUTATIONAL UNITS

API

Engine

API

WAMP
agent

API

WS
tunnel
agent

Compute
agent Engine

Reverse
proxy

RuntimeRuntimeRuntime

User
Interface

Cloud-side
(Management Nodes)

Compute
agent Engine

Reverse
proxy

RuntimeRuntimeRuntime

Compute
agent Engine

Reverse
proxy

RuntimeRuntimeRuntime

IoT devices
(Edge Workers)

LIGHTNING
ROD

Orches

Net
driver

Sched

Figure 7.1: The edge-based FaaS system architecture [8].

To do this, Qinling and ZUN were extended using a driver enabling Qin-

ling to interact with ZUN, and ZUN was extended with a driver to interact

with IoTronic (see figure 7.2). This newly introduced functionality in

OpenStack is achieved through RESTful interactions with Qinling that

uses, in the backend, Zun, and IoTronic to deploy functions on the remote

IoT devices.

The main difference between the data center-based OpenStack de-

ployments and the described solution is the deployment of the three

components: Zun-compute, Docker engine, and the runtimes; they are

deployed on the Edge worker node, the CPS’s IoTs. In more detail, on

the Cloud-side are deployed the Qinling subsystem (engine, orchestrator,

and API server), Zun (API server and Zun scheduler), and IoTronic.

The other components, such as Zun-computes, Docker engines, and the

122 Eng. Giuseppe Tricomi

i
i

“output” — 2021/1/10 — 14:51 — page 123 — #137 i
i

i
i

i
i

s4t
IoTronic

conductor

s4t
command
line client

IoTronic
AMQP
queues

WAMP
router

s4t IoTronic
WAMP
agent

s4t IoT
ron

ic A
PIs

Q
in

lin
g server

Qinling
database

Qinling
AMQP
queues

WAMP control
channel

s4t WS
tunnel
agent

IoTronic
service

forwarding

Zun
 server

REST communication

AMQP pub/sub

other communication

Qinling
engine

Zun
database

Zun
AMQP
queues

Qinling
command
line client

Web
browser

S4t
IoTronic
database

s4t
dashboard

Qinling
orchestrator

Zun
networking

driver

Zun WS
proxy

Zun
scheduler

Virtual
networking
(overlays)

Figure 7.2: Stack4Things FaaS Cloud-side subsystem design [8].

Virtual
Networking

WAMP control
channel

MCU

Low-level I/O
primitives

MPU

Edge/Fog node
(MPU+MCU)

mcuio
kernel

modules

mcuio sysfs

s4t mcuio sysfs lib

s4
t W

A
M

P
li

b

s4t
lightning-rod

engine

s4t wstunnel plugin

OS
tools

s4t lightning-rod

...

board
pins

...

plugin

s4t plugin
loader

IoTronic
service
forwarding

REST communication
AMQP (pub/sub, RPC)
other communication

Engine

Compute
agent

reverse
proxy

sensors
and

actuators

Zun
compute

agent

Docker
engine

CapsuleCapsuleCapsule

Figure 7.3: Stack4Things FaaS Edge/Fog-side subsystem design [8].

runtimes stand in our case on the IoT devices (see figure 7.3), instead of

being placed on the Cloud as commonly happen in a standard OpenStack

deployment.

Eng. Giuseppe Tricomi 123

i
i

“output” — 2021/1/10 — 14:51 — page 124 — #138 i
i

i
i

i
i

CHAPTER 7. CPS AS SET OF COMPUTATIONAL UNITS

The typical workflow for the solution described is the following: A

CPS’s administrator creates his pipeline interacting with the Interface

section through the NodeRED-based dashboard, even if it stays at the

same level of typical OpenStack’s tools (Horizon dashboard and CLI),

the usage of NodeRED makes easier the pipeline deployment (see figure

7.4.a). With the NodeRED dashboard, the admin is enabled to define

blocks able to invoke function’s instantiation; these blocks are the central

elements in the workflow composition as a pipeline of blocks. When

the pipeline is defined, the administrator deploys the flow with a simple

click on the deployment button; it corresponds to a series of requests

to deploy function delivery to the Qinling orchestrator (going through

Qinling-API)(see figure 7.4.b). The Qinling orchestrator uses ZUN as

the Container Orchestration Environment (COE), where the runtimes

(execution environment of the Qinling’s function) are instantiated thanks

to a specific driver created for [8]. Firstly, the Qinling orchestrator

interacts with Zun-scheduler to identify IoT device, and after this, the

Zun-API server sends a request to create, on the device, the containers

needed (i.e., the capsule3). At this point, ZUN involves IoTronic in the

deployment workflows to provide the networking facilities to the Capsule.

IoTronic exposes a pair of IP-port that exploits a WS tunnel to reach a

Capsule’s Runtime. On the device-side, LR uses the reverse proxy to

3A capsule is a group of containers cooperating, it is analogous to the Pod concept in Kubernetes.
Containers within a capsule share the same network configuration, namespaced PID, Mount, etc.

124 Eng. Giuseppe Tricomi

i
i

“output” — 2021/1/10 — 14:51 — page 125 — #139 i
i

i
i

i
i

OpenStack
Cloud

Administration/Monitoring
system

Administrator

A B C D

(a)

OpenStack
Cloud

Administration/Monitoring
system

f

f f f f
Administrator

A B C D

(b)

Notification
No
tifi
ca
tio
n

Invocation Invocation

(c)

Figure 7.4: Overview of a use case when the edge-based FaaS system can be deployed
for enhanced tasks management [8].

route the traffic. When the pipeline is instantiated, it executes the CPS’s

IoT functions according to the administrator’s definition in the first step.

Figure 7.4.c shows the system behavior in the example described above

in this chapter when a node perceives a peak of temperature.

Eng. Giuseppe Tricomi 125

i
i

“output” — 2021/1/10 — 14:51 — page 126 — #140 i
i

i
i

i
i

i
i

“output” — 2021/1/10 — 14:51 — page 127 — #141 i
i

i
i

i
i

CHAPTER8

Software-Defined City Infrastructure

supporting a Dynamic Intrusion

Surveillance System

T
HE possibility of constructing CPS-based applica-

tions exploiting the FaaS paradigm associated with

Edge computing infrastructure is one of the possible so-

lutions working on a CPS or in cooperative CPSs. Another approach

127

i
i

“output” — 2021/1/10 — 14:51 — page 128 — #142 i
i

i
i

i
i

CHAPTER 8. COOPERATING CPS APPLICATION: DYNAMIC
INTRUSION SURVEILLANCE SYSTEM

explored is related to the application of software-defined principles and

the networking and the Input/Output operations. This way, it is possible

to orchestrate the cooperation between CPS simply through the definition

of virtualized (i.e., defined via software) Input/Output paths between

devices, even in case there is no real network connection neither direct

nor through NAT or proxy systems.

The basic idea is meant to extend what previously defined in [21],

where the concepts of Software Defined paradigm was applied on an

abstraction of CPS, managing them with a high-level approach that does

not consider what happens inside the CPS. Notwithstanding this, [21]

presents an interesting point of reflection that has generated the following

idea. The Fog computing needs to be pushed to an even lower logical

level as a set of mechanisms enabling the deployment and execution of

multiple location-aware, low-latency, peer-to-peer IoT-like applications,

where most of the logic runs on the involved smart objects. So the Fog

infrastructure works as a (programmable) coordinator only, evaluating

custom rules and subsequently acting upon the ones which apply to events

related to a specific situation, modifying the infrastructure topology where

needed. This is a clear usage of the Computing Continuum paradigm

2.1.5. This situation is reflected by schematic shown in figure 8.1.d. The

whole figure 8.1 represents several ways in which the interaction with

IoT devices may be realized.

The most basic configuration, shown in Figure 8.1.a, features a “plain”

128 Eng. Giuseppe Tricomi

i
i

“output” — 2021/1/10 — 14:51 — page 129 — #143 i
i

i
i

i
i

Application
/ Service

Application /
Service

Net

Application /
Service

Physical system Physical system Physical system

Control Logic I/O-API

Net

Sensing

Cloud Computing
Platform

Control Logic

Edge Computing Platform

API
Net

Fog Computing
Platform

Control Plane

a) Plain CPS b) CPSFV d) Software Defined CPSFV

Data Plane

Application
/ Service

Physical system

Edge Computing Platform

I/O-APINet

Control Logic

Sensing
Actuation

c) Decoupled CPSFV

Device Control
Logic

Control Logic

Cloud Computing
Platform

Actuation
Sensing

Actuation

Board

Generic request
Networking instruction

Actuation instruction
Sensing instruction

Board

Sensing
Actuation

Cloud/ Fog
Computing Platform

Sensing
Actuation Device Control

Logic

Figure 8.1: Approaches for Cyber-Physical System Functions Virtualization (CPSFV)
[9]

CPS where the interface subsystem (e.g., a board) acts independently

from any end-user or application interaction and provides exclusive ac-

cess to the physical resources, mediated by the custom-developed control

logic. To manage the functionalities related to sensing and actuation de-

vices, it is possible to follow another approach, as discussed in [21], and

shown in Figure 8.1.b. This approach is meant to decouple the application

and the service requests from the physical system’s management. An

evolution of this approach is shown in Figure 8.1.c. Here, the generic idea

is to decouple application or service requests from the physical system.

The overarching Cloud-based approach has first been described in [145],

where the authors propose a device-centric paradigm to provide services

based on IoT infrastructure, whereas in [142], a way to provide virtual

Eng. Giuseppe Tricomi 129

i
i

“output” — 2021/1/10 — 14:51 — page 130 — #144 i
i

i
i

i
i

CHAPTER 8. COOPERATING CPS APPLICATION: DYNAMIC
INTRUSION SURVEILLANCE SYSTEM

instances on I/O devices (virtIO) that run in an Edge computing environ-

ment, the I/Ocloud system, is presented. Lastly, Figure 8.1.d is shown

the solution designed to enable the orchestration, and the definition of

Input/Output virtualized paths useful for the cooperation of CPSs.

The concept previously described becomes concrete when we map it

on multiple cooperating CPSs into a Smart City.

Application/
Service

Fe
de

ra
tio

n
of

 S
m

ar
t

En
vi

ro
nm

en
ts

 NorthBound Interface

M
an

ag
em

en
t

La
ye

r
C

on
tr

ol
 L

ay
er

D
at

a
La

ye
r

Ph
ys

ic
al

La

ye
r

SMART CITY

Application/
Service

Application/
Service

Io
T

D
ev

ic
es

Sm
ar

t E
nv

iro
nm

en
ts

C
lo

ud

Fo
g

Ed

ge

SDC Federation Platform

SouthBound Interface

NET.
Router

I/O
Router

NET.
Router

I/O
Router

NET.
Router

I/O
Router

NET.
Router

I/O
Router

NET.
Router

I/O
Router

Controller
Network
Topology

Controller
Network
Topology

Controller
Network
Topology

Controller
I/O Flows

Controller
I/O Flows

Controller
I/O Flows

Figure 8.2: High Level architecture of Software Defined City. [9]

To better understand the scenario presented in figure 8.2, some defini-

tions are needed:

∙ Domain: it represents an administrative domain managing one or

more CPS, typically inside the same environment (even if it is not

130 Eng. Giuseppe Tricomi

i
i

“output” — 2021/1/10 — 14:51 — page 131 — #145 i
i

i
i

i
i

mandatory). The devices contained in the same domain share with

flexible policies (or SLA) their functionalities.

∙ Physical Layer: it represents the layer in which the IoT devices (the

Edge node) operate. They receive data from the sensor, send com-

mands to the actuator, run scripts/batch/functions to pre-elaborate

locally the data owned, interact with upper layers to forward the

information they own.

∙ Data Layer: it represents the layer where the action to orches-

trate the system is put in place, in line with the Software-Defined

paradigm definition. Here, the involved devices are systems with

medium computation capabilities (the Fog node, such as a router,

small server, and similar). This layer receives from the physical one

the data and acts as a relayer, distributing the data according to the

upper layer’s directive.

∙ Control Layer: it represents the place in which the coordination

decisions are taken. The components running in this layer know the

structure of the domain’s infrastructure and are authoritative for the

coordination of the domain’s elements. Layer’s components interact

with the Data layer’s elements passing orchestration commands and

with the upper layer to receive the requests of data and resources

facilities coming from the federation.

Eng. Giuseppe Tricomi 131

i
i

“output” — 2021/1/10 — 14:51 — page 132 — #146 i
i

i
i

i
i

CHAPTER 8. COOPERATING CPS APPLICATION: DYNAMIC
INTRUSION SURVEILLANCE SYSTEM

∙ Management Layer: it represents the federation system, here the

applications, aware of the federation existence, run and interact with

the SDC federation platform to request data and services. The SDC

federation platform is interfaced with each domain and delivery

requests and information to the coordination components of the

Control Layer.

In Figure 8.2, these layers are further grouped based on their logical

domain (leftmost blue layering) and based on the deployment (rightmost

red layering). The latter ranges from Cloud computing hosting applica-

tions and services offered to the end-users, but also the software needed

to maintain and manage the Smart City (a kind of federation among

CPS of the Smart City), to Fog computing at the control layer and Edge

computing for device networking on IoT devices.

Figure 8.2 is the reference architecture for a stack implementing an

interdomain Software Defined City Infrastructure (SDCI). As defined

above, the bottom of the SDCI stack is the physical layer, which refers

to heterogeneous IoT nodes at the edge, operating in the physical world

under different administrative domains and corresponding smart envi-

ronments. The data layer provides interoperability, customizability, and

programmability mechanisms for networking and I/O operations. Above

this, the control layer offers tools and facilities for building network

topologies and I/O flows by enforcing policies based on the application

132 Eng. Giuseppe Tricomi

i
i

“output” — 2021/1/10 — 14:51 — page 133 — #147 i
i

i
i

i
i

8.1. SOFTWARE-DEFINED I/O

logic requirements. Data and control layers implement the Software-

Defined approach of the SDCI. From this point of view, they operate in

smart environments, which implies that a pair of controllers (network and

I/O) is required to coordinate the underlying IoT devices for each smart

environment. Cooperation between peering controllers is established by

federating entities provided by the management layer, here adapting a

hierarchical management approach, akin to the one defined in [146] , for

Software-Defined Networking in Cloud environments, to support flows

across different domains without any non-datapath relay in-between.

8.1 Software-Defined I/O

T
HE cornerstone of the system described in the previ-

ous section is a distributed I/O layer, as well as a central-

ized subsystem modeled as an Infrastructure-as-a-Service

layer. This way, it is possible to extend the approach to include dynamic

reconfiguration of the underlying nodes’ networking subsystem. For this

purpose, the SDCI approach can be adopted to manage both network

equipment on urban-scale and sensor/actuator-based infrastructure. So,

it is introduced a mixed SDN and SDI/O control plan at the IaaS level

and basic functionality (networking and I/O forwarding) at the I/O level

(data plan), as shown in Figure 8.2. In this way, there is a generic ability

to inject code (through the Edge computing platform) on physical boards,

Eng. Giuseppe Tricomi 133

i
i

“output” — 2021/1/10 — 14:51 — page 134 — #148 i
i

i
i

i
i

CHAPTER 8. COOPERATING CPS APPLICATION: DYNAMIC
INTRUSION SURVEILLANCE SYSTEM

unlocking a certain degree of freedom in the customization of intelligent

objects. This way, it is allowing the edge-oriented approaches towards

Fog computing; at the same time, the system becomes able to be cus-

tomized at the infrastructure level, such as virtual networking structures

board side. Furthermore, a middleware devoted to the management of

both sensor- and actuator-hosting resources may help in the establish-

ment of higher-level services such as policies for “closing the loop”; an

example is the configuration of triggers for a range of (dispersed) actua-

tors based on sensing activities from (geographically non-overlapping)

sensing resources. In line with the SDN approach, the solution proposed

in [9] for the policy-based management of I/O resources through a purely

software-based approach leads to Software-Defined Input/Output (SDI/O)

as a core mechanism.

SDI/O is an approach to I/O flow management; it decouples the in-

frastructure topology and application-level request dispatching (used by

SDCI entities) according to their internal policies. In summary, SDI/O

decouples the definition of acquisition/actuation logic from the (procedu-

ral) details of the implementation. In the Control Plane all the decisions

are taken according to policies, that encode how to translate high level

I/O operations into forwarding paths, implemented in the data plane

(e.g., routers along the paths). Instead in the data plane reside all the

mechanisms related to how interactions with the transducers have to be

relayed or terminated. Software-Defined I/O provides a two-fold benefit

134 Eng. Giuseppe Tricomi

i
i

“output” — 2021/1/10 — 14:51 — page 135 — #149 i
i

i
i

i
i

8.2. USE CASE AND EVALUATION

for an SDCI environment:

1. the ability to easily define and set up workflows and functional

pipelines that involves resources owned by different actors, in a

scenario where the number of actors involved can be significant.

2. the possibility to use routed RPCs, provided as a way to interact

with an SDCI at a suitable, user-defined level of abstraction.

SDI/O involves mainly the elements of the central layers (Data and

Control).Respectively, the former contains the Net and I/O Routers ex-

ploiting both the Publish/Subscribe communication mechanisms and the

Remote Call Procedure, that receives the data from the IoTs (exploiting

the Publish/Subscribe mechanism) and, actuates or activate procedures

on the IoTs (exploiting the Remote Call Procedure). The latter instead

hosts a pair of controllers (one for the Network topology and one for the

I/O) that are able to coordinate the setup of communication path among

peer router in the same domain or to create a path to directly forward the

data to others domains.

8.2 Use Case and Evaluation

T
O demonstrate the suitability of the approach, in the

following, SDCI is presented in an explanatory use case

in the field of physical security, which is one of the most

Eng. Giuseppe Tricomi 135

i
i

“output” — 2021/1/10 — 14:51 — page 136 — #150 i
i

i
i

i
i

CHAPTER 8. COOPERATING CPS APPLICATION: DYNAMIC
INTRUSION SURVEILLANCE SYSTEM

used in in the literature related to Smart Cities. Figure 8.3 depicts the

use case,that is describing a situation in which a smart home, detects an

unauthorized intrusion.

A B

C

D

E

Figure 8.3: Intrusion Surveillance System use case scenario [9].

In this use-case, if SDCI-federating capabilities are put in place among

the environments, the smart home (identified with the green letter B) can

use the resources shared by nearby smart environments to increase the

possibility of identifying the thieves. In fact, nearby smart environments

- another smart home (A in the figure), a smart building (C in the fig-

ure), and a smart shop (D in the figure) can make their external video

surveillance systems available for the identification of the thief. This

136 Eng. Giuseppe Tricomi

i
i

“output” — 2021/1/10 — 14:51 — page 137 — #151 i
i

i
i

i
i

8.2. USE CASE AND EVALUATION

means that even if the thieves try to compromise the internal/external

video-surveillance system of the target environment (smart home at the

letter B), the environment itself can interact through the federation to

engage the nearest external video surveillance systems. An example

of action made through the federation is sending specific commands to

change the external cameras’ position, to capture life-saving clips, or at

the least shots, of the scene, which may help law enforcement officers

identify the thieves. Even the smart city’s public smart lighting system (E

in the figure) may interact through an increment of the overall brightness

in the streets on demand, so the quality of the videos recorded by all the

involved cameras is improved.

As a reader can image, the scenario can involve in the workflow multi-

ple devices, so an index to be measured is the scalability; in the following,

a measurement of the scalability of a proof-of-concept implementation

based on the use of the WAMP protocol1 as publish/subscribe and RPC

system, and on the Crossbar.io2 application messaging router, working

either as forwarding, thus belonging to the data layer, and as controller

(control) layer as well.

Figure 8.4 reports the propagation time of the commands issued by

smart home B for an increasing number of federated smart environments

and requested IoT nodes. The evaluation is made by removing the unpre-

1https://wamp-proto.org/
2https://crossbar.io

Eng. Giuseppe Tricomi 137

i
i

“output” — 2021/1/10 — 14:51 — page 138 — #152 i
i

i
i

i
i

CHAPTER 8. COOPERATING CPS APPLICATION: DYNAMIC
INTRUSION SURVEILLANCE SYSTEM

Number of federated smart environments

C
om

m
an

d
pr

op
ag

at
io

n
tim

e
(m

s)

0

50

100

150

200

250

300

1 2 3 4

1 IoT node
10 IoT nodes
30 IoT nodes

Figure 8.4: Command propagation time with respect to the number of federated smart
environments and IoT nodes involved.

dictable effect of the network latencies, thanks to each VMs’ connection

with a host-only network enabling the communication inside the same

server. Simulated infrastructure is composed of a Crossbar.io router en-

hanced that is used in the control layer and from 1 to 4 Crossbar.io router

of the Data layer. The simulation consists of forwarding RPC towards

the four Crossbar.io routers in the Data layer. In more detail, each RPC is

delivered from another router in the data layer (representing the Home B,

violated by the thieves) that is delivering RPC towards other data layer’s

router that is managed by federated domains.

This involves, at first, the interaction with the I/O flow controller for

the creation of the appropriate forwarding tables, within the data plane,

or integration of entries in existing ones, and, in a second moment, the

138 Eng. Giuseppe Tricomi

i
i

“output” — 2021/1/10 — 14:51 — page 139 — #153 i
i

i
i

i
i

8.2. USE CASE AND EVALUATION

lookup of the aforementioned forwarding tables for the identification of

the designed destination. A total of 100 runs have been performed for

each unique data point. Figure 8.4 depicts the average propagation times,

together with the corresponding confidence intervals. The results are

very promising as they show a quasi-linear behavior with little, if not

negligible, slope.

Eng. Giuseppe Tricomi 139

i
i

“output” — 2021/1/10 — 14:51 — page 140 — #154 i
i

i
i

i
i

i
i

“output” — 2021/1/10 — 14:51 — page 141 — #155 i
i

i
i

i
i

CHAPTER9

Federated Fire Protection System as an

implementation of Software Defined City

Infrastructure.

T
HE base of knowledge provided by SDCI, presented

in the previous chapter (the chapter 8), became the

foundation for the application related to Federated Fire

Protection System management discussed in the following and presented

141

i
i

“output” — 2021/1/10 — 14:51 — page 142 — #156 i
i

i
i

i
i

CHAPTER 9. COOPERATING CPS APPLICATION: FEDERATED FIRE
PROTECTION SYSTEM

in [10].

The main idea is to exploiting the Continuum computing approach

to distribute the computation among each environment related to the

industrial district. This way, even if a disruptive fire occurs in a supply

line or between buildings, the system can continue to work, offering

rescuers the facilities essential to support the firefighters; some examples

are: access to sensors data, control on the environment such as open-

close windows, reduce the flux of water in the area safe to increase

the water where it is needed, and so on. The Cloud computing part is

meant to enable automatic reactions to a fire event aiming to make slower

the fire diffusion, extending in this way the intervention window of the

firefighters (this increases the chance to minimize the damages made by

the fire).

In particular, we have focused the Software-Defined approach towards

the Factories to be applied to an industrial district fire system. Again, the

starting point is the layered architecture presented in figure 8.2, but it is

adapted to a fire system.

Software-Defined Factories (SDF) can be considered a Smart Building

specialized for an industrial context, including all business processes.

This common root has suggested to follow and adopt the concepts at the

base of Software-Defined Building into SDF.

An SDF is a programmable factory where the business processes (e.g.,

administration, manufacturing, distribution, design, and so on), as well as

142 Eng. Giuseppe Tricomi

i
i

“output” — 2021/1/10 — 14:51 — page 143 — #157 i
i

i
i

i
i

the related to life-cycle of the environment (e.g., lighting, HVAC, surveil-

lance, energy management), are supported by smart, programmable and

interoperable devices, policies, and services. Nevertheless, these devices

can be dynamically adapted to variable operating conditions (by, e.g.,

code injection); this not only increases the source of data available in

a system (thanks to the multiple purposes that assume IoT sensing and

actuating devices). Moreover, it increases the accuracy of the data per-

ceived, and the monitoring process grows up (thanks to the redundancy

created by the shared usage of IoT sensing and actuating devices).

The architecture of an SDF is reflected on the FFPS shown in the

left-most side of Figure 9.1, collecting the SDCI’s functionalities into

three primary levels: “Infrastructure", “Management", “Application and

Services". At the bottom, the Infrastructure layer includes all the devices

and nodes composing the factory’s ICT infrastructure, including any

sensor and actuator, robot, workstation, gateway, router, smart object,

device, and machine connected to the factory communication network.

All the IoT devices can communicate, interact, and interoperate, even

through M2M or similar protocols adopting WSN or other IoT solutions,

in line with the SDF vision. This way, it is clear that an SDF should

abstract its devices by exposing API that allows their customization and

enables the programmability through a unique and uniform interface.

As is shown in figure 9.1, and in analogy with the software-defined

paradigm, this layer represents the SDF Data Plane. This plane provides

Eng. Giuseppe Tricomi 143

i
i

“output” — 2021/1/10 — 14:51 — page 144 — #158 i
i

i
i

i
i

CHAPTER 9. COOPERATING CPS APPLICATION: FEDERATED FIRE
PROTECTION SYSTEM

A
pp

lic
at

io
ns

 &

Se
rv

ic
es

 L
ay

er

 NorthBound Interface

C
on

tr
ol

 P
la

ne
D

at
a

Pl
an

e

INDUSTRIAL DISTRICT

Application/
Service

In
fr

as
tr

uc
tu

re
 L

ay
er

M
an

ag
em

en
t L

ay
er

C
lo

ud
Fo

g

Ed
ge

Federator

SouthBound Interface

A
re

a
C

on
tro

lle
r (

A
C

)
Lo

ca
l C

on
tro

lle
r

(L
C

 o
r E

LC
)

Net I/O

CONTROLLERs

FIRENet I/O

CONTROLLERs

FIRE Net I/O

CONTROLLERs

FIRE

Sub-Controller
Fire

Control
Plugin

NET.
Router

I/O
Router

Sub-Controller
Fire

Control
Plugin

NET.
Router

I/O
Router

Sub-Controller
Fire

Control
Plugin

NET.
Router

I/O
Router

Production Plants /
Production Facilities

Offices, Halls, and general
purpose Buildings

Warehouses

Figure 9.1: High Level architecture of the factory FFPS [10].

the basic mechanisms and API to program the device managed by using

a serverless architecture to allow code injection into a containerized

environment, as discussed in chapter 7.

To control and manage the Data Plane are required mechanisms for

managing both living processes (that can be derived/inherited from SDB

[147] and section 2.3.1.1) and business ones (that can be analyzed from

the literature about Software-Defined Networking [148] or Software-

Defined Manufacturing [18]). As before, referring to figure 9.1, the

144 Eng. Giuseppe Tricomi

i
i

“output” — 2021/1/10 — 14:51 — page 145 — #159 i
i

i
i

i
i

architecture reflects the SDF principles owning a layer acting as Control

Plane. The upper Management layer exploits the lower layer’s features

to specify (hardware-physical and software-data) resource management

policies. These are related to orchestration, virtualization, networking,

pooling, monitoring, and generic mechanisms similar to those conceived

for the factory business and living processes (manufacturing, safety,

energy management, etc.).

To deeper analyze the architecture, we have to talk more in detail

about Data and Control Plane. The Data Plane represents the bottom part

of the SDF architecture, where IoT devices acquire data from physical

phenomena and actuate the action defined by the fire protection system

controlling part. This plane is tailored to follow a Fog/Edge computing

fashion. It represents the Infrastructure layer, where physical devices

(sensors and actuators) of each SDF sub-domain own the fire system iden-

tification of the countermeasure elements. Furthermore, the Infrastructure

layer owns the sub-controllers driving the physical actions requested by

the upper plane. That involves the IoT devices in the interaction with the

sensors and actuators.

More in general, the lower part of this plane is not managed directly

with an approach HTTP/REST-based, as commonly happens with some

control devices used in the industrial environment that expose only M2M

interfaces. The IoT devices directly control these peripheral devices.

Those are directly linked, or in some cases, integrated directly with

Eng. Giuseppe Tricomi 145

i
i

“output” — 2021/1/10 — 14:51 — page 146 — #160 i
i

i
i

i
i

CHAPTER 9. COOPERATING CPS APPLICATION: FEDERATED FIRE
PROTECTION SYSTEM

the peripheral devices. IoTs are able to receive instructions from the

nearest sub-controllers. The sub-controllers are local node or IoT gateway

equipped with sensing and actuation devices. These elements are meant to

translate commands into actions connecting outgoing and incoming data

streams generated by the (existing and newcomer) devices in the managed

environments, thus providing a virtual bus in which devices exchange

data. The DP has to expose functionalities and Remote Procedure Calls

(RPC) to receive directives meant to shape the virtual bus dynamically.

To contextualize this plane with the fire system’s environment, a reader

can analyze Figure 9.2. Here, the devices taken into account are Smoke,

Temperature, Pressure, and Flow sensors; moreover, as actuators, we

use Valves, Sprinklers, Acoustic Alarms, and Electro-mechanical Hold-

open(doors).

Concerning the right side of Figure 9.1, it is possible to associate the

DP’s sub-controllers to the Local Controller (LC) or Enhanced-LC (ELC)

depending on their processing and networking capabilities. One of the

main differences between an ELC and an LC is wireless connectivity

in the former. In case of fire, if it is needed, it can be used to deliver

and receive the command via a wireless connection created with the

firefighters. An ELC can be promoted to Area Controller (AC) if it needs

to work in “disconnected mode” (e.g., when the connection with some

buildings of the SDF might be down due to the fire).

An Area Controller, or an external entity when the sub-controller acts

146 Eng. Giuseppe Tricomi

i
i

“output” — 2021/1/10 — 14:51 — page 147 — #161 i
i

i
i

i
i

SL2
vL2

a)

SL-0

SL1

SL2

SL3

vL1

vL2

vL3

b)

Floor 1

Floor 2

Floor 3

LC or ELC

Valve

Smoke SensorFlow Sensor

Pressure Sensor

Sprinkler

vL2L vL2R

Network connection

Main fire system pipes

Auxiliary fire system pipes

Figure 9.2: SB schematics [10]. a) Floor view. b) Whole SB view.

as Enhanced-LC interact with the LC or ELC exploiting the I/O Router

RPC requests (or subscribing events) to interact with the Fire System’s

devices controlled by it. The same approach is used by the Fire Controller

Plugin that stays side by side to the DP’s Routers; see Figure 9.1.

The Control plane corresponds to the Management layer of the SDF;

it contains two parts of the FFPS: the “Controllers" (AC/ELC) and the

“Federator". The Control Plane is usually deployed in Cloud and/or Fog

nodes. In the lower part are running the ACs, or in exceptional cases, an

ELC promoted to AC (it happens when the logical infrastructure topology

modification obliges the FFPS to provide an isolated area with an AC).

Here, the paradigm used to manage the workflow, and the computation

Eng. Giuseppe Tricomi 147

i
i

“output” — 2021/1/10 — 14:51 — page 148 — #162 i
i

i
i

i
i

CHAPTER 9. COOPERATING CPS APPLICATION: FEDERATED FIRE
PROTECTION SYSTEM

task is Fog Computing. The Controllers instruct the entities (e.g., traffic

relayers) in the Data Plane, via Southbound interface, following the

requests received through the Northbound interface (corresponding to

a request coming from the Federator or the DP Fire Control Plugin1).

The CP Fire Controller is shown in figure 9.1 as a component of the

Controllers block, represents a typical fire alarm control unit (FACU),

receiving and delivering data (raw and processed) from/to Federator and

Fire Control Plugins. Control Plane’s commands are referring to fire

management, networking, and/or I/O aspects and functionalities of the

target smart environments, acting on the corresponding controller (Fire,

Net, I/O, respectively, as shown in figure 9.1) running on each AC.

In the upper part of this plane, the “Federator" runs; it is a central

element of the infrastructure with stronger computation facilities. Accord-

ing to its purposes, it does not need to stay near the federated domains

because its interaction is more related to management and reporting than

real-time tasks. It is charged with coordination activities about the re-

quests coming by both a) the CP domains requesting action autonomously

and b) the users of the FFPS (Fire-Fighters, Security-vigilant, Factory

responsible, and so on). So it is easy to understand that Federator exploits

the Cloud Computing paradigm.

The last advantage provided by the FFPS platform, through the medi-

1DP Fire Control Plugin can make requests via Northbound interface to the Controllers in case of
an emergency appears, and an immediate reaction is due, e.g., open the valve to 100% to maximize the
water flowing in the pipes.

148 Eng. Giuseppe Tricomi

i
i

“output” — 2021/1/10 — 14:51 — page 149 — #163 i
i

i
i

i
i

ation of the Federator, is the possibility to enable the firefighter mobile

control center2 to interact with the FFPS. This way, the firefighters will

be updated about the environmental condition before entering a building

and can not only identify the better strategy to face the fire but even use

the automatism and actuation available in a building to extinguish the

fire.

2The firefighter’s mobile control center, is a supporting structure providing (data aggregation and
processing, fire monitoring, communication) management facilities to firefighter.

Eng. Giuseppe Tricomi 149

i
i

“output” — 2021/1/10 — 14:51 — page 150 — #164 i
i

i
i

i
i

i
i

“output” — 2021/1/10 — 14:51 — page 151 — #165 i
i

i
i

i
i

CHAPTER10

An effort to create and distribute a

template for Smart Cities: the

TOO(L)SMART Project

A
S discussed in the introduction and shown in Fig-

ure 1.3, the long term goal of this research path is

the definition and the creation of an environment com-

posed of cooperating CPSs. Moreover, this research aims to create a

151

i
i

“output” — 2021/1/10 — 14:51 — page 152 — #166 i
i

i
i

i
i

CHAPTER 10. COOPERATING CYBER-PHYSICAL SYSTEMS: A
TEMPLATE FOR SMART CITIES

“CPS Layer” overlapping the physical environment to support people’s

lives fully.

Even if the final goal is very far to be reached, an impressive inter-

mediate result may make each city “Smart”. In the last years, several

initiatives are conducted from the government (national but even coming

from the European Community) to promote and push the cities’ transfor-

mation. This way surely has produced a big jump forward, but without a

real guideline, each path followed in this process, even if pointing to the

same destination, follows different directions. The previous issue appears

when the transformation process is made in different geographical areas

and over time. This happens because the different initiatives’ owners do

not always belong to the same administration and/or designed with the

same criteria as the previous one. Trying to solve this unpleasant practice,

national governments have released some guidelines to unify digitization

processes. In particular, in Italy in recent years, a special agency (Agenzia

per l’Italia Digitale, AgID) has been created to digitize infrastructure and

public administration. AgID has defined some criteria for the adoption

of technologies and systems related to the digitization process, pushing

administrations to “Reuse” the solutions adopted by administrations that

had already carried out this digitization process. Following the directives

issued by AgID, the TOO(L)SMART project [149] aims to reuse what

was previously realized within the #SmartMe project [150], enhancing it

from the technological point of view and allowing a wide experimentation

152 Eng. Giuseppe Tricomi

i
i

“output” — 2021/1/10 — 14:51 — page 153 — #167 i
i

i
i

i
i

scenario for the solution. In fact, the architecture has been prepared in

different cities (Turin, Padua, Lecce, Syracuse), which, being geo-located

in different areas of Italy, allowed to verify the goodness of the architec-

ture into the different operative conditions (weather, infrastructure, social

engagement, and so on).

The idea is to create a template shareable between the city to set up

a CPS’s skeleton pluggable and extensible over time. For this purpose,

a reference model was followed to design the template for a Smart City.

Bawany et al. in [151] describe a 4-layer model to summarize the Smart

City systems. At the bottom, the foundation of a Smart City is the

(ICT) infrastructure composed of the actuators and sensors located in

the urban area, including both private and public devices (e.g., smart

cameras, air pollution, and weather stations, traffic lights, and so on).

Furthermore, network resources and related issues have to be considered

in the Infrastructure layer, as well as storage and processing facilities

able to collect, manage, and process data. The management layer is

meant to provide basic, core mechanisms for enabling the Smart City

infrastructure, exploited by users/citizens, to access all the available

resources. Then it requested a Management layer working on top of

the infrastructure one, providing platform-advanced features based on

and extending the infrastructure core mechanisms (e.g., security, privacy,

monitoring, profiling, SLA, and QoS mechanisms and policies, and so on).

The Application layer supports the Smart City services and applications

Eng. Giuseppe Tricomi 153

i
i

“output” — 2021/1/10 — 14:51 — page 154 — #168 i
i

i
i

i
i

CHAPTER 10. COOPERATING CYBER-PHYSICAL SYSTEMS: A
TEMPLATE FOR SMART CITIES

that are referring to contexts such as mobility, energy, water, waste,

public safety, and mobility building management, to name a few. Finally,

the Stakeholder layer includes all the entities involved in a Smart city

(e.g., the municipality, citizens, enterprises, telecommunication operators,

officers, and so on).

TOO(L)SMART is a project aiming to reuse and improve the output

of the #SmartME project [152] that was a crowd-funded initiative aiming

at morphing Messina into a Smart City [153]. In line with its ancestor,

TOO(L)SMART’s main goal is to disseminate IoT resources throughout

the territory of the city adopting its architecture, to obtain an infrastructure

for ubiquitous sensing and actuation acting as a virtual laboratory to

which multiple stakeholders can contribute with their own resources and

on top of which they can develop applications and services for research,

business, and administrative activities.

The TOO(L)SMART’s template of a Smart City architecture includes

the first three layers of the 4-layer model defined by [151], starting from

the lower layer.

On the Infrastructure Layer, there are the Edge Nodes, these de-

vices are spread into the city, and they are exposing the sensors and

actuators facilities. The Edge nodes that provide their facilities to the

upper layer host a software called Lighting-Rod(LR) that is a part of

the Stack4Things(S4T) framework (see section 4.2). S4T is composed

of two main components: the first one (LR) is running on the Edge de-

154 Eng. Giuseppe Tricomi

i
i

“output” — 2021/1/10 — 14:51 — page 155 — #169 i
i

i
i

i
i

Controller Dataportal

 crossbar

w
stun

 IoTronic

 m
yS

Q
L

 G
rafana

 Influxdb

 N
odeR

ed

C
K

A
N

Application layerManagement layer

Infrastructure
layer

IoT

IoT

IoT

IoT

a) b)

Figure 10.1: High Level architecture of the TOO(L)SMART template.

vices; instead, the other one is IoTronic (see section 4.2) running in the

Cloud with management purposes; for this reason, with other few compo-

nents, it runs inside the Controller node that represents the Management

Layer of this architecture. The S4T framework follows an on-demand,

service-oriented provisioning model to manage IoT nodes. This is pos-

sible moving the IoT paradigm towards the Cloud for, on the one hand,

providing control and management capabilities to IoT nodes and, on the

other, extending the Cloud paradigm with pervasiveness capabilities to

interact with the physical world. The architecture so proposed in the

TOO(L)SMART template is modeled on the client-server paradigm. On

the IoT node side, the Stack4Things lighting-rod runs under the device-

native environment available for developers and interacts with the OS

Eng. Giuseppe Tricomi 155

i
i

“output” — 2021/1/10 — 14:51 — page 156 — #170 i
i

i
i

i
i

CHAPTER 10. COOPERATING CYBER-PHYSICAL SYSTEMS: A
TEMPLATE FOR SMART CITIES

tools and services available. Interactions are implemented by UNIX-style,

exploiting file system-based abstractions of the underlying interfaces,

either GPIO for embedded boards or API-mediated for mobiles, and

enforced by WebSocket-based tunneling and WAMP-based messaging

between the Stack4Things lightning-rod and IoTronic service. Regarding

the technologies implemented in the project experimentation, we are

referring to a system called Arancino described in section 4.3.

The last layer, the Application layer, is represented by the Dataportal

node where are contained the API, the dashboard, and the Open Data

repository. The services exposed by this component enable developers to

define applications that exploit the data and interacts with the devices (ac-

cording to the right access owned) through the tools available, as defined

in the template via Node-Red interaction. An example of application

realized upon this template is shown in Figure 10.2; the instruments

provided both by the application and the management layers are used

in a Node-Red flow that, in this case, produces a map enriched by data

coming from a weather station located in the cities.

Each city involved in the TOO(L)SMART project has provided her

portal, the dataportal (shown in Figure 10.1) accessible with an URL in

the format https://dataportal.comune.XXX.it:1880/worldmap, where

XXX is the name of the city owning the dataportal.

As said before, the template represents a skeleton upon which is

attached to the muscle and the tendons of the Smart City:

156 Eng. Giuseppe Tricomi

i
i

“output” — 2021/1/10 — 14:51 — page 157 — #171 i
i

i
i

i
i

a) b)

Figure 10.2: Examples of the map developed through tools available in the template.

∙ it offers a framework (S4T) ables to manage the IoT devices behav-

ior and even their lifecycle;

∙ it offers an Open Source data repository connected to a time-series

database for high-performance visualization and elaboration of data;

∙ it offers a system enabling the SC Administrator(or more in general

a User) to create applications involving the IoT devices owned by

the city.

Anyway, this is not the only reason why we can define this template as a

skeleton. This is a skeleton because, thanks to the adoption of this model

by several Italian cities and even because it is easily replicable (all the

template can be hosted with 2 VMs), it will become the spinal column

for disseminating Smart Cities made through few steps.

Eng. Giuseppe Tricomi 157

i
i

“output” — 2021/1/10 — 14:51 — page 158 — #172 i
i

i
i

i
i

i
i

“output” — 2021/1/10 — 14:51 — page 159 — #173 i
i

i
i

i
i

CHAPTER11

Conclusions

W
ITHOUT any doubt, “Cyber Physical Systems”

are becoming increasingly part of our daily rou-

tine. In the foreseeable future, the number of en-

vironments bearing at least a CPS will drastically increase, so creating

and deploying applications working within a cooperation among several

CPSs will become a natural evolution of CPSs close to people’s daily

life.

159

i
i

“output” — 2021/1/10 — 14:51 — page 160 — #174 i
i

i
i

i
i

CHAPTER 11. CONCLUSIONS

Similarly to Cloud cooperation instances, where the cooperation agree-

ment and the resource sharing are transparent to the end-user, a coop-

erative system composed of CPSs is better established with a federated

cooperation scheme. Indeed, the federation of CPSs seems to be a suit-

able approach working effectively for environments owned by different

domains that can interact with each other reducing the risks of misuse

or weakness exploitation. This is valid both in cooperation mediated

by a third party agent (a broker) than when there is any autonomous

management (i.e., a peer management). In fact, federating domains is a

very broad concept that encompasses many branches of research, such

as interoperability between different systems, definition and compliance

with SLA policies, users’ data security, creation of trusted and high-

quality environments in terms of both the availability and reliability of

the services provided. After a preliminary study of the literature, on the

well-trodden, and comparable scenario of cooperation among Clouds, this

thesis presents some solutions that may be applied to a single CPS, but

easily extensible towards cooperation with other CPSs. Indeed, in chapter

5 a structure of a CPS is presented that may be easily integrated with pre-

existing devices (sensors and actuators) in an environment. This structure

is meant to be managed from a centralized element (the Stack4Things

framework) that enables the administrator (or who owns the system) to

update or modify AI running on the device, under the guise of a plugin,

according to the environment’s requirements. This way, the system can

160 Eng. Giuseppe Tricomi

i
i

“output” — 2021/1/10 — 14:51 — page 161 — #175 i
i

i
i

i
i

benefit from several advantages: i) easy functionality restore in case of

error or fault, ii) a centralized data repository, iii) the chance to extend

the system functionalities through definition, injection, and execution of

new AI-based modules that are executed on the Edge devices involved

in the system (according to the available resources at the edge). The

results obtained highlight mostly two underlying limitations that can be

overcome thanks to cooperation among CPSs in the analyzed scenarios

and use cases: the need to increase the compute power available on

systems at the edge of the network, often constrained by design, and the

requirement to interact with a neighbor to increase the data available to

improve hosted services.

The latter consideration is supported by the results shown by Figures

6.2 and 6.6 in which the application computing the data coming from

another CPS (the Smart City) is able to produce an improvement of

the CPS behavior (the vehicle) and consequently provide benefits to

the people interacting with it. The system envisioned and discussed

in chapter 6 exploits communications that connect the vehicle with the

centralized (possibly cloud-based) Smart City computation facilities, so

the computation and all the periodical “update-requests” coming from the

vehicles are sent towards a centralized system. Even if the cooperation

works fine and, as it is proved, the system is able to improve the traversal

time (or the fuel consumption) of vehicles moving inside the city, it

appears clear that something could be improved in this infrastructure;

Eng. Giuseppe Tricomi 161

i
i

“output” — 2021/1/10 — 14:51 — page 162 — #176 i
i

i
i

i
i

CHAPTER 11. CONCLUSIONS

an example may be the need to manage the huge amount of requests

received by the centralized system and the computation connected to

these requests in closer proximity to the requesting vehicles. This way, it

will be possible to increase the efficiency of the communication between

the SC and the vehicles.

For these reasons, the research scope has been extended to include

serverless approaches, i.e., those that applied on a CPS enable the whole

computing continuum infrastructure (Cloud, Fog, and Edge) to cooperate,

splitting bigger and higher-complexity application tasks into smaller and

simpler ones. This way, it is possible to enable one or more CPSs to

interact quickly with the users or the environment, in near real-time,

because computation gets shifted near the site where it is needed the

most. Another interesting feature that a CPS may provide lies in sharing

I/O data with other CPSs to enable remote computation upon such data.

This feature is particularly adaptable for scenarios where the SLA agreed

by cooperating CPSs is very strict, and the degree of cooperation is very

loose. The experiments and the applications here investigated underline

that, even in a loosely coupled scenario, it is possible to define interesting

and dynamic configurations for cooperating CPSs. As demonstrated by

the experimental results presented in chapter 8, the cooperation among

CPSs can be realized without affecting the performance of the resulting

combination. As shown in Figure 8.4, the implementation of cooperation

among environments is very promising thanks to the quasi-linear scalabil-

162 Eng. Giuseppe Tricomi

i
i

“output” — 2021/1/10 — 14:51 — page 163 — #177 i
i

i
i

i
i

ity for data and command stream brokering with little (if not negligible)

additional delays, and this means that the cooperation among CPSs is

exploitable without counteracting the advantages introduced by shifting

computing duties to the Edge.

Finally, to foster (federated) CPSs adoption, in particular, in the con-

text of Smart Cities, a base template for CPSs has been proposed and

deployed in five major cities under an Italian government-sponsored

project called Too(L)smart.

In future works, the experiences gathered along the investigations I

pursued have to be collected and integrated into a coherent worldview

made up of a hierarchical-composable CPS able to be easily interfaced

with both pre-existing systems and other CPSs. This way, the resulting

system can provide computing and storage facilities more granularly,

avoiding the problems related to latency and communication, thanks to

the exploitation of Computing Continuum principles. Furthermore, we

are going to define an approach that can mix the benefits coming from the

Serverless-FaaS with control of the owner coming from the interaction

with the I/O based approach. The solution thus created could be included

in the template to be applied in a realistic scenario, e.g., a Smart City.

Moreover, the adoption of CPSs and the efforts for cooperation among

them will introduce another complex problem to face: the definition of a

standard and agreed communication interface by each CPSs. Researchers

and governments’ actions are fundamental to reach the cooperation goal,

Eng. Giuseppe Tricomi 163

i
i

“output” — 2021/1/10 — 14:51 — page 164 — #178 i
i

i
i

i
i

CHAPTER 11. CONCLUSIONS

even if the experience obtained from the previous initiatives made in

Cloud Computing fields could guide us to make the right decision and

avoid some locking situation. Examples of issues suffered by the Cloud

Computing cooperation schema are the late definition of a standard

common communication interface that has to adapt to the pre-existent

technologies or the difficulties of setting up cooperative schema due to

the reticence change market balances.

Other interesting topics to analyze as next steps for my research

in the near future about interconnected (and possibly, federated) CPSs

are related to “Security”, “Authorization and Delegation”, “Dynamic

management”, “Autonomous Integration”, and so on. These cooperation-

based approaches, utilities and applications may be the cornerstone for

the autonomous management of cooperating CPSs. Blockchains and

Machine Learning can help in addressing various aspects pertaining

to previous topics. Blockchain-based approaches mostly to ensure the

integrity, immutability, and transparent behaviours of contextual data,

possibly able to disclose the privacy of the people; instead, Machine

Learning empowers the investigation and design of mechanisms for

dynamic and autonomous management of the interactions to broker

among cooperating CPSs.

164 Eng. Giuseppe Tricomi

i
i

“output” — 2021/1/10 — 14:51 — page 165 — #179 i
i

i
i

i
i

Bibliography

[1] [Online]. Available: https://www.plesk.com/blog/various/

iaas-vs-paas-vs-saas-various-cloud-service-models-compared/

[2] (2013). [Online]. Available: https://mycloudblog7.wordpress.com/2013/06/19/

who-manages-cloud-iaas-paas-and-saas-services/

[3] T. Kurze, M. Klems, D. Bermbach, A. Lenk, S. Tai, and M. Kunze, “Cloud federation,”

in Proceedings of the 2nd International Conference on Cloud Computing, GRIDs, and

Virtualization (CLOUD COMPUTING 2011), vol. 1971548541. Citeseer, 2011.

[4] Berkeley. Cyber physical systems conceptual map. [Online]. Available: http:

//CyberPhysicalSystems.org

[5] OpenStack Community, 2020, https://docs.openstack.org/install-guide/get-started-logical-

architecture.html.

[6] G. Cicceri, C. Scaffidi, Z. Benomar, S. Distefano, A. Puliafito, G. Tricomi, and G. Merlino,

“Smart healthy intelligent room: Headcount through air quality monitoring,” in SmartSys

2020 workshop held in Smartcomp. IEEE, sep 2020.

165

https://www.plesk.com/blog/various/iaas-vs-paas-vs-saas-various-cloud-service-models-compared/
https://www.plesk.com/blog/various/iaas-vs-paas-vs-saas-various-cloud-service-models-compared/
https://mycloudblog7.wordpress.com/2013/06/19/who-manages-cloud-iaas-paas-and-saas-services/
https://mycloudblog7.wordpress.com/2013/06/19/who-manages-cloud-iaas-paas-and-saas-services/
http://CyberPhysicalSystems.org
http://CyberPhysicalSystems.org

i
i

“output” — 2021/1/10 — 14:51 — page 166 — #180 i
i

i
i

i
i

BIBLIOGRAPHY

[7] C. Scaffidi, G. Tricomi, S. Distefano, and Puliafito, “Scinas, a smart city-driven navigation

system to catch green waves,” in Conference on Sustainable Mobility, CSM 2020. SAE,

sep 2020.

[8] G. Tricomi, Z. Benomar, F. Aragona, G. Merlino, F. Longo, and A. Puliafito, “A nodered-

based dashboard to deploypipelines on top of iot infrastructure,” in SMARTCOMP. IEEE,

sep 2020.

[9] G. Tricomi, G. Merlino, F. Longo, S. Distefano, and A.Puliafito, “Software-defined city

infrastructure: a control plane for rewireable smart cities,” in 2019 IEEE 5th Intl Conf on

Smart Computing and Its Associated Workshops (SMARTCOMP).

[10] G. Tricomi, C. Scaffidi, G. Merlino, F. Longo, A. Puliafito, and S. Distefano, “An

adaptive fire protection system for software-defined factories,” oct 2020, submitted to

COMPUTERS IN INDUSTRY waiting for response.

[11] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of things (iot): A vision,

architectural elements, and future directions,” Future Generation Computer Systems,

vol. 29, no. 7, pp. 1645 – 1660, 2013, including Special sections: Cyber-enabled

Distributed Computing for Ubiquitous Cloud and Network Services Cloud Computing

and Scientific Applications, Big Data, Scalable Analytics, and Beyond. [Online].

Available: http://www.sciencedirect.com/science/article/pii/S0167739X13000241

[12] H. Sundmaeker, P. Guillemin, P. Friess, and S. Woelfflé, “Vision and challenges for

realising the internet of things,” Cluster of European Research Projects on the Internet of

Things, European Commision, vol. 3, no. 3, pp. 34–36, 2010.

[13] L. Srivastava, T. Kelly et al., “The internet of things,” International Telecommunication

Union, Tech. Rep, vol. 7, 2005.

[14] J. Bélissent et al., “Getting clever about smart cities: New opportunities require new

business models,” Cambridge, Massachusetts, USA, vol. 193, pp. 244–77, 2010.

[15] A. Ting-pat So and W. Lok Chan, Intelligent Building Systems, 1st ed., ser. The

International Series on Asian Studies in Computer and Information Science 5.

166 Eng. Giuseppe Tricomi

http://www.sciencedirect.com/science/article/pii/S0167739X13000241

i
i

“output” — 2021/1/10 — 14:51 — page 167 — #181 i
i

i
i

i
i

BIBLIOGRAPHY

Springer US, 1999. [Online]. Available: https://link.springer.com/chapter/10.1007/

978-1-4615-5019-8_13

[16] B. Qolomany, A. Al-Fuqaha, A. Gupta, D. Benhaddou, S. Alwajidi, J. Qadir, and

A. C. Fong, “Leveraging machine learning and big data for smart buildings: A

comprehensive survey,” IEEE Access, vol. 7, pp. 90 316–90 356, 2019. [Online].

Available: https://doi.org/10.1109/access.2019.2926642

[17] E. Commission, D.-G. for the Information Society, and Media. (Luxembourg, 2009.)

Ict for a low carbon economy: Smart electricity distribution networks. [Online].

Available: https://ec.europa.eu/information_society/activities/sustainable_growth/docs/

sb_publications/smartbuildings-ld.pdf

[18] L. Thames and D. Schaefer, “Software-defined cloud manufacturing for industry 4.0,”

Procedia CIRP, vol. 52, pp. 12 – 17, 2016, the Sixth International Conference on

Changeable, Agile, Reconfigurable and Virtual Production (CARV2016). [Online].

Available: http://www.sciencedirect.com/science/article/pii/S2212827116307910

[19] B. Chen, J. Wan, L. Shu, P. Li, M. Mukherjee, and B. Yin, “Smart factory of industry 4.0:

Key technologies, application case, and challenges,” IEEE Access, vol. 6, pp. 6505–6519,

2018.

[20] M. Brettel, N. Friederichsen, M. A. Keller, and M. Rosenberg, “How virtualization,

decentralization and network building change the manufacturing landscape: An industry

4.0 perspective,” 2014.

[21] G. Merlino, D. Bruneo, F. Longo, A. Puliafito, and S. Distefano, “Software defined cities:

A novel paradigm for smart cities through iot clouds,” in 2015 IEEE 12th Intl Conf on

Ubiquitous Intelligence and Computing and 2015 IEEE 12th Intl Conf on Autonomic

and Trusted Computing and 2015 IEEE 15th Intl Conf on Scalable Computing and

Communications and Its Associated Workshops (UIC-ATC-ScalCom), Aug 2015, pp.

909–916.

Eng. Giuseppe Tricomi 167

https://link.springer.com/chapter/10.1007/978-1-4615-5019-8_13
https://link.springer.com/chapter/10.1007/978-1-4615-5019-8_13
https://doi.org/10.1109/access.2019.2926642
https://ec.europa.eu/information_society/activities/sustainable_growth/docs/sb_publications/smartbuildings-ld.pdf
https://ec.europa.eu/information_society/activities/sustainable_growth/docs/sb_publications/smartbuildings-ld.pdf
http://www.sciencedirect.com/science/article/pii/S2212827116307910

i
i

“output” — 2021/1/10 — 14:51 — page 168 — #182 i
i

i
i

i
i

BIBLIOGRAPHY

[22] M. S. Q. Z. Nine, M. A. K. Azad, S. Abdullah, and N. Ahmed, “Dynamic load sharing

to maximize resource utilization within cloud federation,” in Cloud Computing and Big

Data. Springer Science + Business Media, 2015, pp. 125–137.

[23] L. Barreto, J. Fraga, and F. Siqueira, “Conceptual model of brokering and authentication

in cloud federations,” in 2015 IEEE 4th International Conference on Cloud Networking

(CloudNet). Institute of Electrical and Electronics Engineers (IEEE), oct 2015.

[24] A. Kertesz, G. Kecskemeti, M. Oriol, P. Kotcauer, S. Acs, M. Rodríguez, O. Mercè,

A. C. Marosi, J. Marco, and X. Franch, “Enhancing federated cloud management with an

integrated service monitoring approach,” J Grid Computing, vol. 11, no. 4, pp. 699–720,

Jun. 2013.

[25] G. Tricomi, A. Panarello, G. Merlino, F. Longo, D. Bruneo, and A. Puliafito, “Orches-

trated multi-cloud application deployment in OpenStack with TOSCA,” in 2017 IEEE

International Conference on Smart Computing (SMARTCOMP). IEEE, may 2017.

[26] L. Bittencourt, R. Immich, R. Sakellariou, N. Fonseca, E. Madeira, M. Curado, L. Villas,

L. DaSilva, C. Lee, and O. Rana, “The internet of things, fog and cloud continuum:

Integration and challenges,” Internet of Things, vol. 3, pp. 134–155, 2018.

[27] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its role in the internet

of things,” in Proceedings of the first edition of the MCC workshop on Mobile cloud

computing, 2012, pp. 13–16.

[28] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and challenges,”

IEEE internet of things journal, vol. 3, no. 5, pp. 637–646, 2016.

[29] P. Castro, V. Ishakian, V. Muthusamy, and A. Slominski, “Serverless programming

(function as a service),” in 2017 IEEE 37th International Conference on Distributed

Computing Systems (ICDCS), June 2017, pp. 2658–2659.

[30] G. Tricomi, A. Panarello, G. Merlino, and A. Puliafito, “Optimal selection tech-

niques for cloud service providers,” IEEE Access, Nov 2020, DOI: 10.1109/AC-

CESS.2020.3035816.

168 Eng. Giuseppe Tricomi

i
i

“output” — 2021/1/10 — 14:51 — page 169 — #183 i
i

i
i

i
i

BIBLIOGRAPHY

[31] BEACON, “The beacon - enabling federated cloud networking project,” 2015. [Online].

Available: https://cordis.europa.eu/project/rcn/194143/factsheet/en

[32] C. Scaffidi, G. Tricomi, S. Distefano, and A. Puliafito, “Continuous green2 waves for

surfing smart cities,” in SSC 2020 workshop held in Smartcomp. IEEE, sep 2020.

[33] G. Tricomi, D. Giosa, G. Merlino, O. Romeo, and F. Longo, “Toward a function-as-a-

service framework for genomic analysis,” in SmartSys 2020 workshop held in Smartcomp.

IEEE, sep 2020.

[34] G. Tricomi, Z. Benomar, G. Merlino, F. Longo, A. M. Longo, and A. Puliafito,

“Too(l)smart: A template to make cities "smart",” in i-CITIES, 2020.

[35] G. Tricomi, F. Longo, G. Merlino, and A. Puliafito, “From a smart city service platform

towards a smart city template: smartme & too(l)smart projects.” 2020, submitted for

Smart City Workshop in Hanoi.

[36] P. Mell and T. Grance, “The nist definition of cloud computing,” National Institute of

Standards and Technology (NIST), Gaithersburg, MD, Tech. Rep. 800-145, September

2011. [Online]. Available: http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.

pdf

[37] A. Botta, W. De Donato, V. Persico, and A. Pescapé, “Integration of Cloud computing and

Internet of Things: a survey,” Future generation computer systems, vol. 56, pp. 684–700,

2016.

[38] M. Díaz, C. Martín, and B. Rubio, “State-of-the-art, challenges, and open issues in the

integration of internet of things and cloud computing,” Journal of Network and Computer

applications, vol. 67, pp. 99–117, 2016.

[39] P. P. Ray, “A survey of iot cloud platforms,” Future Computing and Informatics Journal,

vol. 1, no. 1-2, pp. 35–46, 2016.

[40] C. Puliafito, E. Mingozzi, F. Longo, A. Puliafito, and O. Rana, “Fog computing for the

internet of things: A survey,” ACM Transactions on Internet Technology (TOIT), vol. 19,

no. 2, p. 18, 2019.

Eng. Giuseppe Tricomi 169

https://cordis.europa.eu/project/rcn/194143/factsheet/en
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf

i
i

“output” — 2021/1/10 — 14:51 — page 170 — #184 i
i

i
i

i
i

BIBLIOGRAPHY

[41] T. H. Luan, L. Gao, Z. Li, Y. Xiang, G. Wei, and L. Sun, “Fog computing: Focusing on

mobile users at the edge,” arXiv preprint arXiv:1502.01815, 2015.

[42] P. Hu, S. Dhelim, H. Ning, and T. Qiu, “Survey on fog computing: architecture, key tech-

nologies, applications and open issues,” Journal of network and computer applications,

vol. 98, pp. 27–42, 2017.

[43] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and challenges,”

IEEE Internet of Things Journal, vol. 3, no. 5, pp. 637–646, 2016.

[44] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for vm-based cloudlets

in mobile computing,” IEEE Pervasive Computing, vol. 8, no. 4, pp. 14–23, 2009.

[45] A. Davis, J. Parikh, and W. E. Weihl, “Edgecomputing: extending enterprise applications

to the edge of the internet,” in Proceedings of the 13th international World Wide Web

conference on Alternate track papers & posters, 2004, pp. 180–187.

[46] A. Rabay’a, E. Schleicher, and K. Graffi, “Fog computing with p2p: Enhancing fog

computing bandwidth for iot scenarios,” in 2019 International Conference on Internet

of Things (iThings) and IEEE Green Computing and Communications (GreenCom)

and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data

(SmartData), 2019, pp. 82–89.

[47] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella, “On multi-access

edge computing: A survey of the emerging 5g network edge cloud architecture and

orchestration,” IEEE Communications Surveys Tutorials, vol. 19, no. 3, pp. 1657–1681,

thirdquarter 2017.

[48] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, Mobile Edge Computing A

key technology towards 5G. ETSI, 2015, vol. White Paper No. 11.

[49] I. Morris. (2016, sep) Etsi drops ’mobile’ from mec. [On-

line]. Available: https://www.lightreading.com/mobile/mec-(mobile-edge-computing)

/etsi-drops-mobile-from-mec/d/d-id/726273

170 Eng. Giuseppe Tricomi

https://www.lightreading.com/mobile/mec-(mobile-edge-computing)/etsi-drops-mobile-from-mec/d/d-id/726273
https://www.lightreading.com/mobile/mec-(mobile-edge-computing)/etsi-drops-mobile-from-mec/d/d-id/726273

i
i

“output” — 2021/1/10 — 14:51 — page 171 — #185 i
i

i
i

i
i

BIBLIOGRAPHY

[50] L. Bittencourt, R. Immich, R. Sakellariou, N. Fonseca, E. Madeira, M. Curado, L. Villas,

L. DaSilva, C. Lee, and O. Rana, “The internet of things, fog and cloud continuum:

Integration and challenges,” Internet of Things, vol. 3-4, pp. 134 – 155, 2018. [Online].

Available: http://www.sciencedirect.com/science/article/pii/S2542660518300635

[51] J. Blythe, S. Jain, E. Deelman, Y. Gil, K. Vahi, A. Mandal, and K. Kennedy, “Task

scheduling strategies for workflow-based applications in grids,” in CCGrid 2005. IEEE

International Symposium on Cluster Computing and the Grid, 2005., vol. 2. IEEE,

2005, pp. 759–767.

[52] L. F. Bittencourt, J. Diaz-Montes, R. Buyya, O. F. Rana, and M. Parashar, “Mobility-

aware application scheduling in fog computing,” IEEE Cloud Computing, vol. 4, no. 2,

pp. 26–35, 2017.

[53] D. Zeng, L. Gu, S. Guo, Z. Cheng, and S. Yu, “Joint optimization of task scheduling and

image placement in fog computing supported software-defined embedded system,” IEEE

Transactions on Computers, vol. 65, no. 12, pp. 3702–3712, 2016.

[54] H. Xu and B. Li, “Joint request mapping and response routing for geo-distributed cloud

services,” in 2013 Proceedings IEEE INFOCOM. IEEE, 2013, pp. 854–862.

[55] C.-C. Hung, L. Golubchik, and M. Yu, “Scheduling jobs across geo-distributed data-

centers,” in Proceedings of the Sixth ACM Symposium on Cloud Computing, 2015, pp.

111–124.

[56] B. Heintz, A. Chandra, R. K. Sitaraman, and J. Weissman, “End-to-end optimization for

geo-distributed mapreduce,” IEEE Transactions on Cloud Computing, vol. 4, no. 3, pp.

293–306, 2014.

[57] T. Lynn, P. Rosati, A. Lejeune, and V. Emeakaroha, “A preliminary review of enterprise

serverless cloud computing (function-as-a-service) platforms,” in 2017 IEEE Interna-

tional Conference on Cloud Computing Technology and Science (CloudCom), Dec 2017,

pp. 162–169.

Eng. Giuseppe Tricomi 171

http://www.sciencedirect.com/science/article/pii/S2542660518300635

i
i

“output” — 2021/1/10 — 14:51 — page 172 — #186 i
i

i
i

i
i

BIBLIOGRAPHY

[58] A. Glikson, S. Nastic, and S. Dustdar, “Deviceless edge computing: Extending serverless

computing to the edge of the network,” in In Proceedings of the 10th ACM International

Systems and Storage Conference (SYSTOR), 2017.

[59] A. Alvarado. (2019, Sep) Serverless vs. FaaS: A beginner’s guide. [Online]. Available:

https://www.liquidweb.com/kb/serverless-vs-faas-a-beginners-guide/

[60] P. Johnston. (2018, jul) Serverless: It’s much much more

than FaaS. [Online]. Available: https://medium.com/@PaulDJohnston/

serverless-its-much-much-more-than-faas-a342541b982e

[61] L. E. Hecht. (2018, oct) Add it up: Faas not equal serverless. [Online]. Available:

https://thenewstack.io/add-it-up-serverless-faas/

[62] CNCF-Serverless-Working-Group. (2018, mar) Serverless whitepaper v1.0, tech.

rep., cloudnative computing foundation. [Online]. Available: https://github.com/cncf/

wg-serverless/tree/master/whitepapers/serverless-overview

[63] Apache. (2019) Apache OpenWhisk. [Online]. Available: https://openwhisk.apache.org/

[64] Microsoft. (2019) Azure IoT Edge. [Online]. Available: https://azure.microsoft.com/

en-us/services/iot-edge/

[65] Amazon. (2019) AWS Greengrass. [Online]. Available: https://aws.amazon.com/

greengrass/

[66] IBM. (2019) Ibm Watson IoT platform. [Online]. Available: https://www.ibm.com/cloud/

internet-of-things

[67] B. Cheng, J. Fuerst, G. Solmaz, and T. Sanada, “Fog function: Serverless fog computing

for data intensive iot services,” in 2019 IEEE International Conference on Services

Computing (SCC). IEEE, 2019, pp. 28–35.

[68] P. Persson and O. Angelsmark, “Kappa: serverless iot deployment,” in Proceedings of

the 2nd International Workshop on Serverless Computing, 2017, pp. 16–21.

172 Eng. Giuseppe Tricomi

https://www.liquidweb.com/kb/serverless-vs-faas-a-beginners-guide/
https://medium.com/@PaulDJohnston/serverless-its-much-much-more-than-faas-a342541b982e
https://medium.com/@PaulDJohnston/serverless-its-much-much-more-than-faas-a342541b982e
https://thenewstack.io/add-it-up-serverless-faas/
https://github.com/cncf/wg-serverless/tree/master/whitepapers/serverless-overview
https://github.com/cncf/wg-serverless/tree/master/whitepapers/serverless-overview
https://openwhisk.apache.org/
https://azure.microsoft.com/en-us/services/iot-edge/
https://azure.microsoft.com/en-us/services/iot-edge/
https://aws.amazon.com/greengrass/
https://aws.amazon.com/greengrass/
https://www.ibm.com/cloud/internet-of-things
https://www.ibm.com/cloud/internet-of-things

i
i

“output” — 2021/1/10 — 14:51 — page 173 — #187 i
i

i
i

i
i

BIBLIOGRAPHY

[69] B. Sotomayor, R. S. Montero, I. M. Llorente, and I. Foster, “Virtual infrastructure

management in private and hybrid clouds,” IEEE Internet Computing, vol. 13, no. 5, pp.

14–22, 2009.

[70] R. S. Montero, R. Moreno-Vozmediano, and I. M. Llorente, “An elasticity model for high

throughput computing clusters,” Journal of Parallel and Distributed Computing, vol. 71,

no. 6, pp. 750 – 757, 2011, special Issue on Cloud Computing. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0743731510000985

[71] A. Celesti, F. Tusa, M. Villari, and A. Puliafito, “Integration of clever clouds with third

party software systems through a rest web service interface,” in 2012 IEEE Symposium

on Computers and Communications (ISCC), 2012, pp. 000 827–000 832.

[72] A. Celesti, F. Tusa, M. Villari, and A. Puliafito, “How the dataweb can support cloud

federation: Service representation and secure data exchange,” in 2012 Second Symposium

on Network Cloud Computing and Applications, 2012, pp. 73–79.

[73] J. Tordsson, R. S. Montero, R. Moreno-Vozmediano, and I. M. Llorente, “Cloud brokering

mechanisms for optimized placement of virtual machines across multiple providers,”

Future generation computer systems, vol. 28, no. 2, pp. 358–367, 2012.

[74] D. Petcu, “Multi-cloud,” in Proceedings of the 2013 international workshop on Multi-

cloud applications and federated clouds - MultiCloud. Association for Computing

Machinery (ACM), 2013.

[75] Artemis industry associations. [Online]. Available: https://artemis-ia.eu/

[76] C. Someswara Rao, K. V. S. Murthy, S. V. Appaji, and R. Shiva Shankar, “Cyber-physical

systems security: Definitions, methodologies, metrics, and tools,” in Smart Intelligent

Computing and Applications, S. C. Satapathy, V. Bhateja, J. R. Mohanty, and S. K.

Udgata, Eds. Singapore: Springer Singapore, 2020, pp. 477–488.

[77] [Online]. Available: :http://newsinfo.nd.edu/news/

17248-nsf-funds-cyber-physical-systems-project/.

Eng. Giuseppe Tricomi 173

http://www.sciencedirect.com/science/article/pii/S0743731510000985
https://artemis-ia.eu/
: http://newsinfo.nd.edu/news/17248-nsf-funds-cyber-phys ical-systems-project/.
: http://newsinfo.nd.edu/news/17248-nsf-funds-cyber-phys ical-systems-project/.

i
i

“output” — 2021/1/10 — 14:51 — page 174 — #188 i
i

i
i

i
i

BIBLIOGRAPHY

[78] J. Wan, H. Yan, H. Suo, and F. Li, “Advances in cyber-physical systems research.” KSII

Transactions on Internet & Information Systems, vol. 5, no. 11, 2011.

[79] D. Snoonian, “Smart buildings,” IEEE Spectrum, vol. 40, no. 8, pp. 18–23, Aug 2003.

[80] M. R. Alam and M. A. M. Reaz, M. B. I.and Ali, “A review of smart homes past, present,

and future,” IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications

and Reviews), vol. 42, no. 6, pp. 1190–1203, Nov 2012.

[81] J. Pan, R. Jain, and S. Paul, “A survey of energy efficiency in buildings and microgrids

using networking technologies,” IEEE Communications Surveys Tutorials, vol. 16, no. 3,

pp. 1709–1731, Third 2014.

[82] Berkeley. (2016) Software defined building. [Online]. Available: http://sdb.cs.berkeley.

edu/sdb

[83] S. Dawson-Haggerty, A. Krioukov, J. Taneja, S. Karandikar, G. Fierro, N. Kitaev, and

D. Culler, “{BOSS}: Building operating system services,” in Presented as part of the

10th {USENIX} Symposium on Networked Systems Design and Implementation ({NSDI}

13), 2013, pp. 443–457.

[84] G. Fierro and D. E. Culler, “Poster abstract: Xbos: An extensible building operating

system,” in Proceedings of the 2Nd ACM International Conference on Embedded Systems

for Energy-Efficient Built Environments, ser. BuildSys ’15. New York, NY, USA: ACM,

2015, pp. 119–120. [Online]. Available: http://doi.acm.org/10.1145/2821650.2830311

[85] C. Blumstein, D. Culler, G. Fierro, T. Peffer, and M. Pritoni. (2015) Open

software-architecture for building monitoring and control. paper and presentation at

sustainable places, pp 16 - 18. [Online]. Available: https://people.eecs.berkeley.edu/

~gtfierro/papers/open_arch.pdf

[86] B. Rochwerger, D. Breitgand, A. Epstein, D. Hadas, I. Loy, K. Nagin, J. Tordsson,

C. Ragusa, M. Villari, S. Clayman, E. Levy, A. Maraschini, P. Massonet, H. Mu, and

G. Tofetti, “Reservoir - when one cloud is not enough,” Computer, vol. 44, no. 3, pp.

44–51, Mar. 2011.

174 Eng. Giuseppe Tricomi

http://sdb.cs.berkeley.edu/sdb
http://sdb.cs.berkeley.edu/sdb
http://doi.acm.org/10.1145/2821650.2830311
https://people.eecs.berkeley.edu/~gtfierro/papers/open_arch.pdf
https://people.eecs.berkeley.edu/~gtfierro/papers/open_arch.pdf

i
i

“output” — 2021/1/10 — 14:51 — page 175 — #189 i
i

i
i

i
i

BIBLIOGRAPHY

[87] Stratuslab, “Stratuslab, darn simple cloud.” 2010-2012. [Online]. Available:

http://www.stratuslab.eu/

[88] Bonfire, “Bonfire project,” http://www.bonfire-project.eu/, 2010-2013. [Online].

Available: http://www.bonfire-project.eu/

[89] A. C. Hume, Y. Al-Hazmi, B. Belter, K. Campowsky, L. M. Carril, G. Carrozzo, V. Engen,

D. García-Pérez, J. J. Ponsatí, R. Kűbert, Y. Liang, C. Rohr, and G. V. Seghbroeck,

“BonFIRE: A multi-cloud test facility for internet of services experimentation,” in Lecture

Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications

Engineering. Springer Science + Business Media, 2012, pp. 81–96.

[90] D. García-Pérez, J. Á. L. del Castillo, Y. Al-Hazmi, J. Martrat, K. Kavoussanakis,

A. C. Hume, C. V. López, G. Landi, T. Wauters, M. Gienger, and D. Margery, “Cloud

and network facilities federation in BonFIRE,” in Euro-Par 2013: Parallel Processing

Workshops. Springer Science + Business Media, 2014, pp. 126–135.

[91] CONTRAIL, “Contrail - cloud federation computing project,” 2010-2014. [Online].

Available: http://contrail-project.eu/

[92] R. G. Cascella, L. Blasi, Y. Jegou, M. Coppola, and C. Morin, “Contrail: Distributed

application deployment under SLA in federated heterogeneous clouds,” in The Future

Internet. Springer Science + Business Media, 2013, pp. 91–103.

[93] VISION, “Vision cloud project, funded by the european commission seventh framework

programme (fp7/2006-2013) under grant agreement n. 257019.” 2010-2013. [Online].

Available: http://www.visioncloud.eu/

[94] Mosaic, “Mosaic - multi-modal situation assessment and analytics platform.” 2011-2014.

[Online]. Available: http://www.mosaic-fp7.eu/

[95] C. Project, “Cloudwave project, funded by the european commission seventh framework

programme (fp7/2006-2013) under grant agreement n. 610802.” 2013. [Online].

Available: http://cloudwave-fp7.eu/

Eng. Giuseppe Tricomi 175

http://www.stratuslab.eu/
http://www.bonfire-project.eu/
http://contrail-project.eu/
http://www.visioncloud.eu/
http://www.mosaic-fp7.eu/
http://cloudwave-fp7.eu/

i
i

“output” — 2021/1/10 — 14:51 — page 176 — #190 i
i

i
i

i
i

BIBLIOGRAPHY

[96] A. Nus and D. Raz, “Migration plans with minimum overall migration time,” in 2014

IEEE Network Operations and Management Symposium (NOMS). Institute of Electrical

& Electronics Engineers (IEEE), May 2014.

[97] S. Yangui, I.-J. Marshall, J.-P. Laisne, and S. Tata, “CompatibleOne: The open source

cloud broker,” J Grid Computing, vol. 12, no. 1, pp. 93–109, Nov. 2013.

[98] R. Moreno-Vozmediano, E. Huedo, I. Llorente, R. Montero, P. Massonet, M. Villari,

G. Merlino, A. Celesti, A. Levin, L. Schour, C. VÃÂ¡zquez, J. Melis, S. Spahr, and

D. Whigham, “Beacon: A cloud network federation framework,” Communications in

Computer and Information Science, vol. 567, pp. 325–337, 2016.

[99] SUNFISH, “Sunfish - secure information sharing in federated heterogeneous private

clouds project,” 2015-2017. [Online]. Available: https://cordis.europa.eu/project/rcn/

194230/factsheet/en

[100] SUPERCLOUD, “Supercloud - user-centric management of security and dependability

in clouds of clouds project,” 2015-2018. [Online]. Available: https://cordis.europa.eu/

project/rcn/194123/factsheet/en

[101] FIESTA, “Fiesta - federated interoperable semantic iot/cloud testbeds and applications

project,” 2015-2018. [Online]. Available: https://cordis.europa.eu/project/rcn/194117/

factsheet/en

[102] S. K. Garg, S. Versteeg, and R. Buyya, “SMICloud: A framework for comparing and

ranking cloud services,” in 2011 Fourth IEEE International Conference on Utility and

Cloud Computing. Institute of Electrical & Electronics Engineers (IEEE), Dec. 2011.

[103] T. Subramanian and N. Savarimuthu, “Application based brokering algorithm for optimal

resource provisioning in multiple heterogeneous clouds,” Vietnam J Comput Sci, vol. 3,

no. 1, pp. 57–70, Dec. 2015.

[104] H. Kurdi, A. Al-Anazi, C. Campbell, and A. A. Faries, “A combinatorial optimization

algorithm for multiple cloud service composition,” Computers & Electrical Engineering,

vol. 42, pp. 107–113, Feb. 2015.

176 Eng. Giuseppe Tricomi

https://cordis.europa.eu/project/rcn/194230/factsheet/en
https://cordis.europa.eu/project/rcn/194230/factsheet/en
https://cordis.europa.eu/project/rcn/194123/factsheet/en
https://cordis.europa.eu/project/rcn/194123/factsheet/en
https://cordis.europa.eu/project/rcn/194117/factsheet/en
https://cordis.europa.eu/project/rcn/194117/factsheet/en

i
i

“output” — 2021/1/10 — 14:51 — page 177 — #191 i
i

i
i

i
i

BIBLIOGRAPHY

[105] M. Caballer, I. Blanquer, G. Moltó, and C. de Alfonso, “Dynamic management of virtual

infrastructures,” J Grid Computing, vol. 13, no. 1, pp. 53–70, Apr. 2014.

[106] Q. Duan and A. V. Vasilakos, “Federated selection of network and cloud services for

high-performance software-defined cloud computing,” International Journal of High

Performance Computing and Networking, vol. 9, no. 4, p. 316, 2016.

[107] Z. ur Rehman, F. K. Hussain, and O. K. Hussain, “Towards multi-criteria cloud service

selection,” in 2011 Fifth International Conference on Innovative Mobile and Internet

Services in Ubiquitous Computing. Institute of Electrical & Electronics Engineers

(IEEE), Jun. 2011.

[108] J. O. de Carvalho, F. Trinta, and D. Vieira, “PacificClouds: A flexible MicroServices

based architecture for interoperability in multi-cloud environments,” in Proceedings of the

8th International Conference on Cloud Computing and Services Science. SCITEPRESS

- Science and Technology Publications, 2018.

[109] D. Lin, A. C. Squicciarini, V. N. Dondapati, and S. Sundareswaran, “A cloud broker-

age architecture for efficient cloud service selection,” IEEE Transactions on Services

Computing, vol. 12, no. 1, pp. 144–157, Jan 2019.

[110] C. Redl, I. Breskovic, I. Brandic, and S. Dustdar, “Automatic SLA matching and provider

selection in grid and cloud computing markets,” in 2012 ACM/IEEE 13th International

Conference on Grid Computing. Institute of Electrical & Electronics Engineers (IEEE),

Sep. 2012.

[111] S. Sundareswaran, A. Squicciarini, and D. Lin, “A brokerage-based approach for cloud

service selection,” in 2012 IEEE Fifth International Conference on Cloud Computing.

Institute of Electrical & Electronics Engineers (IEEE), Jun. 2012.

[112] J. Carvalho, D. Vieira, and F. Trinta, “Dynamic selecting approach for multi-cloud

providers,” in Cloud Computing – CLOUD 2018, M. Luo and L.-J. Zhang, Eds. Cham:

Springer International Publishing, 2018, pp. 37–51.

Eng. Giuseppe Tricomi 177

i
i

“output” — 2021/1/10 — 14:51 — page 178 — #192 i
i

i
i

i
i

BIBLIOGRAPHY

[113] J. B. Abdo, J. Demerjian, H. Chaouchi, K. Barbar, and G. Pujolle, “Broker-based cross-

cloud federation manager,” in 8th International Conference for Internet Technology and

Secured Transactions (ICITST-2013). Institute of Electrical & Electronics Engineers

(IEEE), Dec. 2013.

[114] H. Mezni and M. Sellami, “Multi-cloud service composition using formal concept

analysis,” Journal of Systems and Software, vol. 134, pp. 138 – 152, 2017. [Online].

Available: http://www.sciencedirect.com/science/article/pii/S0164121217301760

[115] S. Farokhi., F. Jrad., I. Brandic., and A. Streit., “Hs4mc - hierarchical sla-based service

selection for multi-cloud environments,” in Proceedings of the 4th International Con-

ference on Cloud Computing and Services Science - Volume 1: MultiCloud, (CLOSER

2014), INSTICC. SciTePress, 2014, pp. 722–734.

[116] F. Jrad, J. Tao, and A. Streit, “A broker-based framework for multi-cloud workflows,”

in Proceedings of the 2013 international workshop on Multi-cloud applications and

federated clouds - MultiCloud 13. Association for Computing Machinery (ACM), 2013.

[117] F. Jrad, J. Tao, A. Streit, R. Knapper, and C. Flath, “A utility-based approach for cus-

tomised cloud service selection,” IJCSE, vol. 10, no. 1/2, p. 32, 2015.

[118] C. Esposito, M. Ficco, F. Palmieri, and A. Castiglione, “Smart cloud storage service

selection based on fuzzy logic, theory of evidence and game theory,” IEEE Transactions

on Computers, pp. 1–1, 2016.

[119] F. DAndria, S. Bocconi, J. G. Cruz, J. Ahtes, and D. Zeginis, “Cloud4Soa: Multi-cloud

application management across PaaS offerings,” in 2012 14th International Symposium

on Symbolic and Numeric Algorithms for Scientific Computing. Institute of Electrical &

Electronics Engineers (IEEE), Sep. 2012.

[120] P. Massonet, J. Luna, A. Pannetrat, and R. Trapero, “Idea: Optimising multi-cloud

deployments with security controls as constraints,” in Lecture Notes in Computer Science.

Springer Science + Business Media, 2015, pp. 102–110.

178 Eng. Giuseppe Tricomi

http://www.sciencedirect.com/science/article/pii/S0164121217301760

i
i

“output” — 2021/1/10 — 14:51 — page 179 — #193 i
i

i
i

i
i

BIBLIOGRAPHY

[121] Y. Mansouri, A. N. Toosi, and R. Buyya, “Brokering algorithms for optimizing the

availability and cost of cloud storage services,” in 2013 IEEE 5th International Conference

on Cloud Computing Technology and Science. Institute of Electrical & Electronics

Engineers (IEEE), Dec. 2013.

[122] T. G. Papaioannou, N. Bonvin, and K. Aberer, “Scalia: An adaptive scheme for efficient

multi-cloud storage,” in 2012 International Conference for High Performance Computing,

Networking, Storage and Analysis. Institute of Electrical & Electronics Engineers

(IEEE), Nov. 2012.

[123] W. Yao and L. Lu, “A selection algorithm of service providers for optimized data place-

ment in multi-cloud storage environment,” in Communications in Computer and Informa-

tion Science. Springer Science + Business Media, 2015, pp. 81–92.

[124] M. Hadji, B. Aupetit, and D. Zeghlache, “Cost-efficient algorithms for critical resource

allocation in cloud federations,” in 2016 5th IEEE International Conference on Cloud

Networking (Cloudnet). Institute of Electrical and Electronics Engineers (IEEE), Oct.

2016.

[125] M. Giacobbe, M. Scarpa, R. D. Pietro, and A. Puliafito, “An energy-aware brokering

algorithm to improve sustainability in community cloud,” in Proceedings of the 6th

International Conference on Smart Cities and Green ICT Systems. SCITEPRESS -

Science and Technology Publications, 2017.

[126] J. Tordsson, R. S. Montero, R. Moreno-Vozmediano, and I. M. Llorente, “Cloud brokering

mechanisms for optimized placement of virtual machines across multiple providers,”

Future Generation Computer Systems, vol. 28, no. 2, pp. 358–367, Feb. 2012.

[127] C. Negru, F. Pop, O. C. Marcu, M. Mocanu, and V. Cristea, “Budget constrained selection

of cloud storage services for advanced processing in datacenters,” in 2015 14th RoEduNet

International Conference - Networking in Education and Research (RoEduNet NER).

Institute of Electrical & Electronics Engineers (IEEE), Sep. 2015.

Eng. Giuseppe Tricomi 179

i
i

“output” — 2021/1/10 — 14:51 — page 180 — #194 i
i

i
i

i
i

BIBLIOGRAPHY

[128] Y. Kajiura, S. Ueno, A. Kanai, S. Tanimoto, and H. Sato, “An approach to selecting cloud

services for data storage in heterogneous-multicloud environment with high availabil-

ity and confidentiality,” in 2015 IEEE 12th International Symposium on Autonomous

Decentralized Systems. Institute of Electrical & Electronics Engineers (IEEE), Mar.

2015.

[129] F. Longo, D. Bruneo, S. Distefano, G. Merlino, and A. Puliafito, “Stack4Things: An

OpenStack-based framework for IoT,” in 2015 3rd International Conference on Future

Internet of Things and Cloud, Aug 2015, pp. 204–211.

[130] S. Distefano, G. Merlino, and A. Puliafito, “Device-centric sensing: An alternative to

data-centric approaches,” IEEE Systems Journal, vol. 11, no. 1, pp. 231–241, March

2017.

[131] D. Bruneo, S. Distefano, F. Longo, G. Merlino, and A. Puliafito, “I/Ocloud: Adding an

IoT dimension to cloud infrastructures,” Computer, vol. 51, no. 1, pp. 57–65, 2018.

[132] G. Merlino, D. Bruneo, F. Longo, S. Distefano, and A. Puliafito, “Cloud-based network

virtualization: An IoT use case,” in Ad Hoc Networks, N. Mitton, M. E. Kantarci,

A. Gallais, and S. Papavassiliou, Eds. Cham: Springer International Publishing, 2015,

pp. 199–210.

[133] G. Campobello, S. Serrano, A. Leonardi, and S. Palazzo, “Trade-offs between energy

saving and reliability in low duty cycle wireless sensor networks using a packet splitting

forwarding technique,” EURASIP Journal on Wireless Communications and Networking,

vol. 2010, no. 1, Aug. 2010. [Online]. Available: https://doi.org/10.1155/2010/932345

[134] O. Chenaru, G. Florea, A. Stanciu, V. Sima, D. Popescu, and R. Dobrescu, “Modeling

complex industrial systems using cloud services,” in 2015 20th International Conference

on Control Systems and Computer Science. IEEE, 2015, pp. 565–571.

[135] G. B. Fioccola, R. Sommese, I. Tufano, R. Canonico, and G. Ventre, “Polluino: An

efficient cloud-based management of iot devices for air quality monitoring,” in 2016

180 Eng. Giuseppe Tricomi

https://doi.org/10.1155/2010/932345

i
i

“output” — 2021/1/10 — 14:51 — page 181 — #195 i
i

i
i

i
i

BIBLIOGRAPHY

IEEE 2nd International Forum on Research and Technologies for Society and Industry

Leveraging a better tomorrow (RTSI), 2016, pp. 1–6.

[136] C.-T. Yang, S.-T. Chen, W. Den, Y.-T. Wang, and E. Kristiani, “Implementation of an

intelligent indoor environmental monitoring and management system in cloud,” Future

Generation Computer Systems, vol. 96, pp. 731–749, 2019.

[137] W. Yu, F. Liang, X. He, W. G. Hatcher, C. Lu, J. Lin, and X. Yang, “A survey on the edge

computing for the internet of things,” IEEE Access, vol. 6, pp. 6900–6919, 2018.

[138] V. Mihai, C. Dragana, G. Stamatescu, D. Popescu, and L. Ichim, “Wireless sensor network

architecture based on fog computing,” in 2018 5th International Conference on Control,

Decision and Information Technologies (CoDIT), 2018, pp. 743–747.

[139] M. J. Jafari, A. A. Khajevandi, S. A. M. Najarkola, M. S. Yekaninejad, M. A. Pourhose-

ingholi, L. Omidi, and S. Kalantary, “Association of sick building syndrome with indoor

air parameters,” Tanaffos, vol. 14, no. 1, p. 55, 2015.

[140] F. Longo, D. Bruneo, S. Distefano, G. Merlino, and A. Puliafito, “Stack4things: a

sensing-and-actuation-as-a-service framework for iot and cloud integration,” Annals of

Telecommunications, vol. 72, no. 1-2, pp. 53–70, 2017.

[141] D. Bruneo, S. Distefano, F. Longo, G. Merlino, and A. Puliafito, “Iot-cloud authorization

and delegation mechanisms for ubiquitous sensing and actuation,” in 2016 IEEE 3rd

World Forum on Internet of Things (WF-IoT), Dec 2016, pp. 222–227.

[142] D. Bruneo, S. Distefano, F. Longo, G. Merlino, and A. Puliafito, “I/Ocloud: Adding an

IoT dimension to Cloud infrastructures,” Computer, vol. 51, no. 1, pp. 57–65, January

2018.

[143] Qinling Openstack community, 2019, https://docs.openstack.org/qinling/latest/.

[144] ZUN Openstack community, 2019, https://docs.openstack.org/zun/latest/.

Eng. Giuseppe Tricomi 181

i
i

“output” — 2021/1/10 — 14:51 — page 182 — #196 i
i

i
i

i
i

BIBLIOGRAPHY

[145] S. Distefano, G. Merlino, and A. Puliafito, “Device-centric sensing: An alternative to

data-centric approaches,” IEEE Systems Journal, vol. 11, no. 1, pp. 231–241, 2017, cited

By :9. [Online]. Available: www.scopus.com

[146] A. Levin, D. Lorenz, G. Merlino, A. Panarello, A. Puliafito, and G. Tricomi,

“Hierarchical load balancing as a service for federated cloud networks,” Computer

Communications, vol. 129, pp. 125 – 137, 2018. [Online]. Available: http:

//www.sciencedirect.com/science/article/pii/S0140366418303165

[147] M. Mazzara, I. Afanasyev, S. R. Sarangi, S. Distefano, V. Kumar, and M. Ahmad, “A ref-

erence architecture for smart and software-defined buildings,” in 2019 IEEE International

Conference on Smart Computing (SMARTCOMP). IEEE, 2019, pp. 167–172.

[148] R. Bauer, R. Bless, C. Haas, M. Jung, and M. Zitterbart, “Software-based smart factory

networking,” at - Automatisierungstechnik, vol. 64, no. 9, pp. 765 – 773, 28 Sep. 2016.

[Online]. Available: https://www.degruyter.com/view/journals/auto/64/9/article-p765.

xml

[149] Official site Toolsmart Project, https://www.torinocitylab.it/it/toolsmart.

[150] D. Bruneo, S. Distefano, F. Longo, and G. Merlino, “An iot testbed for the software

defined city vision: The #smartme project,” in 2016 IEEE Int. Conf. on Smart Computing

(SMARTCOMP), May 2016, pp. 1–6.

[151] N. Z. Bawanyn and A. Jawwad Shamsi, “Smart city architecture: Vision and challenges,”

International Journal of Advanced Computer Science and Applications, vol. 6, no. 11,

2015.

[152] An IoT Testbed for the Software Defined City Vision: The #SmartMe Project, 2016, dOI:

10.1109/SMARTCOMP.2016.7501678.

[153] Software defined cities: A novel paradigm for smart cities through IoT clouds, 2015,

proceedings - 2015 IEEE 12th International Conference on Ubiquitous Intelligence and

Computing.

182 Eng. Giuseppe Tricomi

www.scopus.com
http://www.sciencedirect.com/science/article/pii/S0140366418303165
http://www.sciencedirect.com/science/article/pii/S0140366418303165
https://www.degruyter.com/view/journals/auto/64/9/article-p765.xml
https://www.degruyter.com/view/journals/auto/64/9/article-p765.xml

	Introduction
	State of the Art
	Computing Technologies and Paradigms
	Cloud Computing
	Key Features
	 Categories of Cloud Services

	Cloud and Fog computing in IoT
	Fog Computing
	Edge Computing
	Computing Continuum
	Serverless Techniques
	Serverless vs. Function-as-a-Service (FaaS)
	Fog/Edge computing and Serverless/FaaS

	Computing Cooperation: Definition & Patterns
	Peer cooperation
	Hybrid cooperation
	Brokered cooperation
	Federation
	Federation Versus Multi-Cloud

	Cyber Physical Systems
	Smart Building
	Software-Defined Buildings

	Management of federated computing environments
	EU Projects Overview
	Algorithm for the best Selection
	 Frameworks and Architectures
	Algorithms
	Multi-Criteria Evaluation
	Selection
	MatchMaking

	Optimization

	Enabling technologies and solutions
	OpenStack Cloud Management Framework
	Stack4Things
	Arancino board

	CPS Application: Smart Room
	CPS Application: Smart Vehicle
	SCICC Algorithm
	SCINaS Algorithm

	CPS as set of computational units
	Cooperating CPS Application: Dynamic Intrusion Surveillance System
	Software-Defined I/O
	Use Case and Evaluation

	Cooperating CPS Application: Federated Fire Protection System
	Cooperating Cyber-Physical Systems: A template for Smart Cities
	Conclusions
	Bibliography

