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Abstract 

This paper deals with the analysis of linear-elastic structures with uncertain-but-bounded pa-

rameters subjected to deterministic dynamic loads. A novel procedure based on the use of 

sensitivity analysis in conjunction with classical modal analysis is proposed. Specifically, a 

pseudo-static sensitivity analysis is performed to seek the combinations of the endpoints of 

the uncertain parameters which give the lower bound and upper bound of the response at each 

time instant. Among these, the most common combinations over the time interval of interest 

are detected in order to avoid the onerous updating of the uncertain parameters at each time 

instant. Then, the bounds of the response time-history are evaluated by performing two paral-

lel deterministic modal analyses associated to the most common combinations of the extreme 

values of the interval uncertainties. 

Numerical results demonstrate that the proposed method is more efficient than both the In-

terval Perturbation Method (IPM) and classical combinatorial procedure. Furthermore, unlike 

the IPM, it allows the analysis of large-size structures exhibiting relatively large fluctuations 

of the uncertain parameters. 

Keywords: Uncertain-but-bounded parameters, interval analysis, interval dynamic structural 

response, pseudo-static sensitivity, lower and upper bounds of response time-history. 
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1 INTRODUCTION 

It is well known that almost any type of structural systems is subjected to dynamic loads dur-

ing its lifetime. Typical dangerous dynamic loads may be impulsive (blast or explosion) or 

long-duration, such as those resulting from earthquakes or wind. A structural dynamic prob-

lem differs to a large extent from its static loading counterpart. The main difference lies in the 

time varying nature of both loading and response. It follows that a dynamic problem does not 

have a single solution, as in Statics, but a sequence of solutions at each time instant of the re-

sponse history. While in Statics, algebraic equations are solved to evaluate the response, in 

Dynamics the problem is governed by Ordinary Differential Equations (ODEs). Thus, a dy-

namic analysis is clearly more complex and time-consuming than a static analysis [1]. 

Furthermore, the main purpose of structural engineering is to evaluate response quantities, 

such as displacements, rotations, stresses etc., to perform the reliability assessment of a sys-

tem. To this aim, not only the external loads but also the mechanical properties of structural 

materials need to be modeled with great accuracy. It has been widely recognized that the latter 

quantities are affected by uncertainties caused by measurement or manufacturing errors, or 

other factors. Usually, experimental data available to characterize mechanical material proper-

ties are quite limited, so that the probabilistic modeling appears not able to deliver reliable 

results. Indeed, within a probabilistic framework, the uncertain parameters are modeled as 

random variables or random fields with assigned probability distribution, under the assump-

tion of knowing complete information to define a probability density function [2]. Further-

more, Ben-Haim and Elishakoff [3] highlighted that even small variations deviating from the 

real values may cause relatively large errors of the probability distributions in the feasible re-

gion of the design space. 

Non-probabilistic approaches can be alternatively used to treat uncertainties affecting the 

mechanical material properties. In this framework, the interval model seems today the most 
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suitable analytical tool when only range information or tolerance is known [3],[4]. The inter-

val model, which is based on the set theory, represents the uncertain parameters as interval 

variables with assigned upper and lower bounds without requiring complete information on 

the distribution of the uncertainties between such bounds. 

The main advantage of the Classical Interval Analysis (CIA) is that it provides analytically 

rigorous enclosures of the solution [5][6], but its application to practical engineering problems 

is not an easy task due to two main drawbacks commonly faced in the development of inter-

val-based procedures for structural analysis: i) the drastic overestimation of the interval solu-

tion range due to the so-called dependency phenomenon [2][6]; ii) the high computational 

costs required by uncertainty propagation procedures such as the classical combinatorial ap-

proach [2][7]. 

As stated before, the dynamic equilibrium of linear structural systems is governed by sets 

of ODEs. If the ODEs with interval uncertainties are solved using the CIA, the overestimation 

will be accumulated in the process of numerical iterations [8][9]. Several methods have been 

proposed in literature to limit the overestimation of the solution of the set of ODEs governing 

linear or non-linear dynamic problems with interval uncertainties. In particular, the upper and 

lower bounds of the dynamic response were obtained by Chen et al. [10] using Taylor series 

expansion combined with a method based on the matrix perturbation theory. Subsequently, 

the Interval Perturbation Method (IPM), which is based on Taylor series expansion and pa-

rameter perturbation, has been introduced to evaluate the dynamic response of structures sub-

jected to deterministic [11][14] or stochastic excitations [15]. More recently, Gao et al. [16] 

presented the interval factor method to calculate the dynamic response of truss structures. 

Rama Rao et al. [17] proposed two methods, the first based on adaptive Taylor series expan-

sion along with gradient method and the second one based on direct optimization, to obtain 

transient time-history response of structures subjected to a sudden impact load. Yang et al. [18] 
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used the Laplace transform to convert the ODEs into a system of linear equations and the in-

verse Laplace transform to obtain the time-history response, once the higher-order terms are 

removed by matrix perturbation technique in Laplace domain. Xia and Yu [19][21] developed 

a modified IPM based on the modified Neumann expansion for the response analysis of inter-

val structures and interval structural-acoustic systems. To handle degrees of uncertainty larger 

than those allowed by first-order interval Taylor series expansion, Wu et al. [9] introduced 

Chebyshev series expansions into the interval framework to develop a new method for the 

analysis of non-linear dynamic systems. Xia et al. [22] proposed a Monte Carlo method based 

on the Chebyshev polynomial expansion. 

Although other methods are more accurate, the IPM or, equivalently, the first-order inter-

val Taylor series expansion, is the most widely used to obtain the lower bound (LB) and upper 

bound (UB) of the interval dynamic response. The main advantages of the IPM are the flexi-

bility and the simplicity of the mathematical formulation. However, since the effect of ne-

glecting higher-order terms is unpredictable, the effectiveness of this method is limited to 

uncertainties with small intervals. Furthermore, the computational burden associated to the 

IPM rapidly increases with the dimensions of structural systems and the number of uncertain-

ties. 

In this paper, a novel procedure to evaluate the bounds of the interval response of structural 

systems with uncertain-but-bounded material properties under deterministic dynamic excita-

tions is presented. The key idea of the proposed approach is to properly extend sensitivity-

based procedures developed to perform interval static structural analysis [23][24] so as to ad-

dress dynamic problems. Indeed, at each time instant the dynamic response of a structural sys-

tem is a monotonic function of the uncertain material properties. In this context, the main 

issue is the time-dependency of response sensitivities to the uncertain parameters. To over-

come this limitation, the present study introduces a pseudo-static sensitivity analysis which 
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involves just the evaluation of the nominal dynamic response time-history. Pseudo-static sen-

sitivities provide the combinations of the endpoints of the interval uncertainties to be used to 

estimate the LB and UB of the response at each time instant. Then, the issue of time-

dependency is bypassed defining just two combinations for estimating the LB and UB of the 

response, selected as the most common ones over the time interval of interest. Finally, the 

bounds of the response time-history can be evaluated by performing two parallel modal anal-

yses associated to the most common combinations of the endpoints of the uncertain parame-

ters. Summarizing, the proposed method requires three main steps: i) a preliminary pseudo-

static sensitivity analysis to define the most common combinations of the endpoints of the in-

terval parameters which give the LB and UB of the response over the time interval of interest; 

ii) a generalized interval modal analysis which requires the solution of two deterministic 

eigenproblems associated to the previously defined most common combinations; iii) the eval-

uation of the bounds of the response time-history by performing two parallel step-by-step in-

tegrations of the equations of motion in the modal subspace. 

Three examples concerning a 3D truss structure, a grid structure and a shell corner under 

deterministic dynamic excitations are presented. In all the applications, Young’ modulus of 

the material is assumed to be uncertain and the proposed estimates of the bounds of the dy-

namic response are obtained implementing the presented procedure in the context of the 

standard finite element method (FEM) exploiting the commercial software ABAQUS. Appro-

priate comparisons with the exact bounds provided by the classical combinatorial procedure, 

known as vertex method [25], demonstrate that the proposed method, unlike the IPM, enables 

to analyze large structural systems affected by relatively high fluctuations of the uncertain pa-

rameters. 

The paper is organized as follows: in Section 2, the dynamic problem of structures with 

uncertain-but-bounded material properties is formulated; Section 3 focuses on the interval free 
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vibration analysis, with special attention to the solution of the generalized interval 

eigenproblem; in Section 4, the pseudo-static sensitivity analysis of the response is introduced; 

Section 5 presents a generalized interval modal analysis for the evaluation of the bounds of 

both free and forced interval vibrations; finally, in Section 6, three numerical applications are 

provided to demonstrate the accuracy and efficiency of the proposed method. 

 

2 PROBLEM STATEMENT 

Let us consider a quiescent nDOFs classically damped linear structural system subjected to 

a deterministic excitation ( )tf . The dynamic response of the system is governed by the fol-

lowing set of second-order Ordinary Differential Equations (ODEs): 

( ) ( ) ( ) ( )t t t t  Mu Cu Ku f  (1) 

where M , C  and K  are the n n  mass, damping and stiffness matrices of the structure, 

respectively; ( )tu  and ( )tf  are 1n  order time-dependent vectors, collecting the nodal 

displacements and the external loads, respectively; finally, a dot over a variable denotes 

differentiation with respect to time t . In the following, the Rayleigh model is adopted for the 

damping matrix. 

It is assumed that the mechanical properties of structural material are affected by 

uncertainties, so that the elements of the stiffness matrix turn out to be uncertain. The 

dimensionless fluctuation of the i  th uncertain property, 0, (1 )I I

i i id d   , around the 

nominal value, 0,id , is modelled as an uncertain-but-bounded parameter,  ,I

i i i    , 

with  denoting the set of all closed real interval numbers, while i  and i  are the lower 

bound (LB) and upper bound (UB) of I

i , respectively. Let the structure possess r  uncertain 
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parameters whose fluctuations are collected into the interval vector 

1 2[ , , , ]I I I I T

r  α  of order r, with the apexes T and I meaning transpose operator 

and interval variable, respectively. According to the Classical Interval Analysis (CIA) [5][6], 

the r uncertain-but-bounded parameters I

i  ( 1,2, , )i r  are assumed to be independent and 

[ , ]I rα α α  is a bounded set-interval vector of real numbers such that  α α α , with 

the symbols α  and α  denoting the vectors collecting the LB and UB of the interval variables 

I

i , respectively.  

In the framework of interval symbolism, a generic interval-valued function f  and a ge-

neric interval-valued matrix function A  of the interval vector 
I

α  will be denoted in equiva-

lent form, respectively, as: 

 

 

( ) ( ), , ;

( ) ( ), , .

I I I

I I I

f f f   

   

α α α α α α

A A α A α α α α α
  (2a,b) 

By taking into account the uncertain mechanical properties, Eq.(1) can be rewritten as: 

 ( ) ( ) ( ) ( ) ( ) ( ),      ,It t t t       Mu α C α u α K α u α f α α α α  (3) 

where the stiffness matrix ( )I
K α  as well as the displacement vector ( )I tu α  depend on the 

interval parameters collected into the vector [ , ]I rα α α . Moreover, since the Rayleigh 

model is adopted for the damping matrix, the following relationship holds:  

 ( ) ( ),      ,I

M Kc c   C α M K α α α α α  (4) 

where Mc  and Kc  are the Rayleigh damping constants having units 1s  and s , respectively.  

Following the improved interval analysis (IIA) [26], the i-th real interval variable I

i  can 

be expressed in the following affine form 
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 0,
ˆ ,    1,2,...,I I

i i i ie i r    
 

(5) 

where  

   0,

1 1
;     

2 2
i i i i i i          (6a,b) 

are the midpoint value (or mean), 0,i , and the deviation amplitude (or radius), i ; 

 ˆ 1,1I

ie   is the so-called Extra Unitary Interval (EUI) [26] associated to the i-th real inter-

val variable I

i .  

Since I

i  denotes the dimensionless fluctuation of the i-th uncertain parameter around the 

nominal value, 0, (1 )I I

i i id d   , it can be reasonably modelled as a symmetric interval vari-

able, that is i i i     . Under this assumption, 0, 0i   and 0i  , so that Eq. (5) re-

duces to: 

 ˆ ,    1,2,...,I

i i ie i r     (7) 

where 1i   in order to ensure always positive values of the uncertain physical properties. 

Following the interval formalism above introduced, the interval stiffness matrix ( )I
K α  can 

be expressed as: 

 0( ) ( );      ,I   K α K K α α α α α   (8) 

where 0K  is the nominal stiffness matrix, which is a positive-definite symmetric matrix of 

order n n  pertaining to the structure with α 0 , and ( )IK α  is the interval deviation of the 

stiffness matrix with respect to the nominal one. 
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At each time instant, all possible solutions of the equations of motion obtained as the un-

certain parameters I

i  (see Eq. (7)) vary independently over their ranges are contained within 

a solution set: 

  ( ) ( , ) ( ) ( ) ( ) ( ) ( ) ( ),   ,n It t t t t t          u α Mu α C α u α K α u α f α α α α  (9) 

where  ( , ) ( , )S t P tα α  means “the set of quantities ( , )S tα  such that the proposition ( , )P tα  

holds”. 

As known, the exact evaluation of the solution set is very difficult, especially in the pres-

ence of dynamic excitations. Therefore, within the interval framework, the solution of Eq. (3) 

is carried out by seeking, at each time instant, the LB and UB of the interval displacement vec-

tor, containing the solution set, which has the narrowest interval components, i.e.  

 ( ) ( ), ( )I t t t u α u u  (10) 

or in component form 

( ) ( ), ( ) , ( 1,2, , )I

j j ju t u t u t j n    α  (11) 

with 

 

 

( ) min ( ) ( ) , ,

( ) max ( ) ( ) , , ( 1,2, , )

r

j j j

r

j j j

u t u t u t

u t u t u t j n

    

     

α α α

α α α

 (12a,b) 

where the symbols  min  and  max  mean minimum (inferior) and maximum (superior) 

value of the quantity between parentheses. 
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3 INTERVAL FREE VIBRATIONS 

This section focuses on the formulation of the interval free vibration problem. Let ( , )tz α  de-

note the 2n -order interval vector of state variables, defined as:  

 
( , )

( , ) ,      , .
( , )

I
t

t
t

 
   
 

u α
z α α α α α

u α  
(13) 

Then, the equations of motion (3) can be rewritten in the following form: 

 N N( , ) ( ) ( , ) ( ),      ,It t t   z α D α z α V f α α α α  (14) 

where 

N N1 1 1
( ) ;       

n

  

   
        

0 I 0
D α V

M K(α) M C(α) M 

 

(15a,b) 

nI  denotes the identity matrix of order n and 0  the zero matrix; the subscript N means nodal 

space. The set of first-order ODEs (14) represents the equations of motion in the nodal state 

variable space of the structural system with uncertain parameters collected into the interval 

vector  ,I α α α α . In this space, the solution of the free vibration problem, evaluated set-

ting ( )t f 0 , is given by the following relationship [27][28]: 

 N 0 0 0( , ) ( , ) ( , ) ( ),      ,It t t t t t    z α Θ α z α α α α αU  (16) 

where 0( , )tz α  is the state variable vector listing the initial conditions at the time instant 0t  

and ( )tU  is the unit step function, defined as  

0

0

0

0, ;
( )

1, .

t t
t t

t t


  


U  (17) 

In Eq.(16), N N( , ) exp ( )I It t   Θ α D α  is the interval transition matrix which, for classically 

damped systems, can be evaluated by interval extension as [27]: 
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 N

, ,
, , , .

, ,

T T

I

T T

t t
t

t t

 
   

 

Φ α g α Φ α K α Φ α g α Φ α M
Θ α α α α α

Φ α g α Φ α K α Φ α g α Φ α M
 (18) 

Furthermore, it is observed that the response decreases with time because the transition matrix 

satisfies the following condition: 

Nlim ( , ) .I

t
t


Θ α 0  (19) 

In Eq.(18),  ,I tg α  is an interval diagonal matrix whose j-th element can be evaluated as: 

 
     2 2

2

cos ( ) 1 ( ) ( )sen ( ) 1 ( )
, exp ( ) ( ) ,

( ) ( ) 1 ( )

                                                                                                         

j j j j j

j j j

j j j

t t
g t t

    
 

  

  
       


  

α α α α α
α α α

α α α

                        ,I α α α α

 

 (20) 

where ( ) ( ( )) 2 ( )j M K j jc c   α α α  is the j  th interval damping ratio under the Ray-

leigh condition (4). In the previous equations,   1 2( ) ( ) ( )I I I I

n
   Φ α α α α    is the 

interval modal matrix whose k  th column, ( )I

k α , is the interval eigenvector associated to 

the k  th interval eigenvalue, 2( ) ( )I I

k k α α , equivalent to the squared interval natural fre-

quency, solution of the following eigenproblem: 

 ( ) ( ) ( ) ( ),      , ,     ( 1,2, , ).I

k k k k n   K α α α M α α α α α   (21) 

The solution of this interval eigenvalue problem involves the evaluation of all possible ei-

genvalues satisfying Eq. (21) as the uncertain parameters assume all possible values inside the 

interval  ,I α α α . The solutions constitute a complicated region in the real number field . 

Recently, it has been shown that, since the eigenvalues are monotonic functions of the uncer-
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tain parameters ,I

j j j j        , ( 1,2, , )j r , the narrowest interval enclosing all possi-

ble eigenvalues can be obtained by solving the following two deterministic eigenproblems 

[29][32]: 

 

 

(LB) (LB) (LB) (LB)

(U B) (U B) (U B) (LB)

;

; ,    ( 1,2, )

k k k k k

k k k k k j n









 

  

K α M M

K α M M

    

    

 (22a,b) 

where jk  is the Kronecker delta; (LB)

k  and (UB)

k  ( 1,2, , )k n  are the eigenvectors solu-

tion of the eigenproblem (22a) and (22b) in which α α  and α α , respectively; while k  

and k , ( 1,2, , )k n , are the LB and UB of the k  th interval eigenvalue. By inspection of 

the eigenproblems (22a,b), it appears that the narrowest interval for each eigenvalue corre-

sponds to the so-called trivial combinations of the endpoints of the uncertain-but-bounded 

parameters. In fact, the LBs and UBs of each eigenvalue are obtained when all the interval 

fluctuations ,I

j j j j        , ( 1,2, , )j r , are set simultaneously to their LBs or UBs, 

respectively. However, it is well known that the narrowest interval of the dynamic response 

commonly corresponds to combinations of the extreme values of the uncertain parameters dif-

ferent from the trivial ones. Hence, a modal analysis based on the narrowest set of eigenval-

ues, solutions of Eqs.(22a,b), often does not guarantee the narrowest interval of the response 

time-history. For this reason, in the next sections, an alternative method will be presented. 

The proposed method basically requires the following three steps: i) a preliminary pseudo-

static sensitivity analysis to define the most common combinations of the endpoints of the in-

terval parameters to be used for estimating the LB and UB of the response over the whole time 

history; ii) a generalized interval modal analysis which requires the solution of two determin-

istic eigenproblems and the step-by-step integration of two deterministic equations of motion 

in the modal sub-space corresponding to the most common combinations defined in the pre-
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vious step; iii) the evaluation of the LB and UB of the response time-history by seeking, at 

each time instant, the minimum and maximum, respectively, among the responses pertaining 

to the most common combinations. 

 

4 PSEUDO-STATIC SENSITIVITY ANALYSIS 

The interval sensitivity analysis of structural systems should quantify the impact of the 

change of an individual interval parameter on the generic output quantity of interest (dis-

placement, rotation, stress etc.). Generally, it represents the degree of influence of the width 

of each uncertain-but-bounded structural parameter on the width of the output interval [2][33]. 

Moreover, since in structural engineering the response quantities are monotonic functions of 

the uncertain parameters, sensitivity-based approaches have been developed within a static 

setting to evaluate the approximate bound values of the response by using appropriate end-

points of the intervals [23][24]. The main objective of this section is to extend such well-

established sensitivity-based procedures to evaluate the approximate time-dependent bound 

functions of the interval dynamic response. To this aim, first the definition of pseudo-static 

sensitivity function of the dynamic response with respect to the uncertain parameters is intro-

duced. As an example, the vector collecting the pseudo-static sensitivity functions of the dis-

placement time-history with respect to the -th uncertain parameter,  ,I     , is 

defined by the following explicit expression: 

1

, 0 0

( , )
( ) ( ),   ( 1,2, , )

t
t t r








   


u

α 0

u α
s K K u  (23) 

where 0 ( )tu  is the nominal displacement vector, i.e. for α 0 , and K  is a semi-definite 

positive matrix given by: 
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( )
.








α 0

K α
K  (24) 

Equation (23) is obtained by direct differentiating the equations of motion (3) and then ne-

glecting inertial and damping terms. Within the dynamic framework, the j -th component, 

, ( )
jus t , of the pseudo-static sensitivity vector function, , ( )t

u
s , defined in Eq. (23), at each 

time instant, gives information about the change of the displacement ( , )I

ju tα  due to a varia-

tion of the -th structural parameter  ,I      with respect to the nominal value. 

Specifically, within a small range around α 0 , at each time instant, ( , )I

ju tα  is an increasing 

or decreasing function of the parameter   depending on whether , ( ) 0
jus t   or , ( ) 0

jus t  , 

respectively.  

The nominal displacement vector 0 ( )tu  in Eq.(23) is ruled by the following set of second-

order ODEs: 

0 0 0 0 0( ) ( ) ( ) ( )t t t t  Mu C u K u f  (25) 

with 0 0M Kc c C M K . The solution of Eq. (25) can be performed by classical modal analy-

sis. To this aim, the following coordinate transformation is introduced: 

0 0 0( ) ( )t tu q  (26) 

where 0  is a matrix of order n m  (  m n  being a suitable integer) collecting the first m 

eigenvectors, normalized with respect to the mass matrix M , solution of the following 

eigenproblem: 

2

0 0 0 0 0 0;     T

mK Φ MΦ Ω Φ MΦ I  (27) 
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in which 
mI  is the identity matrix of order m ; 

0Φ  and 
0Ω  are the modal matrix and a diago-

nal matrix of order m  listing the first m  natural circular frequencies, 0,k , of the structural 

system with nominal values of the uncertain parameters, respectively. By applying the coor-

dinate transformation in Eq. (26) to Eq.(25), the following set of decoupled second-order 

ODEs in the modal subspace is obtained: 

0 0 0 0 0 0( ) ( ) ( ) ( )Tt t t t  q Ξ q Ω q f  (28) 

with 0 0M m Kc c Ξ I Ω . 

Let the combinations of the extreme values of the -th uncertain parameter providing 

the LB and UB of the j -th displacement component ( , )I

ju tα  at the time instant t  be denoted 

by (LB)

, ( )j t  and (UB)

, ( )j t , respectively. Based on the knowledge of the pseudo-static sensitiv-

ity functions ,jus , ( 1,2, , )r , such combinations can be estimated as follows: 

(UB) (LB)

, , ,

(UB) (LB)

, , ,

if   ( ) 0,    then   ( ) ( ),    ( ) ( );

if   ( ) 0,    then   ( ) ( ),    ( ) ( ),

                                            ( 1,2, , ;   1,2, , ).

j

j

u j j

u j j

s t t t t t

s t t t t t

j n r

   

   

  

  

 

 (29a,b) 

The functions (LB)

, ( )j t  and (UB)

, ( )j t  can be collected into the following time-dependent 

vectors of order r: 

(LB) (LB) (LB) (LB)

,1 ,2 ,

(UB) (UB) (UB) (UB)

,1 ,2 ,

( ) ( ) ( ) ( ) ;     

( ) ( ) ( ) ( ) ,    ( 1,2, , ).

T

j j j j r

T

j j j j r

t t t t

t t t t j n

  

  

   

   

α

α

 (30a,b) 

Compared to the static case [23][24], the main difficulty in the application of the sensitiv-

ity-based approach to dynamic problems lies in the fact that the above defined combinations 

of the endpoints of the interval parameters are time-dependent ones. This implies that, to ob-
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tain the approximate LB and UB of the interval dynamic displacement component ( , )I

ju tα , 

the equations of motion of the structural system have to be integrated by a step-by-step algo-

rithm replacing at each time step the values of the uncertain parameters collected into the vec-

tors (LB)( )j tα  and (LB)( )j tα  (see Eqs. (30a,b)), respectively. It can be readily inferred that this 

procedure is very cumbersome and requires high computational effort.  

An efficient way to overcome this drawback is to find two combinations of the endpoints 

of the uncertain parameters which do not vary with time and give accurate estimates of the LB 

and UB of the response time-history. The key idea of the proposed approach is to define such 

combinations as the most common among the combinations deduced over the whole time in-

terval of interest based on the information provided by the above described pseudo-static sen-

sitivity analysis. These combinations are collected in the time independent vectors C, jα  and 

C, jα , which can be evaluated simply by using the built-in function “Commonest” of Wolfram 

Mathematica, that is: 

 

 

(LB) (LB) (LB)

C, , ,1 , ,2 , , ,1 ,2 ,

(UB) (UB) (UB)

C, , ,1 , ,2 , , ,1 ,2 ,

0

0

Commonest ( ) ( ) ( ) ;     

Commonest ( ) ( ) ( ) ,   

                          

F

F

T

j C j C j C j r j j j r

T

j C j C j C j r j j j r

t t

t t

t t t

t t t

     

     

 

 

   

   

α

α

                                                                                     ( 1,2, , )j n  

 (31a,b) 

where 0 Ft t   is the time interval of interest. In the previous equations, C, jα  and C, jα  col-

lect the most common extreme values of the uncertain parameters which, according to 

pseudo-static sensitivity analysis, provide the LB and UB of the displacement ( , )I

ju tα , re-

spectively, over the time interval 0 Ft t  .  
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5 GENERALIZED INTERVAL MODAL ANALYSIS 

As known, the main step in vibration analysis of structures is the evaluation of the natural fre-

quencies and associated mode shapes to apply the classical modal analysis which, for classi-

cally damped linear systems, leads to a set of decoupled second-order ODEs. However, as 

already mentioned, a modal analysis based on the narrowest set of eigenvalues, solutions of 

Eqs.(22a,b), corresponding to the so-called trivial combinations of the endpoints of the uncer-

tain parameters, does not always guarantee the narrowest interval of the time-history re-

sponse. Indeed, numerical investigations on several structural systems have shown that the 

most common combinations provided by the pseudo-static sensitivity analysis (see Section 4) 

are often quite different from the trivial ones. Then, the idea is to perform a generalized inter-

val modal analysis associated to the most common combinations of the endpoints of the inter-

val parameters (see Eqs. (31a,b)). To this aim, the following two deterministic eigenvalue 

problems are solved: 

 

 

C, , , , , ,

C, , , , , ,

;

; ,    ( , , 1,2, )

j j k j k j k j k j k

j j k j k j k j k j k j k n









 

  

K α M M

K α M M

    

    

 (32a,b) 

where C, jα  and C, jα  are the vectors collecting the most common combinations defined in 

Eqs.(31a,b) to evaluate the approximate LB and UB of the time-history of the j-th displace-

ment component, respectively; ,j k  and 
,j k  are the k-th eigenvalue and eigenvector, solution 

of the eigenproblem in Eq. (32a) corresponding to C, jα α ; ,j k  and ,j k  are the k-th eigen-

value and eigenvector, solution of the eigenproblem in Eq. (32b) corresponding to C, jα α . 

Notice that, since the two stiffness matrices C, )jK(α  and C, )jK(α  as well as the mass matrix 

M  are real, symmetric and positive-definite matrices, the eigenvectors solution of both 

eigenproblems are real vectors, while the eigenvalues are real and positive quantities. 
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Once the eigenproperties are evaluated, the time-histories of the j -th displacement com-

ponent corresponding to C, jα α  and C, jα α  can be evaluated by classical modal analysis 

performing the following two coordinate transformations: 

C, , ,

1

C, , ,

1

( ) ( ) ( );

( ) ( ) ( )

m

j j j j jk j k

k

m

j j j j jk j k

k

u t u t q t

u t u t q t









  

  





α

α

  (33a,b) 

where m is the number of retained modes; ,j jk  and ,j jk  are the j-th elements of the eigenvec-

tors 
,j k  and ,j k , respectively; 

, ( )j kq t  and , ( )j kq t  denote the thk   time-dependent modal 

coordinates associated to the most common combinations of the endpoints of the uncertain 

parameters, C, jα α  and C, jα α , to be used for the evaluation of the UB and LB of the inter-

val displacement ( )I

ju t , respectively.  

By applying the coordinate transformations in Eqs. (33a,b) to Eq.(3), the following sets of 

2m  decoupled second-order ODEs is obtained: 

2

, , , , , , ,

2

, , , , , , ,

( ) 2 ( ) ( ) ( );

( ) 2 ( ) ( ) ( ),    ( 1,2, , )

T

j k j k j k j k j k j k j k

T

j k j k j k j k j k j k j k

q t q t q t t

q t q t q t t k m

  

  

  

   

f

f





 (34a,b) 

with 2

, ,j k j k   and 2

, ,j k j k  , while 2

, , ,( ) 2j k M K j k j kc c     and 

2

, , ,( ) 2j k M K j k j kc c     are evaluated according to the Rayleigh condition (4). Introducing 

the modal state variable vectors , ( )j k ty  and , ( )j k ty , defined as: 

,

, , C,

,

,

, , C,

,

( )
( ) ( ) ;

( )

( )
( ) ( ) .

( )

j k

j k j k j

j k

j k

j k j k j

j k

q t
t t

q t

q t
t t

q t

 
    

  

 
    

 

y y α

y y α

 (35a,b) 
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Eqs.(34a,b) can be rewritten in terms of state variables, as follows: 

, , , ,

, , , ,

( ) ( ) ( );

( ) ( ) ( )

j k j k j k j k

j k j k j k j k

t t t

t t t

 

 

y D y V f

y D y V f

 (36a,b) 

where ,j kD  and ,j kD  are 2 2  matrices, while ,j kV  and ,j kV  are 2 n  matrices defined re-

spectively, as: 

2 2, ,

, , , , , ,

, ,

, ,

0 1 0 1
;    ;

2 2

;                            .

j k j k

j k j k j k j k j k j k

T Tj k j k

j k j k

     

   
         

   
    

  

D D

0 0
V V

 

 (37a-d) 

 

5.1 Bounds of free vibrations 

According to Eqs.(12a,b), once the modal analysis is performed, the LB and UB of the free 

vibrations of the j -th displacement component ( )I

ju t , evaluated by solving the set of ODEs 

(36a,b) for ( )t f 0 , are given by (see Eqs.(12a,b)): 

, , , ,

1 1

, , , ,

1 1

( ) min ( ),    ( ) ;

( ) max ( ),    ( ) ,

m m

j j jk j k j jk j k

k k

m m

j j jk j k j jk j k

k k

u t q t q t

u t q t q t

 

 

 

 

 
  

 

 
  

 

 

 

 (38a,b) 

where , ( )j kq t  and , ( )j kq t  are the first elements of the following vectors, respectively: 

, , 0 , 0 , , 0 , 0( ) ( ) ( ); ( ) ( ) ( )j k j k j k j k j k j kt t t t t t t t   y Θ y y Θ y  (39a,b) 

where , ( )j k tΘ  and , ( )j k tΘ  are the 2 2  transition matrices given, respectively, as: 
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2

, , ,

, , 2

, , ,

2

, , ,

, , 2

, , ,

( ) ( )
( ) exp ;

( ) ( )

( ) ( )
( ) exp .

( ) ( )

j k j k j k

j k j k

j k j k j k

j k j k j k

j k j k

j k j k j k

g t g t
t t

g t g t

g t g t
t t

g t g t









 
        

 
       

Θ D

Θ D

 (40a,b) 

In the previous equations, 
, ( )j kg t  and , ( )j kg t  are two functions of time t , given, respec-

tively, by: 

   

   

,2 2

, , , , , , ,2 2
, ,

,2 2

, , , , , , ,2 2
, ,

1
( ) exp( ) cos 1 sen 1 ;

1

1
( ) exp( ) cos 1 sen 1 .

1

j k

j k j k j k j k j k j k j k

j k j k

j k

j k j k j k j k j k j k j k

j k j k

g t t t t

g t t t t


     

 


     

 

 
      
 
 

 
      
 
 

(41a,b) 

 

5.2 Bounds of the time-history interval response  

In order to evaluate the bounds of response time-history under an arbitrary deterministic dy-

namic excitation, the ODEs in Eq. (36a,b) need to be solved. As well known, the response 

time-history, in terms of state variables, of quiescent structural systems can be written in inte-

gral form as follows: 

 

 

, , ,

0

, , ,

0

( ) ( )d ;

( ) ( )d

t

j k j k j k

t

j k j k j k

t t

t t

  

  

 

 





y Θ V  f

y Θ V  f

 (42a,b) 

where the matrices defined in Eqs.(37) and (40) appear. The solution of the integrals in Eqs. 

(42a,b) can be conveniently evaluated by a step-by-step numerical procedure (e.g. [27][28]). 

Specifically, subdividing the time interval of interest 0 Ft t   into N  time steps /Ft t N  , 
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such that st s t   ( 0,1,2, ,s N ), the following step-by step solutions of Eqs. (42a,b) are 

obtained: 

 

 

(0) (1)

, 1 , , , , , , 1

(0) (1)

, 1 , , , , , , 1

( ) ( ) ( )  ( ) ( )  ( );
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t t t t t t t
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  (43a,b) 

where: 
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 (44a-f) 

Finally, the LB and UB, 1( )j su t   and 1( )j su t  , of the j-th displacement component can be 

obtained at each time instant 1st  , according to Eqs.(12a,b), as follows: 

1 , , 1 , , 1

1 1

1 , , 1 , , 1

1 1

( ) min ( ),   ( ) ;

( ) max ( ),   ( ) .

m m

j s j jk j k s j jk j k s
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m m

j s j jk j k s j jk j k s

k k

u t q t q t

u t q t q t

 

 

  

 

  

 

 
  

 

 
  

 

 

 

 (45a,b) 

The proposed method for the dynamic analysis of structures with uncertain-but-bounded 

parameters under arbitrary dynamic excitation is summarized in the following flow-chart: 

 Input data: geometry, boundary and loading conditions, material properties of the 

nominal structure; uncertain parameters 0, (1 )I I

i i id d   , ( 1,2, ,i r ) 

 Define the nominal matrices 0M , 0K , and 0C  

 Solve the nominal eigenproblem in Eq. (27) 

 Solve Eq.(28) to evaluate the nominal dynamic response 0( )tu  by using Eq. (26) 
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 Evaluate the matrices ,  ( 1,2, , )rK , in Eq. (24) 

 Evaluate the pseudo-static sensitivity vectors , ( ),  ( 1,2, , )t r
u

s  

 Define the vectors C, jα  and C, jα  (Eqs.31(a,b)) collecting the most common combina-

tions of the endpoints of the uncertain parameters to be used for evaluating ( )ju t  and 

( )ju t , respectively 

 Solve two deterministic eigenproblems (Eqs. (32a,b)) associated to C, jα  and C, jα  

 Perform two parallel step-by-step numerical integrations to evaluate the modal re-

sponses associated to C, jα  and C, jα  (see Eqs. (43a,b)) 

 Evaluate the bounds of the j-th displacement component using Eqs. (45a,b) 

 

6 NUMERICAL APPLICATIONS 

To validate the proposed method, three numerical applications concerning quite different 

types of structural systems are presented: a 3D truss structure, a grid structure and a shell cor-

ner. In all the examples, Young’s modulus of the material is assumed to be uncertain. The ac-

curacy of the proposed procedure is assessed by comparison with the exact bounds of the 

selected dynamic response quantities of interest provided by the vertex method [25]. The latter 

is a combinatorial procedure which requires to perform as many deterministic dynamic anal-

yses as are the possible combinations of the bounds of the r  uncertain-but-bounded parame-

ters, say 2
r
, and then seek, at each time instant, the minimum and maximum among the 

computed responses. Appropriate comparisons with the bounds obtained considering the triv-

ial combinations of the endpoints of the uncertain parameters and by applying the IPM are 

also presented. FE models of the analyzed structures are built by using the commercial soft-

ware ABAQUS which is also exploited to perform the deterministic dynamic analyses re-

quested both by the proposed procedure and the vertex method. 
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6.1 3D truss structure with uncertain Young’s modulus under impulsive load 

As first application, the 3D 26-bar truss structure with 18 DOFs depicted in Figure 1 is con-

sidered. The following geometrical and mechanical properties are assumed: nominal cross-

sectional area of the bars 4 2

0 0, 4.27 10  miA A    , nominal Young’s moduli 

8 2

0 0, 2.1 10  kN/miE E   , ( 1,2, ,26i  ), nominal mass 0, 0 1000 kgjm m  , 

( 1,2, ,6j  ), lumped at each node. The Rayleigh damping constants Mc  and Kc  in Eq.(4) 

have been taken as 13.28904 sMc   and 0.00076 sKc  , respectively, in such a way that the 

modal damping ratio for the first and second modes of the nominal structure is 0 0.05  . The 

truss is subjected to an impulsive load, 0( ) δ( ) 1000 δ( ) Nf t f t t  , as shown in Figure 1. 

Young’s moduli of 13r   bars are modeled as interval variables, 0
ˆ(1 )I I

i iE E e   , 

( 1,2, ,13i  ), (see bar numbering in Figure 1), with the same deviation amplitude 1  . 

The interval displacement of node A in the load direction, A ( )I

yu t , is selected as response 

quantity of interest. 

According to Eqs. (42a,b), the two dynamic responses of the truss structure under the im-

pulsive load, pertaining to the most common combinations of the bounds of the uncertain pa-

rameters, C, jα  and C, jα , can be evaluated in closed-form as: 

, , , , , ,( ) ( ) ; ( ) ( )j k j k j k j k j k j kt t t t y Θ v y Θ v  (46a,b) 

where 

, 0 , 0

, ,

0 0
;         .T Tj k j k

j k j k

f f
   

    
  

v v
 

 (47a-d) 

Figures 2 and 3 display the time-histories of the LB and UB of the interval nodal displace-

ment A ( )I

yu t  for two deviation amplitudes of the uncertain-but-bounded parameters, say 
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0.1   and 0.2  , respectively. The proposed bounds are compared with the ones ob-

tained by applying the IPM as well as with the exact bounds provided by the vertex method, 

which requires 132  deterministic dynamic analyses. By inspection of these figures, it can be 

observed that the proposed method is more accurate than the IPM. In particular, as larger de-

grees of uncertainty are considered, say 0.2   (see Figure 3), the accuracy of the IPM 

rapidily worsens, while the proposed bounds of the dynamic response are still very close to 

the exact ones. Furthermore, it is worth observing that the IPM generally overestimates the 

interval response.  

6.2 Grid structure with uncertain Young’s modulus under impulsive load 

The second application concerns the grid structure shown in Figure 4 which represents part of 

the roof of an existing building located in Italy. The grid structure is made of concrete with 

the following mechanical properties: nominal Young’s modulus 7

0

23.15 10 kN/mE  , Pois-

son’s ratio 0.2  , unit weight 325kN/m  . A consistent mass matrix is considered. The 

FE model of the grid structure consists of 142 frame FEs with rectangular cross-section hav-

ing width 0.80 m  and thickness 0.20 m . The total number of DOFs is 474n  . The Rayleigh 

damping constants Mc  and Kc  in Eq.(4) have been taken as 12.89598 sMc   and 

0.00074 sKc  , respectively, in such a way that the modal damping ratio for the first and 

third modes of the nominal structure is 0 0.05  . The grid structure is subjected to an impul-

sive load, 0( ) ( ) 20 ( )kNf t f t t   , applied to the central node A, as shown in Figure 4. 

Young’s moduli of 9r   elements are modeled as interval variables, 0
ˆ(1 )I I

i iE E e   , 

( 1,2, , 9i r  ), (see element numbering in Figure 4), with the same deviation amplitude 

1  . The selected response quantities of interest are the interval displacement of node A in 

the load direction, A ( )I

zu t , the interval rotations of node A, A ( )I

x t  and A ( )I

y t , around the x - 
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and y -axes, respectively (see Figure 4). Also in this case, the two dynamic responses pertain-

ing to the most common combinations of the bounds of the uncertain parameters can be eval-

uated in closed-form (see Eqs. (46a,b)). 

Figures 5 and 6 show the time-histories of the LB and UB, respectively, of the interval dis-

placement, A ( )I

zu t , and rotations of node A, A ( )I

x t  and A ( )I

y t , for a deviation amplitude of 

the uncertain parameters 0.1  . The proposed estimates are compared with the ones pro-

vided by the IPM and vertex method. Similar comparisons are shown in Figures 7 and 8 for a 

larger degree of uncertainty, say 0.2  . It can be observed that both the proposed method 

and the IPM yield accurate estimates of the bounds of the interval displacement A ( )I

zu t . Con-

versely, the proposed bounds of the interval rotations of node A, A ( )I

x t  and A ( )I

y t , are much 

more accurate than the ones provided by the IPM, especially when larger fluctuations of the 

uncertain parameters are considered. It is worth mentioning that, for real-size systems, like the 

grid structure herein examined, the IPM is much more expensive and involved than the pro-

posed method.  

To further assess the effectiveness of the presented procedure, in Figures 9 and 10 the pro-

posed LB and UB of the selected response quantities of interest are contrasted with the exact 

bounds and the ones obtained considering the trivial combinations of the endpoints of the un-

certain parameters, for 0.2  . By inspection of Figures 9a and 10a, it is inferred that the 

most common combinations yielding the bounds of the interval displacement A ( )I

zu t  accord-

ing to the proposed pseudo-static sensitivity analysis actually are the same as the trivial ones. 

Specifically, the proposed LB and UB of A ( )I

zu t  are obtained setting, at each time instant, all 

the uncertain parameters equal to their LB and UB, respectively. Conversely, the most com-

mon combinations detected by the proposed pseudo-static sensitivity analysis for the evalua-

tion of the bounds of the rotations of node A, A ( )I

x t  and A ( )I

y t , are different from the trivial 
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ones. Indeed, Figures 9b,c and 10b,c show that the proposed estimates of the bounds of 

A ( )I

x t  and A ( )I

y t  are much more accurate than the ones pertaining to the trivial combina-

tions.  

6.3 Shell corner with uncertain Young’s modulus under seismic excitation 

As last application, a shell corner subjected to the component of ground motion acceleration 

recorded at El Centro along the x direction is considered (see Figure 11). The following ge-

ometrical and mechanical properties are assumed: nominal Young’s modulus 

7

0

23.15 10 kN/mE  , Poisson’s ratio 0.2  , unit weight 325kN/m  , thickness 

0.25 ms  . The FE model built in ABAQUS consists of 198 shell FEs with 6 DOFs per node 

(S8R), so that the total number of DOFs is 3960n  . A consistent mass matrix is considered. 

The Rayleigh damping constants Mc  and Kc  in Eq.(4) have been taken as 11.83015 sMc   

and 0.00135 sKc  , respectively, in such a way that the modal damping ratio for the first and 

fourth modes of the nominal structure is 0 0.05  . Young’s moduli of the 6r   sub-domains 

highlighted in Figure 11 are modeled as independent interval variables, 0
ˆ(1 )I I

i iE E e   , 

( 1,2, , 6i r  ), with the same deviation amplitude 1  . The interval displacement of 

node A in the x -direction, A ( )I

xu t , is selected as response quantity of interest.  

In Figure 12, the time-histories of the LB and UB of the interval displacement A ( )I

xu t  for 

0.1   and 0.2  , respectively, are plotted. For the sake of clarity, the LB (negative 

values) and UB (positive values) are reported in the same plot. The proposed estimates are 

contrasted to the bounds provided by the IPM and vertex method. It can be observed that the 

IPM highly overestimates the region of the interval response even for 0.1  . Conversely, 

the proposed bounds of the interval displacement A ( )I

xu t  are very close to the exact ones even 

when larger degrees of uncertainty are considered, say 0.2  . 
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Finally, in Figure 13 the proposed time-histories of the LB and UB of the interval dis-

placement A ( )I

xu t  are compared with the exact bounds and the ones obtained considering the 

trivial combinations of the endpoints of the uncertain parameters, for 0.2  . It can be seen 

that the most common combinations provided by the proposed pseudo-static sensitivity analy-

sis are different from the trivial ones and provide more accurate estimates of the bounds of the 

response. Specifically, the proposed LB of the interval displacement A ( )I

xu t  at each time in-

stant is evaluated considering the following “Commonest” combinations 

1 1,  , 2, ,6i iE E E E i   ; while the proposed time-history of the UB is obtained assuming 

1 1,  , 2, ,6i iE E E E i   . It is worth noting that, though the “Commonest” combinations 

differ from the trivial ones only for the value assumed by 1 1

IE E , the corresponding bounds 

of the displacement A ( )I

xu t  are closer to the exact ones. 

 

7 CONCLUSIONS 

The challenging task of evaluating the bounds of the response of linear-elastic structures with 

uncertain-but-bounded properties subjected to deterministic dynamic excitations has been ad-

dressed. In the framework of the classical modal analysis, a novel method has been developed 

as an appropriate extension of sensitivity-based procedures successfully applied in literature 

to predict the range of the interval structural response under static loads. 

The proposed method basically requires to perform two parallel deterministic modal analy-

ses corresponding to the values of the uncertain parameters selected by a pseudo-static sensi-

tivity analysis and then seek, at each time instant, the minimum and maximum among the 

computed responses. The following main steps are required: i) a preliminary pseudo-static 

sensitivity analysis to define the most common combinations of the endpoints of the interval 

parameters to be used for estimating the lower bound and upper bound of the response over 
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the whole time-history; ii) two parallel modal analyses which require the solutions of two 

generalized eigenproblems and the step-by-step integration of two deterministic equations of 

motion in the modal sub-space corresponding to the most common combinations defined in 

the previous step; iii) the evaluation of the bounds of the response time-history as the mini-

mum and maximum among the responses provided by the two parallel modal analyses at each 

time step. 

Numerical results, focusing on the comparison of the proposed method with the Interval 

Perturbation Method (IPM) and the classical combinatorial procedure, have been presented. 

The main advantages of the presented method may be summarized as follows: i) unlike the 

IPM, the proposed procedure provides very accurate estimates of the bounds of the dynamic 

response even in the presence of relatively large degrees of uncertainty; ii) the computational 

effort is much lower than the one requested both by the IPM and classical combinatorial pro-

cedure, especially for large-size structures with many uncertain parameters; iii) the non-

intrusive nature of the main body of the numerical procedure, consisting of two deterministic 

modal analyses, allows the integration into standard finite element codes. 
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Figure captions 

 

Figure 1. 3D 26-bar truss structure with uncertain Young’s moduli of 13r   bars subjected to 

an impulsive load. 

Figure 2. Time-histories of the a) LB and b) UB of the interval nodal displacement A ( )I

yu t  of 

the 3D truss provided by the proposed method, IPM and vertex method, for a deviation ampli-

tude of the uncertain parameters 0.1  . 

Figure 3. Time-histories of the a) LB and b) UB of the interval nodal displacement A ( )I

yu t  of 

the 3D truss provided by the proposed method, IPM and vertex method, for a deviation ampli-

tude of the uncertain parameters 0.2  . 

Figure 4. Grid structure with uncertain Young’s moduli of 9r   elements subjected to an 

impulsive load: a) 3D model; b) planar view. 

Figure 5. Time-histories of the LB of the interval a) displacement A ( )I

zu t  and rotations b) 

A ( )I

x t , c) A ( )I

y t  of node A of the grid structure provided by the proposed method, IPM and 

vertex method, for a deviation amplitude of the uncertain parameters 0.1  . 

Figure 6. Time-histories of the UB of the interval a) displacement A ( )I

zu t  and rotations b) 

A ( )I

x t , c) A ( )I

y t  of node A of the grid structure provided by the proposed method, IPM and 

vertex method, for a deviation amplitude of the uncertain parameters 0.1  . 

Figure 7. Time-histories of the LB of the interval a) displacement A ( )I

zu t  and rotations b) 

A ( )I

x t , c) A ( )I

y t  of node A of the grid structure provided by the proposed method, IPM and 

vertex method, for a deviation amplitude of the uncertain parameters 0.2  . 
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Figure 8. Time-histories of the UB of the interval a) displacement A ( )I

zu t  and rotations b) 

A ( )I

x t , c) A ( )I

y t  of node A of the grid structure provided by the proposed method, IPM and 

vertex method for a deviation amplitude of the uncertain parameters 0.2  . 

Figure 9. Time-histories of the LB of the interval a) displacement A ( )I

zu t  and rotations b) 

A ( )I

x t , c) A ( )I

y t  of node A of the grid structure obtained applying the proposed method, the 

vertex method and considering the trivial combinations of the endpoints of the uncertain pa-

rameters for 0.2  . 

Figure 10. Time-histories of the UB of the interval a) displacement A ( )I

zu t  and rotations b) 

A ( )I

x t , c) A ( )I

y t  of node A of the grid structure obtained applying the proposed method, the 

vertex method and considering the trivial combinations of the endpoints of the uncertain pa-

rameters for 0.2  . 

Figure 11. Shell corner with uncertain Young’s moduli of 6r   sub-domains under El Cen-

tro ground motion acceleration along the x direction. 

Figure 12. Time-histories of the LB and UB of the interval displacement A ( )I

xu t  of the shell 

corner provided by the proposed method, IPM and vertex method, for a deviation amplitude of 

the uncertain parameters a) 0.1   and b) 0.2  . 

Figure 13. Time-histories of the LB and UB of the interval displacement A ( )I

xu t  of the shell 

corner obtained applying the proposed method, the vertex method and considering the trivial 

combinations of the endpoints of the uncertain parameters, for 0.2  . 
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Figure 1. 3D 26-bar truss structure with uncertain Young’s moduli of 13r   bars subjected to an 

impulsive load. 
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Figure 2. Time-histories of the a) LB and b) UB of the interval nodal displacement A ( )I

yu t  of the 3D 

truss provided by the proposed method, IPM and vertex method, for a deviation amplitude of the 

uncertain parameters 0.1  . 
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Figure 3. Time-histories of the a) LB and b) UB of the interval nodal displacement A ( )I

yu t  of the 3D 

truss provided by the proposed method, IPM and vertex method, for a deviation amplitude of the 

uncertain parameters 0.2  . 
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Figure 4. Grid structure with uncertain Young’s moduli of 9r   elements subjected to an 

impulsive load: a) 3D model; b) planar view. 

)a

)b



Figure 5 
 

 

 

 

Figure 5. Time-histories of the LB of the interval a) displacement A ( )I

zu t  and rotations b) A ( )I

x t , c) 

A ( )I

y t  of node A of the grid structure provided by the proposed method, IPM and vertex method, 

for a deviation amplitude of the uncertain parameters 0.1  . 
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Figure 6. Time-histories of the UB of the interval a) displacement A ( )I

zu t  and rotations b) A ( )I

x t , c) 

A ( )I

y t  of node A of the grid structure provided by the proposed method, IPM and vertex method, 

for a deviation amplitude of the uncertain parameters 0.1  . 
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Figure 7. Time-histories of the LB of the interval a) displacement A ( )I

zu t  and rotations b) A ( )I

x t , c) 

A ( )I

y t  of node A of the grid structure provided by the proposed method, IPM and vertex method, 

for a deviation amplitude of the uncertain parameters 0.2  . 
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Figure 8. Time-histories of the UB of the interval a) displacement A ( )I

zu t  and rotations b) A ( )I

x t , c) 

A ( )I

y t  of node A of the grid structure provided by the proposed method, IPM and vertex method for 

a deviation amplitude of the uncertain parameters 0.2  . 
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Figure 9. Time-histories of the LB of the interval a) displacement A ( )I

zu t  and rotations b) A ( )I

x t , c) 

A ( )I

y t  of node A of the grid structure obtained applying the proposed method, the vertex method 

and considering the trivial combinations of the endpoints of the uncertain parameters for 0.2  . 
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Figure 10. Time-histories of the UB of the interval a) displacement A ( )I

zu t  and rotations b) A ( )I

x t , 

c) A ( )I

y t  of node A of the grid structure obtained applying the proposed method, the vertex method 

and considering the trivial combinations of the endpoints of the uncertain parameters for 0.2  . 
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Figure 11. Shell corner with uncertain Young’s moduli of 6r   regions under El Centro ground 

motion acceleration along the x direction. 
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Figure 12. Time-histories of the LB and UB of the interval displacement A ( )I

xu t  of the shell corner 

provided by the proposed method, IPM and vertex method, for a deviation amplitude of the 

uncertain parameters a) 0.1   and b) 0.2  . 
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Figure 13. Time-histories of the LB and UB of the interval displacement A ( )I

xu t  of the shell corner 

obtained applying the proposed method, the vertex method and considering the trivial combinations 

of the endpoints of the uncertain parameters, for 0.2  . 
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