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Review
Summary

Occult hepatitis B infection (OBI) refers to a condition where replication-competent HBV DNA is present
in the liver, with or without HBV DNA in the blood, in individuals with serum HBsAg negativity assessed
by currently available assays. The episomal covalently closed circular DNA (cccDNA) in OBI is in a low
replicative state. Viral gene expression is mediated by epigenetic control of HBV transcription, including
the HBV CpG island methylation pathway and post-translational modification of cccDNA-bound histone,
with a different pattern from patients with chronic HBV infection. The prevalence of OBI varies
tremendously across patient populations owing to numerous factors, such as geographic location, assay
characteristics, host immune response, coinfection with other viruses, and vaccination status. Apart from
the risk of viral reactivation upon immunosuppression and the risk of transmission of HBV, OBI has been
implicated in hepatocellular carcinoma (HCC) development in patients with chronic HCV infection, those
with cryptogenic or known liver disease, and in patients with HBsAg seroclearance after chronic HBV
infection. An increasing number of prospective studies and meta-analyses have reported a higher inci-
dence of HCC in patients with HCV and OBI, as well as more advanced tumour histological grades and
earlier age of HCC diagnosis, compared with patients without OBI. The proposed pathogenetic mecha-
nisms of OBI-related HCC include the influence of HBV DNA integration on the hepatocyte cell cycle, the
production of pro-oncogenic proteins (HBx protein and mutated surface proteins), and persistent low-
grade necroinflammation (contributing to the development of fibrosis and cirrhosis). There remain
uncertainties about exactly how, and inwhat order, these mechanisms drive the development of tumours
in patients with OBI.
© 2020 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

Background

A consensus meeting was held in Taormina, Italy in
2018 by a group of experts who reviewed and
updated the recent development of occult hepatitis
B infection (OBI). The published report focused
mainly on the diagnosis, transmission and clinical
implications of OBI, namely hepatocellular carci-
noma (HCC), HBV reactivation, and antiviral ther-
apy.1 The aim of the present review was to focus
attention on the basics – the epidemiological,
pathological and mechanistic aspects of OBI-
related HCC.

Definitions of OBI
“Overt” hepatitis B (chronic hepatitis B [CHB])
infection is characterised by the detection of HBsAg
and viral genomic materials in the serum, resulting
from active replicative and transcriptional activ-
ities. In contrast, “occult” hepatitis B infection re-
fers to a condition where replication competent
HBV DNA is present in the liver, in the presence or
absence of HBV DNA in the blood, in individuals
with serum HBsAg negativity assessed by currently
Journal of Hepatology 2020 vol. 73 j 9
available assays.1 In OBI, the HBV DNA – in the form
of episomal covalently closed circular DNA
(cccDNA) – is in a low replicative state owing to
host immune or epigenetic control. Therefore,
when serum HBV DNA is detectable, it is invariably
in a low viraemic range, i.e. <200 IU/ml, and may
only be detected intermittently.2

Serology of OBI
In practice, serum markers of HBV exposure are
used to define different types of OBI, which can be
classified as seropositive or seronegative. Seropos-
itive OBI accounts for 80% of all OBI cases,3 where
antibody to HBV core antigen (anti-HBc) and/or
antibody to HBsAg (anti-HBs) are detectable in the
serum (Fig. 1). Conversely, the absence of both
antibodies in seronegative OBI leaves serum HBV
DNA as the only detectable marker, making diag-
nosis more challenging. Concerning this serologic
aberration, it may be of interest to discover that
primary seronegative occult infection has been
described in the woodchuck model of hepatitis
52–964
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Fig. 1. Definition of occult hepatitis B infection. cccDNA, covalently closed circular DNA.

Key point

OBI is a difficult-to-
diagnose liver disease with
potential for development
of hepatocellular
carcinoma.
following inoculation with 10–100 virions of
woodchuck hepatitis virus (WHV).4 The probability
of detecting positive serum HBV DNA is highest in
individuals who are anti-HBc positive/anti-HBs
negative.2

Patient origins in OBI
OBI mainly originates from a few groups of pa-
tients. The largest group includes patients who
have had CHB infection for decades before
achieving HBsAg seroclearance. Another group
are patients who have recovered from self-
limiting acute HBV infection. These are usually
adult immunocompetent patients who have
mounted a strong immune response to HBV upon
exposure, inducing rapid viral control. These pa-
tients are often seropositive for anti-HBs as also
observed in the woodchuck model.5,6 There is an
additional group of patients with HBV pre-S/S
variants7 or HBsAg escape mutations, either as
acquired mutations or vaccine breakthrough
infection. However, it remains controversial
whether this last group of patients should be
classified as OBI, since the serum HBV DNA level is
often as high as found in CHB infection. Vacci-
nated children – born to HBsAg-positive mothers
– who subsequently present with OBI are of
particular interest. These children are often anti-
HBs positive, anti-HBc nonreactive, with pre-S/S
variants, and may harbour higher levels of
serum HBV DNA than the first 2 groups of pa-
tients.8–10 However, the presence of anti-HBs
following HBV vaccination (alone or in combina-
tion with hepatitis B immunoglobulin) may
eventually neutralise HBV and lead to resolution
of OBI.11 The infectivity and risk of liver-related
Journal o
complications, such as HCC, cirrhosis and HBV
reactivation, differ significantly between these
different groups (Fig. 2). This is probably due to
differences in the level of immune exhaustion
found in different scenarios of OBI.12–14 However,
for children born to HBsAg-positive mothers with
vaccine breakthrough OBI, the risk of liver-related
complications is unknown, given that some chil-
dren will go on to clear the virus.

Diagnosis of OBI
To determine whether an individual with unde-
tectable serum HBsAg has OBI requires the avail-
ability of highly sensitive and ultra-specific assays.
Established commercial assays for HBsAg (i.e.,
Abbott Architech) have a lower limit of detection
(LLOD) of 50 mIU/ml. In contrast, recently devel-
oped HBsAg assays have LLODs that are 10 to 100-
fold lower (Table 1) and will likely change the
diagnosis of OBI in these cases into overt CHB
infection.15,16 To enhance the detection of surface
escape variants, anti-HBs probes targeting multiple
epitopes of HBsAg in the presence or absence of
anti-HBs should be mandatory.1

Based on the current definition of OBI, analysis
of liver tissue for replication-competent HBV DNA
appears to be the most direct approach for diag-
nosis. However, liver tissue is not always available,
and there is no standardised assay with internal
and external validity. The diagnosis of OBI excludes
detection of integrated HBV DNA for a variety of
reasons (see section on ‘Practical recommendations
for the approach to case identification’). In a study
involving 90 patients with cryptogenic HCC, 62
(69%) were found to have OBI. Only about half of
them had detectable cccDNA in liver tissue, while
f Hepatology 2020 vol. 73 j 952–964 953
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Fig. 2. Conceptual diagram illustrating the infectivity and potential risk of liver-related complications in different
scenarios of occult hepatitis B infection. *Cirrhosis, hepatocellular carcinoma, HBV reactivation.

Table 1. Common quantitative serum HBsAg assays.

Name of assay Manufacturer Lower limit of detection

Architect HBsAg QT Abbott Laboratories 0.05 IU/ml
Elecsys HBsAg II Roche Diagnostics 0.05 IU/ml
Liaison XL Murex HBsAg Quant DiaSorin 0.03 IU/ml
Lumipulse HBsAg-Quant Fujirebio, Inc. 0.005 IU/ml
Ultrahigh sensitive HISCL HBsAg Sysmex Co. Ltd. 0.0005 IU/ml

954

Review
integrated HBV DNA was detected in almost 90% of
patients with undetectable cccDNA.17

A more common (but less sensitive) approach to
diagnose OBI is the detection of HBV DNA in the
blood. The optimal standard is the analysis for HBV
DNA extracts from plasma performed by real-time,
nested PCR techniques. The PCR primers should
span at least 3 HBV genomic regions, while vali-
dation should allow detection from at least 2
genomic regions. The sensitivity of the assay is
crucial to find cases of OBI since the levels of HBV
DNA in the blood are usually quite low (<200 IU/
ml). The lower limit of quantification of most
commercially available assays is 5–20 IU/ml
although detection without quantification can be
observed at lower levels. In the setting of blood
donations, a highly sensitive assay is preferred for
nucleic acid testing (NAT) on the donated samples,
mostly in the range of 2–4 IU/ml of HBV DNA.
Notably, the window period of acute HBV infection
is not regarded as OBI, since these individuals
usually have high serum HBV DNA and will even-
tually develop seropositivity for HBsAg.18

Detection of anti-HBc in the blood indicates
prior HBV infection, but does not imply a diagnosis
of OBI, and HBV DNA analysis should be further
pursued. Moreover, a subset (20%) of patients with
OBI are seronegative for anti-HBc. Therefore, anti-
HBc screening identifies most, but not all, in-
dividuals with prior HBV infection and specifies
which patients might benefit from HBV DNA
testing to confirm the diagnosis of OBI. Within this
cohort, those with isolated anti-HBc (negative for
anti-HBs) with high antibody levels are more likely
to be reactive for HBV DNA.19
Journal of Hepatology 2020 vol. 73 j 9
Epidemiology of OBI
The worldwide prevalence of OBI is quite variable
across patient populations and is higher in areas of
the globe where hepatitis B is endemic. As
reviewed by G. Raimondo et al.1 and others,20–22

OBI has been detected in patients coinfected with
HIV (10–45%) or HCV (22–73%), in those with
cryptogenic chronic liver disease (5–40%), in
apparently healthy blood donors (see below),
among people who inject drugs (PWID) (45%), in-
dividuals with thalassemia and haemophilia
(5–51%), patients on haemodialysis (0–58%),
orthotopic liver transplant patients (42–64%), other
immunosuppressed groups, and even individuals
that are free of apparent liver disease (1–34%).
Reasons for this disparity include different
geographic locations, demographic factors, ende-
micity, vaccination status, characteristics of the
assays, host response, risk factors (i.e., injection
drug use, transfusion requirements and viral load),
severity of liver disease (e.g., cirrhosis, high alanine
aminotransferase [ALT] levels), and coinfection
with HCV or HIV.

Since transfusion is a major route of trans-
mission in developing and resource-poor coun-
tries,23 it is reasonable to examine the global
prevalence of OBI and transfusion safety, as
reviewed by Clive R. Seed and an assembly of in-
ternational experts.24 In this forum, a recent mul-
ticentre survey of almost 11 million donations
worldwide found lower OBI NAT yield rates that
varied from 1 in 3,900 to 1 in 59,000, with even
higher rates of 1 in 1,000 donations found in re-
gions where genotypes B, C or E prevail (Asia and
Western Africa).25,26 As previously discussed,
52–964



detection of OBI is directly correlated with
increased anti-HBc reactivity which also correlates
with the level of cccDNA.27 The estimated rate of
transmission of HBV from donors with OBI to re-
cipients of blood components varies widely (2–48%
based on lookback studies).28–33 Risk factors
include viral load and the absence of anti-HBs. It is
estimated that the risk of transmission is highest
for plasma, then packed red blood cells and/or
platelets,28,30,33 with estimated minimal infectious
doses ranging from 100 IU to ~3 IU per unit
transfused based on volume.28,33 These levels,
converted from genomic equivalents (geq) to IU,34

are similar to those previously reported in chim-
panzee transmission experiments (CID50) for ge-
notypes A at 169 geq, C at 3 geq, and D at 78 geq.35

NAT was implemented globally between 1999 and
2010 but the practice is not widespread. Cases of
HBV transmission post-NAT testing in these
selected blood facilities yielded a lower residual
risk ranging from 1 in 52,000 (Hong Kong) to 1 in
7.5 million (Canada).
Key point

OBI is the combined result
of host immune control
and different genomic ex-
pressions of the virus,
which lead to a virological
quiescent state.
Virology, epigenetics and immunology of
OBI
OBI is characterised by the persistence of HBV
cccDNA in the nucleus of infected hepatocytes. It is
generally believed that the undetectability of
HBsAg in individuals with OBI, despite cccDNA
persistence, is due to the suppression of viral
replication as a result of epigenetic or immune
control of gene expression.

Studies have shown that some patients with OBI
harbour a higher proportion of mutations in the
preS/S region than patients with CHB, which may
result in a reduced antigenicity for HBsAg detection
or impairment in HBsAg production or secre-
tion.7,12,36–41 The mutations in pre-S1 may also
alter the B and T epitopes that affect immune
recognition.7 However, HBV DNA isolated from in-
dividuals with OBI is fully replication competent
in vitro,42 and the virus can also be transmitted via
blood transfusion or organ transplantation.43,44 In
addition, reactivation of HBV is often seen in pa-
tients with OBI under immunosuppression.45–47

These findings suggest that host factors may play
a more important role than viral factors in OBI.

OBI is mostly associated with a low level of
cccDNA in the hepatocyte nucleus which results in
a low level of HBV transcription and protein
expression, contributing to the undetectability of
HBsAg.48,49 The persistence of transcriptionally
muted cccDNA in patients with OBI suggests that
gene expression can be mediated by epigenetic
control of HBV transcription. However, direct
experimental data on the epigenetic regulation of
HBV transcription in patients with OBI are scarce.
One study has identified different methylation
patterns in the HBV CpG islands between patients
with occult and overt chronic infection, suggesting
Journal o
that OBI and CHB may have different epigenetic
control mechanisms.40 Specifically, patients with
OBI have a high methylation density at HBV CpG
island 240; high methylation density has been
shown to be associated with low HBV replicative
activity in HBsAg-positive, HBeAg-negative pa-
tients with CHB.50 Despite evidence that a negative
correlation between HBsAg level and cccDNA
methylation status exists,51 further investigation is
required.

Another mechanism affecting the regulation of
HBV transcription is the post-translational modifi-
cation of cccDNA-bound histones.52 Like eukaryotic
chromosomes, cccDNA is arranged as nucleosomes,
with histones as well as other cellular or viral
proteins forming a minichromosomal structure.53

It has been demonstrated, both in vitro and
in vivo, that HBV transcriptional activity and viral
load are affected by the degree of acetylation of
cccDNA-bound histones (H3/H4) and the associa-
tion between cccDNA and histone-modifying en-
zymes.54 A number of cccDNA-associated proteins,
including the hepatitis B core and X proteins (HBc
and HBx, respectively), transcription factors such as
cAMP response element binding protein (CREB),
signal transcription factors 1 and 2, chromatin
modification proteins such as histone deacetylase
1, p300/CREB-binding protein, protein arginine
methyltransferase 1 and 5, and sirtuin 1, have been
demonstrated to regulate the transcriptional ac-
tivity of HBV.52,54–61 In theory, these cellular and
viral epigenetic factors can facilitate a robust con-
trol of viral replication, leading to very low HBV
DNA and undetectable HBsAg in patients with
OBI.62 However, to date, direct evidence of the
involvement of these epigenetic factors in OBI has
yet to be reported.

The role that immune control plays in OBI is
largely supported byevidence of HBV reactivation in
patients with OBI receiving immunosuppressive
therapy or haematopoietic stem cell trans-
plantation.45–47 Early studies have shown that, in
some patients with ostensibly self-resolved acute
HBV infection, there exists a long-lasting HBV-spe-
cific T cell response which controls HBV replica-
tion.13,14 This HBV-specific T cell response is also
observed in OBI donors at a level higher than that
detected inHBsAg-positive patientswith CHB.12 The
profiles of HBV-specific T cell responses are also
different between seropositive and seronegative
individuals with OBI. While both groups showed a
very lowfrequencyof circulatingHBV-specific Tcells
ex vivo, HBV-specific T cells in seronegative patients
did not readily expand upon stimulation in vitro,
suggesting the existence of different immune-
control mechanisms between seropositive and
seronegative OBI.63 This has also been seen in WHV
infection, in which resolution of acute WHV infec-
tion results in the life-long persistence of seroposi-
tive occultWHV infection.5,64 However, exposure to
a very low dose of WHV, even with multiple doses,
f Hepatology 2020 vol. 73 j 952–964 955



Key point

OBI is more commonly
found in patients with
chronic hepatitis C virus
infection, those with cryp-
togenic or known liver
disease.

Key point

Chronic liver conditions co-
existing with OBI increase
the risk and aggressiveness
of hepatocellular
carcinoma.
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results in occult WHV infection without any sero-
logical markers.4,65,66 These woodchuck studies
suggest thepossibility that avery low-dose infection
may be insufficient to mount a protective cellular
memory response.

In addition to cellular immunity, humoral
immunity is likely to play an important role in
the control of HBV replication in OBI, as
demonstrated by the occurrence of HBV reac-
tivation in patients with B-cell depleting,
immune-suppressive anti-CD20 therapy such as
rituximab and ofatumumab.45,47,67 Innate im-
munity may also contribute to the control of OBI,
as suggested by a recent study in the woodchuck
model that demonstrates a differential expres-
sion of toll-like receptors 1–10 in acute, chronic,
and occult woodchuck hepatitis infection.68

However, partly due to the scarcity of adequate
animal or in vitro models for OBI study, current
data have, by necessity, been based on inferences
generated from experiments designed to control
HBV replication using in vitro systems approxi-
mating CHB infection.54–61
Association of OBI and HCC
Woodchuck model of OBI
The woodchuck model of OBI is an excellent
experimental system to study the pathogenicity
of occult hepadnaviral persistence and its role in
the development of HCC.69 Investigators re-
ported that woodchucks infected with low doses
of WHV developed asymptomatic, seronegative,
molecularly evident persistent occult hepatitis
with a low viral load. This led to HCC in 2 out of
10 animals and viral integration in hepatocytes
and the lymphatic system in 9 of the animals.
Virus recovered from infected livers could
transmit the infection to healthy animals result-
ing in hepatitis and HCC.
Patients with HBsAg seroclearance
It is assumed that for OBI arising from patients
with CHB who clear their HBsAg, the risk of HCC
is not eliminated, but may be reduced. One
study showed that 2.34% (7/298) of patients
with HBsAg seroclearance developed HCC over a
median follow-up of 9 years,70 depending on
gender and the age at which HBsAg seroclear-
ance occurred.70,71 Moreover, free HBV genomes
and HBx mRNA were expressed in the liver tis-
sues of patients with HCC, which is evidence for
persistent viral transcription and replication.70

On the other hand, there are no data on the
risk of HCC solely in patients with OBI following
resolved acute HBV infection. It will be difficult
to assess this risk, as many of these patients
may have had asymptomatic acute HBV infec-
tion, in which case such history is not usually
elicited.
Journal of Hepatology 2020 vol. 73 j 9
Patients with a cryptogenic cause of HCC
OBI is reported to play an important role in the
progression of cirrhosis and the development of
HCC in several epidemiological and molecular
studies. For example, in retrospective studies
involving Asian or European patients with crypto-
genic HCC, 60–70% were found to have OBI in their
liver tissues.17,48,49,72 In a prospective study
involving 82 Japanese patients with cryptogenic
cirrhosis followed for a median of 5.8 years (range
0.1–34.8 years),73 the rate of HCC was 100% with
and 17.6% without OBI at 10 years (p = 0.008;
hazard ratio 8.25). Multivariate analysis confirmed
that OBI was an independent risk factor for hep-
atocarcinogenesis in patients with cryptogenic
cirrhosis in this prospective study. Finally, in a
meta-analysis of 16 studies involving 3,256 in-
dividuals, both retrospective (n = 8) and prospec-
tive studies (n = 8) showed an increased risk of HCC
in individuals with OBI (odds ratio 6.08 and 2.86,
respectively).74

Patients with or without coinfection with HCV
Between 2000 and 2013, several published studies
evaluated the role of OBI in the development of
HCC in patients with or without HCV infection. In a
systematic review of 8 retrospective studies from
Asia, South Africa, Italy and Egypt,21 the overall
mean prevalence of OBI in 631 non-HCV-infected
patients with HCC was 59.4% (median of 69.8%).
In 4 of these studies where comparisons could be
made,48,72,75,76 the prevalence of OBI in the anti-
HCV negative patients with HCC was significantly
higher (40.5–70.4%) than the prevalence of OBI in
anti-HCV negative patients with chronic hepatitis
(26.3%) and/or healthy controls (9.0%) without HCC
(p <0.001). In the 4 remaining uncontrolled retro-
spective studies, high rates of OBI ranging from
69.2-76.2% were found in anti-HCV negative pa-
tients with HCC, but no control populations were
included for comparison.

In the same systematic review,21 the prevalence
of OBI was found to be 47.9% (range 22–73.3%) in
292 treatment naïve, HCV-infected patients in 7
retrospective studies. In 3 of these studies where a
comparison could be analysed,48,77,78 the preva-
lence of OBI was significantly higher in patients
with HCC than in patients without HCC or in
healthy controls (p <0.001).

In other studies from Asia and Europe, the
prevalence of OBI in patients with chronic HCV
infection was 15–49% in those without HCC
compared to 73% in those with HCC.79–81 However,
this association was not observed in studies per-
formed in the USA82 and Taiwan.83 For instance, in
the USA cohort of patients with advanced chronic
HCV (>50% had cirrhosis), without HBsAg sero-
positivity, OBI was detected in 10.7% of patients
with HCC and 23.6% of controls without HCC
(p = 0.18).82 Paradoxically, according to another
52–964



Table 2. Prospective studies evaluating the cumulative incidence of HCC in HCV-infected patients with and without occult hepatitis B.

Study Year Country Sample for HBV
DNA detection

OBI in follow-up
patients, %

Incidence of HCC
in patients
with OBI, %

Incidence of
HCC in patients
without OBI, %

Follow-up
duration, months

p value

Squadrito et al.85 2006 Italy Liver 40.3 (50/124) 14.0 (7/50) 1.4 (1/74) Median 82.8 (±32.6) <0.002
Squadrito et al.86 2013* Italy Liver 39.4 (37/94) 35.1 (13/37) 8.8 (5/57) Median 132

(range 60–228)
<0.003

Miura et al.87 2008 Japan Serum 5.7 (8/141) 50.0 (4/8) 21.8 (29/133) Mean 81.8 (±48.5) <0.004
Matsuoka et al.88 2008 Japan Serum 43.6 (204/468) 14.2 (29/204) 3.4 (9/264) Mean 80.4** <0.0001

HCC, hepatocellular carcinoma; OBI, occult hepatitis B infection.
*The Squadrito et al. 2013 study is an extension of the 2006 study with median follow-up of 11 years vs. 6.9 years previously.
**Information on the standard deviation of follow-up duration was not available.
study, the risk of HCC was higher in populations
with OBI that were not coinfected with HCV than in
those that were coinfected with HCV (odds ratio
10.65 and 2.83, respectively).74

More potentially conflicting evidence comes
from a recent Egyptian study involving 50 patients
with HCV-related HCC who underwent resection or
liver transplantation. Of these patients, 25 (50%)
had co-existing OBI. While there were no clinical
differences between patients with and without OBI
(gender, serum transaminases, platelet count, al-
bumin, bilirubin, prothrombin time, alpha-
fetoprotein, Child-Pugh score), those with OBI
were younger (48.4 year-old for OBI compared to
51.4 year-old for non-OBI), and were associated
with more advanced histological grades of HCC
(odds ratio 3.69).84 This supports the premise that
OBI may play a synergistic role in the occurrence of
HCC in HCV coinfected patients, especially in pa-
tients with advanced fibrosis and cirrhosis.

Apart from all the aforementioned cross-
sectional studies, at least 7 prospective studies
evaluating the cumulative incidence of HCC in
HCV-infected patients with and without OBI coin-
fection have been published, with systematic
analysis of these data discussed elsewhere.21 Four
of these prospective studies are shown in Table 2.
Two of these investigations85,86 utilized the same
cohort of patients, whose numbers declined from
124 during a median follow up of 6.9 years (in the
first study) to 94 over a median follow-up of 11
years (in the second study). Both cirrhotic and non-
cirrhotic patients were included in the analysis.
The incidence of HCC in HCV-infected patients with
OBI was significantly higher than among HCV-
infected patients without OBI. In those without
HCC, OBI coinfection was associated with a signif-
icant worsening of liver disease and shorter sur-
vival. The 2 Japanese studies listed in Table 2
included HCV-infected patients with and without
OBI who were unsuccessfully treated with inter-
feron regimens. In the Miura et al.87 study that
excluded cirrhotic patients, the rate of HCC devel-
opment increased progressively over time from
8.9% at 5 years, to 25.7% at 10 years, and 53.7% at 15
years. Importantly, HCC was more than twice as
common in the coinfected patients as in the HCV-
monoinfected group. The fourth study88 also
Journal o
found that the risk of HCC was significantly greater
in OBI/HCV-coinfected patients, who had signifi-
cantly more fibrosis and necroinflammation than
HCV-monoinfected patients, regardless of whether
or not they were treated with interferon. Three
other prospective studies were excluded from this
analysis because a plethora of confounding vari-
ables made interpretation problematic.21

Pathogenetic mechanisms of OBI-related
HCC
A body of evidence indicates that OBI maintains the
pro-oncogenic properties attributed to CHB infec-
tion. HBV exerts its hepatocarcinogenic activity by
direct and indirect pathogenetic mechanisms,
which may schematically be related to: (a) the
capacity of the viral DNA to integrate into the host's
genome; (b) the production of proteins with po-
tential transforming properties; and (c) the in-
duction of necroinflammation within the liver
progressing toward cirrhosis, which is the most
important risk factor for HCC development.89,90

Fig. 3 summarises the potential hepatocarcino-
genic mechanisms involved in OBI-related HCC.

Direct pro-oncogenic mechanisms
A number of studies performed in the early 80s,
based on hybridisation technology, revealed the
presence of integrated forms of viral DNA within
the host genome of patients with HBsAg-negative
HCC.91 Subsequent studies performed with more
advanced molecular approaches – in particular, the
PCR-based assays and, more recently, the newly
developed high-throughput sequencing ap-
proaches92–96 – confirmed this observation, and
provided further relevant information in terms of
possible mechanisms by which HBV (even in the
OBI phase) may contribute to hepatocyte trans-
formation. The use of these more sensitive
PCR-based methods revealed the presence of
integrated HBV genomic sequences in over 60–75%
of HCCs from HBsAg-negative patients,17,94 a prev-
alence very similar to that reported in HBsAg-
positive patients with HCC.97,98 Moreover, by
applying the ALU-PCR assay, it was shown that, in
analogy to what occurs in HBsAg-positive cases,
HBV integrants frequently include sequences cor-
responding to the X gene, the preS/S genomic
f Hepatology 2020 vol. 73 j 952–964 957
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region, and viral regulatory elements. In addition,
viral integration often targets host genes that are
involved in cell cycle, cell survival and immortal-
isation,17,94 as well as genes that have been re-
ported to play a role in HCC development or
progression, such as EPHA4, TERT, CCNA2, COP1, and
CREB.17 Importantly, several studies have shown
that HBV integration is also frequently detected in
HBsAg-negative patients with HCC but without
cirrhosis,17,96,99–103 further corroborating the direct
role of HBV integration on liver cancer develop-
ment in patients with OBI. Additionally, cases of
cis-activation of cellular genes, such as SERCA1 (the
gene encoding sarco/endoplasmic reticulum Ca2+-
ATPase which pumps calcium from the cytosol to
the endoplasmic reticulum) and PARD6G (the
partitioning-defective-6-homolog-gamma gene
encoding for a protein that is part of the Par6
complex, which is involved in the establishment of
cell polarisation and in the polarised migration of
cells) have also been reported in HCC from non-
cirrhotic HBsAg-negative patients following HBV
DNA integration.101,102 One study showed that the
HBx gene promoter cis–activates chimeric HBx/
Journal of Hepatology 2020 vol. 73 j 9
SERCA1 transcripts causing dimerisation and accu-
mulation of chimeric proteins in the tumour of an
HBsAg-negative individual. These chimeric pro-
teins localise to the endoplasmic reticulum (ER)
and may control cell viability.101 In another study,
HBV integration involving a 50-deleted HBx gene
with an intact enhancer-II/basal core promoter re-
gion was identified in tumour tissue from a non-
cirrhotic patient with HFE-haemochromatosis and
HCC. The HBV integrant was located upstream of
the PARD6G gene, which was highly overexpressed
in tumour compared to adjacent non-tumour liver
tissue and normal liver controls.102

Integrated HBV is frequently associated with
deletions, loss of heterozygosity, duplications, and
translocation at the site of viral insertion.97 Besides
inducing cis-activation of the host's genes and the
production of fusion transcripts, HBV integration in
HBsAg-negative HCC has also been associated with
alterations of tumour suppressor genes, p53 mu-
tations and loss of heterozygosity,104,105 replication
errors, and genomic instability.106 In particular, p53
missense mutations have been associated with
the presence of HBx gene sequences both in
52–964



HBsAg-positive and HBsAg-negative patients with
HCC from specific geographic areas of Africa and
China.105 Accumulation of HBx transcripts in HCC
from HBsAg-negative patients was reported in
several studies.48,103,107 In HBsAg-negative tumours
and adjacent non-tumour tissue, HBx transcripts
can be produced both from free replicative and
from integrated viral DNA. One study demon-
strated the selective expression of HBx genes from
integrated HBV DNA in HBsAg-negative HCCs,100

providing evidence of production of HBx RNA and
protein (but not of S and core products) in patients
with OBI. This study also showed that the HBx gene
was modified (30-terminally truncated or highly
mutated) in the majority of tumours compared
with the surrounding non-tumour tissues, sug-
gesting that the selection of HBV genomes carrying
interrupted or mutated HBx genes may play a role
in malignant transformation of hepatocytes.
Indeed, deletion of the C-terminal region of HBx,
and specific amino acid mutations observed in
several HBx mutants isolated from HCC tis-
sues,42,100,108,109 may lead to the abrogation of HBx-
dependent transactivation, cell cycle arrest and
apoptosis inhibition and promote the transforming
capacity of HBx.110,111

Finally, there is evidence of a high prevalence of
pre-S2 variants in HCC tissues from patients with
OBI.42,112 These variants are known tumourigenic
factors in CHB infection because they induce an
imbalance in the synthesis of surface proteins,
leading to their retention within the hepatocyte ER.
The accumulation of mutated surface proteins may
cause ER stress, consequently inducing oxidative
DNA damage, genomic instability, and increased
risk of cancer development.113 These genetic
mutants may also exert a pro-oncogenic role in
OBI when the transcriptional activity of HBV
persists.

Indirect pro-oncogenic mechanisms
Patients with CHB who achieve HBsAg seroclear-
ance can still develop HCC, especially if cirrhosis
had already developed during the overt phase of
the infection. The risk of HCC development is
maintained although probably at a reduced
level.70,114–117 Among immunocompetent in-
dividuals, OBI may not always indicate active,
progressive, inflammatory liver disease of an in-
fectious nature. However, in the presence of other
factors associated with liver injury, such as HCV
infection, non-alcoholic steatohepatitis and
alcohol abuse, OBI could intensify the course of the
underlying disease and facilitate progression of
fibrosis and the development of HCC. That said,
this topic is widely debated.1 Certainly, the strong
suppression of HBV replication and gene expres-
sion may prevent any clinical impact in the vast
majority of OBI cases. However, some scholars
have suggested that OBI developing after recovery
from self-limited acute hepatitis may be associated
Journal o
with a modest but long-lasting persistence of he-
patic necroinflammation on histological analysis in
some patients, despite the absence of any clinical
or biochemical signs of liver damage.6,118–120 These
individuals show a high level of specific anti-HBV
cytotoxic T lymphocyte (CTL)-responses even de-
cades after clinical recovery and anti-HBs sero-
conversion, likely due to the continuous stimulus
exerted by the minute amounts of viral protein
produced.13,14 Finally, there is evidence that
detectable serum HBV DNA may periodically
reappear in patients with OBI, alongside a rise in
ALT values.121,122 These observations might suggest
that the HBV suppression is not stable in the
course of an occult infection, and phases of viral
reactivation may transiently occur over time, pro-
voking very modest but histologically detectable
liver damage despite the prompt control exerted
by the CTL-response. This minimal damage might
be persistent, and it is tempting to speculate that
the usually innocuous OBI might play a pathoge-
netic role as a co-factor of liver disease when it is
present together with other major causes of liver
injury.
Practical recommendations for the
approach to case identification
A selective approach should be adopted in deciding
who to screen for OBI. At this juncture, population
screening to identify individuals with OBI cannot
be recommended because of the lack of data on
the benefits of such an approach. Therefore, only
selected patient subgroups that are at risk of
accelerated liver damage or HBV reactivation
should be screened for OBI (Table 3). These include
patients with cryptogenic cirrhosis and/or crypto-
genic HCC, chronic HCV infection, HIV infection,
organ donors, and patients about to receive
immunosuppressive therapy. After confirming
seronegativity for HBsAg, they should be tested for
serum HBV DNA. Although anti-HBc is not required
for the diagnosis of OBI (but rather, for classifica-
tion into seropositive or seronegative group), it is
often the first assay to be performed and this
practice is currently widely adopted. For those with
detectable serum HBV DNA, the diagnosis of OBI is
established, and they should be treated accord-
ingly. For those with negative serum HBV DNA, one
should consider using a more sensitive HBV DNA
assay, or repeating the HBV DNA assay at a later
time to identify those with intermittent viraemia
(Fig. 4 and Table 3). Diagnosis of OBI in patients at
increased risk of accelerated liver disease warrants
close HBV monitoring and enhanced surveillance
for liver-related complications, including HCC. Oc-
casionally, the management of the underlying
condition will be adjusted due to co-existing OBI.
For instance, for patients with HIV infection with
coexisting OBI, antiretroviral agents that also
effectively suppress HBV can be chosen. In patients
f Hepatology 2020 vol. 73 j 952–964 959



Table 3. Practical recommendations for screening and diagnosing occult hepatitis B infection in individuals with negative serum HBsAg.

Patients Recommendation Rationale

Patients with cryptogenic cirrhosis and/or cryptogenic
HCC
Patients with chronic HCV infection
Individuals with special conditions (HIV infected,
organ donors*, patients about to receive
immunosuppressive therapy)

Simultaneous assay for anti-HBc and HBV DNA
� If DNA −ve, perform follow-up tests
� If DNA +ve, treat accordingly

These patients, if they have co-existing
OBI, are at risk of accelerated liver
damage including higher risk of HCC
or HBV reactivation, compared to those
without co-existing OBI

Healthy blood donors (no information on
HBsAg status)

Blood for nucleic acid testing
� If DNA −ve, no follow-up actions
� If DNA +ve, not allowed to donate blood

and perform follow-up tests

Viraemia is the mechanism for transmission
of HBV via blood products
Detection of viraemia helps to prevent
blood-borne transmission of HBV and
identify infected subjects for proper medical care

Other patient groups at risk of HBV infection**
(e.g., PWID, men who have sex with men,
haemodialysis patients, health care workers etc)

Not recommended for routine
anti-HBc and HBV DNA assay

No data on the benefits of screening
for OBI in these groups

General population Not recommended for routine
anti-HBc and HBV DNA assay

No data on the benefits of population-based
screening for OBI

HCC, hepatocellular carcinoma; OBI, occult hepatitis B infection; PWID, people who inject drugs.
*Risk of HBV reactivation in the organ recipients (as they will be on immunosuppressive therapy).
**See AASLD 2018 guidelines (Terrault NA et al., Hepatology 2018; 67:1560–99).123

Anti-HBc HBV DNA Interpretation
+ + Occult hepatitis B infection (seropositive)
- + Occult hepatitis B infection (seronegative)

+/- +++ (>2-3 logs)
1. Chronic overt hepatitis B infection with acquired
pre-S/S mutation
2. Window period of acute HBV infection

- -
1. Non-infected
2. Occult hepatitis B (seronegative) with intermittent
HBV DNA detection/low viraemia

+ -

1. Non-infected
2. Occult hepatitis B (seropositive) with intermittent
HBV DNA detection/low viraemia
3. False positive anti-HBc

• Patients with cryptogenic cirrhosis
and/or cryptogenic HCC

• Patients with chronic HCV infection
• Individuals with special conditions

• People with HIV infection
• Organ donors
• Patients about to receive 

immunosuppressive therapy

Patient subgroups Action

DNA+
Diagnosis of occult  hepatitis B infection

established
→ treat accordingly

DNA-
•  Use more sensitive  HBV DNA assays
•  Repeat  serum HBV DNA quantification
•  Repeat  anti-HBc assay if initial negative
•  Perform  anti-HBs assay

Serum HBsAg

(-)

(+)
Diagnosis of overt hepatitis B infection

→ treat accordingly

Simultaneous assay:

Anti-HBc
HBV DNA

Note: Anti-HBc
positivity is not
required for
diagnosis of OBI

Fig. 4. Proposed algorithm for diagnosing occult hepatitis B infection in selected patient subgroups. HCC, hepatocellular carcinoma.
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at risk of HBV reactivation, prophylactic or pre-
emptive antiviral therapy is often required.

For healthy blood donors, serum HBV DNA
detection by NAT is the appropriate approach to
identify HBV-infected individuals for proper med-
ical care and to prevent blood-borne HBV trans-
mission via blood products. If NAT is negative, no
further testing for OBI is required (Table 3). Other
groups at high risk of HBV infection,123 e.g., PWID,
men who have sex with men, haemodialysis pa-
tients, health care workers, etc., should be tested
for serum HBsAg and anti-HBs to identify overt
HBV carriers and vaccine non-responders, so that
Journal of Hepatology 2020 vol. 73 j 9
they can receive proper medical care and vaccina-
tion, respectively. As for the general population, the
purpose of identifying OBI cases in these patient
groups is unclear and is currently not recom-
mended (Table 3).

The use of liver biopsies, and novel HBV bio-
markers (such as hepatitis B core-related antigen,
HBV RNA) are merely for research purposes at this
juncture. In special circumstances where liver his-
tology is available as part of clinical management
(e.g. hepatectomy for cryptogenic HCC), HBV DNA
or cccDNA can possibly be isolated from the liver
tissue to establish the diagnosis of OBI, if laboratory
52–964



support is feasible. Although integrated HBV DNA is
also present in patients with OBI, detection of in-
tegrated HBV DNA is purely a research tool at this
juncture. Moreover, since the implications of OBI
entail both accelerated risk of liver damage
including HCC, and risk of HBV reactivation, the
presence of replication-competent HBV DNA is
required to establish the diagnosis of OBI. Inte-
grated HBV DNA, although directly pro-oncogenic,
is not replication competent. Therefore, it is not
practical to include the presence of integrated HBV
DNA in the definition of OBI.

Future perspectives
Over the past two decades, considerable research
and speculation have begun to define the role of
OBI in the development of HCC. HBV DNA testing in
the serum or liver is required to delineate OBI in
virtually all cases. This poses a challenge to refine
highly sensitive HBV DNA tests in the serum. In
addition, repeated testing at different time points
should be used to diagnose the condition in
selected patient subgroups as discussed. While
these requirements have often not been met by
those who publish on this topic, expansion of our
knowledge evokes optimism, and we are beginning
to see light at the end of the tunnel. We eagerly
await further data on the true prevalence of OBI
and its contribution to HCC development.

Concerning the exact pathogenetic mechanisms
leading to OBI status and its role in hep-
atocarcinogenesis, there are plenty of un-
certainties. The available evidence suggests that
they are multifactorial with additive or synergistic
effects. Further studies are required to delineate
the sequence of virus and host events and the
major drivers among the possible mechanisms
leading to HCC development.

With advances in HBV diagnostic technology
and increasing case-finding efforts in different liver
Journal o
disease areas, the entity of OBI has undoubtedly
been revealed as a significant cause of HCC
worldwide, especially in those with underlying
predisposing conditions. Although the treatment of
HCC may not be different from those with HCC due
to other causes, enhanced surveillance and early
diagnosis is still the key for better patient out-
comes. Therefore, clinicians should always be
cognisant of this entity in at-risk patient groups.
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