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Abstract 

This paper addresses the analysis of structures with random axial stiffness described by imprecise 

probability density functions (PDFs). Uncertainties are modelled as random variables whose PDF is 

assumed to depend on interval basic parameters (mean-value, variance etc.). The main purpose of 

the analysis is to propagate the imprecise PDF of the random axial stiffness by establishing 

approximate bounds on the mean-value and variance of the response. To this aim, an efficient 

method is proposed which relies on the combination of standard probabilistic analysis with the so-

called improved interval analysis via extra unitary interval and the Rational Series Expansion, 

recently introduced by the authors. The accuracy of the proposed bounds of response statistics is 

demonstrated by appropriate comparisons with the results obtained performing standard Monte 

Carlo Simulation in conjunction with a combinatorial procedure. 

Keywords: Imprecise probability; Interval basic parameters; Improved interval analysis; Rational 

Series Expansion; Explicit expressions; Upper bound and lower bound. 
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1. INTRODUCTION 

Uncertainties affecting both structural parameters (e.g. material and/or geometric properties, 

fabrication details, etc.) and external loads play a crucial role in the prediction of structural behavior. 

In the last decades, several methods have been developed to analyze the effects of uncertain 

properties on structural response. Such methods require some mathematical description of 

uncertainties based on available empirical information. The most common description is by no 

means the statistical one which characterizes the uncertain parameters by defining an appropriate 

probability density function (PDF). However, available data are often quite limited and of poor 

quality as well as imprecise, diffuse, fluctuating, incomplete, fragmentary, vague or ambiguous. It 

follows that available data are often insufficient to empirically determine the PDF of an uncertain 

variable. As a consequence, the “basic” parameters (e.g. mean-value, variance, etc.) of the PDF are 

affected by uncertainties. These uncertainties can sometimes be substantial and in many applications 

“precise probabilities” cannot be considered as adequate and credible models of real states. This 

issue has been the subject of considerable debate in the last decades and a new family of non-

probabilistic or “possibilistic” assessment methods has been derived [1,2]. 

When the information relating to an uncertain quantity of interest is expressed only as a set of 

possible values that the quantity might take, this information is usually referred to as “imprecise”. 

This is distinct from the conventional probabilistic treatment of uncertainty where a probability 

measure is assigned to possible values of the uncertain quantity. The extension of probabilistic 

analysis to include imprecise information is now well established in the theory of “imprecise 

probabilities” which may be viewed as a generalization of the traditional probability theory (see e.g., 

[3-6]). An imprecise probability arises when one’s lower probability for an event is strictly smaller 
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than one’s upper probability for the same event [5]. A key feature of imprecise probabilities is the 

identification of bounds on probabilities for events of interest; the uncertainty of an event is 

characterized by two measure values—a lower probability and an upper probability. The distance 

between the probability bounds reflects the indeterminacy in model specifications expressed as 

imprecision of the models. This imprecision is the concession for not introducing artificial model 

assumptions [2,7]. 

Different representations of imprecise probabilities have been proposed in the literature. For 

example, Dempster [3] and Shafer [4] formulated a theory, sometimes called evidence theory, which 

can be considered as a variant of probability theory, in which the elements of the sample space are 

not single points but sets of values. Walley [5] coined the term imprecise probability; his theory is 

based on the subjective behavioral interpretation of the probability with the lower and the upper 

previsions. Weichselberger [6] introduced the interval probability as a generalization of 

Kolmogorov's classical probability; the resulting theory does not depend upon interpretations of the 

probability concept. The generalization is performed through the use of lower and upper 

probabilities, denoted by  P A  and  P A , respectively, with    0 1P A P A   . The special 

case with    P A P A  for all events A provides precise probability, whilst   0P A   and 

  1P A   represents complete lack of knowledge about A. In order to unify the standard interval 

analysis [8-11] with the traditional probability theory, the probability bounds analysis was 

introduced [12,13]. In this approach, also known as P-box, an imprecise random variable is 

represented by upper and lower bounds of its cumulative density function (CDF), rather than upper 

and lower bounds of its PDF. The fuzzy probability has been formulated [14] considering 

probability distributions with fuzzy parameters. In the framework of imprecise probability, the 
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structural reliability bounds have been afterwards determined by considering imprecise parameters 

of the PDF associated with the stress and strength [15,16]. Although being very general, the 

application of the previously described theories is often limited to simple models, mainly because of 

the computational burden associated to the propagation of the imprecise probability description 

[17,18]. 

In the framework of imprecise probability, the interval analysis is certainly a very effective tool 

for the evaluation of the bounds of response statistical moments. However, the application of 

approaches based on the classical interval analysis (CIA) to engineering problems is hindered by the 

so-called dependency phenomenon [2,19] which often leads to an overestimation of the interval 

result unacceptable for design purposes.  

In this paper, a method for the analysis of structural systems with random axial stiffness is 

presented. Uncertainties are modelled as random variables with imprecise PDF so as to take into 

account that the PDF itself is subject to doubt. Specifically, the imprecise PDF is assumed to 

depend on interval “basic” parameters (e.g. means, variances, etc.) which possess bounded 

descriptions. The aim of the analysis is to propagate the imprecise PDFs of the random axial 

stiffness by establishing approximate bounds on the mean-value and variance of the response. The 

proposed approach relies on a combination of probabilistic and non-probabilistic tools. Specifically, 

the random character of uncertainty is handled by performing a standard probabilistic analysis while 

imprecision is processed by applying the improved interval analysis via extra unitary interval (IIA 

via EUI) [20] in conjunction with the so-called Rational Series Expansion (RSE) (see e.g., [21-23]). 

The main steps of the proposed procedure may be summarized as follows: i) the derivation of 

approximate analytical expressions of the interval mean-value and variance of structural response by 

applying the RSE which enables to determine the inverse of the random stiffness matrix in 
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approximate explicit form; ii) the evaluation of explicit bounds of the interval mean-value and 

variance of structural response by adopting the IIA via EUI as an effective remedy to the 

overestimation due to the dependency phenomenon. 

To demonstrate the effectiveness of the presented procedure, a braced shear-type frame and a 3D 

truss structure with random axial stiffness of braces and bars, respectively, characterized by 

imprecise PDF are analyzed. 

The paper is organized as follows: in Section 2, preliminary concepts and definitions concerning 

the imprecise PDF model assumed in the paper are introduced; in Section 3, approximate explicit 

expressions of the mean-value and variance of displacements of structures with random axial 

stiffness are derived by means of the RSE; in Section 4, under the assumption of imprecise PDF of 

the random axial stiffness, approximate explicit expressions of the bounds of the interval mean-

value and variance of displacements are derived; finally, in Section 5, numerical results are 

presented to demonstrate the accuracy and efficiency of the proposed method. 

 

2. IMPRECISE PROBABILITY: PRELIMINARY CONCEPTS AND DEFINITIONS  

Information on an uncertain quantity of interest is usually referred to as “imprecise” when it is 

expressed only as a set of possible values that the quantity might take. Here, in the framework of 

imprecise probability analysis, it is assumed that a random variable possesses a family of probability 

density functions (PDFs). In particular, let us introduce the function ( ; )Xp x a  which represents the 

family of PDFs of the random variable X (with x ). This function, herein referred to as 

imprecise PDF, depends on the set of epistemic “basic” parameters 1 2, , , sa a a , collected into the 

vector  T

1 2, , , sa a aa  , that lies within the admissible closed region Q. Hereafter, it is assumed 
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that the epistemic parameters define a bounded set of interval variables. This means that the vector 

a  is constrained by an s-dimensional box Q. According to the interval analysis formalism, the set-

interval vector of epistemic parameters a  is represented by [ , ]I sa a a  , such that  a a a , 

where  is the set of all closed real interval numbers. The symbols a  and a  denote the lower 

bound (LB) and upper bound (UB) vectors, while the apex I characterizes interval variables; the i-th 

element of the interval vector Ia  can be defined as  ,I
i i ia a a , where  I

ia   , ia  and ia  are the 

LB and UB of the i-th epistemic basic parameter I
ia , respectively.  

As can be readily inferred, the statistical moment of order k  of the random variable X  with 

imprecise PDF ( ; )I
Xp x a  is defined by an interval. Indeed, the set of PDFs describing the random 

variable X  yields a set of statistical moments. This concept is formally expressed by introducing 

the so-called interval stochastic average operator E I  , i.e.:  

E E , E .I k k kX X X     (1) 

In the previous expression, E kX  and E kX  denote the LB and UB, respectively, of the k -th 

order statistical moment of the random variable X , characterized by the imprecise PDF ( ; )I
Xp x a . 

Based on standard probability theory and classical interval analysis (CIA), such bounds can be 

evaluated as:  

E min ( ; ) d ;

E max ( ; ) d

I

I

k k I
X

Q

k k I
X

Q

X x p x x

X x p x x











 
  

 
 

  
 





a

a

a

a

               (2a,b) 
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where the symbols  min   and  max   mean minimum and maximum value of the quantity into 

parentheses under the condition that I Qa , respectively.  

Taking into account the definitions (2a,b), the LB and UB of the interval expectation (or mean-

value) of the random variable X , =E ,I I
X X XX      , are given, respectively, as: 

E min ( ; ) d ;

E max ( ; ) d .

I

I

I
X X

Q

I
X X

Q

X x p x x

X x p x x















 
   

 
 

   
 





a

a

a

a

               (3a,b) 

Similarly, the LB and UB of the interval variance of the random variable X , 

2 2 2 2 2, E ( )
I I I

X X X XX        , are defined as: 

 

 

22 2 2

22 2 2

min ( ; ) d E ( ) ;

max ( ; ) d E ( ) .

I

I

I I
X X X X

Q

I I
X X X X

Q

x p x x X

x p x x X

  

  











 
    

 
 

    
 





a

a

a

a

          (4a,b) 

The definitions in Eqs. (2)-(4) can be extended to cover the case of a joint imprecise PDF, 

( ; )IpX Xx a , with  T

1 2= X ,X , ,XrX   and 
1 2

TT T T, , ,
r

I
X X X   Xa a a a  being the vectors collecting, 

respectively, the random uncertain parameters and the corresponding epistemic interval variables; 

the k-th element of I
Xa  is constrained by an ks -dimensional box kQ , that is k

k

s
X a  . 
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3. LINEAR STRUCTURES WITH RANDOM AXIAL STIFFNESS  

3.1 Explicit inverse of the random stiffness matrix by the Rational Series Expansion 

By applying the unimodal formulation, discretized structures (like frames and truss structures) can 

be decomposed into their constituent unimodal components (one for a truss element, two for a beam 

element of Euler-Bernoulli type, etc.) [24]. It follows that the equations governing the response of a 

structure with n degrees of freedom and m unimodal components, subjected to static loads, can be 

written as follows: 

T ;       equilibrium equations;

;       constitutive equations;

.        compatibility equations

C Q = f

Q = E q

C U = q

 (5a-c) 

where U  is the n-vector of nodal displacements; Q and q  are the m-vectors of internal forces and 

deformations, respectively; TC  is the n m  equilibrium matrix and E  is the m m  diagonal 

internal stiffness matrix. Let j j j jE A L   be the axial stiffness of the j-th element, where jE , jA  

and jL  are the Young’s modulus, cross-sectional area and length of the element, respectively. Let us 

assume now that r m  elements possess uncertain elastic modulus. Denoting by jX  the zero-mean 

random fluctuation of the uncertain elastic modulus around the nominal value, 0, jE , of the j-th 

element, such that  0, 1j j jE E X  , one gets: 

 0,

0,

1
(1 )j j j

j j j
j

E X A
X

L
 


    (6) 



9 

where 0, 0,j j j jE A L   is the nominal value of the axial stiffness of the j-th element with 

1,2, ,j r m  ; the conditions 1jX   must be satisfied in order to guarantee always positive 

values of the axial stiffness. Then, the internal stiffness matrix ( )E X  can be written as: 

T
0 , ,

1

( ) ,  
r

j E j E j
j

X


 E X E l l  (7) 

where 0E  is the nominal internal stiffness matrix and ,E jl  is a vector of order n having zero entries 

except the j-th which is equal to 0, j . Notice that the dyadic product T
, ,E j E jl l  gives a change of 

rank one to the nominal internal stiffness matrix.  

After simple manipulations, the equilibrium equations, in the framework of the displacement 

method, can be written as:  

( ) ( ) K X U X f  (8) 

where  

T( ) ( )K X C E X C  (9) 

is the n n  random stiffness matrix which depends on the r  dimensionless random variables, jX , 

collected into the vector X . Furthermore, in Eq. (8) f  is the n -vector listing the external nodal 

forces which, without loss of generality, are assumed to be deterministic; ( )U X  is the n -vector of 

the unknown nodal random displacements.  
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Taking into account Eq.(7), the random stiffness matrix ( )K X  in Eq.(9) can be recast as sum of 

its nominal value, 0K , plus r  rank-one random modifications, i.e.: 

T
0 0

1 1

( )
r r

j j j j j
j j

X X
 

    K X K K K v  v  (10) 

where  

T T
0 0 ,; .j E j K C E C v C l  (11a,b) 

and T
j j jK v  v  is a rank-one matrix.  

The solution of Eq.(8) can be formally written as: 

1( ) ( ) .U X K X f  (12) 

The probabilistic characterization of the random displacement vector ( )U X  can be performed 

straightforwardly by applying classical Monte Carlo simulation (MCS) method. Unfortunately, this 

method is very expensive from a computational point of view, especially for large-size structures. In 

this context, the knowledge of the explicit inverse of the random stiffness matrix ( )K X , providing 

the explicit relationship between the displacement vector ( )U X  and the random variables jX , is 

very useful in order to evaluate the statistics of the stochastic response. Recently, by properly 

modifying the Neumann series expansion [21-23], the authors derived the so-called Rational Series 

Expansion (RSE) which provides an approximate explicit expression of the inverse of an invertible 

matrix with rank-r modifications.  
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An essential step for the application of the RSE is the decomposition of the matrix to be inverted 

as sum of the nominal value plus a deviation given by a superposition of rank-one matrices, as 

performed in Eq. (10) for the random stiffness matrix ( )K X . Then, the RSE leads to the following 

approximate explicit expression of the inverse of the random stiffness matrix [22,23]: 

1

1 T 1
0 0

1 1 1 1

1 1 1

( )
1+ 1+

                                                    
1+

r r r r
j j k

j j j j jk jk
j j j kj j k k

k j

r r r
j k

jk k j
j k

j

X X X
X d

X d X d

X X X
d d

X d



 

   


  


 
     
 

    

  



K X K v  v K D D

D
 

  


        (13) 

where 

 

T 1 1 T 1
0 0 0

T 1 1 T 1
0 0 0

; ;

; ; , , , , .

i i i i i i

is i s is i s

d

d i s j k

  

  

 

  

v K v D K v v K

v K v D K v v K  
           (14a-d) 

Equation (13) holds provided that the conditions <1i iX d  are satisfied. These conditions guarantee 

the convergence of the Taylor series expansion    
0

1
s s

i i
s

X d




  to the function  1 1 i iX d  [22]. 

Obviously, the accuracy of Eq.(13) depends on the magnitude of the fluctuations jX  of the 

uncertain parameters.  

For small degrees of uncertainties, i.e. 1jX  , an accurate approximation of the inverse of the 

random stiffness matrix can be obtained by retaining only first-order terms of the RSE in Eq.(13) 

[22,25], thus obtaining the following handy formula i.e.: 

1

1 T 1
0 0

1 1

( ) .
1+

r r
j

j j j j
j j j j

X
X

X d



 

 

 
    
 

 K X K v  v K D                     (15) 
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Notice that, if only one uncertain parameter is present, then the RSE (15) provides the exact inverse 

of the stiffness matrix and reduces to the well-known Sherman-Morison formula [26,27]. 

 

3.2 Mean-value vector and covariance of the response 

In the previous section, an approximate explicit expression of the inverse of the random stiffness 

matrix of a structure with uncertain axial stiffness has been derived by applying the RSE. The goal is 

now to find the mean-value vector and the covariance matrix of the structural response. For the sake 

of simplicity, attention is focused on problems of practical interest which involve small fluctuations 

of the uncertain axial stiffness, i.e. 1jX  . 

Upon replacing the RSE of the inverse of the stiffness matrix (15) truncated to first-order terms 

into Eq.(12), the following approximate explicit relationship between the displacement vector 

 U X  and the random variables jX  is derived: 

  1 1
0

1

( ) .
1+

r
i

i
i i i

X

X d
 



  U X K X f K f D f  (16) 

Based on Eq. (16) and applying standard probability theory, the mean-value vector, U , and the 

covariance matrix, U , of the stochastic response can be evaluated as follows: 

 

   

1
0

1

T T T T

1 1

E E ;

E E E E

r

i i
i

r r

i j i j i j
i j



   





 

  

     





U

U U U

U X K f D f

U X U X D f f D



  
 (17a,b) 
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where E   denotes the stochastic average operator and i  is an auxiliary random variable defined 

as:  

= .
1

i
i

i i

X

X d



    (18) 

Without loss of generality, it can be assumed that the random variables iX  are independent, so 

that Eq. (17b) takes the following simplified expression: 

   T T 2 T T

1

E
i

r

i i
i




   U U UU X U X D f f D     (19) 

where 

 22 2E E .
i i i       (20) 

The previous equations provide substantial computational savings over classical MCS method 

since they just involve the evaluation of the statistics of the auxiliary random variables i  without 

requiring the repeated inversion of the global random stiffness matrix.  

 

4. INTERVAL MEAN-VALUE VECTOR AND INTERVAL COVARIANCE MATRIX OF 

THE RESPONSE 

Let us assume now that the information on the uncertain axial stiffness (6) is imprecise, that is only 

a set of possible values that the quantity might take is known. Under this assumption, the zero-mean 

random variables jX  collected into the vector X  are more appropriately described by a family of 



14 

joint PDFs. Such a family is represented by the function ( ; )IpX Xx a , herein referred to as joint 

imprecise PDF, which depends on the set of epistemic “basic” parameters 
1 2
, , ,

rX X Xa a a , collected 

into the vector 
1 2

TT T T, , ,
r

I
X X X   Xa a a a  and constrained to belong to an r s -dimensional box. This 

means that the interval vector I
Xa  defines a bounded set of interval variables [ , ]I r sX X Xa a a  . 

In this context, both the mean-value vector, U , and the covariance matrix, U , of the random 

displacements  U X  have an interval nature. Therefore, the aim of the analysis is the evaluation of 

the LB and UB of response statistics by performing suitable interval computations. From an 

engineering point of view, the r  random variables iX  can be assumed to be independent so that the 

multidimensional joint imprecise PDF, ( ; )
i

I
XpX x a , can be written as: 

1
( ; ) ( ; )

k k

r
I I

X k X
k

p p x


 X Xx a a                        (21) 

where ( ; )
k k

I
X k Xp x a  is the marginal imprecise PDF of the random variable kX  with the interval 

vector k

k

s
X a   of basic parameters belonging to the admissible closed region kQ .  

As outlined in Section 2, the interval nature of statistics related to the random variables iX  with 

imprecise PDF can be formally expressed by introducing the interval stochastic average operator 

E I  . In particular, upon replacing the stochastic average operator by the interval one, Eqs.(17a) 

and (19) yield the interval mean-value vector and covariance matrix of the random displacements as: 

 

   

1
0

1

TT 2 T T

1

E ;

E

i

i

r
I I I

i
i

r II I I I
i i

i















  

  





U

U U U

U X K f D f

U X U X D f f D



  
 

 (22a,b) 
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where 

 
  

22 2 2 2
    

E , ;   

E E ,

i i i

i i i

I I
i

I I I
i i

  

  

   

    

    

     
 

 (23a,b) 

are the interval mean-value and variance of the auxiliary random variable i  introduced in Eq. (18). 

According to standard probability theory, such quantities are defined as: 

  

2

2
  

( ; )d ;    
1+

( ; )d
1+

i i i

i i i i

I Ii
X i X i

i i

I I Ii
X i X i

i i

x
p x x

d x

x
p x x

d x



 



 











 
  

 





a

a
 

 (24a,b) 

where ( ; )
i i

I
X i Xp x a  is the marginal imprecise PDF of the random variable iX . In the context of the 

CIA, the LB and UB of   i

I
  and 2

i

I

  are given by definition as 
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and 

2
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 (26a,b) 
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By applying the improved interval analysis via extra unitary interval (IIA via EUI) [20], the 

interval mean-value of the random variable i  can be rewritten in affine form as: 

0, ˆ
i i i

I I
ie      

  

 (27) 

where ˆI
ie  is the EUI associated to the interval mean-value of the i -th random variable i ; 0, i

  and 

i
  denote the midpoint value and deviation amplitude (or radius) of 

i

I
  defined, respectively, as: 

0, ;
2

.
2

i i

i

i i

i

 


 


 


 






 

  

 (28a,b) 

Similarly, the interval variance of the random variable i  can be expressed in the following 

affine form: 

2 2 2
0,    ˆ 

i i i

I I
ie      

  

 (29) 

where 2
0,  i

  and 2
  i

  denote the midpoint value and deviation amplitude (or radius) of 2

i

I

  

defined, respectively, as: 

2 2
    2

0,  

2 2
    2

0,  

;
2

.
2

i i

i

i i

i

 


 


 


 






 

  

 (30a,b) 

Substituting Eqs. (27) and (29) into Eqs. (22a,b), the interval mean-value vector and covariance 

matrix of the random displacements can be rewritten as sum of the midpoint value plus an interval 

deviation: 
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   

   
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I I I

I I I
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

U U U

U U U
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+

  

  

  

(31a,b) 

where 
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 
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and 

 

 
1

2 T T
  

1

ˆdev ;

ˆdev .

i

i

r
I I

i i
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  

 




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D f

D f f D




  

(33a,b) 

In the previous equations,  mid   and  dev   denote the midpoint and interval deviation of the 

quantity between curly brackets. 

Based on Eqs. (31a) and following the IIA via EUI [20,22], the LB and UB of the interval mean-

value vector of displacements can be evaluated as: 

 

 

mid  ;

mid  

I

I

  

  

U U U

U U U

  

  
 (34a,b) 

where 

1

Kr

i
i

 


  U D f  (35a,b) 

is the deviation amplitude vector and   denotes the component wise absolute value. 



18 

Similarly, Eq. (31b) leads to the following expressions of the LB and UB of the covariance 

matrix of displacements: 

0,

0,

 ;     

 

  

  

U U U

U U U

  

  
 (36a,b) 

where: 

2 T T
  

1
i

r

i i
i




  U D f f D  (37a,b) 

is the deviation amplitude matrix. 

 

5. NUMERICAL APPLICATIONS 

To assess the accuracy of the proposed procedure, two numerical applications concerning a braced 

shear-type frame and a 3D truss with uncertain axial stiffness of braces and bars, respectively, are 

presented. The fluctuations of the uncertain parameters,  0, 1i i iX   , around the nominal value 

are modeled as zero-mean independent random variables with Gaussian imprecise PDF, i.e.: 

2

1 1
( ; ) exp

22i i

ii

I i
X i X II

XX

x
p x 

 

  
        

 

 (38) 

where ,
i i i

I
X X X       is the interval standard deviation. In order to ensure positive values of the 

axial stiffness, the midpoint value of 
i

I
X  is assumed to be sufficiently small, say it is set to 

0, 0.11
iX  .  
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Figure 1 shows the realizations of the Gaussian imprecise PDF (38) pertaining to the LB and UB, 

iX  and 
iX , of the interval standard deviation, 

i

I
X , for two different deviation amplitudes, say 

0.011
iX   and 0.022

iX  . As expected, the larger the degree of uncertainty affecting the 

standard deviation the greater is the deviation of the PDF from the nominal one pertaining to the 

midpoint value 0, 0.11
iX  . 

The accuracy of the proposed procedure is demonstrated by performing appropriate comparisons 

with the results obtained by applying classical Monte Carlo Simulation (MCS) in conjunction with 

the Vertex Method (VM). The latter is a combinatorial procedure, first introduced by Dong and Shah 

(1987) [28], which may be viewed as the non-probabilistic counterpart of MCS. For a problem 

involving r  interval parameters, basically it consists of performing 2r  deterministic analyses as 

many as are the combinations of the endpoints of the parameters. Then, the LB and UB of the 

response quantity of interest are evaluated as the minimum and maximum among the responses 

pertaining to the explored combinations. The main steps of the procedure resulting from the joint 

application of MCS and the VM (MCS-VM), to handle the probabilistic and interval character of 

uncertainties, respectively, are summarized by the following flow-chart: 

 input: geometry; material properties; boundary and loading conditions; imprecise PDF of the 

uncertain parameters. 

 start combination loop, say for c1,2, , 2rk N   

o set ( ) ,  1,2, ,
i i

k
X X i r     

 start sample loop, say for g1,2, ,j N   
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o generate a sample of r  independent Gaussian random variables ( , )k j
iX , 1,2, ,i r  , 

with ( )

i i

k
X X   

o set  ( , ) ( , )
0, 1 ,  1,2, ,k j k j

i i i iX i r        

o evaluate  ( , ) ( , ) 1( )k j k j U X K X f  

 end sample loop 

o evaluate response statistics 

 
g ( , )

( ) ( )

1 g

E
s

N k j
k k s

U s
j

U
U

N




  X ;  
g

2( , )
2( )

1 g

E
N k j

k s
s

j

U
U

N

 X ; 

   222( ) ( ) ( )E ,  1,2, ,
s s

k k k
U s UU s n   X    

 end combination loop 

 compute the LB and UB of response statistics as  

 c( )(1) (2)min , , ,
s s s s

N
U U U U     ;   c( )(1) (2)max , , ,

s s s s

N
U U U U      

 c2( )2 2(1) 2(2)min , , ,
s s s s

N
U U U U     ;   c2( )2 2(1) 2(2)max , , , ,  1,2, ,

s s s s

N
U U U U s n      . 

The MCS-VM is computationally intensive since it requires c gN N  deterministic analyses. 

Unlike the proposed procedure, it becomes unfeasible as the number of uncertain parameters 

increases.  
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5.1  Braced shear-type frame with uncertain axial stiffness 

As first application, the braced shear-type frame depicted in Figure 2 is analyzed. The geometry can 

be deduced from Figure 2, where 1 2.55 mH  , 2 2.75 mH  , 3 4.55 mH  , 1 6 3.42 mL L   and 

2 3 4 5 3.40 mL L L L    . The beams have rectangular cross-section with 0.50 mb   and 

0.23 mh   at the first and second floor, 0.46 mb   and 0.87 mh   at the third floor. All the 

columns have square cross-section with 0.46 mb h  . Young’s modulus of beams and columns 

material is 0 28.50 GPaE E  . The axial stiffnesses of the diagonal braces are modeled as 

independent random variables 0, (1 )i i iX   , 1,2, ,6i   , with fluctuations around the nominal 

value, 8
0, 1.20 10  N/mi   , described by the Gaussian imprecise PDF (38). The frame is subjected 

at each floor to deterministic static loads of intensity: 1 200 kNf  , 2 400 kNf   and 3 600 kNf   

(see Figure 2). As response quantities of interest, the floor displacements iU , 1,2,3i  , are selected 

(see Figure 2). 

First, the accuracy of the proposed approximate explicit expressions of response statistics (Eqs. 

(17a) and (19)) derived by using the RSE in the context of classical probability theory is assessed. 

To this aim, the uncertain parameters are assumed to be described by a Gaussian PDF with standard 

deviation equal to the midpoint value of 
i

I
X , say 0, 0.11

iX   (continuous black curve in Figure 1). 

Table 1 shows a very good match between the estimates of the mean-value and variance of the floor 

displacements provided by the proposed method and MCS with 4
g 5 10N    samples.  

Then, the bounds of response statistics of the structure with uncertain parameters characterized 

by imprecise PDF are evaluated. Tables 2 and 3 list the LB and UB of the interval mean-value and 

variance of the floor displacements, respectively, obtained by applying the proposed procedure and 
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MCS-VM for a deviation amplitude of the standard deviation of the random variables iX  equal to 

0.022
iX  . A very good agreement between the proposed approximate explicit expressions of 

the bounds of response statistics (Eqs.(34a,b) and (36a,b)) and the reference ones is observed. By 

inspection of Tables 2 and 3, it is inferred that the LB and UB of the interval mean-value of 

displacements are very close to each other as well as to the mean-values obtained setting 

0, 0.11
iX   (see Table 1). This implies that the deviation amplitude of the relevant interval is very 

small, that is the mean-value is slightly affected by the imprecision of the PDF. It is worth 

remarking that the presented procedure is much less expensive than the MCS-VM. Indeed, in the 

present case, the latter requires 6 4
c g 2 5 10N N     deterministic analyses, 4

g 5 10N    being the 

number of considered samples. 

In order to estimate the influence of the imprecise PDF on response statistics, the so-called 

coefficient of interval uncertainty (c.i.u) of the interval mean-value and variance of displacements is 

evaluated, i.e.:  

 

 
2

2

2

c.i.u. [ ] ;    
mid

c.i.u. [ ] .
mid

j

j

j

j

j

j

UI
U I

U

I
UI

U I
U

















  (39a,b) 

The c.i.u. provides a measure of the dispersion of interval statistics around their midpoint value. 

In Table 4, the proposed c.i.u. of the interval mean-value and variance of floor displacements for 

two different values of the deviation amplitude of the standard deviation of the uncertain 

parameters, say 0.011
iX   and 0.022

iX  , is reported. In agreement with the small influence 
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of imprecision deduced from Tables 2 and 3, the interval mean-value of the response exhibits a very 

small dispersion around the midpoint value. Conversely, imprecision proves to have a significant 

influence on the interval variance of floor displacements which is characterized by a large dispersion 

around the midpoint value. In particular, it can be seen that the dispersion of response statistics 

around the midpoint value increases with the deviation amplitude of the interval standard deviation, 

iX , of the uncertain parameters. 

 

5.2  3D truss with uncertain Young’s moduli 

The second application concerns the 3D 26-bar truss structure under deterministic static loads 

shown in Figure 3. The following geometrical and mechanical properties are assumed: 

4 2
0 0, 4.27 10  miA A    , 8 2

0 0, 2.1 10  kN/miE E   , 1,2, ,26i   , and 200 kNf  . Young’s 

moduli of 12r   bars are modeled as independent random variables, 0(1 )i iE E X  , 1,2, ,12i   , 

(see bar numbering in Figure 3) with fluctuations around the nominal value characterized by a 

Gaussian imprecise PDF (see Eq. (38)). 

First, the accuracy of response statistics provided by the RSE is assessed under the assumption 

that the uncertain parameters are described by a Gaussian PDF with deterministic standard deviation 

0, 0.11
iX   (continuous black curve in Figure 1). Figure 4 displays the comparison between the 

proposed estimates of the mean-value and variance of the nodal displacements (Eqs. (17a) and (19)) 

and those provided by standard MCS with 4
g 5 10N    samples. Notice that the proposed explicit 

expressions of response statistics are in very good agreement with MCS data. 

Then, the effectiveness of the presented method for the evaluation of the bounds of response 

statistics under the assumption of Gaussian imprecise PDF of the axial stiffness is scrutinized. In 
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Figure 5, the LB and UB of the interval mean-value of nodal displacements for a deviation 

amplitude of the interval standard deviation of the random variables iX  equal to 0.011
iX   are 

plotted. A very good agreement between the proposed estimates and those provided by the MCS-VM 

is observed. Notice that, considering 4
g 5 10N    samples, the MCS-VM requires 

12 4
c g 2 5 10N N     deterministic analyses of the truss. It is worth observing that the LB and UB 

of the interval mean-value of nodal displacements are very close to each other as well as to the 

mean-values obtained setting 0, 0.11
iX   (see Figure 4), that is the deviation amplitude of the 

relevant interval is very small. Numerical results, omitted for conciseness, show that this 

circumstance holds even for larger deviation amplitudes 
iX  of the interval standard deviation of 

the random variables iX . This implies that the mean-value of the response is slightly affected by 

both the probabilistic and non-probabilistic character of the uncertain parameters.  

Figure 6 demonstrates the accuracy of the proposed bounds of the interval variance of nodal 

displacements by appropriate comparisons with those obtained by applying the MCS-VM for two 

different values of 
iX . As expected, the region of the interval variance of the response becomes 

wider as larger deviation amplitudes 
iX  are considered. 

Table 5 lists the c.i.u. of the mean-value and variance of the nodal displacements in the load 

direction for two different deviation amplitudes of the interval standard deviation of the random 

variables iX , say 0.011
iX   and 0.022

iX  . Notice that the interval mean-value of the 

response exhibits a very small dispersion around the midpoint value. Indeed, as already mentioned, 

it is slightly affected by both randomness and imprecision. Conversely, the interval variance of the 

nodal displacements in the load direction is strongly influenced by imprecision which produces a 
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large dispersion around the midpoint value. In particular, it is observed that the larger the deviation 

amplitude of the interval standard deviation of iX , 
iX , the greater is the dispersion of response 

statistics around the midpoint value. 

The influence of the number of uncertain parameters is also investigated. Figure 7 displays the 

proposed bounds of the interval variance of nodal displacements of the 3D truss with 12r   and 

26r   bars exhibiting uncertain Young’s moduli. Obviously, the MCS-VM procedure is unfeasible 

when 26r   random variables are involved. As expected, both the LB and UB of response variance 

increase when a larger number of uncertain parameters is considered. Table 6 lists the c.i.u. of the 

interval mean-value and variance of the nodal displacements of the truss in the load direction when 

Young’s moduli of all the 26r   bars are assumed to be uncertain. The comparison with the c.i.u. of 

displacements pertaining to the truss with 12r   uncertain parameters, reported in Table 5, shows 

that the dispersion of response statistics around the midpoint value slightly increases when a larger 

number of uncertainties is considered. 

 

6. CONCLUSIONS 

The analysis of structures with uncertain axial stiffness described by imprecise PDF with interval 

basic parameters (mean-value, variance, etc.) has been addressed. The challenging task of 

processing simultaneously the random and interval character of uncertainties has been faced by 

applying standard probabilistic analysis in conjunction with the so-called improved interval analysis 

via extra unitary interval and the Rational Series Expansion, recently introduced by the authors. The 

main feature of the proposed procedure is the capability of providing approximate explicit 

expressions of the bounds of the interval mean-value and variance of the response. Other remarkable 
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advantages of the presented method are: i) the computational efficiency even when a large number 

of uncertain parameters is involved; ii) the ability to limit the conservatism affecting the classical 

interval analysis; iii) the high accuracy even when the basic parameters of the PDF are affected by 

relatively high degrees of uncertainty. 

The effectiveness of the proposed procedure has been demonstrated through appropriate 

comparisons with the bounds of response statistics obtained by applying classical Monte Carlo 

Simulation in conjunction with a combinatorial procedure so as to handle simultaneously the 

random and interval nature of uncertainties, respectively.  
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Figure Captions 

Figure 1. Realizations of the Gaussian imprecise PDF of the dimensionless fluctuation of the 

uncertain axial stiffness: a) 0.011
iX  ; b) 0.022

iX  . 

Figure 2. Braced shear-type frame with uncertain axial stiffness of braces. 

Figure 3. 3D truss structure with uncertain Young’s moduli. 

Figure 4. a) Mean-value and b) variance of the nodal displacements of the 3D truss with random 

Young’s moduli described by Gaussian PDF ( 0, 0.11
iX  ): comparison between the proposed 

estimates and MCS data. 

Figure 5. a) Lower bound and b) upper bound of the interval mean-value of the nodal displacements 

of the 3D truss with random Young’s moduli described by Gaussian imprecise PDF ( 0.022
iX  ): 

comparison between the proposed estimates and those obtained by the joint application of MCS and 

the VM. 

Figure 6. Lower bound and upper bound of the interval variance of the nodal displacements of the 

3D truss with random Young’s moduli described by Gaussian imprecise PDF: comparison between 

the proposed estimates and those obtained by the joint application of MCS and the VM for: a) 

0.011
iX  , b) 0.022

iX  . 

Figure 7. Influence of the number r  of bars with random Young’s moduli on the proposed LB and 

UB of the interval variance of the nodal displacements of the 3D truss. 
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Table Captions 

Table 1. Mean-value and variance of floor displacements of the braced shear-type frame with 

random axial stiffness of braces described by a Gaussian PDF ( 0, 0.11
iX  ): comparison between 

the proposed estimates and MCS data. 

Table 2. LB and UB of the interval mean-value of floor displacements of the braced shear-type 

frame with random axial stiffness of braces described by Gaussian imprecise PDF ( 0, 0.11
iX  , 

0.022
iX  ): comparison between the proposed estimates and the reference ones provided by the 

MCS-VM. 

Table 3. LB and UB of the interval variance of floor displacements of the braced shear-type frame 

with random axial stiffness of braces described by Gaussian imprecise PDF ( 0, 0.11
iX  , 

0.022
iX  ): comparison between the proposed estimates and the reference ones provided by the 

MCS-VM. 

Table 4. Proposed coefficient of interval uncertainty of the mean-value and variance of the floor 

displacements of the braced shear-type frame for two different deviation amplitudes, 
iX , of the 

standard deviation of the random variables iX  ( 1,2, , 6i r  ) described by Gaussian imprecise 

PDF ( 0, 0.11
iX  ). 

Table 5. Proposed coefficient of interval uncertainty of the mean-value and variance of the nodal 

displacements in the load direction of the 3D truss for two different deviation amplitudes 
iX  of 

the standard deviation of the random variables iX  ( 1,2, , 12i r  ) described by Gaussian 

imprecise PDF ( 0, 0.11
iX  ). 

Table 6. Proposed coefficient of interval uncertainty of the mean-value and variance of the nodal 

displacements in the load direction of the 3D truss with uncertain Young’s moduli of all the bars 

described by Gaussian imprecise PDF ( 0, 0.11
iX  ; 0.022

iX  , 1,2, , 26i r  ). 

 



Figure 1 

 

 

 

Figure 1. Realizations of the Gaussian imprecise PDF of the dimensionless fluctuation of the 

uncertain axial stiffness: a) 0.011
iX  ; b) 0.022

iX  . 
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H3

H2

H1

L1 L2 L3 L4 L5 L6

1

2

3

4

5

6

f1

f2

f3 U3

U2

U1

 

 

Figure 2. Braced shear-type frame with uncertain axial stiffness of the braces. 

 



Figure 3 

 

 

 

 

Figure 3. 3D truss with uncertain Young’s moduli. 

 



Figure 4 

 

         

 

 

 

Figure 4. a) Mean-value and b) variance of the nodal displacements of the 3D truss with random 

Young’s moduli described by Gaussian PDF ( 0, 0.11
iX  ): comparison between the proposed 

estimates and MCS data. 
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Figure 5. a) Lower bound and b) upper bound of the interval mean-value of the nodal 

displacements of the 3D truss with random Young’s moduli described by Gaussian imprecise PDF (

0.022
iX  ): comparison between the proposed estimates and those obtained by the joint 

application of MCS and the VM. 
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Figure 6. Lower bound and upper bound of the interval variance of the nodal displacements of the 

3D truss with random Young’s moduli described by Gaussian imprecise PDF: comparison between 

the proposed estimates and those obtained by the joint application of MCS and the VM for: a) 

0.011
iX  , b) 0.022

iX  . 
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Figure 7. Influence of the number r  of bars with random Young’s moduli on the proposed LB and 

UB of the interval variance of the nodal displacements of the 3D truss. 
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Table 1. Mean-value and variance of floor displacements of the braced shear-type frame with 
random axial stiffness of braces described by a Gaussian PDF ( 0, 0.11

iX  ): comparison between 

the proposed estimates and MCS data. 

 

210  [m]
jU

  2 8 210  [m ]
jU

  

Proposed MCS Proposed MCS 

1U  0.17107 0.17103 0.08654 0.08593 

2U  0.34253 0.34250 0.19778 0.19726 

3U  0.72460 0.72448 2.86757 2.87197 

 
 



 

Table 2. LB and UB of the interval mean-value of floor displacements of the braced shear-type 
frame with random axial stiffness of braces described by Gaussian imprecise PDF 
( 0, 0.11

iX  , 0.022
iX  ): comparison between the proposed estimates and the reference ones 

provided by the MCS-VM. 

 

210  [m]
jU

  210  [m]
jU

  

Proposed MCS-VM Proposed MCS-VM 

1U  0.17105 0.17102 0.17109 0.17105 

2U  0.34249 0.34247 0.34258 0.34255 

3U  0.72431 0.72421 0.72496 0.72482 

 



Table 3. LB and UB of the interval variance of floor displacements of the braced shear-type frame 
with random axial stiffness of braces described by Gaussian imprecise PDF ( 0, 0.11

iX  , 

0.022
iX  ): comparison between the proposed estimates and the reference ones provided by the 

MCS-VM. 

 

2 8 210  [m ]
jU

  2 8 210  [m ]
jU

  

Proposed MCS-VM Proposed MCS-VM 

1U  0.05536 0.05496 0.12468 0.12383 

2U  0.12652 0.12615 0.28497 0.28434 

3U  1.83061 1.82883 4.14215 4.16140 

 
 



 

Table 4. Proposed coefficient of interval uncertainty of the mean-value and variance of the floor 
displacements of the braced shear-type frame for two different deviation amplitudes, 

iX , of the 

standard deviation of the random variables iX  ( 1,2, , 6i r  ) described by Gaussian imprecise 

PDF ( 0, 0.11
iX  ). 

 
0.011

iX   0.022
iX   

c.i.u[ ] 100
j

I
U   2c.i.u[ ] 100

j

I
U   c.i.u[ ] 100

j

I
U  2c.i.u[ ] 100

j

I
U   

1U  0.0062 19.8247 0.0123 38.5019 

2U  0.0070 19.8286 0.0140 38.5087 

3U  0.0226 19.9373 0.0452 38.7015 

 



Table 5. Proposed coefficient of interval uncertainty of the mean-value and variance of the nodal 
displacements in the load direction of the 3D truss for two different deviation amplitudes 

iX  of 

the standard deviation of the random variables iX  ( 1,2, , 12i r  ) described by Gaussian 

imprecise PDF ( 0, 0.11
iX  ). 

 
0.011

iX   0.022
iX   

c.i.u[ ] 100
j

I
U   2c.i.u[ ] 100

j

I
U   c.i.u[ ] 100

j

I
U  2c.i.u[ ] 100

j

I
U   

3U  0.1703 20.5474 0.3408 39.7798 

6U  0.1699 20.5388 0.3401 39.7647 

9U  0.1370 20.5608 0.2743 39.8034 

12U  0.1456 20.5259 0.2913 39.7420 

15U  0.1241 20.5445 0.2484 39.7747 

18U  0.1153 20.5445 0.2308 39.7747 

 

 



Table 6. Proposed coefficient of interval uncertainty of the mean-value and variance of the nodal 
displacements in the load direction of the 3D truss with uncertain Young’s moduli of all the bars 
described by Gaussian imprecise PDF ( 0, 0.11

iX  ; 0.022
iX  , 1,2, , 26i r  ). 

 

 c.i.u[ ] 100
j

I
U  2c.i.u[ ] 100

j

I
U   

3U  0.4519 39.8494 

6U  0.4211 39.8029 

9U  0.3526 39.8516 

12U  0.3569 39.7798 

15U  0.3909 39.8386 

18U  0.3685 39.8458 

 


