
Estimation of the Equipment Residual Lifetime in Major Hazard Industries by Using 

a Virtual Sensor 

Maria Francesca Milazzo, Giuseppe Scionti 

Dipartimento di Ingegneria, University of Messina, Italy. E-mail: mfmilazzo@unime.it, 

pepi_scionti@hotmail.com 

Paolo Bragatto 

Dipartimento Innovazioni Tecnologiche, INAIL, Italy. E-mail: p.bragatto@inail.it 
 

 

Prognostic is central in the management of components and production systems, structures and infrastructures. It 

aims estimating their health status and predicting residual useful lifetime, based on data and information related to 

degradation processes, the normal plant operability and the environmental conditions. Trustable estimates of the 

residual lifetime for systems allow achieving several goals, including a safe conduction of operations, an efficient 

operability that allows predictive maintenance actions and the extension of operational lifetime, under safety 

conditions. This point is particularly important in the context of the chemical and process industry, that is subject to 

the Seveso Directive. This normative recently imposed the plant operator to assess and manage equipment aging by 

redacting a detailed aging management plan. As a consequence, methods and tools are being developed for the 

assessment and management of deterioration mechanisms at major hazard industries. This paper presents the results 

related to the development of a virtual sensor for the estimation of the residual lifetime of the industrial equipment. 

In the initial version, the virtual sensor uses simplified models for the aging forecasting and information collected 

during audits and the equipment monitoring. Preliminary results of the implementation and testing of the initial 

version of the virtual sensor are shown by means of its application to a case-study. 
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1. Introduction 

Most chemical and process industries, falling 
under the European Seveso III Directive on the 
control of major accidents (EU Council, 2012), 
have been commissioned in the Sixties or 
Seventies. For this reason, the in-service time of 
most process equipment largely exceeds the limit 
assigned during the design phase (Milazzo and 
Bragatto, 2019). Such an extension may be 
reasonable as inspection techniques and 
maintenance procedures have been continuously 
improved during these last fifty years. 
Nevertheless, it is essential to question how long 
the operator can extend the lifetime of a 
component without jeopardize the safety of the 
plant. Process equipment (so-called critical 
equipment) includes primary containment 
systems (e.g. atmospheric tanks, pressurized 
vessels), machinery (e.g. pumps, compressors), 
control and safety systems (e.g. instruments, 
actuators). It has to be distinguished that an aged 
machine may be replaced as well as an obsolete 
control system, whereas the replacement of large 
process equipment (e.g. a vessel) is often 
unfeasible because of the costs, the impact on 
other activities and the required authorizations. 
Moreover, even though a containment system is 
not yet close to the end of its design lifetime, the 
estimation of a reliable expected time for a safe 
service is anyway essential. A trustable prognosis 

for each equipment is a keystone for an effective, 
profitable and safe management of the overall 
plant. Prognostic is essential to implement a 
maintenance policy based on actual current and 
future conditions (on-condition predictive 
maintenance), which largely increases the plant 
operability (Jardine et al., 2006; Elwany and 
Gebraeel, 2008; Wang and Hussian., 2009). 

According to common practices (API, 2016a; 
API 2016b; ISO, 2014), the mean time before a 
failure (MTBF) for a piece of equipment is 
predicted based on generic statistic data not up to 
date. Pittiglio et al. (2014) discussed the limits of 
generic failure rates in the public domain, 
commonly used by industrial practitioners. This 
causes that estimates are affected by a high 
uncertainty (Milazzo and Aven, 2012). In 
addition, the effects of different inspection and 
maintenance frameworks are not accounted for, 
neither the benefits of safety procedures, 
including risk assessment, training and personnel 
resources, operating control and management of 
changes. In case of containment systems, major 
“failures” are related to the loss of mechanical 
integrity (e.g. cracks, holes, ruptures) of the 
structure, which may cause the release of 
hazardous materials, eventually, escalating in 
severe accidents (OECD, 2017; Palazzi et al. 
2017; Wood et al, 2013). Thus, the uncertainties, 
associated with the statistical approach, compel 
the operator to be precautionary. To this scope 
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many regulations have fixed mandatory 
inspection intervals for pressurized equipment. 
Currently well-defined approaches for the 
optimization of test intervals, by accounting for 
highly uncertain aging parameters or maintenance 
effectiveness, are available; these are applied in 
the nuclear context and more recently in the 
chemical and process industry (Kančev et al., 
2011; Martón et al., 2015; Biondi et al., 2017). 

Predicting how long an individual system can 
be used without any loss of containment becomes 
a challenge and is essential to maximize the in-
service time and, consequently, minimize the 
costs for the asset management. The term 
prognosis is commonly used with a meaning 
similar as in medicine: but in this context, 
inspections provide data for the diagnosis about 
the actual health condition of equipment, even if 
a detailed information and a sound knowledge are 
essential in order to have a trustable diagnosis. 
This is particularly relevant in the context of the 
chemical and process industry, in which the cited 
Directive Seveso III imposed the plant operator to 
assess and manage equipment aging by drawing 
up a detailed aging management plan for 
establishments at major hazard. As a 
consequence, methods and tools are being 
developed to support these activities; these are 
here classified as methods for fault diagnosis (see 
e.g. Ragab et al., 2018; Diez-Olivan et al., 2019) 
and approaches for assessing and managing aging 
(see e.g. Candreva and Houari, 2013; Thomson, 
2015; Bragatto and Milazzo, 2016). 

This paper presents the results related to the 
development of a virtual sensor for the estimation 
of the residual lifetime of the industrial 
equipment. The virtual sensor is composed by 
software and hardware. In its initial version, the 
virtual sensor uses simplified models for aging 
forecasting and information collected during 
audits and from the equipment monitoring. 
Models refers to concepts that are already defined 
in the literature, but they were adopted for the 
purpose of this study. Some innovative 
technologies have been combined to support the 
application of these models, i.e. IOT technologies 
for a smart identification of equipment and cloud 
computing to store equipment data. Some 
preliminary results of the implementation and 
testing of the initial version of the sensor are 
shown in this contribution by means of its 
application to a case-study. The paper is 
structured as follows: Section 2 describes models 
for the assessment of aging through some metrics, 
including also the residual useful lifetime for 
industrial equipment and the system for the 
visualization of results (the viewer); Section 3 
presents the case-study, which has been used to 
test the virtual sensor; Section 4 shows the 
preliminary results of the application; finally, 

Section 5 gives some conclusive remarks and 
future perspectives. 

2. Models and technologies 

To estimate the residual useful lifetime of 
industrial equipment based on its actual health 
conditions, the combination of models for aging 
assessment with some innovative technologies 
(Bragatto et al, 2018) is proposed in this paper. As 
mentioned above, these enabling technologies 
includes technologies for a smart identification of 
equipment (Gnoni et al., 2016) and cloud 
computing to store and manage equipment data 
and outputs deriving from the quantification of 
the aging conditions of equipment (ageing 
metrics). 

The issue of equipment aging in major hazard 
sites has been developed by the Seveso III 
Directive. Recently, an index method has been 
adopted by the Italian regulators, whose 
theoretical basis and the details have been 
discussed in depth by Milazzo & Bragatto (2019). 
This method supports the industrial operator in 
dealing with the task of assessing aging and 
defining measures to contrast it, which will be 
preliminary for drawing up a detailed aging 
management plan, in accordance with the 
requirements of the legislation. Basically, the 
method is a fishbone model, which considers 
factors that accelerate ageing processes and 
factors able to decelerate them, thus promoting 
longevity. Accelerating factors include age/in-
service time, stops, failures, accidents/near-
misses, defects/ damages and deterioration 
mechanisms (e.g. corrosion, erosion, creep, etc.). 
Deterioration mechanisms are weighted 
according to detectability, velocity and 
consequence criteria. Longevity factors include 
physical factors (process control and physical 
protection) and organizational ones (audit, 
integrity management system, adequacy controls 
and inspection results). All input parameters to the 
model are measurable quantities; whereas, the 
output of the method is a score (Ioverall) applicable 
to a unit of the establishment or to the whole 
industrial site. The rules for assigning the score to 
each factor (according to which the output is 
calculated) have been derived from the judgment 
of a working group, composed by experts about 
the topic and including representatives from 
control bodies, industrial operators and academia. 

The following sections describe the models, 
which have been adopted for the calculation of the 
aging status of the equipment and for the future 
forecasting about its conditions. They have been 
implemented in the virtual sensor. All models 
refer to the fishbone method, mentioned above, 
hence, they include both the aging and longevity 
factors, defined by Milazzo and Bragatto (2019). 
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This also means that all factors flow into the three-
following metrics: 

· Aging-longevity indexes 

· Frequency of failure/loss of containment 

· Residual useful lifetime 

2.1 Aging-longevity indexes 

Accelerating and longevity factors, with respect 
to aging, are combined into an index representing 
the aging status for the equipment, the unit or the 
establishment, as extensively discussed by 
Milazzo and Bragatto (2019). This index is 
calculated in two steps by assigning a score to 
each factor, on a scale ranging from 1 to 4 (1 = 
low; 2 = medium; 3 = medium-high; 4 = high), 
and averaging all factors by considering 
accelerating (ai with i = 1, ..., n) with a negative 
sign and longevity ones (lj with j = 1, .., n) with a 
positive sign. This process gives an average index 
for aging and an average index for longevity: 

 

 

 

where: ai = accelerating factor; lj = longevity 

factor. 
By means of a comparison between these two 

indexes, it is possible to make considerations 
about the management of deterioration 
mechanisms. Results could also be given in the 
form of an overall index (Ioverall): 

 

 
Final indexes could be positive or negative 

depending on the absolute of Il and Ia, i.e. if | Il | > 
| Ia | the management of deterioration mechanisms 
allows contrasting them, whereas if | Il | < | Ia | is 
the opposite situation. 

2.2 Frequency of failure/loss of containment 

In this study the metric frequency of failure has 
been defined as the likelihood of occurrence of an 
event leading to a loss of containment (so-called 
random rupture). The approach, suggested for the 
quantification of the frequency of failure for the 
equipment due to aging is inspired by Milazzo et 
al. (2010) and is based on three steps: 

(i) the definition of relationships between 
prevention measures of accidents due to 
aging, adopted by the Company, and 
factors affecting the phenomenon; 

(ii) the estimation of weight coefficients for 
aging/longevity factors to be used for the 
modification of the general frequencies, 

taken from international databases (e.g. 
HSE, 2012; OREDA, 2015) and 
commonly used in QRA. 

(iii) the modification of the frequencies of 
failure, according to a model proposed 
by Papazoglou et al. (1999). 

Thus, the application of the method consists of 
auditing each unit of the establishment with the 
aim to identify the causes of failure due to aging 
and the measures that can prevent them. The 
weight coefficients for the causes of failure, 
which are used to apply the method, are the 
percentages of failures and relate to each unit of 
the establishment. 

The model for the modification of the 
frequency, given by Eq. (4), has been obtained by 
analysing data of incidents in chemical industry. 
It shows that the frequencies of release from 
various equipment spans two orders of magnitude 
and has certain symmetry around the average 
values (Papazoglou et al., 1999): 

 

 
where: fmod = modified frequency of failure 
(frequency of loss of containment); faverage = 
average frequency of failure based on world-wide 
experience; wai = weight assigned to the factor ai 

in contributing to aging; wlj = weight assigned to 
the factor lj in contributing to longevity; xai = 
normalized score assigned to ai; xlj = normalized 
score assigned to lj. 

In Eq. (4), the score x assumes the following 
values: - 1 if the effect on aging management is 
judged GOOD; 0 if it is judged AVERAGE; + 1 
if it is judged POOR. Therefore, given that the 
score from the fishbone model range from – 4 to 
+ 4, a normalization was needed to bring back the 
values to the scale – 1 to +1. 

2.3 Residual useful lifetime 

A useful parameter for the plant operator is the 
residual useful lifetime of the equipment under the 
impact of aging/longevity factors. Longevity 
factors act by counteracting the loss of integrity of 
the equipment and, thus, extending the remaining 
lifetime, while the aging factors are those that 
reduce it. Both technical and the operational 
integrity should be safeguarded to prevent 
undesired consequences (major accidents). This 
can be achieved by monitoring and inspecting the 
system, through the use of suitable techniques. If 
recorded measurements are few, a graphical plot 
may indicate a constant degradation rate but, in 
reality, the degradation rate may vary over time. 
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This aspect should be considered and often worst-
case assumptions are made to provide acceptable 
safety margins. Through inspection, the average 
rates of degradation may become better defined. 

The assessment of the remaining useful 
lifetime of a system or a component is essential 
for inspection planning. According to EEMUA 
(2014), this is done by using the degradation rate 
and the degradation allowance, as derived from 
the relevant design and repair codes and operating 
conditions. Remaining useful lifetime (RUL) for 
tanks is defined as: 

 

 

 
where: Adegradation = degradation allowance that 
represents the level permitted for the damage, 
which can be expressed by a thickness or others; 
Rdegradation = rate of degradation. 

 
In general, the risk rating, derived from the 

assessment of the degradation process of an item, 
is used to determine next inspection date as a 
fraction (K) of the remaining life. Therefore, the 
inspection interval can be calculated as: 

D ×  

 
where: Dtinspection = inspection interval. 

 
The confidence rating factor K (0 < K < 1) 

reflects the confidence that the RBI team has in 
the assessment of remaining lifetime. K is 
dependent on the following: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

· actual risk rating of the particular tank 

component; 

· judgement regarding the stability of the 

degradation mechanism and the methods for 

its control; 

· quality of previous inspection data; 

·  

· quality of the inspection/monitoring 

techniques to be used for future; (in-service) 

inspections (which includes establishing 

degradation rates); 

· number of inspections carried out; 

· previous inspection interval; 

· whether preventive measures are in place. 

 
The initial values of K are chosen from 

experience and by taking into account the 
classification for consequence and frequency 
suggested by RBI. Table 1 shows suggested 
values. 

Table 1. Value assigned to confidence rating factor 

K from risk rating. 

Frequency 

rating    ß 

Confidence rating factor K 

High 0.8 0.6 0.5 0.5 

Low 0.8 0.7 0.6 0.5 

Medium 0.9 0.8 0.7 0.6 

Negligible 0.9 0.9 0.8 0.7 

Consequence 

rating          Þ 
Negligible Low Medium High 

 

Fig. 1. Trend of allowance degradation (e.g. thickness) over the time with periodical inspections and with continuous 

monitoring. 
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Figure 1 shows the trend of the degradation 
allowance assuming periodical inspections (curve 
Sp) and continuous monitoring (curve Sc), 
reference has been made to a corrosion 
phenomenon. A linear damage (corrosion) rate 
has been assumed in this figure. The extrapolation 
of the measurement, made at time to, intercepts the 
safety margin level at a time t. By using a 
continuous monitoring, the forecast of the RUL is 
always updated based on the measurement. The 
line related to safety margin allows controlling the 
degradation. 

2.3 The viewer 

The resulting RUL, computed according to the 
described algorithms, is represented on a 
wearable viewer and can be directly consulted 
during a walk inside the establishment (Milazzo 
et al., 2019). The viewer is a part of the virtual 
sensor. By using such a sensor, it is sufficient for 
the inspector to approach a vessel or a pipeline 
and, through a smart label, the equipment is 
recognized. Then, relevant information is 
retrieved and merged with the data measured in 
real-time by the continuous monitoring sensors. 
Thus, the inspector has on his/her wearable 
viewer a trustable and up-to-date diagnosis on the 
RUL and the safe service time. 

3. Case-study 

The case study is a depot of liquid fuels, located 
close to Rome. The jet-fuel storage and the 
pipeline units have been considered. The jet-fuel 
storage unit includes two large floating roof tanks 
(TK2 and TK5) having a capacity respectively of 
25.000 and 10.000 m3) and two extraction and 
induction 6” pipelines. Three 12” pipelines reach 
the pipeline unit, connecting port, airport and 
refinery; this unit includes also pumps and a 150 
m3 booster, serving the pipelines. 

The tanks are regularly inspected according to 
the standard EEMUA 159 (EEMUA 2014). Inside 
the investigated site, tanks and pipelines have a 
service age of 44 and are very close to the end of 
their design lifetime. A minimal extension was 
accorded, because the actual corrosion rate has 
been verified to be lower than expected. Namely 
TK2 and TK5 have a design lifetime, based on 
precautionary assumptions about the corrosion 
rate, respectively of 42 and 53 years. The main 
damage mechanism is soil corrosion, which could 
cause a bottom oil leakage, with severe 
consequences for both environment and safety. 
The site is periodically inspected on behalf of the 
Competent Authorities according to the Seveso 
legislation. In November 2018, the fishbone 
method has been applied, the aging and the 
longevity indexes have been obtained as a basis to 

simulate the condition of the equipment under the 
following different assumptions: 

· Assumption 1: no intervention. 

· Assumption 2: The 12” pipelines are 

provided with a UT (ultrasounds) 

commercial continuous monitoring system. 

· Assumption 3: TK2 is provided with a 

continuous EA monitoring system, based on 

an innovative acoustic emission technology, 

developed in the framework of the 

SmartBench project (Messina et al., 2018). 

The assumption 1 makes the prognosis based 
on the assumed corrosion rate, i.e. conditions 
detected at the last inspection as well as on the 
fishbone score that is continuously updated. The 
monitoring will be certainly very conservative. 

The assumption 2 leads to an improved 
prognosis for pipelines, by taking into account the 
thicknesses monitored by the UT sensors. There 
is an uncertainty degree, due to potential pitting 
corrosions, which could be hidden for the UT 
sensors. 

The assumption 3 improves the prognosis also 
for TK2. EA is adequate to detect active corrosion 
phenomena, if an adequate network of sensors is 
applied to an atmospheric storage tank (Messina 
et al., 2018). As long as there is zero signal, a 
reasonable certainty that there are no processes in 
progress can be considered. When something is 
detected, this a signal meaning that there is a 
damage mechanism in progress. From the 
intensity of the activity it is possible to make 
predictions on the residual useful lifetime that is 
much more accurate than those deriving from the 
general corrosion rates. 

4. Results 

The initial aging status, determined in November 
2018, has been assessed according to the fishbone 
model. The result gave a value of – 1.47/– 4.0 for 
the aging index and 2.83/4.0 for the longevity one. 
The calculation of these metrics through Eq. (1-3) 
is simple, as well as their comprehension. The 
model is based on a multifactor approach, 
including both technical (protections, inspections, 
damage mechanisms, failures, ruptures, repairs, 
etc.) and organizational (certifications, audit, 
inspections and maintenance planning) issues. 
The strength of the method, beyond the limits 
induced by the simplifications, is that it is shared 
by a larger community, approved by regulators 
and companies. Nevertheless, to use the fishbone 
method, a plenty of useful data and information 
must be gathered throughout the establishment. It 
is a pity to use them only to obtain a score for 
compliance purpose. The methodology has a 
larger potential, which could be used also to 



Proceedings of the 29th European Safety and Reliability Conference 1769

address the management of individual items, 
including pressurized vessels and atmospheric 
tanks. This consideration justifies the 
development of two other metrics associated with 
aging, i.e. the frequency of failure and the residual 
useful lifetime. 

Tables 2, 3 and 4 show residual useful lifetime 
RUL and aging indexes calculated with the 
fishbone method, with respect to each assumption. 
The calculation of RUL is based on the thickness 
as measured in the last integrity inspection. The 
comparison of the metrics over the time allows 
defining measures for the detected degradation 
level. Table 2 considers that no intervention is 
made, thus metrics reflects the natural evolution 
of the phenomenon. 

Table 2. Residual useful lifetime and aging indexes 

for assumption 1. 

Item 

 

Metric 

 

Year 

2018 2020 2022 2024 

TK2 RUL 6 4 2 0 

TK5 RUL 9 7 5 3 

12’’Pipelines  RUL 10 8 6 4 

6’’ Pipelines  RUL 10 8 6 4 

Depot Ia -1.86 -1.91 -1.97 -2.02 

Depot Il 2.58 2.53 2.53 2.53 

Depot Ioverall 0.72 0.62 0.56 0.51 

Table 3. Residual useful lifetime and aging indexes 

for assumption 2. 

Item 

 

Metric 

 

Year 

2018 2020 2022 2024 

TK2 RUL 6 4.1 2.2 0.3 

TK5 RUL 9 7.1 5.2 3.3 

12’’Pipelines  RUL 10 8.4 6.8 5.2 

6’’ Pipelines  RUL 10 8.4 6.8 5.2 

Depot Ia -1.86 -1.86 -1.91 -1.97 

Depot Il 2.58 2.61 2.61 2.61 

Depot Ioverall 0.72 0.76 0.70 0.65 

Table 4. Residual useful lifetime and aging indexes 

for assumption 3. 

Item 

 

Metric 

 

Year 

2018 2020 2022 2024 

TK2 RUL 6 4.5 3.0 1.5 

TK5 RUL 9 7.1 5.2 3.3 

12’’Pipelines  RUL 10 8.4 6.8 5.2 

6’’ Pipelines  RUL 10 8.4 6.8 5.2 

Depot Ia -1.86 -1.80 -1.86 -1.91 

Depot Il 2.58 2.68 2.68 2.68 

Depot Ioverall 0.72 0.88 0.83 0.77 

 
Figure 2 gives the percentage of RUL reduction 

by accounting for the aging phenomenon and the 
monitoring and inspecting activities. Results are 
shown for tank TK2 and the 12’’ pipelines. 

Fig. 2. Case study. Effects of the prognosis on the RUL due to continuous monitoring by means of commercial solutions 
(assumption 2) and high end techniques (assumption 3). 
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5. Conclusions 

The results, obtained by the testing of the virtual 
sensor, demonstrate the feasibility of a sort of 
smart device revealing the actual aging of a 
component, in a complex site, such as a Seveso 
establishment. The strength of this “aging virtual 
sensor” is to put together the continuous 
measurement data with complex information 
about the factors driving the aging process, which 
are summarized by the aging index (as derived by 
the fishbone method used in the Italian Seveso 
establishments). In this way the remaining useful 
life of an individual component may be 
continuously be updated, taking into account both 
direct measurements and information about the 
operational and organizational context. The idea 
has been implemented and texted in a use-case, by 
exploiting the potential of an innovative acoustic 
emission wireless sensor network, developed in 
the research project SmartBench. 
Anyway, by now, there is already a number of 
commercial sensors suitable to control thinning 
and cracking of in-service vessels and pipes, as 
well as sensors for monitoring rotating machines 
and environmental parameters. These are able to 
provide a large amount of data to feed the virtual 
sensor for ageing. Currently, further sensors, 
proper for the integrity monitoring, are at a higher 
technical readiness level and in a few years surely 
will enter into the common industrial practice. 
The proposed virtual sensor for aging is ready to 
include them, to provide the industrial operators 
with a versatile solution to analyse the conditions 
of the establishment, which also adapts to the 
various equipment types featuring different 
damage mechanisms. 

In the use-case, the prevailing damage 
mechanism is the soil corrosion, as the jet-fuel 
contained in the tank is not corrosive. In case of 
different concurrent damage mechanisms, the 
extrapolation of the deterioration trend could need 
of a sounder computational model. Thus, a 
research effort is still required in order to extend 
the applicability of the proposed approach. 
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