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Random variables transformation for the response evaluation of structures

by Rossella Laudani

The present PhD thesis deals with the use of the Probability Transformation Method
(PTM) and of some of its extensions for solving mechanical and structural systems
for which the response is modeled as random fields or variables that cannot be well-
approximated as Gaussian. In particular, besides the study of stochastic systems,
whose geometric and material properties are random, structural systems in which
uncertainties in the model designed could arise, have been investigated. In the con-
texts of stochastic systems, the exact probabilistic solution of redundant stochastic
beams, when the flexural deformability is random has been formulated. Moreover,
a study was conducted for the stochastic analysis of cracked Euler Bernoulli beams
when the cracks are modeled as a rotational internal spring with random amplitude
and positions. Then, the concept of the local and nonlocal randomness in stochas-
tic mechanics have been investigated through three research works in which a link
between the statistical properties of random field and the local and non-local ran-
domness in stochastic mechanics have been found. Finally, the dynamic stochastic
analyses of linear structural systems excited by non-Gaussian excitations have been
considered. In any case, this PhD thesis collects several research works with the
main goal of gathering all the typologies of stochastic structural analyses in which
the PTM can be advantageously applied, both in terms of accuracy and efficiency.
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Chapter 1

Introduction

Over the last two decades, it has been recognized that uncertainty and absence of
determinism reflects in engineering sciences. The uncertainties are intrinsic in any
engineering problem. Mechanical properties, geometric parameters, boundary con-
ditions, modeling errors as well as actions such as the impact of earthquakes, wind
loads, imperfect road profiles, or turbulence flows are highly affected by variations
and scatters values. Due to these uncertainties, any engineering systems can not be
adequately represented by deterministic models.

Since one of the meanings of uncertainty is randomness, a natural way to handle
uncertainties is to apply the theory of probability and random processes, by de-
scribing uncertainties as random variables or random fields. Roughly speaking, a
random variable is a random element taking “uncertain variable” values. Random
variables and/or random fields lead to handle with uncertain parameter systems.

Aim of the stochastic mechanics is dealing with the inherent uncertainties of the
structural systems and analyzing the effects of them in the response. Essentially,
the uncertainty present in many engineering analysis/design problems is modeled
using three basic techniques: (a) probabilistic or stochastic modeling; (b) fuzzy sets
based analysis, and (c) anti-optimization of structures. In stochastic mechanics, by
applying the probability theory, several methods to model the uncertainties can
be counted. Likewise, in the context of industrial fuzzy sets and logic for devis-
ing reliable machines and components have been developed, and a recent field has
emerged, referred to as anti-optimization that identifies uncertainty with bounded-
ness. Mainly, in interval analysis, the uncertain parameters are modeled as a simple
range with assigned lower bound and upper bound.

Within the framework of probabilistic approaches, this thesis deals with several
problems of stochastic mechanics through the probability transformation method
(PTM). The PTM is based on the probabilistic approach of the space transformation
laws of random vectors as well as on the principle of probability conservation and
allows to work directly in terms of input and output probability density functions
(PDFs). Without a doubt, the most intuitive and easiest way to investigate stochastic
problems is to determine the response PDF of any response quantity. Moreover,
in most cases, an assessment of the response in terms of PDF is highly advised,
above all for the reliability analysis. Without neglecting the fact that working directly
in terms of PDF avoids passing through the evaluation of the response statistical
moments or cumulants, reducing drastically the stochastic analysis computational
effort. The thesis aims to disseminate how the PTM represents an efficient choice for
the probabilistic characterization of the structural and mechanical response. Overall,
various applications of the PTM, both for static and dynamic analysis of systems
characterized by uncertainties, will be introduced.

The present PhD thesis is organized as follows. After this Introduction, in Chap-
ter 2 the PTM is described along with some basic concepts that may be useful to
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understand the probabilistic method. Some simple numerical applications aimed
to show how this probabilistic tool can be useful in the context of structural anal-
ysis are also presented. Chapter 3 deals with uncertain static structural systems
when the uncertainties are modeled as random variables with assigned PDF. In the
first two sections, an approach will be proposed in order to perform the stochas-
tic response analysis of finite element (FE) modeled structural systems affected by
uncertainties. In particular, the proposed approach will be matching the virtues of
the Approximated Principal Deformation Modes method (APDM) with the PTM.
Then, a closed-form solution of redundantly constrained bending beams in terms
of the PDF when flexural deformability is a random parameter will be introduced.
Finally, still in the context of uncertain structural systems, the stochastic response of
beams characterized by the random amplitude of cracks and by the random cracks
positions, besides their amplitude, will be achieved. In Chapter 4, two typical ex-
amples in structural engineering in which in this case the uncertainties are inherent
in the model designed due to possible simplifying assumptions in analytical mod-
els and/or simplified methods will be analyzed. At first, the determination of the
static structural response of beams and frames with partially restrained (semi-rigid)
connections will be addressed. Then, the second example deals with the stochastic
analysis of masonry infilled reinforced concrete (RC) frames. Assuming the macro-
modeling technique the equivalent diagonal pin-jointed strut width will be consid-
ered as a random variable, whose stochastic characterization stems from a wide set
of empirical expressions proposed in the literature. In both examples, the response
structural PDF will be evaluated through the application of the PTM. Chapter 5 will
investigate the incidence of local and nonlocal randomness effects in stochastic me-
chanics. Motivated by the recent growing literature in the study of new random field
models and in particular by the analysis of their fractal dimension and long memory,
as those elements controlling local and nonlocal dependencies, the contents of this
chapter will deal with three different stochastic topics. At first, the classical prob-
lem of peeling a beam off a substrate will be studied through a re-examination of
Griffith’s fracture criterion in the presence of local and nonlocal random properties.
Then, the sensitivity of the stochastic response quantities to the local and non-local
randomness dependence of the flexural deformability will be studied both for stati-
cally determinate and indeterminate stochastic beams, under different conditions of
load and constrain. Finally, the statistical RF theory with fractal dimension and long
memory characteristics will be applied in the turbulence flows. In particular, close
inspection of these two randomness effects using field data from a sonic anemometer
located within the atmospheric surface layer will be done. In Chapter 6, the random
dynamic analysis of structures is addressed. Basically, PTM will be extended to the
case of dynamical systems. A probabilistic approach which gives the direct relation
between the single-time varying PDFs of input and output of a linear structural sys-
tem subjected to assigned non-Gaussian stochastic process will be presented. The
chapter continues with an extension of the above approach for the multiple times
varying joint PDF (JPDFs). Finally, some notes that are the basic concepts for a new
formulation of an evolutive PTM for dynamic linear uncertain systems, which is
still under study face, will be reported. Moreover, it is worth emphasizing that for
each chapter, numerical applications will be provided with the aim of demonstrating
both the feasibility and accuracy of the different content of application of the PTM.
Finally, a conclusive chapter summarizes the main results and highlights the main
novelties introduced in the literature.
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Chapter 2

The Probability Transformation
Method

2.1 Introduction

The main aim of this Chapter is to give the basic preliminary concepts that may
be useful in understanding the Probability Transformation Method (PTM), a prob-
abilistic method that has been developed to achieve the probability information of
stochastic responses of generic random systems.
Apart from computing the mean and the variance, reasonable only for the sim-
plest case of linear systems with Gaussian random parameters and/or loads, in
the stochastic mechanic’s field, one of the major goals is to be able to calculate the
response probability density function (PDF) of any response quantity of a generic
stochastic system. In the literature, there are several papers related to the appli-
cation of probabilistic methods and, in the last 50 years, many significant results
have been obtained in this field. The Monte Carlo Simulation (MCS) is maybe the
most universal method for the analysis of stochastic systems, but its usage is greatly
limited by the prohibitive computational cost, especially when the response PDF is
required (Papadrakakis and Papadopoulos, 1996; Hurtado and Barbat, 1998). Other
methods for the evaluation of the response PDF of systems subjected to uncertainties
are based on the so-called “closure techniques”, consisting of truncating the cumu-
lant series expansion of the response characteristic function (CF) at k-th term. These
methods provide good results if the response is characterized by a relatively low
non-Gaussianity but, unfortunately, when the response is strongly non-Gaussian,
the number of k terms of the series may be particularly high and the convergence,
which is not generally guaranteed, is particularly slow, in any case (Roberts and
Spanos, 2003; Lin, 1967a; Wu and Lin, 1984).
Recently, an approach, based on a new version of the PTM (Falsone and Settineri,
2013a; Falsone and Settineri, 2013b), has been proposed for the study of some stochas-
tic problems. The PTM is based on a well-known direct relationship between the
PDFs of two vectors of random variables connected by an invertible law. The fun-
damental aspects of the PTM must be looked for in the theory of the space transfor-
mation of random vector as well as in the principle of probability conservation.
The chapter is organized as follows: the concept of a function of a random variable
will be firstly introduced. Then, the principle of probability conservation over the
problem of the evaluation of the PDF will be discussed, both for the function of one
random variable and for the function of a random vector. Finally, the last section
deals with the PTM. Moreover, in order to highlight the main goal of this chapter
some numerical examples are reported.
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2.2 The random variable g(X)

Suppose that X is an random variable (RV) and g(X) is a function of the real variable
X, i.e. a map G exists from X to Y. Then expression Y = g(X) is a new RV. The
cumulative ditribution function (CDF) FY(y) of the RV so formed is the probability
of the event {Y ≤ y}. Thus

FY(y) = Pr {Y ≤ y} = P {g(X) ≤ y} (2.1)

where Pr {·} is the probability measure. For a specific y, the values of x such that
g(x) ≤ y form a set on the x axis denoted by Ry. Hence

FY(y) = Pr
{

X ∈ Ry
}

(2.2)

The above leads to the conclusion that for g(X) to be an rv, the function g(X) must
have the following properties (Papoulis and Pillai, 2002):

1. Its domain must include the range of the RV X.

2. It must be a Baire function, that is, for every y, the set Ry such that g(X) ≤ y
must consist of the union and intersection of a countable number of intervals.
Only then {Y ≤ y} is an event.

3. The events {g(X) = ±∞}must have zero probability.

2.3 The Principle of Probability Conservation

As the conservation laws in nature, in the stochastic field, it is possible to statement
the principle of probability conservation: the probability carried by a random event
is conserved without introducing other stochastic factors. In other words, if the
random factors involved in a stochastic system are preserved, i.e no new random
factors arise nor existing factors vanish in a physical process, then the probability
will be preserved in the evolution process of the system (Li and Chen, 2009). The
conservation of probability is a basic principle of statistical mechanics. The best
expression of this principle is enclosed in the Liouville equation (Tarasov, 2007),
which will be returned to in chapter 6. In the next subsection, it will be shown how
this principle is crucial in order to evaluate the output probability density function
(PDF) for a generic stochastic system, and in particular, it will be possible to see
how the principle of probability conservation is strictly linked to the theory of the
transformation of a random function.

2.3.1 PDF of function of one random variable

In this subsection, the problem of the evaluation of the PDF of Y = g(X) as a function
of the PDF of X will be reported. In general it is possible to distinguish the following
two cases:

1. If g(X) is a monotonic function, then g−1(X) exists as the unique inverse func-
tion of g(X). Consider a specific y on the y-axis, and a positive increment dy,
the CDF of Y is differentiable; we then have

pY(y)dy = Pr {y < Y(ξ) ≤ y + dy} (2.3)
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FIGURE 2.1: Transformations of random variables

or equivalently

pY(y) =
d

dy
Pr {y < Y(ξ) ≤ y + dy} (2.4)

where ξ represents a basic random event. Because

Pr {y < Y(ξ) ≤ y + dy} = dPr {ξ} . (2.5)

From Eq. 2.5 and taking into account that the event {y < Y(ξ) ≤ y + dy} can
be expressed in terms of X(ξ) as well:

Pr {x < X(ξ) ≤ x + dx} = dPr {ξ} = pX(x)dx (2.6)

it follows that

Pr {y < Y(ξ) ≤ y + dy} = Pr {x < X(ξ) ≤ x + dx} = dPr {ξ} (2.7)

This means that, in a mathematical transform, the probability measure will be
preserved since the random events keep unchanged. Namely

pY(y)dy = pX(x)dx (2.8)

For the same set of ξ, the relationship between X(ξ) and Y(ξ) is given by y =
g(x). Consequently

pY(y) =
dx
dy

pX(g−1(y)) =
[

1
dg(x)/dx

]
x=g−1(y)

pX(g−1(y)) (2.9)

2. Suppose g(X) is not monotonic but a single-valued function, i.e. it has only a
finite number of maximum and minimum, and it eventually becomes mono-
tonic as |x| → ∞. Referring to Fig. 2.1, the equation Y = g(X) has three solu-
tions x1, x2, x3 (for the specific y chosen there). As a result when {y < Y(ξ) ≤ y
+dy}, the RV X could be in any one of the three mutually exclusive intervals

{x1 < X(ξ) ≤ x1 + dx1} , {x2 < X(ξ) ≤ x2 + dx2} or
{x3 < X(ξ) ≤ x3 + dx3}

(2.10)
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Hence the probability of the event in Eq. 2.10 is the sum of the probability of
the above three events, i.e.,

P {y < Y(ξ) ≤ y + dy} = P {x1 < X(ξ) ≤ x1 + dx1}+ P {x2 < X(ξ) ≤ x2 + dx2}
+ P {x3 < X(ξ) ≤ x3 + dx3}

(2.11)

For small dy and dxi it can get

pY(y)dy = pX(x1)dx1 + pX(x2)dx2 + pX(x3)dx3 (2.12)

As above, from this last equation it is possible to say again that the probability
measure will be preserved since the random events keep unchanged. In par-
ticular, in this case, dx1 > 0, dx2 < 0 and dx3 > 0, so that Eq. 2.12 can be
rewritten as

pY(y) = ∑
i

pX(xi)
|dxi|
dy

= ∑
i

1
|dy/dxi|

pX(xi) (2.13)

and as dy→ 0 Eq. 2.13 can be expressed as

pY(y) = ∑
i

1
|dy/dx|xi

pX(xi) = ∑
i

1
|g′(xi)|

pX(xi) (2.14)

The summation index i in Eq. 2.14 depends on Y, and for every Y the equation
y = g(xi) must be solved to obtain the total number of solutions at every y,
and the actual solutions x1, x2, ... all in terms of y.

2.3.1.1 Numerical examples

Some examples of the problem of the determination of the PDF of Y = g(X) as a
function of the PDF of X are shown below.
For the probabilistic characterization of the random variable Y, the law of the func-
tion transformation g(X) has a key role. In the simplest case of a linear transfor-
mation, if X is a Gaussian variable, the random variable Y is also Gaussian, so the
probabilistic characterization is reduced to the evaluation of the first and second-
order moments. But if the g(X) defines a non linear transformation the first and
second-order statistics are not sufficient to fully describe Y probabilistically and the
use of Eqs. 2.9 and 2.14 represents a direct and quick way for evaluating the PDF of
Y.

Let assume X is a Gaussian variable with zero mean and standard deviation
equal to 1, the following examples of transformations are taking under examination:

A) Y = aX + b.

The above equation has a single solution

X = (Y− b)/a (2.15)
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for every Y. Hence

pY(Y) =
1
|a| pX

(
y− b

a

)
(2.16)

where g′(X) = a.

B) Y = aX2 + b.

The above is quadratic equation and has the following two solutions if Y > 0:

X1 = −
√

Y− b√
a

X2 =

√
Y− b√

a
(2.17)

and Eq. 2.14 yields:

pY(Y) =
1∣∣2√a
√

y− b
∣∣
[

pX

(
−
√

y− b√
a

)
+ pX

(√
y− b√

a

)]
y > 0 (2.18)

where g′(X) = 2aX.

C) Y = 1
aX+b .

The above has the following inverse solution:

X =
1− bY

aY
, Y 6= 0. (2.19)

Then

pY(Y) =
1
|ay2| pX

(
1− by

ay

)
(2.20)

where g′(X) = −a
(aX+b)2 .

D) Y = a
√

X + b.

The above has the following inverse solution:

X =
(b−Y)2

a2 (2.21)

Then

pY(Y) =

∣∣∣∣∣2a
√

(b−Y)2

a2

∣∣∣∣∣ pX

(
(b− y)2

a2

)
(2.22)

where g′(X) = a
2
√

X
.
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(A) (B)

(C) (D)

FIGURE 2.2: PDF of Y for four different transformations; with a = 0.3
and b = 1.

Fig. 2.2 summarises the four different PDF of RV Y and it is possible to appreciate
the strong non-Gaussianity of the output if the g(X) is a non-linear transformation
as shown in the examples B), C) and D).

2.3.2 PDF of function of random vector

The results of the previous section 2.3.1 can be easily extended for the case of random
vectors. If X(X1, X2, · · · , Xn)T is a n-dimensional random vector with JPDF pX(x),
namely:

Pr {x < X(ξ) ≤ x + dx} = dPr {ξ} = pX(x)dx (2.23)

Suppose there is a map G : X→ Z determining a vector Z = (Z1, Z2, · · · , Zm)T by X,
i.e X(·) is a n-dimensional invertible application, such that h−1(·) = f(·), that means

Z = h(X); X = f(Z) (2.24)

Here, n and m are respectively the dimension of X and Z. Denoting the joint density
of Z by pZ(z), it is possible to write:

Pr {z < Z(ξ) ≤ z + dz} = dPr {ξ} = pZ(z)dz (2.25)

Considering Eq. 2.25 in conjunction with Eq. 2.23 yields

pZ(z)dz = pX(x)dx (2.26)
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where, from Eq. 2.24:
z = h(x) (2.27)

Eqs 2.26 and 2.27 mean that when there exists a map from the space of X to the
space of Z, then if we can find X in an element domain dx in the space of X with a
prescribed probability, then we must be able to find Z in a corresponding element
domain dz in the space of Y, which is determined by the map from X to Z, with the
same probability. The principle can be called the principle of probability conservation
(Li and Chen, 2009). From Eqs. 2.26 and 2.27, for a one-to-one map and n = m, we
have

pz(z) =
1

|det [Jh(z)]|
px(f(z)) = |det [Jf(z)]| px(f(z)) (2.28)

here Jh(z) is the Jacobian matrix related to the transformations given in Eq. 2.28,
that is

Jh(z) = (∇T
x ⊗ h(x))|x=f(z) (2.29)

where ∇T
x is the n-th oder row-vector differential operator collecting all the partial

derivatives with respect to the component xi of x and the symbol ⊗ indicates the
Kronecker product (Graham, 2018).
From this section, the essential concept is the following: in a generic stochastic sys-
tem "if no other stochastic factors are involved then the probability carried by a ran-
dom event is conserved".

2.4 The Probability Transformation Method (PTM)

In the previous section, it possible to appreciate that the expression of Eq. 2.28 gives
a direct deterministic relationship between the joint PDF (JPDF) of the random vec-
tor z and that of the random vector x. In other words, the PDF of the output variables
pz(z) can be computed once that the PDF of the input variables px(x) are known and
the transformation law is defined. It represents the fundamental reference relation-
ship of the PTM.
It is noted that, due to Eq. 2.28, the vectors x and z should have the same number
of components but it may happen that the numbers of components of the random
vectors involved are different. However, this is not a restriction because some expe-
dients must be performed, as shown below. For example, if n and m are the numbers
of elements of x and z, respectively, let suppose that n > m. In this case, an efficient
expedient may be the augment of the number of output elements through (n− m)
generic variables, in such a way that the augmented vector z̄T = (zT ẑT), ẑ being
the (n− m)-vector of the added variables, has the same number of elements of the
input x. Hence, the law expressed into Eq. 2.28 can be applied in the form

pz̄(z̄) =
1

|det [Jh̄(z̄)]|
px(f̄(z̄)) = |det [Jf̄(z̄)]| px(f̄(z̄)) (2.30)

where

h̄(·) =
(

h(·)
ĥ(·)

)
; f̄(·) = h̄−1(·) (2.31)

Here it is important to underline that the vector ẑ is consisting of generic variables
linked to the vector x through the generic subvector function ĥ(·). So, through the
definition of ĥ(·) and f̄(·) it is possible to get a one to one vectorial map. Once that
the JPDF pz̄(z̄) has been evaluated by Eq. 2.31, the required JPDF pz(z) is obtained
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by the saturation of the (n−m) added generic variables, that is,

pz(z) =
∫ ∞

−∞
· · ·

∫ ∞

−∞
pz̄(z̄)dz̄n+1 · · · dz̄m. (2.32)

Cleary when n < m, the goal is the same of above: to extend the dimension of the
vector x as the dimension of the output vector z. An effective expedient may be to
augment the input vector x with a deterministic zero (m− n)-vector 0. In this way,
Eq. 2.24 can be rewritten as

z = h(x̄) =
(

h̃(x)
ĥ(x) + x̂

)
; x̄ =

(
x
x̂

)
, (2.33a-b)

In this case, the augmented m-dimensional vector h(·) is constituted through the
composition of the following two subvectors: (i) h̃(·), the first subvector of Eq.
2.33(a), is the initial vector function of the n-dimensional application between the
n-dimentional input and output vector, z and x, respectively; (ii) the second sub-
verctor is the sum of ĥ(·) with x̂, where is the (m − n)-vector function that can be
any additional applications between the (m− n) components of z with the n com-
ponents of x, while x̂ is the (m− n)-vector deterministically zero. Hence, the JPDF
of the enlarged vector x is given by

px̄(x̄) = px(x)δ(x̂) (2.34)

δ(x̂) being the (m − n)-dimensional Dirac delta function placed at x̂ = 0, repre-
senting the JPDF of x̂. Hence, the inverse relationships given into Eq. 2.24 can be
rewritten in the form

x̄ =

(
x
x̂

)
=

(
f̃(z̃)
f̂(z)

)
; f̃(·) = h̃−1(·); f̂(z) = ẑ− ĥ(f̃(z̃)), (2.35)

where the expression of the direct transformation given into Eq. 2.33 has been con-
sidered and where it has been assumed that the inverse expressions given into Eq.
2.35 exist. At this point, following the same procedure as that used for finding the
classical PTM expression, it is not difficult to find the following relationship between
the JPDF of z and the JPDF of x (Falsone and Laudani, 2019a):

pz(z) = |det [Jf̃(z̃)]| px(f̃(z̃))δ(ẑ− ĥ(f̃(z̃))), (2.36)

with δ(·) being the multidimensional Dirac delta function.

Another problem in the application of the PTM could be the evaluation of a
marginal PDF of the response. This implies that starting from the knowledge of
the full joint one pz(z), a certain number of integrations must be performed in or-
der to saturate this function respect to the non-required components. In (Falsone
and Settineri, 2013a; Falsone and Settineri, 2013b) it was introduced a more effec-
tive alternative way to evaluate the marginal PDF of z, pzj(zj), avoiding to saturate.
By using the properties of the Dirac delta function δ(·), Eq. 2.28 is rewritten in the
following form

pz(z) =
∫ ∞

−∞
· · ·

∫ ∞

−∞

1
|det [Jh(y)]|

px(y)δ(y− f(z))dy1 · · · dyn. (2.37)
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wherein the multi-dimensional Dirac delta function centered in the point y = f(z)
is introduced

δ(y− f(z)) = δ(y1 − f1(z))δ(y2 − f2(z)) · · · δ(yn − fn(z)) (2.38)

The multi-dimensional Dirac Delta introduced above has non-zero value only if
y = f(z); then, it is equivalent to a multi-dimensional Dirac Delta centered in
z = f−1(y)h(y), provided the determinant of the Jacobian matrix related to the ap-
plication h(y) is introduced

δ(y− f(z)) = |det [Jh(y)]| δ(z− h(y)) (2.39)

The determinant of the Jacobian matrix Jh guarantees that the functions appearing
in both sides of Eq. 2.39 have unitary area. Substituting Eq. 2.39 into Eq. 2.37 yields

pz(z) =
∫ ∞

−∞
· · ·

∫ ∞

−∞
px(y)δ(z− h(y))dy1 · · · dyn. (2.40)

We now consider the single component zj of the output random vector z defined by
the scalar transformation zj = hj(x). The PDF of zj is readily computed by integrat-
ing both sides of Eq. 2.40 with respect to all the variables zi, with i = 1, 2, · · · , n and
i 6= j, thus obtaining

pzj(zj) =
∫ ∞

−∞
· · ·

∫ ∞

−∞
px(y)δ(zj − hj(y))dy1 · · · dyn. (2.41)

Eq. 2.41 is very suitable for defining the single response PDF. In an analogous way,
the JPDF of two components zj = hj(x) and zk = hk(x) of the output random vector
z is required, the following relationship can be used:

pzj,zk(zj, zk) =
∫ ∞

−∞
· · ·

∫ ∞

−∞
px(y)δ(zj − hj(y))δ(zk − hk(y))dy1 · · · dyn. (2.42)

It is important to note that Eqs. 2.40-2.42 show the useful property of not requir-
ing the knowledge of the inverse transformation f(·) = h−1(·) that, in some cases,
can represent a very hard task. Moreover, they do not depend on the number of
elements of z. On the contrary, they have the drawback of requiring n integrations
respect to the component of x. This last drawback is overcome when hj(x) is a linear
combination of the components of x, that is, when it is possible to write hj(x) = hT

j x,
= hj being the n-vector collecting the coefficients of the combination. In fact, the
computational effort related to the evaluation of the multiple integrals appearing in
the previous equations can be sensibly reduced if the calculus is conducted in terms
of the CF. The CF of zj can be expressed as

Mzj(ωj) =
1

2π

∫ ∞

−∞
pzj(zj)exp(−iωjzj)dzj

=
1

2π

∫ ∞

−∞

[∫ ∞

−∞
· · ·

∫ ∞

−∞
px(y)δ(zj − hT

j y)dy1 · · · dyn

]
exp(−iωjzj)dzj.

(2.43)

that, taking into account the properties of the Dirac Delta function, becomes

Mzj(ωj) =
1

2π

∫ ∞

−∞
· · ·

∫ ∞

−∞
px(y)exp(−iωjhT

j y)dy1 · · · dyn. (2.44)
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Remembering that the multidimensional CF Mx(θ) of the random vector x is related
to the corresponding JPDF by the following relationship:

Mx(θ) =
1

(2π)n

∫ ∞

−∞
· · ·

∫ ∞

−∞
px(y)exp(−iθTy)dy1 · · · dyn. (2.45)

then it is not difficult to verify that the following relationship holds:

Mzj(ωj) = (2π)n−1Mx(θ)|θ=ωjhj (2.46)

that evidences the fundamental result that the response CF Mzj(ωj) is always ob-
tainable in closed form, once that the multidimensional CF of the input is known,
without the necessity of any of integration. If the joint CF (JCF) of the two response
variables zj and zk is required, it is easy to show that the following relationship holds:

Mzjzk(ωj, ωk) = (2π)n−2Mx(θ)|θ=ωjhj+ωkhk (2.47)

The result given into Eq. 2.47 can be easily extended to the case of the cross-CF (C-
CF) Mz1,··· ,zn(ω1, · · · , ωn) of m ≤ n response variables. As a matter of the fact, it is
easy to verify that the following relationship holds:

Mz1,··· ,zn(ω1, · · · , ωn) = (2π)n−m Mx(θ)|θ=∑m
i=1 ωihi

(2.48)

that, specified for m = n, gives the response complete CF. Once that the charac-
teristic functions are evaluated the corresponding PDF can be obtained by Fourier
anti-transform operations.

2.4.1 Numerical examples

The numerical examples reported in this subsection aim to highlight the use of the
PTM to evaluate the response PDF of linear systems subjected to random static loads
with generic PDF.

2.4.1.1 Example 1

As first example, the cantilever beam represented in Fig. 2.3 is taken into account.
The Young modulus value and the inertia moment are: E = 2.1 × 109N/m2 and
I = 1.35× 10−3m4, respectively; while L = 10m. The PTM will be applied in or-
der to determine the PDF of the vertical displacement and rotation of the free end.
Assuming as system origin coinciding with the clamp constraint, the vertical dis-
placement and rotation at the free end are described by the following expressions:

uy(x = L) =
F1L3

3EI
+

F2L3

48EI
(2.49)

φ(x = L) =
F1L2

2EI
+

F2L2

8EI
(2.50)
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FIGURE 2.3: Example 1: The beam structure

The beam is forced by two random forces applied at the free end and at the center
with pF(F) known. The following three different distributions of the random vector
F have been considered:

• Case 1) F is assumed is a Gaussian JPDF defined by the mean vector µF and
the covariance matrix ΣF as follows:

µF =
{

1.2 0.1
}
× 105N; ΣF =

(
1 0.6

0.6 1

)
× 109N2 (2.51)

• Case 2) F is assumed uniformly distributed random variables, characterized
by the following JPDF:

pF(F) =
2

∏
i=1

U (αmini , αmaxi) (2.52)

where αmini and αmaxi represent the minimum and maximum fluctuations around
the mean vector of the Eq. 2.52, here it was assumed a fluctuation of the 30 per-
cent.

• Case 3) F is assumed by the mixture PDF as follows:

pF(F) =
2

∑
i=1

wi × pFi(Fi) (2.53)

where wi is the weight of the distribution, here assumed w1 = 0.2 and w2 = 0.8.
While pFi(Fi) is assumed as the Gaussian JPDF of the case 1);

(A) (B)

FIGURE 2.4: Example 1: PDF of the vertical displacement at the free
end (A); PDF of the rotation at the free end (B).
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Fig. 2.4 shows the PDFs of the vertical displacement and rotation at the free end for
the above three case of pF(F). Clearly, due to the linearity of the system, both the
response PDFs, puy

(
uy
)

and pφy (φ), follow the same probabilistic distribution type
of the random load.

2.4.1.2 Example 2

The frame structure shown in Fig. 2.5 is now taking under examination. All the
columns have the same inertia moment Icolumn = 3.125× 10−3m4, while all the hor-
izontal elements are characterized by inertia Ibeam = 1.143 × 10−2m4. The Young
modulus value is E = 2.1× 109N/m2. The system is forced by three static random
forces applied at each plane. In this example the evaluation of the PDF puC

x
(uC

x ) of
the third floor displacement is the goal of the analysis.

FIGURE 2.5: Example 2: The frame structure.

The three different distributions of the random vector F of the above example are
assumed also for this example. In particular:

µF =
{

1.2 1.2 1.2
}
× 105N; ΣF =

 1 0.6 0.3
0.6 1 0.6
0.3 0.6 1

× 109N2 (2.54)

The PDFs of the horizontal displacement of node C are given in Fig. 2.6, for the all
three cases of pF(F). The frame structure system is characterized by a linear input-
out relationship, thus about the behavior of the distribution PDF response, the same
considerations of the previous example can be made.



2.4. The Probability Transformation Method (PTM) 15

FIGURE 2.6: Example 2: PDF of the horizontal displacement of node
C.

From the above examples, it is possible to appreciate how the PTM represents
an efficient choice for the probabilistic characterization of the structural response, it
is useful especially for some type of problems for which, in spite of their simplicity,
it is very difficult to find explicit solutions. In fact, although for the linear systems
examined the structural response PDFs follow the same probabilistic distribution
type of the random load, in the case of non-Gaussian loads, the PTM allows to find
the exact explicit PDFs of the output.
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Chapter 3

Uncertain materials systems

3.1 Introduction

The analysis of structural systems is always affected by the uncertainties due to the
characterization of materials and geometric quantities (random system parameters),
in addition to the external actions (random loading). In many cases, the level of these
uncertainties is so crucial that the use of deterministic methods for the structural
response analyses may lead to unacceptable approximations. It has been recognized
that in these cases the uncertainties, and consequently, the structural response, must
be adequately represented as random quantities. The evaluation of the stochastic
response is the central goal of stochastic mechanics.

In particular, in this chapter, the mechanical properties of several structural sys-
tems as random variables will be assuming. Then the evaluation of the response in
terms of PDF will be explored. In general, an assessment of the response in terms
of PDF is highly recommended, above all if reliability analysis is a required field, as
well as the use of advanced specific analysis approaches, as the probabilistic meth-
ods.

It is known that there is no universal method suitable to solve any problem in-
volving uncertainties in the system characteristics. Presently there exist thousand
papers on approximated methods able to analyse the stochastic structures. Among
these, the statistic approaches, based on the Monte Carlo simulations (Kahn, 1955;
Metropolis and Ulam, 1949), are maybe the only universal and simplest from a theo-
retical point of view. In fact, they need the realization of a sufficiently great number
of samples of the uncertain parameters and the solution of the corresponding de-
terministic problems. However, increasing the structural degrees of freedom and
the number of uncertain parameters, the computational effort related to the statis-
tic methods becomes extremely great. For this reason, some alternative non-statistic
methods have been proposed in the literature. One of the oldest methods for the
evaluation of the PDF of systems subjected to uncertainties is based on truncating
the cumulant series expansion of the response CF (Lutes and Sarkani, 2004). This
method provides good results if the response is characterized by a relatively low
non-Gaussianity. When the response is strongly non-Gaussian, the number of terms
of the series may be particularly high and the convergence, which is not generally
guaranteed, is particularly slow, in any case. In addition, the direct evaluation of the
terms of the series may not be simple. For this reason this method is often associated
with the MCS method (Schuëller et al., 1989; Papadrakakis and Papadopoulos, 1996;
Hurtado and Barbat, 1998).

In the literature, a relevant role is played by the methods based on the pertur-
bation approaches that are based on a Taylor series expansion in terms of a set of
zero mean random variables. The perturbation approaches provide accurate results
for relatively low levels of uncertainty, for which only few terms of the series are
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used (usually the first or the first and second order are considered). On the con-
trary, when the level of uncertainty of the structural parameters increases, the ap-
proach loses strongly its precision and, moreover, the computational effort strongly
increases, due to the high number of terms of the series to be taken into account.
In any case, the convergence of the approach is not guaranteed by the augmented
order of the retained series terms. Major details on this method can be found in
other works (Schuëller and Pradlwarter, 2009; Kleiber and Hien, 1992; Elishakoff,
Ren, and Shinozuka, 1995a; Kamiński, 2007; Kaminski, 2013). On the other hand,
extremely few closed-form solutions are available for meaningful comparison. As a
consequence, the stochastic finite element (SFE) approach is usually identified with
the classical finite element coupled with the perturbation approaches for taking into
account the structural parameter uncertainties.

Another important class of methods for solving uncertain structural systems is
based on the approaches, based on the projection of the solution on a complete
stochastic basis. Two of the most used projection approaches are those based on
the Karhunen-Loève expansion (Ghanem and Spanos, 2003) and on the polynomial
chaos expansion. This last one is a Galerkin projection scheme based onWiener inte-
gral representation (Schuëller and Pradlwarter, 2009; Ghanem and Spanos, 2003).
It requires the numerical evaluation of the series expansion terms (Ghanem and
Kruger, 1996; Pellissetti and Ghanem, 2000) and can be particularly onerous if the
terms of the series are not limited to a relatively small number. For this reason,
recently, several efforts have been made to improve the approach (Field Jr and Grig-
oriu, 2004; Doostan, Ghanem, and Red-Horse, 2007). A comparison of different
projection schemes for stochastic finite element analysis is given in the work of
Sachdeva et al (Sachdeva, Nair, and Keane, 2006).

One more relevant category of methods dealing with uncertain system is that
related to the use of the random matrix expansion of the structural stiffness ma-
trix in order to perform explicitly its inversion (Neumann expansion) (Adhikari and
Manohar, 1999; Yamazaki, Shinozuka, and Dasgupta, 1988). Then, once that the
explicit inverse stiffnessmatrix is known, it is possible to obtain the statistics of the
response or to perform a MCS to obtain the response PDF.

In 2002, Falsone and Impollonia (Falsone and Impollonia, 2002; Falsone and Im-
pollonia, 2004) proposed the Approximated Principal Deformation Modes method
(APDM) method, belonging to the class of MCS-based methods. It consists in break-
ing up the structural response in the base of the principal deformation modes of
the structure: this allows of obtaining an approximation of the response, without
the cost to invert the stiffness matrix of the system and enabling to reduce consis-
tently the computational effort. Indeed, the statistics of the response are obtained
by MCS applied directly on explicit expressions of the response. In a certain sense,
the method enables the evaluation of an approximated inverse stiffness matrix (as
the matrix expansion methods). Nevertheless, the APDM can be considered also as
a projection method, because it consists essentially in the expansion of the structural
response on a particular base through a finite number of functions, depending on
the uncertain parameters, strictly related to the principal deformation modes of the
structural system. In any case, the coefficient of the series can be evaluated explicitly
in terms of the uncertain parameters.

Moreover, in the search field on uncertain structural systems, the study of beams
in presence cracks have been seen intense research. In the recent literature, many
authors have studied the Euler-Bernoulli beam in presence of an arbitrary number
of cracks, providing closed-form solutions (Caddemi and Calio, 2008; Caddemi and
Calio, 2009; Caddemi and Caliò, 2013). The idea to solve the multi-cracked beams,
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which are treated as equivalent linear springs at the cracks’ position, through the res-
olution of linear discontinuous differential equations using the so-called generalized
functions has been studied in some deterministic aspects by Palmeri and Cicirello
(Palmeri and Cicirello, 2011; Cicirello and Palmeri, 2014). From a probabilistic point
of view, the stochastic response of a beam with certain and uncertain no-propagating
crack has been treating in Cacciola and Muscolino. The evaluation of the structural
response of single-cracked beam-like structures assuming the crack depth as an un-
certain parameter is also addressed in some recent papers (Santoro and Muscolino,
2019; Santoro, Failla, and Muscolino, 2020), in which the method of interval analysis
is adopted.

The goal of this chapter is the full probability characterization of any response
random variable of some static uncertain structural systems. This characterization
will be obtained in terms of the corresponding PDF through different applications
of the PTM.

The content of this chapter is mainly based on some papers already published
(Falsone and Laudani, 2019a; Falsone and Laudani, 2019b; Falsone and Laudani,
2020b) and is organized as follows. In section 3.2 it will be proposed a probabilis-
tic method to evaluate the PDF response of linear uncertain structural systems. In
particular, the proposed approach consists of combining the above-cited APDM with
the PTM. Then, in section 3.3 will be shown how the proposed approach presented in
section 3.2 gives exact results when the structures are statically determined. Section
3.4 is devoted to the determination of the exact closed-form solutions of redundantly
constrained stochastic bending beams. Also for this problem, it will be possible to
see an application of the PTM; in particular, the response PDF have been achieved
thanks to the matching of the force method, for solving the redundancy, with the
PTM. Finally, in section 3.5, an unpublished study about the static stochastic analy-
sis of cracked Euler–Bernoulli beams will be presented. By applying the PTM, the
stochastic response of beams characterized by the random amplitude of cracks and
by the random cracks positions, besides of their amplitude, will be achieved. At last,
in section 3.6, some concluding thoughts about the efficiency and the fundamental
properties of the proposed approaches are given.

3.2 Matching the principal deformation mode method with
the probability transformation method

This section deals with the probabilistic description of the random response of linear
uncertain structural system when the uncertainties are modeled as random variables
with assigned PDF. In particular, a novel approach is presented that allows the direct
evaluation of the response PDF starting from the JPDF characterizing the structural
uncertainties. It consists in matching adequately two methods, which are the Ap-
proximated Principal Deformation Modes method (APDM) and the PTM, in order
to give an approach able to characterize the response of uncertain structural systems
directly in terms of PDF and without using any expansive MCS.
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3.2.1 A brief view on the APDM

The response of a discretized structural system having uncertain properties is gov-
erned by an equilibrium equation that can be expressed in the following form (Ya-
mazaki, Shinozuka, and Dasgupta, 1988):

K(α)u(α) = F (3.1)

where α = [α1, α2, · · · , αm]
T is the m-vector collecting the random uncertain param-

eters of the structural system, which is supposed to be defined through the knowl-
edge of the JPDF, pα(α); K(α) is the structural stiffness n× n matrix depending on
the uncertain parameters; F is the n-vector of the external actions, here considered
deterministic, and u(α) is the n-vector of the response displacements, depending on
the structural parameters, and hence on α besides of on the external actions. By fol-
lowing the work of Yamazaki et al, (Yamazaki, Shinozuka, and Dasgupta, 1988) the
stiffness matrix can be expressed as follows:

K(α) = K0 +
m

∑
i=1

Kiαi; K0 = K(0) (3.2)

where K0 is the deterministic stiffness matrix obtained setting αi = 0, with i =
1, · · · , m, and Ki are deterministic matrices extracted from K(α). The APDM owes
its name to some properties of the principal deformation modes of the FE type used
for the structural discretization. The basic idea of method lies on the following ap-
proximation of the response u(α) of the system governed by Eq. 3.1:

u(α) ≈ u0 + ∆u(α); ∆u(α) =
m

∑
i=1

ui(αi) (3.3)

where u0 is the deterministic response obtained setting αi = 0 with i = 1, · · · , m,
while ui(αi) is the vector response obtained supposing that only the random vari-
able αi characterizes the structure uncertainties. It is important to note Eq. 3.3 is
the generalization of the expression used in the first-order perturbation method, in
which ui(αi) is linear respect to αi. Hence, they, u0 and ui(αi), are the solutions of
the following equations:

K0u0 = F; (K0 + αiKi)ui(αi) = −αiKiu0 (3.4)

The authors have given the explicit closed-form expressions of the partial response
vectors ui(αi) that is,

ui(αi) = −αiΦi [In + αiΛi]
−1

ΛiΦ
T
i F, (3.5)

where Λi and Φi are the eigenvalue and eigenvector matrices, respectively, of the
matrix K−1

0 Ki, while In is the identity matrix of order n. This implies that the ma-
trix into square brackets in Eq. 3.5 is diagonal, making very simple its inversion.
Moreover, the number of the nonzero eigenvalues of the matrix K−1

0 Ki is equal to
the number of the structural principal modes directly affected by αi, and this num-
ber, ni is very small with respect to the number of degrees of freedom (DOF) n of the
system, making simpler the evaluation of ui(αi). In particular, if each random vari-
able αi influences only one FE, then the number of significant eigenvalues cannot be
greater than the number of natural modes of the element that, in turn, depends on
the type of FE chosen for discretizing the structure. For example, a bar-type FE is
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characterized only by one natural deformation mode (ni = 1); a beam-type FE (in
a plane analysis) by two natural deformation modes (ni = 2); a frame-type FE (in a
plane analysis) by three natural deformation modes (ni = 3). Hence, when (ni = 1),
the straightforward particularization of Eq. 3.5 gives

uij(αi) = Φijk

αiΛik q0,ik

1 + αiΛik

=
aij αi

1 + bij αi
, (3.6)

where uij is the jth of ui, Λik is the only nonzero eigenvalue of K−1
0 Ki (the kth), and

Φijk the corresponding element of the kth eigenvector. At last q0,ik is the kth element
of the modal response vector q0,i = Φ−1

i u0. The quantities aij and bij appearing in
the last term of Eq. 3.6 can be obtained once that the eigenvalue problem of K−1

0 Ki
is solved. Alternatively, a more direct evaluation of these quantities can be obtained
by solving twice Eq. 3.4 where two different deterministic sample values of αi have
been assigned.

When ni = 2, as, for example, happens in the beam FE-discretized structures,
the nonzero eigenvalues of the matrix K−1

0 Ki are not more than two. In addition,
in this case, the generic element of ui can be obtained avoiding the solution of the
eigenproblem, but using the following relationship:

uij(αi) =
aij αi + bij α

2
i

1 + cij αi + dij α
2
i

, (3.7)

where the four coefficients appearing can be obtained by solving four times Eq. 3.4,
assigning four different deterministic sample values to the variable αi.

At last, the generalization to the case ni = p, p being the generic number of the
structural principal deformation modes influenced by the uncertain parameter αi is
quite simple. In fact, Eqs. 3.6 and 3.7 can be generalized in

uij(αi) =
∑

p
k=1 bik j α

k
i

1 + ∑
p
k=1 dik j α

k
i
, (3.8)

while 2p is the number of coefficients to be evaluated by means of 2p deterministic
analyses.

It is important to note that, if the same random variable αi affects more than
one FE, as may happen, for example, when the random field of the uncertainties is
discretized by a projection approach, (Sachdeva, Nair, and Keane, 2006) the APDM
can be always used, but only by solving the eigenvalue problem for applying the
expression given into Eq. 3.5.

In the work of Metropolis and Ulam, (Metropolis and Ulam, 1949) it has been
evidenced that the application of the APDM is affected by an error e(α) having the
following expression:

e(α) = −
m

∑
i=1

m

∑
i 6=j=1

αiKiuj(α) (3.9)

that evidences that it is strictly related to the presence of the cross-terms Kiuj, ne-
glected in the application of the present approach.Nevertheless, in the same work,
the authors have shown that the accuracy level of this approach is good in many
structural cases, even for relatively high levels of uncertainties, stressing a usually
scarce influence of the cross terms on the response. For example, it has been shown
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that, in the case of statically determined trusses, they are rigorously zero and the
APDM method gives exact results.

3.2.2 Matching the APDM with the PTM

In this subsection, the APDM previously showed is applied combining it with the
PTM. The approach that will be proposed allows finding an accurate probabilistic
characterization of the response of a linear static structural system with uncertain
parameters.

In Subsection 3.2.1, it has been shown that the application of the APDM method
to the structural system governed by Eq. 3.1 implies the approximation of the re-
sponse in the form

u(α) ≈ u0 +
m

∑
i=1

ui(αi) = u0 + ∆u(α). (3.10)

The objective of this section is the evaluation of the JPDF pu∆(u∆) once that the JPDF
pα(α) is assigned. As seen in Subsection 3.2.1, it is possible to express the jth element
of ui(αi) as uij = hij(αi) where the form of the function hij(·) essentially depends
on the number of principal deformation modes related to the FE type used for the
structural discretization. In any case, the required inverse function fij(·) ≡ h−1

ij
(·)

can be always obtained in closed form. For example, for np = 1 and np = 2, the
inverse relationships are given by

αi =
uij

aij − bij uij

; αi =
aij − cij uij ±

√
∆ij

2
(

bij − dij uij

) ;

∆ij =
(

c2
ij
− 4dij

)
u2

ij
+
(

4b2
ij
− 2aij cij

)
uij + a2

ij

(3.11)

Eq. 3.11 shows that the inverse function has two values. In all the cases in which
the inverse shows solutions, the PTM can be even applied, but the sum of the PDFs
corresponding to the various solutions must be considered, that is,

puij

(
uij

)
=

np

∑
k=1

∣∣∣∣∣J f (k)ij

(
uij

)∣∣∣∣∣ pαi

(
f (k)ij

(
uij

))
. (3.12)

If the probabilistic characterization of the structural response component uj is re-
quired, the application of the APDM method implies that

uj = u0j +
m

∑
i=1

uij(αi) = u0j + 1Tuj(α) = u0j + u∆j(α) (3.13)

where 1 is the m-vector whose components are all equal to one and uj(α) is the m-
vector whose ith element is uij(αi). The JPDF of uj(α) is obtained by the application
of the PTM and it has the following form:

puj

(
uj
)
=
∣∣∣det

[
Jfj

(
uj
)]∣∣∣ pα

(
fj
(
uj
))

. (3.14)

It is easy to verify that the Jacobian Jfj is diagonal because the inverse functions
fij (·) depends only on the response component uij . Hence, the following expression
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is true: ∣∣det
[
Jf
(
uj
)]∣∣ = m

∏
i=1

∣∣∣∣∣∣
d fij

(
uij

)
duij

∣∣∣∣∣∣ . (3.15)

Eqs. 3.14 and 3.15 give the JPDF of the elements of the vector uj(α). In order to
determine the JPDF of u∆j(α), Eq. 3.14 must be taken into account. It establishes
a relation between the m-vector uj(α)whose JPDF is given into Eq. 3.14, and the
response component u∆j(α), whose pdf must be evaluated. At this purpose, the
most efficient approach is that represented by the version of the PTM based on the
use of the CF. In particular, the application of Eqs. 2.44 and 3.14 gives the following
result:

Mu∆j
(ω) = (2π)m−1Muj(θ)θ=ω1 (3.16)

with Muj(θ) being the JCF of the vector uj that can be obtained by the Fourier trans-
form of puj

(
uj
)
. In this way, the probabilistic characterization of the response quan-

tity u∆j(α)and, hence, of uj is completed. If the joint probabilistic characterization of
the two response components uj and uk is required, the application of the approach
above described requires the evaluation of the joint CF Mu∆j ,u∆k

(ω1, ω2) at it is easy
to express as follows:

Mu∆j ,u∆k
(ω1, ω2) = (2π)m−2Muj,uk(θ1, θ2)θ1=ω11,θ2=ω21. (3.17)

The JCF Muj,uk(θ1, θ2) is the double Fourier transform of the JPDF puj,uk(uj, uk) that
can be obtained by applying the PTM to a transformation law in which the m-vector
α is the input and the two m-vectors uj and uk represent the output. Hence, in this
case, the number of input elements is smaller than the number of output elements
and the version of PTM expressed into Eqs. 2.33-2.36 be used. This implies that the
expression of puj,uk(uj, uk), particularizing Eq. 2.36 to this case, is given by

puj,uk

(
uj, uk

)
=
∣∣∣det

[
Jfj

(
uj
)]∣∣∣ pα

(
fj
(
uj
))

δ
(
uk − hk

(
fj
(
uj
)))

=
m

∏
i=1

∣∣∣∣∣∣
d fij

(
uij

)
duij

∣∣∣∣∣∣ pα

(
fj
(
uj
))

δ
(
uk − hk

(
fj
(
uj
)))

.
(3.18)

This approach can be generalized to higher-order probabilistic characterizations of
the response.

3.2.3 Numerical example

The effectiveness of the proposed method is tested through some numerical exam-
ples in which the structural uncertainty is always due to the characteristics of the
Young modulus of each FE in which the structural system has been discretized. In
particular, it is assumed that the Young modulus related to the generic FE can be
expressed as

Ei = E0 (1 + αi) ; i = 1, 2, · · · , m (3.19)

with m being the number of the FEs used in the discretization, while E0 is the mean
value of the Young modulus. In all the examples, the responses of interest are the
structural displacements and/or the internal forces in some fixed sections. They are
certainly random and must be characterized through the definition of their PDFs.
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The examples reported have been chosen in such a way that the corresponding FE
type are characterized by a different number of principal deformation modes, np.

3.2.3.1 Bar-type FE

As first example, the truss structure represented in Fig. 3.1 is taken into account. All
the bars have the same cross-section (1× 10−4m2) and a random Young modulus
defined as in Eq. 3.19, where i = 1, · · · , 15 and E0 = 2.10× 108kN/m2. The random
variables αi are assumed to be uniformly distributed in the range [−a, a]. It is im-
portant to note that, in spite of the apparent simplicity of this kind of distribution, it
has strongly non-Gaussian features, and hence, it is an interesting choice to test the
efficiency of the proposed approach. Three static horizontal deterministic forces are
applied: a force F = 10kN applied to node C, a force 2F applied to node B and a
force 3F applied to the node A.

FIGURE 3.1: The truss-structure.

With the aim of probabilistically characterizing the horizontal displacement of
node A through its PDF puA(uA), the approach proposed in this work, particularized
to the case in which np = 1, is applied. The JPDF puA (uA) of the vector uA (α) has
been obtained by using Eqs. 3.14 and 3.14, where, from Eq. 3.11,

αi =
uiA

aiA − biA uiA

→ uiA =
aiA αi

1 + biA αi
= fiA αi. (3.20)

After having obtained the JCF MuA (θ), it has been possible to evaluate the CF
MuA (ω)by the use of Eq. 3.16. Lastly, the corresponding PDF has been obtained
by its inverse Fourier transform.

In Fig. 3.2, the PDF puA (uA) is reported in the two cases of a = 0.15, correspond-
ing to a standard deviation σαi = 0.09, and of a = 0.35 with σαi = 0.20, respectively.
It is to be stressed that the level of uncertainty related to these values of standard
deviations is relatively high, above all for the second distribution. The results ob-
tained by the proposed approach (APDM+PTM) are compared with those provided
by the classic MCS (5× 105samples) and with those obtained by applying the MCS
to the results of the APDM, that is to Eq. 3.6 (APDM+MCS). The graphics of Fig. 3.2
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show the good level of accuracy of the proposed procedure. Moreover, the use of
the (APDM+PTM) approach has allowed a computing time saving of 98.5% respect
to the MCS and of 96% respect to the (APDM+MCS).
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FIGURE 3.2: Probability density function of the horizontal displace-
ment uA for αi ∈ [−0.15, 0.15] and for (B) αi ∈ [−0.35, 0.35].

The evaluation of the JPDF of two response components, the horizontal displace-
ments of nodes A and B, has required the knowledge of the JPDF puAuB(uA, uB), that
has been obtained by the application of Eq. 3.18. The Fourier transform of this
function has given the corresponding JCF, from which it is has been possible to find
MuAuB (ω1, ω1) by using Eq. 3.18. At last, the Fourier transform of this function has
produced the JPDF of interest puAuB (uA, uB).

In Figs. 3.3 and 3.4, the JPDF of the displacements of nodes A and B, puAuB (uA, uB),
and of nodes A and C, puAuC (uA, uC), are shown.

From the study of these figures, the greater level of correlation between the ran-
dom variables uA and uB than that between uA and uC can be appreciated, due to
the fact that nodes A and B are directly connected by a bar, on the contrary of nodes
A and C.

3.2.3.2 Beam-type FE

The second example considered in this work is the clamped-clamped beam shown
in Fig. 3.5. Its length is L = 8 m, while its cross-section is rectangular with area equal
to 1.5× 10−3 m2. The external action is a uniformly distributed deterministic load
with intensity q = 100 kN/m. The discretization is made through four beam-type
FEs of equal length. The random Young modulus is defined as in Eq. 3.19, with
i = 1, · · · , 4 and E0 = 3× 107 kN/m2. As each FE is characterized by two natural
deformation modes

(
np = 2

)
, two different inverse functions f (1)ij

(. . . ) and f (2)ij
(. . . )

have been obtained for it (Eq. 3.11) and the JPDF puj

(
uj
)

has been obtained by the
following relation:

puj

(
uj
)
=

np

∑
k=1

∣∣∣∣Jf(k)j

(
uj
)∣∣∣∣ pα

(
f(k)j

(
uj
))

. (3.21)

At this point, the application has followed the same steps considered for the truss in
the previous subsection. For this example, some different distributions of the ran-
dom variables have been considered. Firstly, the random variables αi has marginal
PDF uniformly distributed in the range [−0.3, 0.3] (σαi = 0.173) and exponential
correlation function ρ (∆x) = exp (− |∆x| /λ), ∆x being the distance between two
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cross-sections of the beam and λ the correlation length of the random field charac-
terizing the uncertainties. Two several values of the correlation length have been
considered: λ = 0.3L and λ = 2L. Figs. 3.6 and 3.7 show the corresponding
PDF, puC (uC), of the central node deflection and the PDFs of the bending moment,
pM(M), and of the shear force, pT(T), at the left extreme node. As second kind of
distribution of uncertainties, the random variables αi have been considered to be
zero-mean Gaussian variables, with standard deviation σαi = 0.15. In Fig. 3.8, the
PDF puC (uC) is reported, making the comparison between the case of independent
αi and the case in which they are correlated with the previous exponential correla-
tion function ρ (∆x), with λ = 2L. Even for this example, the good level of accuracy
can be easily verified in both the cases of independent and correlated uncertainty
variables. With reference to the computational effort, the use of the (APDM+PTM).
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FIGURE 3.3: Joint probability density function of horizontal displace-
ments of nodes A and B for uniformly distributed uncertainties: (A)

αi ∈ [−0.15, 0.15] (B) αi ∈ [−0.35, 0.35].
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FIGURE 3.4: Joint probability density function of horizontal displace-
ments of nodes A and C for uniformly distributed uncertainties: (A)

αi ∈ [−0.15, 0.15] (B) αi ∈ [−0.35, 0.35].

FIGURE 3.5: The Clamped-clamped beam.

Finally, the behavior of the response PDFs near the tail region has been analyzed.
From the analysis of the results shown in Fig. 3.9, one can appreciate how the good
level of accuracy of the proposed approach is maintained even in the tail region. This
is confirmed by the failure probability values obtained by either the (APDM+MCS)
approach and the (APDM+PTM) one, in the case of correlated Gaussian uncertain-
ties, that are Pf = 5× 10−7 and Pf = 6× 10−7, respectively, having fixed a failure
value of uC f = 1.8× 10−2m.
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FIGURE 3.6: Probability density function of the central node displace-
ment uC for uniformly distributed uncertainties for λ = 0.3L and

λ = 2L.
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FIGURE 3.7: Probability density functions of the (A) bending moment
and the (B) shear force at the left constrained extreme of the beam for

uniformly distributed uncertainties for λ = 0.3L and λ = 2L.
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FIGURE 3.8: Probability density function of the central node displace-
ment uC for Gaussian distribution in the two hypothesis of uncorre-

lated and correlated uncertainties.
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FIGURE 3.9: Behavior of probability density function of the central
node displacement uC near the tail region for Gaussian correlated un-

certainties.

3.2.3.3 Frame-type FE

The frame structure shown in Fig. 3.10 has been considered. All the columns have
the same cross-section, with area Acolumn = 1.5× 10−1m2 and inertia moment Icolumn =
3.125× 10−3m4, while all the horizontal elements are characterized by a cross-section
with area Abeam = 2.8× 10−1m2 and inertia moment Ibeam = 1.143× 10−2m4. The
system is forced by three static deterministic forces, of the same intensity, F = 1000
kN, applied at each plane. A random Young modulus is defined as in Eq. 3.19, with
i = 1, · · · , 9 and E0 = 3× 107 kN/m2. The application of the (APDM+PTM) ap-
proach follows the same steps considered in the previous two subsections, paying
attention to the fact that the frame-type FE is characterized by np = 3. In this case,
the random variables αi have been chosen to be zero-mean Gaussian and character-
ized by a standard deviation σαi = 0.15. Moreover, in order to take into account
the correlation that may exist between the mechanical properties of close FEs, a cor-
relation coefficient equal to 0.5 has been assumed for elements that have one node
in common, living uncorrelated all the other ones. The PDFs of the horizontal dis-
placement and of the moment of node C are given in Fig. 3.11, for independent
correlated uncertainties, respectively. Even in this case, the good level of accuracy
of the proposed approach, respect to the MCS and the (APDM+MCS), ones is clear.
At the same time, the computational effort has been reduced of 64% respect to the
application of the MCS and of 50% respect to the application of the (APDM+MCS).

3.2.3.4 Two-dimensional FE-discretized structure

The last example here considered is the plane-stress problem represented in Figure
3.12. The two-dimensional FEs used for the discretization are the triangular element
with three vertex nodes and six DOFs.

The following data are assumed as known (deterministic) input parameters: the
panel length is L = 4.5 m, the height is H = 9 m, the Poisson coefficient is equal
to 0.2, and the linear distributed load has a maximum intensity q = 5000 kN/m.
The Young modulus is uncertain and modeled by a two-dimensional stochastic field
with constant mean value E0 = 3× 107 kN/m2 and expressed as

Ei = E0 (1 + α(x, y)) . (3.22)
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FIGURE 3.10: The frame structure.
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FIGURE 3.11: Probability density function of the (A) horizontal dis-
placements and (B) moment of nodes C for Gaussian distribution in

the two hypothesis of uncorrelated and correlated uncertainties.

The zero mean two-dimensional stochastic field α(x, y) is assumed to be as a
Gaussian one with squared exponential covariance function

Σα (|∆x|) = σ2
α ρ (|∆x|) = σ2

αexp
(
|∆x|

λ

)2

, (3.23)

where |∆x| is the distance between two points of the field, σα = 0.15 and λ = 0.25L.
The random field has been discretized by using the midpoint method, (Liu, Mani,
and Belytschko, 1987) obtaining that the uncertain Young modulus is defined by
eighteen correlated random variables αi. These FEs are characterized by three prin-
cipal deformation modes (np = 3). The PDFs of the vertical and horizontal displace-
ments of node 13, are depicted in Fig. 3.13. In this case, the use of the (APDM+PTM)
approach has allowed a computing time saving of 70% respect to the MCS and of
60% respect to the (APDM+MCS).
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FIGURE 3.12: The plate structure.
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FIGURE 3.13: Probability density function of the (A) vertical and (B)
horizontal displacement of node 13.

3.2.4 Some remarks

The APDM and the PTM have been adequately matched in order to implement a
procedure able to characterize the response of linear uncertain structures directly in
terms of PDF. This has been possible due to the properties of the APDM, in find-
ing explicit relationships between the stochastic structural response and the random
variables representing the uncertainties, and of the PTM, in finding the explicit rela-
tionships in terms of PDFs between input and output variables of a given transfor-
mation law. This approach can be applied to discretized structural systems, paying
attention to the FE type used; in fact, in function of the approach used for discretizing
the random field related to the uncertainties, the number np of principal deformation
modes of the FEs influences the form of the expressions to be used.



32 Chapter 3. Uncertain materials systems

The application of the (APDM+PTM) approach to some simple examples, in
which various FE types have been used, depending on the structure-type consid-
ered, has always shown its good properties, in terms of both accuracy and compu-
tational effort. In particular, these properties have been revealed even for medium-
high level of uncertainties, respect to those usually considered in many approaches
in the literature.

3.3 Exact response probability density functions of some un-
certain structural systems

The aim of this section is defining an approach able to give exact results in terms of
the response PDF for particular class uncertain structures. The uncertain structures
have been identified in the discretized statically determined ones and the probability
approach of the section 3.2 has been applied.

In the previous section has been shown a probabilistic approach identified in the
coupling of the approximated principal deformation modes method (APDM) and of
the PTM. The first one gives the explicit relationships between the response variables
and the uncertainty ones, in particular, it is will be shown that the relationships are
exact when the structures are statically determined. Then, the PTM allows determin-
ing the explicit relationship between the PDFs of the response and of the uncertainty
variables. It will be shown the results of some applications have confirmed the good-
ness of these choices and that the proposed approach gives always exact results for
both correlated and uncorrelated uncertainty random variables.

3.3.1 Proposed approach

In subsection 3.2.1 the APDM has been presented. This method is remarkable for
the purpose of this section because in the case of statically determinate structures it
gives the exact explicit relationships between the response components and the ran-
dom variables defining the structural uncertainties (Falsone and Impollonia, 2004).
For these structures the APDM becomes the Exact Principal Deformation Mode ap-
proach (EPDM) (approximated→ exact). In this way a class of structures for which
it is possible to find exact close relationships between response quantities and un-
certainty quantities has been identified.

In the subsection 3.2.1 it has been evidenced that the APDM is affected by an
error e(α) having the following expression:

e(α) = −
m

∑
i=1

m

∑
i 6=j=1

αiKiuj(α) (3.24)

that shows of being strictly related to the presence of the cross-terms Kiuj, ne-
glected in the APDM. These cross-terms may assume an important physical sig-
nificance remembering that uj is the structural displacement when only the ran-
dom variable αj affects the structure. Consequently, they represent the nodal forces
arising in a structure characterized by the stiffness matrix Ki and subjected to the
nodal displacements uj. Then, if the discretized structure is statically determinate,
these terms are rigorously zero, for i 6= j, and no error is related to the use of Eq.
3.3. Hence, for statically determinate discretized structures, the APDM becomes the
EPDM approach, giving the exact relationships between the structural response and
the random variables describing the uncertainties.
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Then, the next step is the evaluation of the exact response PDF through the
matching of the EPDM with the PTM as it was shown in subsection 3.2.2.

3.3.2 Numerical example

The numerical examples reported in this section aim to verify and highlight the fun-
damental statement of the present work showing that, for statically determinate dis-
cretized uncertain structures, the joint use of the EPDM and of the PTM allows to
obtain the exact response PDFs. It is assumed that, in all the considered examples,
the structural uncertain parameter is represented by the Young modulus of each FE
in which the structural system has been discretized. In particular, the Young mod-
ulus of the generic FE is modelled as in Eq. 3.19. The examples reported have been
chosen in such a way that the corresponding FE typology are characterized by a
different number of principal deformation modes, np.

3.3.2.1 Bar type FE

For this FE typology, two examples of statically determinate structural systems are
taken into account. The truss-structure represented in Fig. 3.14 is first considered. It
is characterized by the following geometrical and mechanical deterministic param-
eters: L = 5 m, H = 4 m; all the bars have the same cross-sections area (4× 10−2m2)
and a random Young modulus defined as in Eq. 3.19, where i = 1, · · · , 9 and
E0 = 2.10 × 108 kN/m2. The random variables αi are assumed to be uniformly
distributed in the range [−0.30, 0.30]. The truss-structure is forced by static deter-
ministic forces: a force F = 10 kN applied to the nodes B and D, and a force 2F
applied to the node C.

The results presented here confirm that the proposed approach leads to the ex-
act expression of u (α), and, hence, by applying Eq. 3.16, to the exact PDF of any
responses of interest. The PDFs of some nodal displacements have been obtained,
comparing the results obtained by the proposed approach and those by Monte Carlo
simulations (for these last ones 5× 105 samples have been considered). In Fig. 3.15,
the PDF of the vertical displacement of node C, puC

y

(
uC

y

)
, and the PDF of the hori-

zontal displacement of node E, puE
x

(
uE

x
)
, are, respectively, reported.

FIGURE 3.14: The truss-structure.
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(A) (B)

FIGURE 3.15: PDF of the vertical displacement of node C (A) and of
the horizontal displacement of node E (B).

Successively, the statically determined beam represented in Fig. 3.16 is taken
into account. Its length is L = 8 m, while its cross section is rectangular with area
equal to 1.5× 10−3m2. The external actions are a uniformly distributed axial load
with intensity q = 150 kN/m and a static deterministic axial force applied to the free
end with intensity F = qL. Due to the load characteristics, the discretization can
be made by means of bar-type FEs. In particular, four FE of equal length have been
used. The random Young modulus is defined as in Eq. 3.19, with i = 1, · · · , 4 and
E0 = 3× 107kN/m2.

FIGURE 3.16: Cantilever beam (bar type FE).

In Fig. 3.17 the PDF of the horizontal displacement of the free end is reported for
the case that the random variables αi are assumed to be uniformly distributed in the
range [−0.4, 0.4]. By inspection of Fig. 3.17 the goodness of the comparison is clear,
even if a high level of uncertainty is present in the beam Young modulus.

FIGURE 3.17: PDF of the horizontal displacement of the free end.
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3.3.2.2 Beam-type FE

The statically determinated cantilever beam under the deterministic transversal load
q = 50 kN/m is now considered. The beam (Fig. 3.18) differs from the previous one
only for the condition of load and it is characterized by an inertia moment equal to
I = 3.125× 10−3m4. Two different distributions of random variables αi are exam-
ined: firstly, they have been assumed to be zero-mean, Gaussian, independent and
defined by a variance σ2 = (0.20)2; in the second case, the same random variables
are considered as correlated following the given correlation law:

ρ = exp
(
−∆x

λ

)
(3.25)

where ∆x is the distance between two points along the beam axes and λis the corre-
lation length, assumed in this example equal to λ = 0.8L.

FIGURE 3.18: Cantilever beam (beam-type FE).

The discretization is made by means of four beam-type FEs of equal length. The
midpoint method is adopted to discretise the random field by four random vari-
ables αi, so that a random variable is representative of the fluctuation of the Young
modulus in each element.

By the application of the EPDM + PTM approach and paying attention to the
fact that the beam-type FE is characterized by np = 2, it is possible obtain the exact
PDF of any transversal displacement. The PDFs of the vertical displacement and
of the rotation of the free end section are given in Figs. 3.19 and 3.20 for both the
cases of uncorrelated and correlated random variables αi. Once again the EPDM +
PTM approach is compared with the MCS applied in Eq. 3.1, performed by 5× 105

samples. Even in this example, the results are practically overlapped.

(A) (B)

FIGURE 3.19: PDF of the vertical displacement (A) and rotation (B) of
the cantilever free end; uncorrelated random variables αi.
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It is important to note that the proposed gives the exact results even when the
uncertainties are strongly correlated, as it must be, due to the fact that the correlation
properties of the uncertainties have no influence on the fundamental steps of the
EPDM + PTM approach, but only on the definition of the input JPDF.

(A) (B)

FIGURE 3.20: PDF of the vertical displacement (A) and rotation (B) of
the cantilever free end; correlated random variables αi.

3.3.2.3 Two-dimensional FE

As the last example, the two-dimensional panel under plane stress of Fig. 3.21 has
been analysed utilising the two-dimensional FE. The two-dimensional element con-
sidered herein is the simple triangular element with 6 DOF (each node has two de-
grees of freedom, the displacements ux and uy). The following data assumed as
known (deterministic) input parameters: the length is L = 6 m, the height is H = 3
m, the Poisson coefficient is equal to 0.2 and the external actions are two uniformly
distributed loads with intensity p = q = 1000 kN/m. The Young modulus is uncer-
tain and modelled by a two-dimensional stochastic field with constant mean value
E0 = 3× 107 kN/m2 and expressed as:

E = E0 (1 + α (x, y)) . (3.26)

FIGURE 3.21: Two-dimensional panel.
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The zero mean two-dimensional stochastic field α (x, y) is assumed as Gaussian
with the squared exponential covariance function:

Σα (|∆x|) = σ2ρ (|∆x|) = σ2exp
(
−|∆x|

λ

)2

(3.27)

where |∆x| is the distance between two points of the field, σ2 is the variance
and λ = 0.2H is the correlation coefficient. The midpoint method is adopted to
discretise the random field by eight random variables αi, so that a random variable
is representative of the fluctuation of the Young modulus in each element. Three
natural deformations are present in the generic element, hence, for this example
np = 3.

The PDFs of the horizontal and vertical displacement of the node 8, respectively,
are depicted in Figs. 3.22, according to the proposed method and for σ2 = (0.1)2.
The comparison has been made with respect to the classical Monte Carlo simulation,
performed by 2× 105 samples.

(A) (B)

FIGURE 3.22: PDF of the vertical (A) and horizontal (B) displacement
of node 8. Correlated random variables αi.

In order to confirm that the correlation assumptions have no influence on the
capability of the proposed approach to give the exact response PDF for statically
determined uncertain structures, the same panel before studied is considered un-
der the assumption of uncorrelated random variables αi. The confirming results are
represented in Figs. 3.23.

(A) (B)

FIGURE 3.23: PDF of the vertical (A) and horizontal (B) displacement
of node 8. Uncorrelated random variables αi.
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3.3.3 Some remarks

The goal of identifying a strategy for the evaluation of the exact response PDF of dis-
cretized statically determinate uncertain structures has been reached. This thanks to
the application of the EPDM, which gives exact results if applied to the statically de-
terminate structures, coupled with the application of the PTM able to give explicitly
the response PDF once that the relationships between the response random vari-
ables and the uncertainty random variables are explicitly given. When the uncertain
structure is discretized by a FE approach, attention must be paid to the FE type used
because it determines the number np of principal deformation modes influenced by
each uncertainty random variable and this number influences the form of the ex-
pressions to be used in the analysis. It is important to note that this is a peculiar
property of the APDM approach that cannot be stressed if other projection methods
are used for discretizing the uncertainty random fields.

At last, the applications have confirmed the prevised results, regardless of the
level of correlation of the uncertainty random variables.

3.4 Closed-form solutions of redundantly constrained stochas-
tic bending beams

This section addresses the determination of the closed-form solutions of redundantly
constrained stochastic bending beams in terms of the PDF.

For example, for the bending problem of stochastic beams, that are character-
ized by spatially random deformability (or its inverse, the stiffness), the closed-form
solution is available only for the statically determinate beams (Elishakoff, Ren, and
Shinozuka, 1995b). Meanwhile, for redundantly constrained beams, only approxi-
mated solutions can be found. Even if the exact solution is obtained for particularly
simple cases, its fundamental importance is essentially due to the fact that it can
serve as benchmark solution for assessing the performance of various approximate
analytical or numerical techniques. Moreover, the exact solution is not limited by the
level of randomness of beams that can be very high. Consequently, it can be utilized
to verify the accuracy of existing approximate solutions.

In this section, some simple redundantly constrained stochastic beams are stud-
ied. In particular, for simplicity care, the degree of redundancy is limited to one,
even if the proposed approach could be applied for higher orders. The randomness
of the beams are assigned. In particular, the bending deformability is assumed to be
modelled as a mono-axial Gaussian random field, but any kind of assigned random
field could be used. The goal of the work is the full characterization of any response
random variable of the beam, both static (internal force) and kinematic (displace-
ments). This characterization is obtained in terms of the corresponding PDF. These
results have been achieved thank to the application of the force method for solving
the redundancy and the application of the PTM.

3.4.1 Statically determinate stochastic beams

The beam under consideration has a linear axis, is constrained in such a way that
it is statically determinate and it is characterized by a flexural deformability (that is
the inverse of the flexural stiffness) that is supposed to be a Gaussian homogeneous
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random field given by:

D(z) =
1

EI(z)
= D0(1 + α(z)) (3.28)

where D0 is the mean value, while the correlation is represented as:

σ2
D(z1, z2) = σ2

D(|z1 − z2|) = D2
0σ2

α(|z1 − z2|) (3.29)

For any external load condition, from the equilibrium conditions, it is always possi-
ble to find the bending moment function M(z), that is deterministic, if the load and
the constraints are deterministic.
The value of the transversal displacement u(z̄) at any abscissa z = z̄ can be obtained
by the application of the PLV in the form:

u(z̄) =
∫ l

0
D(z)M(z)M(1)(z, z̄)dz (3.30)

where M(1)(z, z̄) is the bending moment law in the beam due to a unitary transversal
load acting at z = z̄. As well as M(z), the function M(1)(z, z̄) is deterministic, too.
Consequently, taking into account Eqs. 3.28 and 3.29, 3.30 shows that the transversal
displacement u(z̄) is a Gaussian random variable characterized by the following
mean value and variance:

µu(z̄) = D0

∫ l

0
D(z)M(z)M(1)(z, z̄)dz, (3.31a)

σ2
u(z̄) = D2

0

∫ l

0

∫ l

0
M(z1)M(z2)M(1)(z1, z̄)M(1)(z2, z̄)σ2

α(|z1 − z2|)dz (3.31b)

Depending on the type of laws of σ2
α(|z1 − z2|), M(z) and M(1)(z, z̄), the previous

integrals can be easily solved and, often, a closed form solution can be obtained.
Hence, for statically determinate stochastic beams, the probabilistic characterization
of displacements does not show any particular difficulty. This result was evidenced
in some works since 1995 (Elishakoff, Ren, and Shinozuka, 1995b).

3.4.2 Statically redundant stochastic beams

In this subsection, the stochastic beams treated in the previous section are consid-
ered when they are statically redundant, showing as the problem of the response
probabilistic characterization becomes more complicated. Nevertheless, it will be
shown that it is possible to obtain a closed form solution, for some statically redun-
dant stochastic beams, too.

For explaining the approach used, the simple stochastic beam represented in Fig.
3.24 (A) is taken into consideration. It is characterized by only one redundant force
and, with the aim of applying the force method for solving the redundancy, the
scheme represented in Fig. 3.24 (B) is considered. The redundant force X is obtained
by imposing the cinematic constrain condition uA = 0. In particular, it is possible to
write:

uA = u(q)
A + u(X)

A = 0 (3.32)



40 Chapter 3. Uncertain materials systems

(A) (B)

FIGURE 3.24: Statically redundant stochastic beam, example 1.

u(q)
A and u(X)

A being the contribution to the displacement due to the external load and
to the redundant force, respectively, i.e.:

u(q)
A =

q
2

∫ l

0
z3D(z)dz =

q
2

A, (3.33a)

u(X)
A = X

∫ l

0
z2D(z)dz = XB (3.33b)

where A and B are two Gaussian random variables defined by the mean values:

µA = D0

∫ l

0
z3dz =

D0l4

4
, (3.34a)

µB = D0

∫ l

0
z2dz =

D0l3

3
(3.34b)

and by the variances

σ2
A = D2

0

∫ l

0

∫ l

0
z3

1z2
2σ2

α(|z1 − z2|)dz1dz2, (3.35a)

σ2
B = D2

0

∫ l

0

∫ l

0
z2

1z2
2σ2

α(|z1 − z2|)dz1dz2 (3.35b)

The relationships given in Eq. 3.32 and Eqs. 3.33 allow to characterize the redundant
force as:

X = − q
2

A
B

(3.36)

showing that it is a non-Gaussian random variable given by the ratio between two
known Gaussian variables.

The PDF of X can be obtained in a closed form by applying the PTM to Eq. 3.36.
At this purpose, it is necessary to know the Gaussian JPDF pAB(a, b) that needs the
evaluation of the cross-variance σAB, besides of the already evaluated mean values
µA and µB and variances σ2

A and σ2
B. This cross-variance can be easily obtained start-

ing by the expressions of A and B given in Eqs. 3.33, that is:

σAB = D2
0

∫ l

0

∫ l

0
z3

1z2
2σ2

α(|z1 − z2|)dz1dz2 (3.37)

In this way the expression of the Gaussian JPDF pAB(a, b) can be easily obtained.
Once that the expression of σ2

α(|z1 − z2|) is defined, the variances and cross-variances
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(A) (B)

FIGURE 3.25: PDF of the redundant force X: (A) Gaussian delta-
correlated field; (B) Gaussian field with exponential correlation func-

tion. Example 1.

given into Eqs. 3.35 and 3.37 can be defined. At last, the application of the PTM al-
lows the evaluation of the JPDF pXY(x, y), Y being an auxiliary random variables
that, for example, can be opportunely chosen equal to the Gaussian variable A, ob-
taining:

pXY(x, y) = pXA(x, a) = q
a
x2 pAB

(
a,− q

2
a
x

)
(3.38)

At last, the PDF pX(x) is obtained by the saturation of pXY(x, y) respect to the vari-
able Y ≡ A, that is:

pX(x) =
∫ +∞

−∞
pXA(x, a)da (3.39)

This last evaluation is strongly simplified by the knowledge of the mean and vari-
ance of the Gaussian variable A. Assuming the flexural deformability D(z) as in
Eq. 3.28, in Fig. 3.25 is reported the PDF of the redundant force X, pX(x), for two
different scenarios of Gaussian field defined by a variance σ2

α = (1/4)2. In partic-
ular, Fig. 3.25 (A) shows the case when is a Gaussian delta-correlated field while
in Fig. 3.25 (B) D(z) is modelled as Gaussian field with the following exponential
correlation function ρ(∆x) = exp(|−∆x| /λ), |−∆x| being the distance between two
cross-sections of the beam and λ the correlation length of the random field char-
acterizing the uncertainties, assumed in this example equal to λ = 0.5L. The exact
probability density functions obtained by the proposed approach are compared with
those provided by the classic MCS performed with 5× 105 samples. The graphics of
Fig. 3.25 show the high level of accuracy of the proposed procedure.

Once that the redundant force has been characterized from a probabilistic point
of view, then any internal force S(z̄) (bending moment or shear force at any abscissa
z = z̄) can be characterized, too. Indeed, it can be written:

S(z̄) = S(q)(z̄) + S(X)(z̄) (3.40)

S(q)(z̄) and S(X)(z̄) being the values of the internal forces when the statically deter-
minate structure of the Fig. 3.24 (B) is loaded only by the external force and only by
the redundant force, respectively. The first addend is obviously deterministic, while
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the second one can be rewritten as:

S(X)(z̄) = XS(1)(z̄) (3.41)

where S(1)(z̄) is the internal force when the redundant force is deterministically uni-
tary. The Eqs. 3.40 and 3.41 imply that S(z̄) is linearly dependent on the random
variable X. Consequently, its complete probabilistic characterization can be easily
defined, once that the PDF pX(x) is known.
The evaluation of the transversal displacements u(z̄) is less immediate than the eval-
uation of S(z̄). Indeed, if the relationship analogous to Eq. 3.40 is considered for the
displacement, then

u(z̄) = u(q)(z̄) + u(X)(z̄) (3.42)

where, in this case, both the variables u(q)(z̄) and u(X)(z̄) are random. In particular,
their expressions are:

u(q)(z̄) =
q
2

∫ l

z̄
z2(z− z̄)D(z)dy =

q
2

C(z̄), (3.43a)

u(X)(z̄) = X
∫ l

z̄
z(z− z̄)D(z)dz = XG(z̄) (3.43b)

where C(z̄) and G(z̄) are two Gaussian random variables having the following mean
values and variances:

µC(z̄) = D0

∫ l

z̄
z2(z− z̄)dz =

D0

12

(
3l4 − 4l3z̄− z̄4

)
, (3.44a)

µG(z̄) = D0

∫ l

z̄
z(z− z̄)dz =

D0

6
(
2l3 − 3l2z̄ + z̄3) , (3.44b)

σ2
C(z̄) = D2

0

∫ l

z̄

∫ l

z̄
z2

1z2
2(z1 − z̄)(z2 − z̄)σ2

α(|z1 − z2|)dz1dz2, (3.44c)

σ2
G(z̄) = D2

0

∫ l

z̄

∫ l

z̄
z1z2(z1 − z̄)(z2 − z̄)σ2

α(|z1 − z2|)dz1dz2 (3.44d)

Rewriting Eq. 3.42 in terms of the random variables introduced above, the following
expression is obtained:

u(z̄) =
q
2

C(z̄) + XG(z̄) =
q
2

(
C(z̄)− A

B
G(z̄)

)
(3.45)

The random variables appearing in the second member of Eq. 3.45 are jointly Gaus-
sian and are characterized by a Gaussian JPDF whose expression is known if, besides
of the means and the variances of the four quantities, even their cross-variances are
obtained. One of them has been already given in Eq. 3.37. The expressions of the
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(A) (B)

FIGURE 3.26: PDF of the transversal displacement u(z̄ = L/2) : (A)
Gaussian delta-correlated field; (B) Gaussian field with exponential

correlation function. Example 1.

other ones are:

σAC(z̄) = D2
0

∫ l

0

∫ l

z̄
z3

1z2
2(z2 − z̄)σ2

α(|z1 − z2|)dz1dz2, (3.46a)

σAG(z̄) = D2
0

∫ l

0

∫ l

z̄
z3

1z2(z2 − z̄)σ2
α(|z1 − z2|)dz1dz2, (3.46b)

σBC(z̄) = D2
0

∫ l

0

∫ l

z̄
z2

1z2
2(z2 − z̄)σ2

α(|z1 − z2|)dz1dz2, (3.46c)

σBG(z̄) = D2
0

∫ l

0

∫ l

z̄
z2

1z2(z2 − z̄)σ2
α(|z1 − z2|)dz1dz2, (3.46d)

σCG(z̄) = D2
0

∫ l

z̄

∫ l

z̄
z2

1z2(z1 − z̄)(z2 − z̄)σ2
α(|z1 − z2|)dz1dz2 (3.46e)

Once that the Gaussian JPDF pABCG(a, b, c(z̄), g(z̄)) is built, then the PTM can be
applied for the evaluation of the PDF pU(u), taking into account Eq. 3.45 and by
considering three auxiliary variables that can be, for example, the same variables A,
B and C(z̄. Then the following expression is obtained:

pABCu(a, b, c(z̄), u(z̄)) =
q
2

a
b

pABCG

(
a, b, c(z̄),

b
a

(
c(z̄)− 2

q
u(z̄)

))
(3.47)

At last, the PDF pU(u) is obtained by saturing the previous expression respect to the
variables A, B and C(z̄). Again, this saturation is simplified by the fact that these are
Gaussian known variables. Fig. 3.26 shows the PDF of the transversal displacement
u(z̄), with z̄ = L/2, for the above two assumptions of Gaussian field D(z). Even
for transversal displacements, the good level of accuracy of the proposed approach,
respect to the MCS ones is clear.

Another redundant stochastic beam considered here is that represented in Fig.
3.26 (A). Even in this case, only one redundant force is present and the statically
determinate scheme represented in Fig. 3.26 (B) is chosen for the application of the
force method. Hence, the corresponding redundant force is the bending moment in
A and the cinematic constrain condition to be imposed regards the rotation in A, that
is ϕA = ϕ

(0)
A + ϕ

(X)
A = 0. At this point, the probabilistic characterization of X, of any
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(A) (B)

FIGURE 3.27: Statically redundant stochastic beam, example 2.

internal force and of any displacement of the stochastic beam can be achieved by fol-
lowing the same steps considered for the previous beam. Fig. 3.28 and 3.29 show the
PDF of the redundant force X, pX(x), and the transversal displacement u(z̄ = L/2)
for the previous two assumptions of Gaussian field , respectively. The comparison
with respect to MCS, performed by 5× 105 samples, allows you to emphasize again
the effectiveness of the procedure proposed.

(A) (B)

FIGURE 3.28: PDF of the redundant force X: (A) Gaussian delta-
correlated field; (B) Gaussian field with exponential correlation func-

tion. Example 2.

(A) (B)

FIGURE 3.29: PDF of the transversal displacement u(z̄ = L/2) : (A)
Gaussian delta-correlated field; (B) Gaussian field with exponential

correlation function. Example 2

3.4.3 Some remarks

In this section, the closed-form solutions in terms of PDF for redundantly constrained
stochastic bending beams are determinated. This through the application of the
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force method, which is helpful for solving the redundancy, coupled with the PTM
able to give explicitly the response PDF once that the relationships between the re-
sponse random variables and the spatially random variables are explicitly given.
The closed-form of the PDF of the response random variable of the beam, both static
(internal force) and kinematic (displacements), for some simple redundantly con-
strained stochastic beams are obtained.

Even if the exact solution is obtained for simple examples in which the degree
of redundancy is limited to one, the proposed approach could be applied for higher
orders and is not limited by the level of randomness of beams. Indeed, the aim of
the work is to provide a new stochastic procedure that can serve as a benchmark so-
lution for assessing the performance of various approximate analytical or numerical
techniques.

At last, for completeness, the exact PDF of the static and kinematic responses are
compared with those provided by MCS techniques. The high level of accuracy of
the results allows to confirm the effectiveness of the procedure proposed.

3.5 Stochastic cracked beams

During the last few decades, intense research on the problem concerning the anal-
ysis of beam-like structures in the presence of cracks has been done. The presence
of singularities like the concentrated cracks, which interrupt the continuity of the
physical and geometrical properties of the beams, modify the static and dynamic
behavior of them. This section deals with the static stochastic analysis of cracked
Euler–Bernoulli beams. The crack is modeled as rotational spring, which can be rep-
resented as a discontinuity in the well-noted beam-bending differential equations.
By using the properties of the generalized functions (Falsone, 2002), the proposed
approach leads to the evaluation of the stochastic response, which depends on four
integration constants (to be computed by enforcing the boundary conditions), thanks
to the application of the PTM. In particular, in this work, the effect of the following
two assumptions are studied: (i) the random amplitude of cracks; (ii) the random
cracks positions, besides of their amplitude. The first assumption implies that the
rotational spring stiffness is modeled as a random variable. The second one will be
carried out considering that the cracks are distributed along the z-axis following the
Poisson law.

3.5.1 Beams with random amplitude of cracks

Let consider a bending Euler-Bernoulli beam, constrained at the extremes with any
kind of constrain and characterized by a bending stiffness EI, constant along the
axis z. The beam shows the presence of a certain number n of fixed cracks, placed
at assigned abscissas zi, with i = 1, · · · , n, that are modelled as a rotational internal
spring of random stiffness ki. By using the properties of the generalized functions
and of their formal derivatives, it can be easily shown that the four-th order govern-
ing the beam equilibrium can be written as:

u′′′′(z) =
q(z)
EI
−

n

∑
i=1

∆ϕiδ
′′ (z− zi) (3.48)

q(z) being the external load, δ′′ is the second order formal derivative of the Dirac’s
delta function δ (z− zi) and ∆ϕi is the relative rotation in correspondence of the i-th
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rotational spring. ∆ϕi can be related to the bending moment M (zi) acting in the
sections adjacent to the spring through the constitutive relation of the spring:

∆ϕi =
M (zi)

ki
= −EI

ki
u′′ (zi) (3.49)

where ki and ∆ϕi are random variables, the relationship between moment and cur-
vature for an Euler-Bernoulli beam has been taken into account. Then, Eq. 3.48 can
be rewritten as:

u′′′′(z) =
q(z)
EI

+
n

∑
i=1

EI
ki

u′′ (zi)∆ϕiδ
′′ (z− zi) (3.50)

The integrations respect to z of this equation up to the evaluation of the displacement
u(z) lead to:

u′′′(z) =
q(1)(z)

EI
+

n

∑
i=1

EI
ki

u′′ (zi) δ′ (z− zi) + C1 (3.51a)

u′′(z) =
q(2)(z)

EI
+

n

∑
i=1

EI
ki

u′′ (zi) δ (z− zi) + C1z + C2 (3.51b)

u′(z) =
q(3)(z)

EI
+

n

∑
i=1

EI
ki

u′′ (zi)U (z− zi) + C1
z2

2
+ C2z + C3 (3.51c)

u(z) =
q(4)(z)

EI
+

n

∑
i=1

EI
ki

u′′ (zi) R (z− zi) + C1
z3

6
+ C2

z2

2
+ C3z + C4 (3.51d)

where Cj, with j = 1, · · · , 4 are the usual integration constants depending on the
conditions at the beam extremes, q(j)(z) represents the indefinite integral of order j
of the function q(z) and, at last U (z− zi) and R (z− zi) are the so-called “unit step
function” and “ramp function”, that are generalized functions that can be described
by:

U (z− zi) = 0 i f z < zi; 1 z > zi (3.52a)
R (z− zi) = 0 i f z < zi; (z− zi) z > zi (3.52b)

Once that the law u(z) has been defined, the other cinematic and static response
characteristic, such the rotation ϕ(z), the internal bending moment M(z)and internal
shear force T(z), can be evaluated:

ϕ(z) = −u′(z) = −
[

q(3)(z)
EI

+
n

∑
i=1

EI
ki

u′′ (zi)U (z− zi) + C1
z2

2
+ C2z + C3

]
(3.53a)

M(z) = −EIu′′(z) = −q(2) − EI

[
n

∑
i=1

EI
ki

u′′ (zi) δ (z− zi) + C1z + C2

]
(3.53b)

T(z) = −EIu′′′(z) = −q(1) − EI

[
n

∑
i=1

EI
ki

u′′ (zi) δ′ (z− zi) + C1

]
(3.53c)

The presence of the Dirac’s delta and its derivative placed at z = zi could induce
some worries due to the fact that the laws M(z) and T(z) cannot have any singu-
larity at z = zi. These worries are removed if one realizes that these functions have
infinite value when and zero value at all the other abscissas, even in the immediate
proximity to z = zi, that is, at z = z+i and z = z−i , where the evaluations of M (zi)
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and T (zi) has significance. Moreover, in the first of Eqs. 3.10 the presence of the unit
step function U (z− zi) has to be noted. It implies a skip in the law ϕ(z) passing
from z−i to z+i . This skip is justified by the presence of the internal rotational spring.
At the same time the presence of the ramp functions is justified in the displacement
law u(z) determining a finite variation of angles of the axis line.
At last, it is important to note that when the spring stiffness assumes the limit value
ki = 0 the internal constrain has to be considered as an usual hinge and the section
is completely fractured. While, when it assumes the other limit value ki → ∞, no
internal constrain is present, corresponding to the case of intact section.
In the following, the assumption of random amplitude of cracks is made. This im-
plies that the rotational spring stiffness is modelled as a random variable. Moreover,
it is reasonable to consider that ki, with i = 1, · · · , n are assumed to be indepen-
dent random variables characterized by the same PDF. As will be seen later, it is
more convenient to introduce the variable di = 1/ki that can be considered as the
deformability of the rotational spring. If the randomness is defined in terms of the
PDF of ki, then it is necessary to express it in terms of PDF of di. This last one can be
easily obtained from the knowledge of the first on by a simple use of the PTM.
The fundamental equations governing the problem are exactly those already seen in
the deterministic case. In particular, the cinematic and static beam quantities have
the following expression where di has been used instead of ki:

u(z) =
q(4)(z)

EI
+

n

∑
i=1

EIdiu′′ (zi) R (z− zi) + C1
z3

6
+ C2

z2

2
+ C3z + C4 (3.54a)

ϕ(z) = −
[

q(3)(z)
EI

+
n

∑
i=1

EIdiu′′ (zi)U (z− zi) + C1
z2

2
+ C2z + C3

]
(3.54b)

M(z) = −q(2) − EI

[
n

∑
i=1

EIdiu′′ (zi) δ (z− zi) + C1z + C2

]
(3.54c)

T(z) = −q(1) − EI

[
n

∑
i=1

EI
ki

u′′ (zi) δ′ (z− zi) + C1

]
(3.54d)

As will be seen in the numerical applications section, when the cracked beam is
constrained in such a way that it is statically determined, then the internal forces
M(z) and T(z) are deterministic functions because of the deterministic character of
the constants C1 and C2 and because of the no-influence of the generalized functions
delta (z− zi) and δ′ (z− zi) on them. On the contrary, the cinematic response quan-
tities, u(z) and ϕ(z), are one-dimensional random fields, due to both the fact that at
least one of C3 and C4 is a random variable and the influence of the random variable
di in their expressions. In particular, it will be shown that, in the case of the presence
of two hinges at the beam extremes, C4 = 0 w.p.1, while C3 is a random variable
depending on a linear combination of the random variables di with i = 1, · · · , n.
The application of the PTM allows the easy evaluation of the PDF of C3 once that the
PDFs of di are known. At this point, both u(z) and ϕ(z) can be considered as linear
combinations of the random variables di and C3. Consequently, it is possible to find
their PDFs again thanks to the use of the PTM.
The case of statically redundant beams is a little more complicated. Indeed, also the
internal static forces are random, due to the randomness of C1 and/or C2. In partic-
ular, they are expressed as the ratio of two polynomials of the variables di.
Even in this case, the PTM allows to evaluate the corresponding PDFs. Then, the
probabilistic characterization of all cinematic and internal static response quantities
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can be obtained by considering that each of them is a polynomial in the random
variables di and Cj (with j = 1, 2, · · · , 4).

(A)

(B)

FIGURE 3.30: Statically determinate beam with cracks; (B) Redundant
determinate beams

3.5.1.1 Numerical applications

The procedure presented has been applied to the stochastic analysis of the statically
determinate beam (Fig. 3.30 (A)) and then for the redundant beam (Fig. 3.30 (B)).
Both beams are assumed with the same mechanical and geometric characteristics,
that are: Young’s modulus E = 25× 109 N/m2, moments of inertia I = 1.35× 10−3

m4and length L=10 m. The external action is a uniformly distributed deterministic
load with intensity q = 5 × 103 KN/m. The beams show the presence of a two
fixed cracks, placed at the abscissas z = L/3 and z = 2L/3, that are modelled as a
rotational internal spring of equivalent stiffness k1 = k2 = kequ (Caddemi and Calio,
2009), with

kequ =
EI
h

1
C (β)

(3.55)

where β = d/h is defined as the ratio between the crack depth d and the cross-
section height h, and C (β) is the dimensionless local compliance. In particular, the
following model proposed by (Bilello, 2001) it was assumed:

C (β) =
β (2− β)

0.9 (β− 1)2 (3.56)

The two rotational spring stiffness are modeled as independent random variables
characterized by the same PDF. It was introduced the variable d1 = 1/k1 = d2 =
1/k2 = dequ = 1/kequ that can be considered as the deformability of the rotational
spring. Then the PDF of dequ it was defined assuming the crack depth d equal h/2.
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FIGURE 3.31: PDF of dequ: Uniform distribution assumption (dotted
line); Gaussian distribution assumption (continuous line).

Two types of probability distribution of dequ have been taking into account: firstly,
it has been assumed to be Gaussian defined by a mean value µequ given by Eq.
3.55 and variance around the mean value of σ2

equ = (0.5)2; in the second case, the
probability distribution of dequ has considered being uniformly distributed in the
range

[
µequ − σequ, µequ + σequ

]
(Fig. 3.31). For the statically determinate beam (Fig.

3.30(A)), the Figs. 3.32 and 3.33 show the PDF of u(z) and ϕ(z) when z=L/2. From
Eqs. 3.54(A)-(B), it is possible to appreciate that in these expressions, the random
variable involved di are iid (independent, identically distributed) and the sum is a
linear operation that doesn’t distort symmetry. In fact, for the case of the sum of two
uniformly distributed di, the PDF of u(z = L/2) and ϕ(z = L/2) show the typical
triangular distribution.

(A) (B)

FIGURE 3.32: Statically determinate beam: PDF of u(z = L/2) (A)
Gaussian distribution assumption of dequ; (B) Uniform distribution

assumption of dequ



50 Chapter 3. Uncertain materials systems

(A) (B)

FIGURE 3.33: Statically determinate beam: PDF of ϕ(z = L/2) (A)
Gaussian distribution assumption of dequ; (B) Uniform distribution

assumption of dequ

Finally, the statically redundant beam in Fig. 3.30(B) is taking into account. The
same two distribution assumption of dequ are considered. Figs. 3.34 and 3.35 show
the PDF of u(z) and ϕ(z) when z = L/2. In this case, due to the internal static
forces are random, in the expressions of Eqs. 3.54 a nonlinear polynomial sum in the
random variables di and Cj appear. In fact, this is very distinguishable for the case
of uniformly distributed di, the nonlinear operation involved does not preserve the
previous symmetry behavior. The same considerations can be drawn from the PDF
of M(z) and T(z) at z = 0 (Figs. 3.36 and 3.37). The results obtained in Figs. 3.32-
3.37 are compared with those provided by the classic MCS (106 samples), providing
a good level of accuracy of the proposed procedure.

(A) (B)

FIGURE 3.34: Statically redundant beam: PDF of u(z = L/2) (A)
Gaussian distribution assumption of dequ;(B) Uniform distribution as-

sumption of dequ
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(A) (B)

FIGURE 3.35: Statically redundant beam: PDF of ϕ(z = L/2) (A)
Gaussian distribution assumption of dequ;(B) Uniform distribution as-

sumption of dequ

(A) (B)

FIGURE 3.36: Statically redundant beam: PDF of M(z = 0) (A)
Gaussian distribution assumption of dequ;(B) Uniform distribution as-

sumption of dequ

(A) (B)

FIGURE 3.37: Statically redundant beam: PDF of T(z = 0) (A)
Gaussian distribution assumption of dequ;(B) Uniform distribution as-

sumption of dequ
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3.5.2 Beams with random position of the random cracks

The more realistic model of cracks in a beam is when their positions are random,
besides of their amplitude. One way to model the random position behavior could
be to assume that the cracks are distributed along the z-axis following the Poisson
law. As consequence, for example, the bending moment law shows the presence of
the term ∑N(n)

i=1 EIdiu′′ (zi) δ (z− zi), which is a stochastic field belonging to the class
of the so-called filtered Poisson field. In particular it has the form:

D(z) =
N(z)

∑
i=1

Yih (z, zi) , (3.57)

in which Yi = EIdi and h (z, zi) ≡ u′′ (zi) δ (z− zi) are considered. In Eq. 3.57, N(z)
is a Poisson process, characterized by the mean rate λ, while Yi are independent ran-
dom variables having the same PDF. At this point some basic notes on the Poisson
stochastic fields (processes) will be reported, then the Eqs. 3.54 will be particularized
for this last new assumption.

3.5.2.1 Some basic concepts related to the filtered Poisson processes

A stochastic process X(z) belongs to the class of the filtered Poisson stochastic fields
(processes) if it can be expressed as:

X(z) =
N(n)

∑
i=1

w (z, zi, Yi) , (3.58)

where w(·, ·, ·) is some real function, N(z) is a Poisson process, with rate λ and char-
acterized by the abscissas of the events 0 ≤ z1 ≤ · · · ≤ zi ≤ · · · , and, lastly, Yi is a
sequence of independent identically distributed random variables. This means that
X(z) is the sum of pulses occurring up to z, that are w (z, zi, Yi), with 0 ≤ zi ≤ z. It is
obvious that: w (z, zi, Yi) = 0 if zi > z.
The probabilistic description of X(z) can be obtained thanks to the Parzen theorem
(1964) that establishes that, for any z2 > z1 > 0, the joint CF of X (z1) and X (z2) is
given by:

φ (θ1, θ2; z1, z2) =exp
{

λ
∫ ∫ z1

0
E [exp (iθ1w (z1, τ, Y) + iθ2w (z2, τ, Y))− 1] dτ

}
+

λ
∫ z2

z1

E [exp (iθ2w (z2, τ, Y))− 1] dτ

Directly from this result, other useful ones can be deduced. For example, setting
θ2 = 0, the CF of X(z) is obtained as:

φ (θ; z) = exp
{

λ
∫ z

0
E [exp (iθ1w (z1, τ, Y))− 1] dτ

}
(3.59)
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while, taking the derivatives of log [φ (θ1, θ2; z1, z2)], one obtains:

E [X(z)] = λ
∫ z

0
E [w (z, τ, Y)] dτ (3.60a)

var [X(z)] = λ
∫ z

0
E
[
w2 (z, τ, Y)

]
dτ (3.60b)

cov [X(z1), X(z2)] = λ
∫ z1

0
E [w (z1, τ, Y)w (z2, τ, Y)] dτ z2 > z1 (3.60c)

If a multivariate field X(z) = {X1(z), · · · , Xk(z)} is considered, let take a single Pois-
son process, {w(z)}, with rate λ and events at · · · ≤ 0 ≤ z1 ≤ · · · ≤ zi ≤ · · · . With
each event zi a vector Yi is associated such that {Yi} forms a sequence of indepen-
dent identically distributed random vectors; moreover, {Yi} must be independent
of {w(z)}, too. Each vector Yi = {Y1i, · · · , Yki} may have dependent component;
moreover k 6= m can be possible. Then, a multivariate filtered Poisson field is de-
fined as:

Xi(z) =
N(z)

∑
i=1

wi
(
z, zi, Ypi

)
, p = 1, · · · , k (3.61)

Consequently, the JCF of and can be considered as a generalization of that given in
Eq. 3.59, i.e.:

φ (θ1, θ2; z1, z2) =exp
{

λ
∫ ∫ z1

0
E
[
exp

(
iθT

1 w (z1, τ, Y) + iθT
2 w (z2, τ, Y)

)
− 1
]

dτ

}
+

(3.62a)

λ
∫ z2

z1

E [exp (iθ2w (z2, τ, Y))− 1] dτ

where θ1 and θ2 are two k-vectors of real variables. Using this result, the complete
probabilistic characterization of the multivariate process X (z, zi, Yi) can be obtained.
For example:

cov
[
Xi (z1) , Xj (z2)

]
= λ

∫ z1

0
E
[
wi (z1, τ, Y)wj (z21, τ, Y)

]
dτ, z2 > z1 (3.63)

An important class of filtered Poisson fields is represented by the linear ones, that
are represented as follows:

X(z) =
N(z)

∑
i=1

Yiw (z− zi) (3.64)

among them, an example is the so-called shot noise process, represented as:

X(z) =
N(z)

∑
i=1

Yiexp [−b (z− zi)] (3.65)

where b > 0 is the constant decay rate and the random variables Yi are exponentially
distributed, that means they have the following PDF:

pY(y) =
1
µ

exp
[
− y

µ

]
(3.66)
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It is easy to verify that the CF of X(z) has the following expression:

φ (θ; z) =
(

1− iµθexp(−bz)
1− iµθ

) λ
b

(3.67)

When z→ ∞ the process becomes stationary and its CF is given by:

φ (θ) =

(
1

1− iµθ

) λ
b

(3.68)

Another important example of linear filtered Poisson field is the so-called “com-
pound Poisson process” in which the functions w (z− zi) are represented by the
unit step functions U (z− zi). Thus, the compound Poisson process is characterized
by samples having the following expression:

X(z) =
N(z)

∑
i=1

YiU (z− zi) (3.69)

Particularizing the expressions of the CF given above, it is easy to evaluate the CF of
the compound Poisson process in the form:

φX (θ) = exp (λz [φY (θ)− 1]) (3.70)

φY (θ) being the CF of the random variables Yi.
The formal derivative of the compound Poisson process arises another useful pro-
cess called “delta-correlated Poisson process”, or also “Poisson white noise”, whose
samples are defined by the following expression:

X(z) =
N(z)

∑
i=1

Yiδ (z− zi) (3.71)

where δ (z− zi) is the Dirac delta function placed at the abscissa zi. It can be shown
that the corresponding CF assumes the form:

φX (θ) = exp {λz (E [iYθ]− 1)} (3.72)

The corresponding log-CF leads to the following fundamental result relative to the
k-order cumulant of X(z):

κk [X (z1) , X (z2) , · · · , X (zk)] = E
[
Yk
]

δ (z− z1) (z− z2) · · · (z− zk) (3.73)

Another very used filtered Poisson process is the nonhomogeneous ones, that are
characterized by a rate λ(z), that is deterministic function, and by samples defined
as:

X(z) =
N(z)

∑
i=1

w (z, zi, Y(zi)) (3.74)
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where the events Yi = Y(zi) are each other independent and whose each distribution
depends on zi. The corresponding CF, related to X (z1) and X (z2), is given by:

φ (θ1, θ2; z1, z2) =exp
{∫ z1

0
λ(τ)E [exp (iθ1w (z1, τ, Y(τ)) + iθ2w (z2, τ, Y(τ)))− 1] dτ

}
+
∫ z2

z1

λ(τ)E [exp (iθ2w (z2, τ, Y(τ)))− 1] dτ

(3.75)

Again, if it is assumed θ2 = 0, the CF of X(z) assumes the expression:

φ (θ; z) = exp
{∫ z

0
λ(τ)E [exp (iθw (z, τ, Y(τ)))− 1] dτ

}
. (3.76)

Now, taking into account the Eq. 3.57, the random field D(z) is fully probabilis-
tically characterized by the knowledge of its CF, having the following expression:

φD(z) (θ) = exp
{

λ
∫ z

0
E [exp (iθYh (z, τ))− 1] dτ

}
. (3.77)

So, this new assumption on the deformability of the rotational springs modeling the
presence of cracks leads to writing the Eqs. 3.54 as:

u(z) =
q(4)(z)

EI
+

N(z)

∑
i=1

Yiu′′ (zi) R (z− zi) + C1
z3

6
+ C2

z2

2
+ C3z + C4 (3.78a)

ϕ(z) = −
[

q(3)(z)
EI

+
N(z)

∑
i=1

Yiu′′ (zi)U (z− zi) + C1
z2

2
+ C2z + C3

]
(3.78b)

M(z) = −q(2) − EI

[
N(z)

∑
i=1

Yiu′′ (zi) δ (z− zi) + C1z + C2

]
(3.78c)

T(z) = −q(1) − EI

[
N(z)

∑
i=1

Yiu′′ (zi) δ′ (z− zi) + C1

]
(3.78d)

Taking into account what before specified about the no influence of the functions
δ (z− zi) and δ′ (z− zi) on the internal forces M(z) and T(z), Eqs. 3.78(c-d) can be
reduced as follows:

M(z) = −q(2) − EI [C1z + C2] (3.79a)

T(z) = −q(1) − EIC1 (3.79b)
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Then the expressions of the response beam quantities can be rewritten as:

u(z) =
q(4)(z)

EI
+

N(z)

∑
i=1

Yihu (z, zi) + C1
z3

6
+ C2

z2

2
+ C3z + C4 (3.80a)

ϕ(z) = −
[

q(3)(z)
EI

+
N(z)

∑
i=1

Yihϕ (z, zi) + C1
z2

2
+ C2z + C3

]
(3.80b)

M(z) = −q(2) − EI [C1z + C2] (3.80c)

T(z) = −q(1) − EIC1 (3.80d)

where:
hu (z, zi) = u′′ (zi) R (z− zi) ; hϕ (z, zi) = u′′ (zi)U (z− zi) (3.81)

and
u′′ (zi) = −

1
EI

q(2) (zi)− (C1zi + C2) (3.82)

that is a random variable depending on the random variables C1 and C2. Even in
this case, for statically determined beams, the internal forces M(z) and T(z) are de-
terministic functions because of the same reasons of the previous case. While, the
cinematic response quantities, u(z) and ϕ(z), are one-dimensional random fields.
In particular, the field in the expression of summation ϕ(z) represents a compound
Poisson process, with CF expression of Eq. 3.70 while that of u(z) is a linear shot
noise. The CF expression of a linear shot noise Poisson process can be obtained as
follow. Supposing that the function w (z− zi) are represented by the ramp function
R (z− zi), that can be generalized through the unit step function:

R (z− zi) = (z− zi)U (z− zi) =

{
0 i f z < zi

(z− zi) i f z > zi
(3.83)

Indeed, particularizing the expression of the CF defined in 3.78, it is easy to get the
CF of the linear shot noise Poisson process:

Φx(θ) = exp
{

λ
∫ z

0
E [exp (iθY(z− τ)U(z− τ))− 1] dτ

}
= exp

{
−λz + λ

(∫ z

0
U(z− τ)ΦY(θ = (z− τ)θ)dτ

)} (3.84)

where the fundamental result of the PTM in terms of the CF has been taking into
account.

3.5.2.2 Numerical applications

The case of a beam constrained with two hinges at the extremes is taking into con-
sideration. The mechanical and geometric characteristics of the previous beam ex-
amples are held. The constraints condition implies that C2 = C4 = 0, while C3 is
given by the sum of a deterministic quantity and of a random variable that can be
considered as a filtered Poisson process evaluated at z = L. The Poisson process
is here characterized by the mean rate λ = 0.3. As a consequence, the quantity
given into Eq. 3.82 becomes deterministic. The sequence of the independent identi-
cally distributed random variables Yi = EIdi is assumed with the deformability of
the rotational spring di equal to dequ. The equivalent deformability dequ is a Gaus-
sian variable defined by a mean value µequ given by Eq. 3.55 and variance around
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the mean value of σ2
equ = (0.5)2. Keeping in mind the CF expressions of the lin-

ear shot noise Poisson process and of the compound Poisson process provided in
Eqs. 3.84 and 3.70, respectively, Fig. 3.38 shows the PDF of u(z) and ϕ(z) when
z = L/2. Again, these results are considered together with those coming out from a
MCS characterized by 5× 105 samples.

(A) (B)

FIGURE 3.38: Cracked determinate beam with random cracks posi-
tion, besides of their amplitude: PDF of u(z = L/2) (A) Gaussian

distribution assumption of dequ; (B) PDF of ϕ(z = L/2)

The case of statically redundant beams is a little more complicated. In this case,
also the internal static forces are random, due to the randomness of one or both C1
and C2.

3.6 Some remarks

The aim of this section is to propose a stochastic procedure able to evaluate the
cinematic and static beam random quantities when a certain number of cracks are
present. In section 3.6.1, the cracks are modeled as a rotational internal spring of
stiffness ki and the amplitude of cracks is assumed random. The numerical applica-
tion shows the PDF of u(z = L/2) and ϕ(z = L/2) for two examples of statistically
determinate and redundant beams. Then, in section 3.6.2, beams with random po-
sition of the random cracks are treated. In this case, it was modeled the random
position behavior assuming that the cracks are distributed along the z-axis follow-
ing the Poisson law. In particular, it is possible to appreciate that the field in the
expression of summation ϕ(z) represents a compound Poisson process, while that
of u(z) is linear shot noise. For both assumptions, the PDF of cinematic and static
beam stochastic quantities have been found through the application of the PTM.

3.7 Conclusion

In this chapter, the stochastic analysis of structural systems with uncertain properties
has been addressed. The PTM has been adequately applied in order to implement a
stochastic procedure able to characterize the response of linear uncertain structures
directly in terms of PDF. In sections 3.2 and 3.3, a stochastic approach has been iden-
tified in the coupling of the APDM and of the PTM in order to evaluate the PDF
response of discretized uncertain structures. In particular, as have been shown in
section 3.3, in the case of statically determinate structures, the stochastic procedure
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presented gives the exact results in terms of the response PDF. Then, in section 3.4,
the problem to find an exact solution of redundantly constrained stochastic bend-
ing beams it was addressed. In particular, a closed-form solution in terms of the
PDF for beam characterized by spatially random deformability has been identified
through the application of the force method and the application of the PTM. Finally,
the end section of this chapter deals with a study to analyze the stochastic response
of multi-cracked beams considering the case where both the amplitude and the posi-
tion of the cracks are uncertain. Once again, it is possible to appreciate that the PTM
is a good stochastic tool when stochastic problems are treated. At last, it should be
added that the applications of the approaches proposed have always shown their
good properties, in terms of both accuracy and computational effort.
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Chapter 4

Uncertain structural systems

4.1 Introduction

Structural analyses require the definition of some basic variables, such as geometry
and dimensions, material properties and loads, in addition to boundary conditions,
methods of modeling and analysis (Ayyub, 1997). During the design process, the
task of the structural engineer is to make reasonable justifiable assumptions, in or-
der to develop a workable and safe project. In general, the designer is often called
upon to select a suitable solution among several alternatives for the modeling and
analysis of structural systems. Doubtless, different methodologies may be applied,
depending on the design phase, the knowledge and expertise of the involved de-
signer. Consequently, imprecise data and imperfect knowledge may lead to uncer-
tainties, so the final design solution is almost always an engineering approximation,
thus intrinsically prone to uncertainties.

The application of the PTM on two typical examples in structural engineering in
which the uncertainties in the model designed are due to simplifying assumptions
in analytical models and/or simplified methods will be proposed. The content of
this chapter is based on two papers already published (De Domenico, Falsone, and
Laudani, 2018b; De Domenico, Falsone, and Laudani, 2018a). In section 4.1 it will
be investigating a probabilistic method for the determination of the static structural
response of beams and frames with partially restrained (semi-rigid) connections by
modeling the spring stiffness terms (or equivalently, the fixity factors of the beam)
as uniformly distributed random variables. In conventional analysis and design of
framed structures, the behavior of beam to column connections is treated as either
ideally pinned or perfectly rigid, which circumvents the need of properly accounting
for the actual connection stiffness. On the other hand, experimental findings exhibit
a broad spectrum of behaviors of the connections in between these two extreme
cases, so that semi rigid, or partially restrained, connections are more appropriate
idealizations, (Jones, Kirby, and Nethercort, 1983; Bjorhovde, Colson, and Brozzetti,
1990). In the literature, the commonly used approach is to incorporate moment ro-
tation relationships to describe the behavior of the joint, which is generally featured
by a nonlinear constitutive behavior whose main parameters are calibrated accord-
ing to experimental data (Jones, Kirby, and Nethercort, 1983; Chen and Lui, 1987;
Kishi and Chen, 1990). Experimental testing on the rotational stiffness often leads to
a large scatter of measures, even when the same kind of connection is investigated:
for instance in (Rauscher and Gerstle, 1992) the coefficient of variation of the initial
stiffness of double web angle steel connections was as high as 23%. This indicates
that results arising from a deterministic model of the connection may lead to wrong
estimates of the actual behavior. Moreover, due to the large scatter of experimen-
tal data it is quite difficult for an engineer to decide which value of the rotational
stiffness to use, and to assess which consequences such an assumption has in the
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design process. On the contrary, these questions could be answered by incorpo-
rating the randomness of the beam constraints within a probability-based design
approach. To deal with semi-rigid connections modelled as random variables, var-
ious approaches were proposed in the literature: typically, MCS techniques (Thai
et al., 2016) in conjunction with stochastic finite elements (Hadianfard and Razani,
2003; Çavdar et al., 2009; Adhikari and Manohar, 1999) or the perturbation method
(Sakurai, Ellingwood, and Kushiyama, 2001) were adopted; alternatively, interval
analysis is performed in (Tangaramvong et al., 2016) to obtain the extreme stochastic
response of a semi-rigid frame. However, the accuracy of the approximated results
underlying the MCS is strictly related to the number of samples that are generated.
Indeed, the PDF of the response is approximated with reasonable accuracy provided
that thousands of simulations, not to say millions, are carried out, especially when
strongly nonlinear input-output relationships are involved. Along this research line,
the PTM will be employed to readily derive the exact PDFs of some response indi-
cators.
In section 4.2, masonry infilled reinforced concrete (RC) frames will be analyzed
through the PTM. The infill panels are, in the majority of cases, made by masonry,
whose structural behavior is extremely complex, being affected by a number of un-
certain parameters such as the mechanical characteristics of the raw materials (clay,
concrete), the mortar thickness and quality, the brick geometry and arrangement, the
relative stiffness of the frame and of the infill panel, as well as the actual workman-
ship expertise, to name just a few. The above sources of uncertainty and irregularity,
and the heterogeneous nature of the masonry panels make the related modeling task
a rather intricate process. Indeed, there is lack of repeatability of results, even when
carrying out experiments under macroscopically identical geometrical and mechani-
cal conditions. In this regard, experiments have been conducted on infill walls since
the late 50s, see e.g., (Benjamin and Williams, 1957; Benjamin and Williams, 1958;
Matthies et al., 1997a; Žarnić and Tomaževič, 1985) for some landmark contribu-
tions involving monotonic loading, and (Esteva, 1966; Chandrasekaran and Chan-
dra, 1970; Klingner and Bertero, 1977; Valiasis and Stylianidis, 1989; Mehrabi et al.,
1994; Dawe, Schriver, and Sofocleous, 1989; Dolce et al., 2005) for cycling loading,
harmonic excitations and shake-table tests. The mentioned papers were mostly fo-
cused on the in-plane behavior of the masonry infills, whereas a wealth of litera-
ture also exists for the out-of-plane behavior, see e.g., (Angel et al., 1994; Felice and
Giannini, 2001; Flanagan and Bennett, 1999; Pasca, Liberatore, and Masiani, 2017)
for just a few examples. The failure mode of a masonry infill subject to horizontal
(seismically-induced) loads may range from compression failure of diagonal strut
(also referred to as “corner crushing”), which is quite frequent and typically occurs
for low-compressive-strength infill materials, damage in the frame members (also
referred to as frame failure mode), which originates from a damage mechanism of
the column due to the forces transferred from the infill wall to the surrounding frame
(it generally takes place for masonry infills having high compressive strength), di-
agonal cracking failure mode, sliding shear or out-of-plane failure whereby dam-
age accumulates in the central zone of the infill panel due to the arching mecha-
nism (Kheirollahi, 2013). The aforementioned references, although limited to just a
few contributions, together with the variety of failure modes mentioned before give
the general idea of the complexity in modeling the masonry infill behavior while
properly accounting for its stiffening contribution and for the interaction with the
surrounding frame in a RC framed building. Several researchers investigated this
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subject with a variety of numerical techniques, with different underlying theoreti-
cal bases and applicable to different scales of observations. Typical modeling ap-
proaches include micro-models (Doven and Kafkas, 2017), macro-models or homo-
geneization models (Milani and Benasciutti, 2010). Some literature surveys can be
found in a couple of papers by Asteris and co-workers (Asteris et al., 2011; Asteris
et al., 2013; Asteris et al., 2015b; Asteris et al., 2017b), and a quite recent overview
of linear and nonlinear, micro-modelling, meso-modelling and macro-modelling ap-
proaches has been presented in (Tarque et al., 2015) and references therein. Extensive
and in-depth state-of-the-art reports can be found in the following works (Amanat
and Hoque, 2006; Crowley and Pinho, 2004; Crowley and Pinho, 2006; Asteris et al.,
2016b; Asteris, 2016). In line with this research field a macro-modeling technique,
based on an equivalent diagonal pin-jointed strut, will be reported to for modeling
the stiffening contribution of the masonry panels. Since it is quite difficult to decide
which mechanical characteristics to assume for the diagonal struts in such simpli-
fied model, the strut width is here considered as a random variable, whose stochas-
tic characterization stems from a wide set of empirical expressions proposed in the
literature. At last, in section 4.3, some concluding observations will be reported.

4.2 Probability based structural response of steel beams and
frames with uncertain semi rigid connections

In this section is attempt to characterize, from a probabilistic point of view, the static
structural response of an individual beam (which is isolated from a more general
framed structure) and of simple frames with partially restrained end nodes. More
specifically, it was investigate to what extent the uncertainty in the semi-rigid con-
straints affects the stochastic structural response in terms of a few indicators that
are of interest for design purposes, including the element-stiffness-matrix terms, the
reactions at the beam ends, the mid-span deflection and the mid-span bending mo-
ment. The PTM, is employed to readily derive the exact PDFs of the above response
indicators. Connection flexibility at the beam ends is incorporated based on a linear
approximation, i.e., only the first branch of the actual nonlinear moment-rotation
curve is addressed, which is characterized by a constant initial stiffness. The beam
fixity factors or connection percentages are treated as uniformly distributed random
variables. The analysis of the PDFs of the aforementioned response indicators sheds
light on the vital importance of a probability-based approach: indeed, results in-
ferred from deterministic average values, which could be adopted for a preliminary
assessment, may lead to misleading estimates of the actual beam response because
they are considerably different from the median of the corresponding PDF. More
importantly, it is seen that such deterministic average values may in some cases rep-
resent non-conservative estimates from a design viewpoint.

Although most of the presented numerical applications refer to steel semi-rigid
connections, the present research work is of analytical nature and the discussed ap-
proach and analysis method is, in principle, applicable also to other fields, for in-
stance precast reinforced concrete structures, steel-braced reinforced concrete frames,
steel-concrete composite frame systems, timber-concrete composite beams, as well
as timber structures. Therefore, the aim of this section is directed towards a general
class of engineering problems, not just confined to steel frames.



62 Chapter 4. Uncertain structural systems

4.2.1 Deterministic response of beams with semi-rigid nodes

4.2.1.1 Beams with semi-rigid end nodes modeled via rotational springs

Typically, framed structures are analyzed and designed considering some idealiza-
tions (cf. Fig. 4.1). For instance, reinforced concrete framed structures are usually
treated as frames with perfectly rigid beam-to-column connections, whereas steel
framed structures are modelled with ideally pinned connections at the joints. In re-
ality, the moment-rotation relationship of joints is more appropriately and more gen-
erally described by semi-rigid (or partially restrained) connections, in that the actual
rotational behavior lies in between the two extreme cases of pinned (zero rotational
stiffness) and rigid (zero rotation) connection. The partially restrained joints consid-
erably affect the overall moment distributions and displacements of the structure, so
that it is of interest to incorporate semi-rigid connections into the model. Accounting
for the actual semi-rigid behavior of connections in the design of structures is both
realistic and economical, because the redistribution of internal stress leads to more
balanced results between the two extreme scenarios of pinned and rigid connections.

FIGURE 4.1: Typical moment-rotation behavior of rigid and pinned
idealizations along with that of semi-rigid beam-to-column connec-

tion.

An effective and straightforward way to incorporate the characteristics of semi-
rigid connections is by means of rotational springs at the beam end nodes. The
moment-rotation behavior of the i-th joint of a structure is thus modelled either
through a constant spring rotational stiffness ki, thus relying on a linearized model,
or via a more complicated nonlinear spring rotational stiffness function ki (φi) wherein
the tangent stiffness depends on the actual value of the rotation experienced by the
joint φi. In this section, attention is limited to the former case, in that the partially
restraint is featured by a constant spring stiffness ki. This stiffness represents the
so-called initial stiffness of the connection that is identified in the first branch of the
actual nonlinear moment-rotation curve (i.e., corresponding to reasonably low ro-
tation values, cf. again Fig. 4.1). These simplifying assumptions restrict the scope
of the present work to structures subjected to static loading. Moreover, due to the
linear rotational behavior, the following results and conclusions only apply to ser-
viceability limit states, where the functioning of the structure or structural members
under normal use is of interest. Extension to ultimate limit states would be desirable
to investigate the probability based response beyond the elastic limit, for instance in
terms of collapse moment or ultimate rotation. This would require extension of the
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present study by incorporating a nonlinear rotational relation, which is the object
of an ongoing research of the authors. With reference to the sketch depicted in Fig.
4.2, a constant cross-section beam of length L, having moment of inertia I and made
of a material with Young’s modulus E is partially restrained at its end nodes 1 and
2 by two rotational springs. The relation between rotations at the beam ends ϕ

(b)
i

(i = 1, 2) and rotations of the nodal restraints ϕi (i = 1, 2) is expressed as

ϕ1 − ϕ
(r)
1 = ϕ

(b)
1 = −dw(x)

dx

∣∣∣∣
x=0

;

ϕ2 − ϕ
(r)
2 = ϕ

(b)
2 = −dw(x)

dx

∣∣∣∣
x=L

(4.1)

where ϕ
(r)
i (i = 1, 2) represents the additional, relative spring rotation due to the

flexibility of the rotational springs and w(x) is the transversal displacement of the
beam axis. In the absence of rotational springs, that is in the case of perfectly rigid
connections, ϕ

(r)
i → 0 and ϕi ≡ ϕ

(b)
i (i = 1, 2), and, consequently, the distinction

between rotations at the beam ends and rotations at the nodal restraints is meaning-
less. On the contrary, due to the flexibility of the connection, a relative rotation ϕ

(r)
i

(i = 1, 2) is induced by the rotational springs. The bending moment at the beam
ends depends on the relative rotations ϕ

(r)
i and on the spring rotational stiffness ki

or, equivalently, the spring deformability λi = 1/ki as follows

Mi = −ki ϕ
(r)
i = −

ϕ
(r)
i

λi
(i = 1, 2) (4.2)

where the minus sign means that the moment reaction at the beam end is opposed
to the relative spring rotation. Focusing on the flexural behavior of the beam, we
consider the element displacement array uT = [ϕ1, w1, ϕ2, w2].

 

FIGURE 4.2: Sketch and conventions of a beam with partially re-
strained (semi-rigid) end nodes.

The stiffness matrix of a beam having rotational springs at its ends may easily be
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constructed by analyzing four loading scenarios in which we impose one displace-
ment at a time equal to one and the remaining three displacements equal to zero.
Through the fourth-order beam-bending differential equation, for each loading sce-
nario we compute moment and transversal-force reactions at either nodes, collected
in the force array FT = [M1, V1, M2, V2] (cf. again Fig. 4.2).

The values of the F terms form the four columns of the stiffness matrix of the
partially restrained beam element S (λ1, λ2), which depends on the spring deforma-
bility λi(i = 1, 2) and can be expressed in the following compact form

S (λ1, λ2) = SrSc (λ1, λ2) (4.3)

The matrix Sr entering Eq. 4.3 is the classical element stiffness matrix of the beam
supposed rigid at its end 0, whereas Sc (λ1, λ2) is a corrective dimensionless matrix
arising from the flexibility of the connection, which depends on the spring deforma-
bility terms λ1 and λ2 as follows

Sc (λ1, λ2) =
1

∆ (λ1, λ2)
×


1 + 3EI

L λ2 1 + 2EI
L λ2 1 1 + 2EI

L λ2
1 + 2EI

L λ2 1 + EI
L (λ1 + λ2) 1 + 2EI

L λ1
EI
L (λ1 + λ2)

1 1 + 2EI
L λ1 1 + 2EI

L λ1 1 + 3EI
L λ1

1 + 2EI
L λ2 1 + EI

L (λ1 + λ2) 1 + 2EI
L λ1 1 + EI

L (λ1 + λ2)


(4.4)

where the function ∆ (λ1, λ2) is defined as

∆ (λ1, λ2) = 1 +
4EI

L
(λ1, λ2) +

12(EI)2

L2 λ1λ2 (4.5)

As an example, the first-column terms of the element stiffness matrix S (λ1, λ2) read

s11 =
4EI

L∆ (λ1, λ2)

(
1 +

3EI
L

λ2

)
;

s12 =
−6EI

L2∆ (λ1, λ2)

(
1 +

2EI
L

λ2

)
= −s14;

s13 =
2EI

L∆ (λ1, λ2)

(4.6)

FIGURE 4.3: Beam with partially-restrained (semi-rigid) end nodes
subject to a uniformly distributed load.

This format of the stiffness matrix, which is similar to other forms presented in
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the relevant literature, (e.g., Sekulovic and Salatic, 2001; Kartal et al., 2010), makes it
easy to retrieve the limit cases of a beam with perfectly rigid (clamped) and ideally
hinged end nodes by assuming λi → 0 and λi → ∞ (i = 1, 2), respectively. For
example, the rotational stiffness at the node 1 is particularized in the following forms

lim
λ1→0
λ2→0

s11 =
4EI

L
≡ s11rigid;

lim
λ1→0
λ2→∞

s11 =
3EI

L
≡ s11rigid−hinged;

lim
λ1→∞
λ2→∞

s11 =
4EI

L
≡ s11hinged;

(4.7)

Furthermore, it is of interest to evaluate the nodal actions transmitted to the beam
end nodes due to the loads applied along the beam axis, which could be useful for
implementation of an automated finite element program. A uniformly distributed
transversal load of magnitude q is considered, as sketched in Fig. 4.3. The fourth-
order beam bending differential equation with the appropriate boundary conditions
leads to

M(q)
1 =

qL2

12
1

∆ (λ1, λ2)

(
1 +

6EI
L

λ2

)
;

M(q)
2 = −qL2

12
1

∆ (λ1, λ2)

(
1 +

6EI
L

λ1

)
;

V(q)
1 = −qL

2
1

∆ (λ1, λ2)

(
η (λ1, λ2) +

2EI
L

λ2

)
;

V(q)
2 = −qL

2
1

∆ (λ1, λ2)

(
η (λ1, λ2) +

2EI
L

λ1

)
(4.8)

that are the moment reactions and transversal reactions at the end nodes, where the
function η (λ1, λ2) is defined as

η (λ1, λ2) = 1 +
3EI

L
(λ1 + λ2) +

12(EI)2

L2 λ1λ2 (4.9)

The deterministic limit cases of a rigid, rigid-hinged and hinged beam are retrieved
as

lim
λ1→0
λ2→0

M(q)
1 =

qL2

12
≡ M(q)

1rigid;

lim
λ1→0
λ2→∞

M(q)
1 =

qL2

8
≡ M(q)

1rigid−hinged;

lim
λ1→∞
λ2→∞

M(q)
1 = 0 ≡ M(q)

1hinged;

(4.10)

Finally, we also compute the mid-span moment M(q)
0 due to sagging bending

M(q)
0 =

qL2

24
× 1

∆ (λ1, λ2)

(
1 +

6EI
L

(λ1 + λ2) +
36(EI)2

L2 λ1λ2

)
(4.11)
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and the mid-span deflection w(q)
0

w(q)
0 =

qL4

384EI
× 1

∆ (λ1, λ2)

(
1 +

8EI
L

(λ1 + λ2) +
60(EI)2

L2 λ1λ2

)
(4.12)

All these quantities are purposely written as the term related to the fixed beam mul-
tiplied by a dimensionless function whose shape is quite similar from variable to
variable. Limit cases can easily be retrieved, e.g., concerning Eqs. 4.11 and 4.12.

lim
λ1→0
λ2→0

M(q)
0 =

qL2

24
≡ M(q)

0rigid; lim
λ1→∞
λ2→∞

M(q)
0 =

qL2

8
≡ M(q)

0hinged;

lim
λ1→0
λ2→0

w(q)
0 =

qL4

384EI
≡ w(q)

0rigid; lim
λ1→∞
λ2→∞

w(q)
0 =

5qL4

384EI
≡W(q)

0hinged;
(4.13)

4.2.1.2 Frames with semi-rigid end nodes modeled via rotational springs

The analysis is here extended to simple frames with semi-rigid nodes, Fig. 4.4: two
situations are considered, a single-bay frame with semi-rigid beam-to-column con-
nections (frame I) and a single-bay frame with semirigid column-to-foundation con-
nections (frame II). Although it could be argued that these frames are too simple,
the choice to adopt one-bay and one-floor frames is motivated by convenience rea-
sons: indeed, for these very simple frames, it is easy to derive compact closed-form
expressions of the displacements and reactions as explicit functions of the rotational
spring deformability terms, which is related to the main focus of the present study.
For simplicity, the quantities E, I and L of the beam and of the columns are as-
sumed to be identical. The structural response is easily derived via the displacement
method. Neglecting the axial deformations in structural elements, the unknown dis-
placements are collected in the array uT = [ϕB, ϕC, δ] and the stiffness matrix is
expressed as

K(I) (λ1, λ2) =

s11 (λ1, λ2) +
4EI

L s31 (λ1, λ2)
6EI
L2

s13 (λ1, λ2) s33 (λ1, λ2) +
4EI

L
6EI
L2

6EI
L2

6EI
L2

24EI
L2


K(I I) (λ1, λ2 = 0) =

s33 (λ1) +
4EI

L
2EI

L s43 (λ1)
2EI

L s33 (λ1, λ2) +
4EI

L s43 (λ1)
s34 (λ1) s34 (λ1) 2s44 (λ1)


(4.14)

wherein Sij is the term of the stiffness matrix S (λ1, λ2) of the beam element with
partially restrained nodes that has been defined in Eqs. 4.3 and 4.4. Once the stiffness
matrix is constructed, the unknown displacements u are readily computed via

u(i) = K(i)−1 (λ1, λ2) F(i) (λ1, λ2) with (i = I, I I). (4.15)

where the force vectors F(i) for the two frames are given by

F(I) (λ1, λ2) =

0
0
P

−
M(q)

1 (λ1, λ2)

M(q)
2 (λ1, λ2)

P

 ; F(I I) =

0
0
P

−
 qL2/12
−qL2/12

P

 (4.16)
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For example, the rotation in the node C and the lateral displacement in the frame I
are

ϕ
(I)
C = ϕ

(q,I)
C + ϕ

(P,I)
C =

1
Γ (λ1, λ2)

×[
qL3

72EI

(
1 +

3EI
7L

(5λ1 − 3λ2)

)
+
−PL2

28EI

(
1 +

2EI
3L

(4λ1 + 7λ2) +
8(EI)2

L2 λ1λ2

)]
δ
(I)
C = δ

(q,I)
C + δ

(P,I)
C =

1
Γ (λ1, λ2)

×[
qL3

84EI
(−λ1 + λ2) +

PL3

84EI

(
1 +

28EI
15L

(λ1 + λ2) +
48(EI)2λ1λ2

15L2 λ1λ2

)]
(4.17)

where the superposition principle is resorted to by adding the two separate effects
arising from the loads q and P. In Eq. 4.17, the function Γ (λ1, λ2) is defined as

Γ (λ1, λ2) = 1 +
23EI
21L

(λ1 + λ2) +
8(EI)2

7L2 λ1λ2 (4.18)

The resulting bending moments at the beam-to-column connection and at the col-
umn base are

M(I)
B = M(q,I)

B + M(P,I)
B =

1
Γ (λ1, λ2)

×
[

qL2

18

(
1 +

6EI
7L

λ2

)
− 3PL

14

(
1 +

4EI
4L

λ2

)]
M(I)

D = M(q,I)
D + M(P,I)

D =
1

Γ (λ1, λ2)
×[

qL2

36

(
1 +

3EI
7L

(−λ1 + 3λ2)

)
+

2PL
7

(
1 +

EI
6L

(10λ1 + 7λ2) +
2(EI)2λ1λ2

L2 λ1λ2

)]
(4.19)

FIGURE 4.4: Single-bay frame analyzed with different connection
types.
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FIGURE 4.5: Moment-rotation curves for various beam-to-column
connections along with Eurocode 3 boundaries (adapted from Chen,
2011 (left) and corresponding rotational spring deformability of the

beam (right).

In a similar way, the lateral displacement and the bending moments in the frame
II are

δ(I I) = δ(q,I I) + δ(P,I I) ≡ δ(P,I I) =
1

∆(P,I I) (λ1)
× 5PL3

84EI

(
1 +

18EI
5L

λ1

)
M(I I)

B = M(q,I I)
B + M(P,I I)

B =
1

∆(q,I I) (λ1)
× qL2

18

(
1 +

3EI
L

λ1

)
− 1

∆(P,I I) (λ1)
×

3PL
14

(
1 +

2EI
L

λ1

)
M(I I)

D = M(q,I I)
D + M(P,I I)

D =
1

∆(q,I I) (λ1)
× qL2

36

(
1 +

3EI
L

λ1

)
+

1
∆(P,I I) (λ1)

× 2PL
7

.

(4.20)

in which the functions ∆(q,I I) (λ1) and ∆(p,I I) (λ1)are given by

∆(q,I I) (λ1) = 1 +
10EI
3L

λ1; ∆(P,I I) (λ1) = 1 +
6EI
7L

λ1 (4.21)

By inspection of Eqs. 4.17-4.20, it is observed that any variable of the structural re-
sponse can be expressed as a term related to the perfectly rigid case multiplied by
a dimensionless corrective function that depends on the rotational spring deforma-
bility of the beams. Anyway, dealing with more complex, though certainly more
realistic, frames with multiple bays and floors, would not add significant insight
into the probability-based study here conducted.
The main difference would be related to the slightly more complicated expressions
of the displacements and reactions that would arise in this case, which would require
finite element discretizations and would make the analysts lose the direct relation-
ship between response and uncertain stiffness factor expressed in a compact manner
by the previous equations.
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4.2.1.3 From the rotational spring deformability to the connection fixity factor

In order to investigate a range of behaviors that are actually representative of semi-
rigid connections, attention is now focused on the concept of fixity factors (Chiorean,
2009; Sekulovic and Salatic, 2001; Simoes, 1996; Thai et al., 2016; Kartal et al., 2010). It
is widely recognized that an estimate of the initial stiffness of a joint can be expressed
in terms of the element stiffness (related to the Young’s modulus E along with the
moment of inertia I and the length L of the beam) and a dimensionless fixity factor
f as follows

k joint =
4EI

L
3 f

4(1− f )
(4.22)

The fixity factor represents the semi-rigid behavior as connection percentage and it
varies from 0% for a zero joint stiffness (ideally pinned connection) to 100% when the
joint stiffness is infinity (perfectly rigid connection). In the sequel of the section, at-
tention is focused on steel semi-rigid connections, although the methods presented
are not material-specific or element-specific, as already stated in the Introduction.
The choice to discuss more in-depth steel semi-rigid connections for the numerical
applications is useful to link the present study to a practical problem encountered in
the structural analysis of structures with semi-rigid connections. With regard to the
steel framed structures, in the Eurocode 3 (CEN, 2005) a classification has been es-
tablished of the fixity factors for pinned, rigid and semi-rigid joints. In particular, the
limit values of the fixity factor for pinned and rigid joints are 14% and 89%, respec-
tively (Thai et al., 2016). In other words, joints having f < 0.14 could be dealt with
as pinned, whereas joints with f > 0.89 could be approximately described through
the perfectly rigid idealization. Some qualitative moment rotation curves of typical
beam-to-column connections in steel structures are shown in Fig. 4.5(a). Since the
present investigation is concerned with semi-rigid connections in general, the analy-
sis discussed below will be extended to the entire interval f ∈ [0.14, 0.89] . This is re-
flected by an interval in terms of rotational spring stiffness and, similarly, in terms of
rotational spring deformability (normalized with respect to the perfectly rigid case)
λ ∈ [0.16, 8.19], the latter depicted in Fig. 4.5(b). From a probabilistic point of view,
if no accurate experimental background is available on the actual beam-to-column
connection, the spring deformability of the joint could reasonably be assumed as a
uniformly distributed random variable with lower bound and upper bound values
equal to 0.16 and 8.19, respectively. This is what is done in the sequel of the section,
although these figures are far from being representative of all the beam-to-column
connections.
Obviously, the analyst may decide to deal with a narrower, more realistic interval
whenever experimental evidence leads to scattered data whose variability range is
reduced as compared to the above one. Indeed, the design scenario is usually deter-
mined in terms of a single, or just few connection types involved in a steel frame. In
these cases, dealing with a more restricted interval of λ values that is more appro-
priate for the specific type of connection used (e.g., extended end plate, top-and-seat
angle, etc.) is reasonable. Implications of this choice will be briefly outlined in the
following sections.

4.2.2 Probability-based response of beams with semirigid nodes

In this subsection, it will present some results concerning the probabilistic structural
response, in terms of PDF and cumulative distribution function (CDF), of beams
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with partially restrained nodes. First, it will be investigating the uncertainty prop-
agation from the beam end constraints to the elements of the beam stiffness matrix
S (λ1, λ2) reported in Eqs. 4.3 and 4.4. To this aim, based on the probabilistic charac-
terization of the fixity factors as per the EC3 (CEN, 2005; Thai et al., 2016), discussed
above, it will be computed the exact PDF of the various terms of the stiffness ma-
trix through the PTM. The semi-rigid end nodes are modeled via rotational spring
deformability that are uniformly distributed random variables within the interval
λ ∈ [0.16, 8.19]. For the sake of generality, all the variables reported in this study are
shown in a dimensionless form by normalizing them with respect to the perfectly
rigid case, i.e., the beam with clamped ends (λ = 0). As an example, the normalized
rotational spring stiffness at the node 1 is expressed as

s̄11 (λ1, λ2) =
s11 (λ1, λ2)

s11r
=

1
∆ (λ1, λ2)

(
1 +

3EI
L

λ2

)
=

(
1 + 3EI

L λ2
)

1 + 4EI
L (λ1, λ2) +

12(EI)2

L2 λ1λ2
(4.23)

where s11 (λ1, λ2) is the term reported in Eq. 4.6(1) and s11r = 4EI/L denotes the
rotational stiffness of the corresponding clamped beam. Similar normalizations are
employed for all the other terms. Therefore, such dimensionless variables are not
affected by the magnitude of the EI/L ratio and the corresponding PDF and CDF
results can be applied to any beam.

FIGURE 4.6: Qualitative examination of rotational stiffness PDF and
characteristic points in partially restrained beams: (a) normalized s̄11

PDF; (b) normalized s̄13 PDF

In Fig. 4.6, the PDF of the normalized beam rotational stiffness s̄11 and s̄13 s
is depicted. Dealing with semi-rigid connections leads to a narrower interval than
[0− 1] in the corresponding rotational stiffness: indeed, the extreme value s̄11 → 1
(or also s̄13 → 1 ) would be attained for λ1 = λ2 → 0 (beam with perfectly rigid
connections), whereas s̄11 → 0 (or also s̄13 → 0) would be obtained for λ1 = λ2 →
∞(beam having ideally pinned connections). In particular, it will be seen below
that two characteristic points are found that represent a lower bound and an upper
bound of the two rotational stiffness terms, namely s̄11 ∈ [0.12772− 0.86071] and
s̄13 ∈ [0.021596− 0.78327].
The lower bound is associated with the couple λ1 = λ2 = 8.19 while the upper
bound is related to couple λ1 = λ2 = 0.16. These figures are strictly related to the
choice of the interval λ ∈ [0.16, 8.19] made above. It is clearly seen in Fig. 4.6 that,
assuming λ1 and λ2 as uniformly distributed random variables, the terms of the
beam stiffness matrix are far from being uniformly distributed between their lower
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bound and upper bound values. This is due to the nonlinear relationship between
rotational spring deformability and rotational beam stiffness, cf. Eq. 4.23. In particu-
lar, both the s̄11 and s̄13 PDF are strongly asymmetrically distributed and are shifted
towards the “lower bound case” that resembles an ideally pinned connection 1 2
(λ1 = λ2 = 8.19) . An additional , third characteristic point is identified in the PDF
curve as a cusp (red circle in the plot of Fig. 4.6), which corresponds to the couple
λ1 = 0.16 and λ2 = 8.19. This point may be meant as the semi-rigid counter part of
a clamped-hinged beam idealization. This also explains the reason why such cusp
occurs closer to the upper bound case for s̄11 (rotational stiffness at the node 1 that is
“quasi-rigid”) and is located closer to the lower bound case for s̄13 (rotational stiff-
ness at the node 2 that is “quasi-hinged”).

FIGURE 4.7: Probabilistic response, in terms of rotational stiffness, of
partially restrained beams: (a) normalized s̄11 PDF; (b) normalized s̄13

PDF; (c) normalized s̄11 CDF; (d) normalized s̄13 CDF.

The implications of such probability-based outcomes in a design process are in-
vestigated. To this aim, in Fig. 4.7 we particularize the qualitative PDF shown in Fig.
4.6 by computing the median of the distribution. This median may be considered as
a reference design value from a probabilistic point of view. Indeed, there is just a
probability of 50% that, within the class of semi-rigid connections characterized by
the assumed interval λ ∈ [0.16, 8.19] , the median is exceeded. It seems reasonable to
compare the median with the average value that would be calculated according to a
deterministic approach, i.e., the mid-point between the two extreme values (bound-
aries) corresponding to the two extreme cases of quasi-rigid (λ1 = λ2 = 0.16) and
quasi-pinned connections (λ1 = λ2 = 8.19). By inspection of Fig. 4.7, it is observed
that the median (probability-based design value) and the average value (determin-
istic quantity) are largely different from each other. In particular, the average value
of s11 is 0.49422 and represents the 89.51th percentile of the distribution (see the CDF
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depicted in Fig. 4.7(c)), whereas the median is 0.12772. This means that if one is
dealing with the wide class of semi-rigid connections featured by λ ∈ [0.16, 8.19] the
element stiffness, on average, would be overestimated of around 125% by assum-
ing the value calculated from the deterministic approach. Similar conclusions can
be drawn for the s̄13 stiffness term, in which the median (0.071224) and the average
value (0.40243) differ for up to 465%. In this case, the average value represents the
98.81th percentile of the distribution.
The peculiarity of a probability-based approach for semi-rigid connections is that a
design value of the stiffness (and of any other quantity of interest for design pur-
poses) that is related to a given non-exceeding probability (i.e., associated to a given
limit state) can straightforwardly be identified. The probabilistic nature of the struc-
tural response can also be accounted for via the MCS. Nevertheless, only an ap-
proximation of the exact PDF may be obtained in this case: the number of samples
needed to construct a reasonably accurate PDF exceeds millions, see again Fig. 4.7(a)
and 4.7(b), which implies higher computational times. This concept is even more
marked when the input-output relationship is nonlinear, as in the case of s̄11 , cf. Eq.
4.23.

FIGURE 4.8: Variability of the nodal reactions with the spring de-
formability terms: (a) M̄(q)

1 ; (b) V̄(q)
1 .

The PDF of the nodal reactions M̄(q)
1 and V̄(q)

1 of the partially restrained beam
subject to a uniformly distributed load q is qualitatively different. Among the possi-
ble M̄(q)

1 values that may occur depending on the spring deformability λ1 and λ2, the
minimum moment reaction (equal to 0.14375) occurs when λ1 = 8.19 and λ2 = 0.16,
i.e., in the semi-rigid counterpart of a hinged-clamped beam idealization, whereas
the maximum moment reaction (equal to 1.2996) takes place in the other way around
for λ1 = 0.16 and λ2 = 8.19, i.e., in the semi-rigid approximation of a clamped-
hinged beam, cf. Fig. 4.8. Other two characteristic points are detected in the M̄(q)

1

PDF, see Fig. 4.8(a): one is that for (M̄(q)
1 = 0.23384, which corresponds to a cusp)

and the other is for λ1 = λ2 = 0.16, M̄(q)
1 = 0.93816.

In quite a similar way, the characteristic points of the transversal reaction V̄(q)
1 PDF

are identified and associated to limit values of the λi values, cf. Fig. 4.8(b). As
expected, deviations of V̄(q)

1 from the value V̄(q)
1 = 1 only occur when the two

spring deformability terms are different from each other, i.e., for asymmetric beam
restraints. Partially restrained beams with identical spring deformability at the two
beam ends behave like clamped-clamped or hingedhinged beams in terms of transver-
sal nodal reactions. In the limit cases of quasi hinged-clamped (λ1 = 8.19, λ2 =
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0.16) and quasi clamped-hinged beams (λ1 = 0.16, λ2 = 8.19) the extreme values
of V̄(q)

1 are 0.80735 and 1.1926, respectively. The quantitative analysis of Fig. 4.9 re-
veals that the average value of the moment reaction (0.72169) represents the 85.39th

of the distribution and deviates from the corresponding median value (0.36202) of
99.35%; on the contrary, due to the symmetric format of the V̄(q)

1 PDF, average and
median values are coincident.

FIGURE 4.9: Probabilistic response of partially restrained beams sub-
ject to a uniformly distributed load: (a) M̄(q)

1 PDF; V̄(q)
1 PDF; (c) M̄(q)

1

CDF; (d) V̄(q)
1 CDF.

Finally, in Figs. 4.10 and 4.11, the mid-span bending moment M̄(q)
0 and the mid-

span deflection w̄(q)
0 are characterized from a probabilistic point of view. These re-

sults are consistent with those of the stiffness terms, as the M̄(q)
0 and the w̄(q)

0 PDFs
are both concentrated close to the quasi-pinned connection boundary ( right side
corresponding to λ1 = λ2 = 8.19). The mid-span response is related to the overall
deformability of the beam, therefore it is not affected by the specific values of λ1
and λ2 at the two end nodes individually considered, but rather it only depends on
the sum λ1 + λ2, which is physically reasonable. For instance, the same response in
terms of bending moment and deflection would be obtained for λ1 = 8.19, λ2 = 0.16
and for λ1 = 0.16, λ2 = 8.19, cf. Fig. 4.10. Quantitative analysis of the M̄(q)

0 and the

w̄(q)
0 PDFs, shown in Fig. 4.11, is of paramount importance from a design viewpoint:

adopting the average (deterministic) value of mid-span moment and mid-span de-
flection means that the design is being carried out with the 19.42th and with the
19.41th percentile of the corresponding distribution, respectively. In other words, the
deterministic approach would lead to assuming non-conservative (unsafe) estimates
of mid-span moment and mid-span deflection that are lower than the median of the
corresponding PDFs. In particular, the deterministic approach would underestimate
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the median of M̄(q)
0 by 15.26% and the median of w̄(q)

0 by 19.89%, respectively.

FIGURE 4.10: Qualitative examination of PDF of mid-span moment
and mid-span deflection in partially restrained beams subject to a uni-

formly load q: (a) M̄(q)
0 PDF; (b) w̄(q)

0 PDF.

FIGURE 4.11: Probabilistic response of partially restrained beams
subject to a uniformly distributed load: (a) M̄(q)

1 PDF; V̄(q)
1 PDF; (c)

M̄(q)
1 CDF; (d) V̄(q)

1 CDF.

In Table 4.1, the main results of the present investigation are summarized. In
particular, we report the two boundaries of the response indicators computed by as-
suming proper combinations of the two λ1 and λ2 deformability terms as discussed
above.
The average value is the mean of these two bounds, which is compared to the me-
dian value. Considerable errors are found from this comparison, which alert the de-
sign engineer that misleading outcomes may result from a deterministic approach
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response
indicator

probability-based
approach

deterministic approach error
(%)

median
(50th percentile)

lower
bound

upper
bound

average
value

average
percentile
(%)

s̄11 0.21926 2.62 2.53 3.34 2.67 2.46
s̄13 0.07122 0.021596 0.78327 0.40243 98.81 465.02
M̄(q)

1 0.36202 0.14375 1.2996 0.72169 85.39 99.35
V̄(q)

1 1.00 0.80735 1.1926 1.00 50.00 0.00
M̄(q)

0 2.1572 1.1237 2.5323 1.828 19.42 -15.26
w̄(q)

0 3.3152 1.2474 4.0646 2.656 19.41 -19.89

TABLE 4.1: Probability-based approach versus deterministic ap-
proach for the design of beams with semi-rigid connections.

applied to beams with partially restrained nodes if the fixity factors can be mod-
elled as uniformly distributed random variables. These values, along with the PDFs
illustrated above, could be employed to decide which value of rotational stiffness,
mid-span deflection, bending moment (and so forth) to assume in a design process,
and to assess which consequences such an assumption has from a probabilistic point
of view.

It is worth noting that the above calculation considers a quite large spectrum
of fixity factors, which encompasses the whole range of semi-rigid connections dis-
cussed in Section "From the rotational spring deformability to the connection fixity
factor". However, when the type of connection is chosen for a steel framed structure,
the range of variability of the fixity factor, and also of the spring deformability λ, is
reduced as compared to the one assumed above, see e.g.,(Abdalla and Chen, 1995;
Kim and Choi, 2001). Which implications this restricted interval has in a design pro-
cess is here briefly outlined.
To this aim, just as an example we suppose that a topand- seat angle connection is
adopted and a more realistic interval of λ is considered. Following the qualitative
plot of Fig. 4.5(a), among the steel semi-rigid connections this quite flexible type
of connection is close to the pinned EC3 connection boundary, therefore it has been
characterized in terms of a λre f = 7.0 value, assumed as a reference value in a de-
sign process. In line with the scope of the section, in order to incorporate the largely
scattered results that may arise from experiments, a ±50% deviation is assumed so
that the λ variable is a uniformly distributed variable in the range

[
0.5λre f , 1.5λre f

]
.

The probabilistic response of a beam complying with this more realistic assumption
is illustrated in Fig. 4.12 in terms of mid-span bending moment M̄(q)

0 and deflection

w̄(q)
0 PDF and CDF, respectively.
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FIGURE 4.12: Probabilistic response of beams with top-and-seat angle
connections ( λre f = 7.0, ±50% variation) subject to a uniform load:

(a) M̄(q)
0 PDF; (b) w̄(q)

0 PDF; (c) M̄(q)
0 CDF; (d) w̄(q)

0 CDF.

It is interesting to compare Fig. 4.11 with Fig. 4.12 that report the same results
but arise from two different probabilistic characterizations of the beam-to-column
connections. This comparison reveals that, as expected, the narrower interval of the
λ values leads to a reduced variability of the response indicators. If the variation
of λ were neglected and the calculation were performed assuming a deterministic
λre f = 7.0 value, a normalized moment and deflection equal to 2.391 and 3.7821
would be obtained (the average value in this case corresponds to the deterministic
assumption λ = λre f ). These values represent the 28.77th and 28.62th percentile of
the corresponding distribution, respectively. Therefore, similar design implications
to the above calculation are deduced, as the deterministic approach leads to non-
conservative estimates of mid-span moment and mid-span deflection that are lower
than the median of the corresponding PDFs. This result has been already obtained
with the larger λ interval examined above. The underestimation is however less
pronounced than the previous case with larger λ interval, and the associated relative
error is reduced accordingly.
Obviously, the higher is the dispersion, the more uncertain are the results. On the
contrary, if λ were a deterministic variable, i.e., λ = λre f without variation, all the
response indicators would follow a Dirac Delta distribution centered at the average
value and the probabilistic study here proposed would provide no added value as
compared to a deterministic analysis. This underlines that the above conclusions are
far from being of general validity, and the specific situation should be analyzed from
case to case on the basis of available experimental data and input parameters (e.g.,
type of connections involved in a specific project).



4.2. Probability based structural response of steel beams and frames with uncertain
semi rigid connections

77

FIGURE 4.13: Probabilistic response of frame I with semi-rigid beam-
to-column connections: (a) normalized ϕ̄C PDF; (b) normalized δ̄C

PDF

4.2.3 Probabilistic response of frames with semi-rigid nodes

In this Section we present results concerning the probabilistic structural response
of frames with semi-rigid connections. A single-bay frame with semi-rigid beam-
tocolumn connections (frame I) and a single-bay frame with semi-rigid column-to-
foundation connections (frame II) are investigated, as sketched in Fig. 4.4.

4.2.3.1 Single-bay frame with semi-rigid beam-to-column connections

The probabilistic response of the frame I subject to both a uniformly distributed load
q applied on the BC partially restrained beam and a point load P = qL applied to
the node B is investigated. In Fig. 4.13, the PDF of node C rotation ϕ̄C and lateral
displacement δ̄ are illustrated. It is observed that when dealing with frames, due to
the strongly nonlinear character of the relationships between the fixity factors and
the response indicators (much higher than the individual beam, cf. Eqs. 4.17), the
number of samples needed to closely approximate the exact PDF by the MCS should
be very high, largely exceeding one million. It is interesting to note that, due to the
range of variability in the beam-to-column connection stiffness, a very large vari-
ability of the nodal rotations is expected, and the ϕ̄C value may even change its sign
as compared to the perfectly rigid case. However, this result is ascribed to the quite
large assumed interval of fixity factors, as already noted above. Additionally, it is
worth noting that in more realistic frames with a significant number of bays and
floors, the influence of joint stiffness on the global response is certainly reduced as
compared to this very simple frame structure with only one floor and one bay. In
Fig. 4.14, the response in terms of moment reaction at the beam-to-column connec-
tion M̄B and at the column base M̄D is scrutinized from a probabilistic point of view.
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FIGURE 4.14: Probabilistic response of frame I with semi-rigid beam-
to-column connections: (a) normalized M̄B PDF; (b) normalized M̄D

PDF; (c) normalized M̄B CDF; (d) normalized M̄D CDF.

In line with the expectations, one million of samples in the MCS seems to be a sat-
isfactory number for approximating the exact PDF of M̄B but not that of M̄D that
involves a slightly more intricate relationship in terms of fixity factors, cf. Eqs. 4.19.

Average and median M̄B values differ for almost 300%, which means that a de-
sign based on the average value would disproportionally overestimate the design
moment at the node B. Indeed, the average value (0.41476) represents the 91.68th

percentile of the M̄B distribution. Moreover, a small influence of the semi-rigid con-
nections on the moment at the column base M̄D is detected, which is physically
consistent as the randomness is concentrated on the beam and not on the column.
Indeed, the variability of D M is comprised to within nearly a ±7%of the perfectly-
rigid case, with extreme values equal to 0.94051 and 1.0704 corresponding to the
couples (λ1 = 8.19, λ2 = 0.16) and (λ1 = λ2 = 8.19), respectively. Owing to the
narrow interval in which the M̄D PDF is concentrated and considering the M̄B PDF,
it can be concluded that deterministic approaches would lead to reasonable approx-
imations of the moment reaction at the column base but not of the moment reaction
at the beam-to-column connection.
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FIGURE 4.15: Probabilistic response of frame II with semi-rigid
column-to-foundation connections:: (a) normalized M̄B PDF; (b) nor-
malized M̄D PDF; (c) normalized M̄B CDF; (d) normalized M̄D CDF.

uniform distribution
for fixity factors)

response
indicator

uniform distribution
for fixity factors

lognormal distribution
for fixity factors

median
(50th percentile)

average value
percentile
(%)

median
(50th percentile)

average value
percentile
(%)

M̄B -1.1978 72.05 -1.2031 74.65
M̄D 0.47713 77.18 0.47806 80.94

TABLE 4.2: Probability-based approach versus deterministic ap-
proach for the design of beams with semi-rigid connections.

4.2.3.2 Single-bay frame with semi-rigid column-to-foundation connections

The probabilistic response of the single-bay frame with semi-rigid column-to- foun-
dation connections is finally sought. By inspection of Fig. 4.15, it emerges that in
this case the moment reaction M̄D PDF at the column base is not confined to within
a rather narrow interval, as in the previous frame, but is widely distributed and
extends from 0.33053 to 0.94913. This is physically consistent, because in this case
the randomness of the connection concerns just the base of the columns, therefore
in contrast to the previous case the fixity factors lead to a significant variability of
the M̄D value. The deterministic average values of M̄B and M̄D represent the 72.05th

and the 77.18th percentile of the distribution, respectively. Therefore, in this case re-
sorting to a probabilistic design approach would lead to more economical solutions,
based on lower moments at both the beam-to-column connection and at the column
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base. The peculiar interval-like trend of the M̄B and M̄D PDFs shown in Fig. 4.15(a)
and 4.15(b) is just a consequence of the uniform distribution assumption of the fix-
ity factors. It seems interesting to scrutinize to what extent the probability-based
structural response varies if a different assumption were made on the probabilistic
distribution of the fixity factors.

FIGURE 4.16: Same as Fig. 4.15 but with a lognormal distribution
assumption for the fixity factors.

To this aim, in Fig. 4.16, we report the M̄B and M̄D PDFs by assuming that the
fixity factors follow a lognormal distribution in place of a uniform distribution. The
parameters of the lognormal distribution have been selected according to the follow-
ing criterion

µ =
0.16 + 8.29

2
= 0.525; µlog = 1.4297; σ =

0.16 + 8.29
10

= 0.525835527 (4.24)

Although the PDFs of M̄B and M̄D resulting from the lognormal distribution are
qualitatively different from those of Fig. 4.15, these distributions leads to really
similar considerations from a design viewpoint: for instance, the median of M̄B is
−1.2031 against the value −1.1978 found for a uniform distribution. Other rele-
vant comparisons are listed in Table 4.2. This comparison highlights that the results
discussed in this section can be considered of quite general validity, since they are
little affected by the choice of the fixity factors distribution. Obviously, the design
engineer should carefully reflect upon this assumption and should adopt the most
appropriate fixity factors distribution on the basis of available experimental data
regarding the specific semi-rigid connections involved in the project.
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4.2.4 Some remarks

A fully probabilistic approach has been presented to describe the structural response
of steel beams and frames with uncertain semi-rigid connections. The non-perfect
constraints and joints are endowed of an uncertain degree of rotational stiffness,
through the definition of the deformability of the springs via random variables. In-
cidentally, closed-form expressions of a few structural response indicators of beams
and simple frames with partially restrained nodes have been presented. The ran-
domness of the structural response has been entirely ascribed to the uncertainty in
the fixity factors at the beam end nodes, thus related to the rotational deformabil-
ity of the springs. The adopted probabilistic approach, based on the application of
the PTM to vector-valued random variables related by means of the nonlinear laws
above cited, permits one to compute the exact PDF of the structural response based
on the distribution of the fixity factors. Therefore, the design engineer can straight-
forwardly identify the value of certain indicators of the structural response associ-
ated to a given non-exceeding probability, which is very important in the framework
of limit state design. The characterization of the rotational spring stiffness terms
should be based upon experimental findings and laboratory calibration, which is
beyond the scope of the proposed analytical study. In this section, reference has
been made to the EC3 provisions, wherein limit values of the fixity factors for steel
semi-rigid connections are indicated. We have reasonably assumed that the fixity
factors are uniformly distributed within such EC3 interval, although the proposed
analysis method is applicable to a more general class of elements and materials, not
confined to steel framed structures. The PDFs of a few indicators of the structural
response have been derived for both beams and simple frames.
Design considerations have emerged when comparing the probability-based ap-
proach with a deterministic approach based on the average values, the latter refer-
ring to the intermediate values of the fixity factors between the two extreme cases.
Misleading (and in some cases non - conservative) conclusions from a design view-
point might be drawn unless the probabilistic nature of the structural response is
properly accounted for, i.e., when resorting to a deterministic approach. As an ex-
ample, if the deterministic average values were assumed in the design process, one
would underestimate the mid-span deflection of around 20% and, similarly, the mid-
span bending moment of nearly 15% as compared to the median (probability-based)
value. However, there is not a unified and common trend for all the response indica-
tors, for instance some response quantities such as the moment reaction at the joint,
are overestimated and not underestimated. From the obtained results, it is possi-
ble to state that the more reliable reactions and deflections than those derived from
a deterministic approach are however obtained, which leads to more realistic and
economical design decisions especially when experimental data on the connection
stiffness are quite scattered.
Although the design engineer could decide to select more appropriate distributions
than the uniform on the basis of available experimental data, it has been observed
that the obtained results are little affected by the distribution itself. On the con-
trary, it is of relevant importance to identify appropriate upper bounds and lower
bounds of the fixity factors for the given connections (that are element-specific and
material-specific data) involved in a given structure, which falls beyond the scope
of the present section. In this regard, literature review papers as well as experimen-
tal testing should assist the designer in such choice. With no doubt, the range of
variability of the fixity factors alters the outcomes of the probability-based investi-
gation. In many practical cases, this range is narrower than the interval adopted in
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this section, especially because the type of connection is known in a framed struc-
ture. However, the general qualitative conclusions drawn for the quite large interval
adopted in this section remain, as demonstrated by the analysis of a more reason-
able case in which a specific connection type has been selected and a more realistic
interval has been considered. Rather than providing precise probabilistic results
for each specific connection type, the aim of this section is just limited to present a
more accurate method of analysis and to alert the engineer that certain design impli-
cations arise when resorting to a nonprobabilistic (deterministic) design approach.
Semi-rigid connections, by nature characterized by largely scattered results, should
be more appropriately dealt with via a fully probabilistic approach.

4.3 In-plane response of masonry infilled RC framed struc-
tures: A probabilistic macromodeling approach

Typically, reinforced concrete (RC) framed structures are infilled with non-structural
panels in order to separate the internal building space from the external environ-
ment. The structural behavior of infill panels made by masonry is extremely com-
plex, characterized by uncertainties in the mechanical characteristics of the raw ma-
terials (clay, concrete), the mortar thickness and quality, the brick geometry and
arrangement, the relative stiffness of the frame and of the infill panel, as well as
the actual workmanship expertise. Although they are considered as non-structural
components in the structural calculation, masonry infills do modify the stiffness,
strength and ductility response scenarios of the overall RC frame. Therefore, neglect-
ing their presence in structural analysis and design of masonry infilled RC frames
may lead to inaccurate predictions and wrong design conclusions. Additionally, the
actual behavior is further complicated by the presence of irregularities in the dis-
tribution of infills in plan and elevation of the building, and the resulting overall
interaction between infill walls and surrounding frame (Asteris et al., 2015a; Khosh-
noud and Marsono, 2016; Asteris et al., 2017a). This interaction may or may not
be beneficial from a design viewpoint, for instance an irregular distribution of in-
fills may produce torsional behaviors along with triggering undesired phenomena
of soft stories, as demonstrated by observations after catastrophic earthquakes, see
the emblematic examples illustrated in Fig. 4.17. Additionally, in common practice
infill walls include openings (e.g., doors, windows) and this further complicates the
determination of the mechanical response of masonry infilled frames (Asteris et al.,
2011; Asteris et al., 2016a).

Considering the experimentally observed uncertain nature of the masonry be-
havior along with the dissemination of a large number of predictive expressions, the
aim of this section is to propose a probabilistic approach for the analysis of masonry
infilled RC frames. This probabilistic framework is particularly motivated by the
scatter of experimental results on which most of the predictive (simplified) expres-
sions are based, which may induce doubts about which mechanical characteristics
to assume for the diagonal struts in a simplified model.

The presence of a variety of empirical expressions in the literature makes it dif-
ficult to decide which is the most suitable one for design purposes, even more com-
plicated by the uncertain nature of the masonry behavior. In this section, we face the
problem of determining the structural response of masonry infilled reinforced con-
crete (RC) frames from a probabilistic perspective, by assuming the diagonal strut
(modeling the masonry panel) as a random variable. In this way, the suitability of
the different expressions proposed in the literature may be assessed in terms of how
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closely they predict the mean values (or some characteristic values) of the relevant
probability density function.

(A) (B)

(C) (D)

FIGURE 4.17: Examples of poor seismic performance of RC frames
with masonry infill walls: first-story damage in 2008 Wenchuan earth-
quake (China, Mw = 8.0) (A), intermediate story collapses due to in-
fill failure in 1999 L’Aquila earthquake (Italy, Mw = 6.3) (B), first-two-
story collapse in 1999 Kocaeli (Turkey, Mw = 7.4) (C) and in 2010 Haiti

earthquake (Mw = 7.0) (D)

Additionally, the probabilistic framework allows the evaluation of the implica-
tions of the uncertain nature of the masonry infills in a set of response indicators.
This is important to asses to what extent the randomness of the masonry infills prop-
agates in the structural response. In literature, probabilistic approaches to this prob-
lem are very few (Erdolen and Doran, 2012) and usually rely on Monte-Carlo-based
sampling techniques involving repetitive operations and computational effort, es-
pecially for structures with many degrees of freedom (DOFs). On the contrary, the
focus of this section is on a more effective numerical procedure through which the
probabilistic characterization of the response of a masonry infilled RC frame can
be identified in a direct manner. The advantage of this procedure is that no sam-
pling operation is required (unlike Monte Carlo method or other techniques from
the literature). This implies great computational efficiency in comparison with other
methods. Another strength of this procedure is its simplicity when handling un-
certain parameters like the ones involved in the equivalent diagonal truss elements
associated with the macro-modeling assumption of the masonry infills, as will be
in-depth clarified in the following parts of the section.
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4.3.1 Macro-modelling approach and overview of expressions

The modeling of the masonry infills and of their stiffening contribution to the sur-
rounding RC frame has been a topic of great interest for decades. Since the Polyakov’s
work in 1960 (Polyakov, 1960), the most simplified way to account for the masonry
panel has been to introduce an equivalent diagonal strut element that incorporates
the stiffening contribution of the masonry infill. In this simplified manner, underly-
ing a macro-modeling approach, the geometrical characteristics of the equivalent di-
agonal strut are chosen such that they reflect the geometrical and mechanical proper-
ties of the actual masonry panel. A schematic representation of this macro-modeling
approach is reported in Fig. 4.18, wherein the main geometric characteristics of both
the masonry panel and the equivalent diagonal strut are illustrated.

 

(A) Schematic representation of the masonry
infill

 

(B) Conventions used for the macro-modeling
approach

FIGURE 4.18: Schematic representation of the masonry infill (A) and
conventions used for the macro-modeling approach (B)

For monotonic loading only one strut is introduced in the compression direc-
tion, whereas for more general cyclic loading a couple of struts along the two main
diagonals would be necessary. The former assumption is adopted in this section,
as we will restrict our attention to monotonic loading conditions. There exist more
complicated macro-modeling layouts that involve more than a single diagonal strut
element to represent the masonry panel behavior and to properly account for the
interaction between the strut and the shear response of the column (Crisafulli, 1997).
Moreover, concentric and eccentric struts have also been investigated (Al-Chaar,
2002), and it has demonstrated that a series of off-diagonal strut elements are more
appropriate to capture the local effects arising from the interaction between masonry
panel and surrounding frame (Crisafulli, 1997). Furthermore, linear elastic and non-
linear hysteretic constitutive models can be adopted to represent the stress-strain
relationship of the equivalent strut, for example incorporating nonlinear fiber ele-
ments (Crisafulli, Carr, and Park, 2000).
All these complex models strive for describing the actual behavior of the masonry
panel with increasing accuracy. Considering all the uncertainties involved in the
correct modeling and in the determination of the most appropriate parameters that
reflect the actual, experimentally observed, masonry panel response, a variety of em-
pirical expressions have been proposed in the literature so far. Due to the stochas-
tic nature of the masonry behavior and the large scatter of the corresponding ex-
perimental results, it is quite difficult to decide which mechanical characteristics
to assume for the diagonal struts in a simplified model. Even within the simplest
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framework of modelling the masonry panel via a single linear-elastic diagonal strut
element, there exist a variety of formulae proposed by different authors in the last
few decades. The validity of these expressions is limited to the specific geometric
and mechanical properties of the masonry panel on which these formulae were cal-
ibrated.
The aim of this section is to present a probabilistic approach for the determination of
the in-plane response of masonry infilled RC framed structures. Attention is paid to
the simplest modeling assumption of a single linear-elastic diagonal strut element,
but the generality of the proposed probabilistic approach is not confined to such
assumption and extension to multiple struts would be possible, although the gen-
eralization to nonlinear behavior seems to be not straightforward. The cross area
of the strut is generally computed as the product of the panel thickness tw and an
equivalent width w. The latter parameter w is here assumed as a random variable to
take into consideration the uncertain nature of the masonry panel. The development
and dissemination of a large number of formulae for w makes it difficult to make a
reliable choice of the diagonal strut properties. As an emblematic example, the stiff-
ening contribution arising from a macro-modeling of the masonry panel is reported
in Fig. 4.19 (in terms of the w/dw ratio) for a variety of empirical expressions, thus
highlighting the variability of different formulations proposed in the literature. Con-
sequently, the probabilistic characterization of w, discussed in the next section, will
be based upon an ensemble of empirical expressions. The expressions considered in
this study are all listed in Table 4.3, where the following positions have been consid-
ered

λh = 4

√
Ewtwsin2θ

4Ec Ichw
H (4.25)

with Ew and Ec the Young’s modulus of masonry and reinforced concrete, respec-
tively, Ic the second moment of the cross-sectional area of the column,

β =
Ec Ac

Gw Aw
(4.26)

where Ac = bchc is the column gross area and Aw = twlw is the area of the masonry
panel in the horizontal plane, while Gw is the shear modulus of the masonry. The b
value in Eq. 4.26 must satisfy the following constraints: 0.9 ≤ β ≤ 11 and 0.75 ≤
2.5lw/hw ≤ 2.5 . Furthermore, the relative stiffness of beam and column λb and
λc, respectively, and the related contact lengths zb and zc of the Hendry expression
(Hendry, 1981) are defined as

λb =
4

√
Ewtwsin2θ

4Ec Ibhw
; λc =

4

√
Ewtwsin2θ

4Ec Ichw
; zb,c =

π

2λb
; zc =

π

2λc
(4.27)

with Ib denoting the second moment of the cross-sectional area of the beam. Finally,
in the expression by Cavaleri, Fossetti, and Papia, 2005 and Amato et al., 2008 the
parameters are

c = 0.249− 0.0116νd + 0.567ν2
d ; δ = 0.146− 0.0073νd + 0.126ν2

d ;

k =
1

0.75 + 0.25 L
H
(1 + (18λ∗ + 200) εν) ; εν =

Fν

2AcEc
;

λ∗ =
Ed

Ec

tw (H − hb/2)
Ac

(
(H − hb/2)2

L2 +
Ac

4Ab

1
(H − hb/2)

) (4.28)
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FIGURE 4.19: Variability of the stiffening contribution (w/d) with re-
spect to the geometrical and mechanical parameters of the masonry

infills (λh and λ∗ ) – after (Tarque et al., 2015)

The expression conditions listed in the right column of Table 4.3 represent some
upper bound and lower bound values of the analytical expressions. In case of a
given threshold being exceeded, the limit value is assumed as an admissible range.

4.3.2 Probability characterization of masonry infills

The analysis performed in this work is limited to static loading conditions and ser-
viceability limit states, whereby the behavior of the masonry infills may be assumed
as linear-elastic.
In other words, no significant damage is expected to occur in the masonry infills.
The uncertain mechanical behavior of the masonry infills and the related effects on
RC framed structures has given rise to the dissemination of a large number of stud-
ies. In the framework of macromodeling approaches, many empirical expressions
have been proposed, as overviewed in the previous section. However, the validity
of these empirical formulae is strictly related to the assumptions made for their de-
velopment, and to the set of geometrical and mechanical properties considered for
the validation of the corresponding models. As already said, it is quite difficult to
decide which mechanical characteristics to assume for the diagonal struts in a sim-
plified model. Therefore, in this research work we attempt to evaluate the effects of
the masonry infills uncertainty on the structural response of RC frames. To this aim,
the strut width is here considered as a random variable, whose stochastic properties
stems from the above set of empirical expressions.
In particular, for given geometrical and mechanical properties of an assigned ma-
sonry infilled RC frame, all the parameters and coefficients entering the expressions
reported in Table 4.3 are known. Therefore, a set of wi values can be derived by
applying the different formulae. At this stage, from this discrete set of values a
probabilistic characterization of the strut width w can be extrapolated in the form of
a PDF pw(w). The characteristics of such pw(w) are thus related to a set of empirical
or macromodeling-based approaches proposed in the literature by different authors.
The mean value of the probability distribution pw(w) is denoted as w0. It is meant
that such 0 w value is related to the whole set of expressions, and takes into account
the possible circumstance that different formulae may give rise to similar wi values.
This circumstance indicates a higher probability of occurrence of a specific interval
within the present stochastic framework. Moreover, the dispersion of all the wi val-
ues may be associated with the variance of the corresponding distribution pw(w).
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Authors (year) w/dw expression Note

Holmes (1961) w/dw = 1/3
valid for λh < 2

(see Eq. 4.25) 4.27

Stafford Smith (1967) 0.10 < w/dw < 0.25
the value graphically

depends on λh

Mainstone (1971) w/dw = 0.16λ−0.3
h

λh is computed throug
Eq. 4.25 4.25

Mainstone (1974) w/dw = 0.17λ−0.4
h

adopted by FEMA-274
and FEMA-306

Bazan and Meli (1980) w = (0.35 + 0.022β)hw β is computed via Eq. 4.26

Hendry (1981) w = 1
2

√
z2

b + z2
c

zb and zc computed
ia Eqs. 4.27

Tassios (1984) w/dw = 0.20βsinθ valid for 1 ≤ β ≤ 5
Liauw and Kwan (1984) w/dw = 0.95sin2θ

2
√

λh
valid for 25◦ ≤ θ ≤ 50◦

Decanini and Fantin (1987)
w/dw = 0.010 + 0.707

λh
for λh ≤ 7.85

w/dw = 0.040 + 0.470
λh

for λh > 7.85
Paulay and Priestley (1992) w/dw = 1/3 valid for λh < 4

Durrani and Luo (1994) w/dw = γsin2θ
γ = 0.32

√
sin2θ

(
H4Ewtw
mEc Ichw

−0.1
)

m = 6
(

1 + 6
π

Eb Ib H
Ec Ic L

)
Flanagan and Bennet (1999) w = π

Cλhcosθ

C is an empirical value
dependent on the in-plane

drift displacement

Cavaleri et al. (2005)
and Amato et al. (2008)

w/dw = k
z

c
(λ∗)δ

c and δ are functions of
the Poisson’s ratio, k is a

function of the vertical load
and z is a geometric

parameter

TABLE 4.3: Expressions for calculation of the w/dw ratio considered
in the proposed probabilistic study (after Tarque et al.)

In the spirit of perturbation approach of stochastic analysis, the strut width w can be
modelled as a one dimensional random variable with constant (deterministic) mean
value w0 and fluctuation α according to the expression

w = w0 (1 + α) (4.29)

In so doing, instead of treating the strut width itself as a random variable, the ba-
sic random variables of this problem are represented by the zero-mean fluctuations
α of the strut width with respect to its mean value w0. In Fig. 4.20, two possible
representations of the probabilistic characterization of the α variable are illustrated.
From the discrete set of wi values, arising from the group of expressions reported
above, it is possible to extrapolate a best-fitting PDF representation (here presented
in the form of either a normal PDF or a uniform PDF) from which the mean value w0
and the dispersion characteristics can be identified. By application of relation 4.29
the probabilistic characterization of the zero-mean fluctuation α is straightforward,
which is described in the bottom part of Fig. 4.20. From a probabilistic point of view,
while the uniform distribution implies that all the wi values have equal probability
of occurrence between the minimum and maximum wi values (denoted as wmin and
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wmax, respectively), the normal distribution takes into account the concentration of
the wi values around the mean value w0 (which is the most likely value, meaning
that the majority of the above empirical expressions lead to values around such w0).
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FIGURE 4.20: PDF of the w and of the α variable in the normal (left)
and uniform (right) approximation

Additionally, in the case of the normal distribution the statistical values w0 ≡ µw
and wi are directly estimated from the discrete set of the wi values, whereas for
the uniform distribution two steps arise: 1) estimation of the best-fitting uniform
PDF pw(w) from the discrete set of the wi values, 2) evaluation of the statistical
moments, including mean and standard deviation mw ≡ w0 and sw, respectively,
and determination of the boundaries αmin and αmax of the zero-mean fluctuation
PDF pα(α) as ±sw/mw. This conversion between the pw(w) distribution and the
pα(α) is necessary to obtain a zero-mean PDF for the fluctuations, which is consis-
tent with Eq. 4.29. Furthermore, it is worth noting that in a real masonry infilled
RC frame there are more than just one equivalent diagonal strut element due to the
presence of several masonry infills. From a probabilistic point of view, it is therefore
necessary to introduce a zero-mean multivariate normal distribution defined by a
covariance matrix Σα involving cross-correlation terms between the various struts
α = [α1, α2, · · · , αm]

T. It is reasonably expected that two adjacent masonry infills
are more correlated than two farther ones, which suggests to introduce a correlation
function ρ dependent upon the distance between the centroid of each diagonal strut
element d, i.e., ρ = rho(d). For the simplest scenario of just two masonry infills,
in Fig. 4.21 the two-dimensional PDF of the α = [α1, α2]

T vector of fluctuations is
sketched in the two cases of uncorrelated and correlated fluctuations, in the latter
case assuming a correlation factor ρ = 0.8.
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FIGURE 4.21: Comparison of α = [α1, α2]
T vector of fluctuations for

uncorrelated ((a), ρ = 0 ) and correlated assumptions ((b), ρ = 0.8 )

4.3.3 Probability-based modelling techniques

As said above, the topic dealt with in this section is part of a broader and more
general class of problems which are related to the structural analysis of systems with
uncertain parameters. In particular, the uncertain variables can be of geometrical or
mechanical nature. Here, the stochastic modeling of the masonry equivalent strut
width implicitly incorporates both the uncertainty in the mechanical parameters of
the masonry and the uncertainty of the geometric definition of the equivalent truss
member.

The structural response of masonry infilled RC framed structures is investigated
via the probability approach of the section 3.2, i.e. a handy probabilistic method of
analysis that combines the APDM method with the PTM. This combined method,
first time applied to masonry infilled RC frames, leads to the determination of the
PDF response directly, i.e., without requiring any sampling technique. In order to
summarize and clarify the main steps of the proposed algorithm, a schematic flow-
chart has been constructed and reported in Fig. 4.22. In this flow-chart it is clearly
shown how the two probabilistic methods (APDM and PTM) are linked together
to derive the PDF of the system response directly, resorting to the use of the CF as
explained above.
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FIGURE 4.22: Flow chart of the proposed probabilistic procedure

4.3.4 Numerical examples

The proposed probabilistic procedure is here applied to compute the PDF of the
response of masonry infilled RC frames in which the equivalent diagonal pin-jointed
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struts are assumed uncertain. For the sake of simplicity, reference is made to a planar
frame of a regular RC structure.

 

FIGURE 4.23: Sketch of the RC frame analyzed in the numerical ex-
ample

level G1kN/m2 + G2kN/m2 QkN/m2 ψ2
1

Floor 8.0 2.0 0.3

TABLE 4.4: Distributed load per unit area applied to the one-way
floor slab for every level of the building

The elevation and plan views of the RC structure is shown in Fig. 4.23. The fol-
lowing data are assumed as known (deterministically) input parameters: bay width
equal to 6.0 m , inter-story height 3.2 m , column sections 40× 60 cm , beam sec-
tions 30× 50 cm , concrete having Young’s modulus Ec = 30 GPa , which is typical
of ordinary concrete structural elements (Pisano, Fuschi, and De Domenico, 2013a;
Pisano, Fuschi, and De Domenico, 2013b; Pisano, Fuschi, and De Domenico, 2014;
Pisano, Fuschi, and De Domenico, 2015; De Domenico et al., 2014; De Domenico,
Pisano, and Fuschi, 2014; De Domenico, 2015), masonry with mean Young’s mod-
ulus Ew = 5 GPa, mean Poisson’s ratio in the diagonal direction νd = 0.25, and
thickness tw = 40 cm. The loads acting on the planar frame are calculated based on
the loads per unit area reported in Table 4.4.
The seismic analysis is performed by means of an equivalent static lateral force pro-
cedure, with a distribution of horizontal forces detected by the response spectrum
of the installation site, whose shape is reported in Fig. 4.24. The installation site is
placed in Messina, Italy, and the peak ground acceleration (PGA) is üg0 = 0.254g
with g denoting the gravity acceleration. The first (fundamental) period of vibration
is calculated according to the simplified formula for reinforced concrete building
(Todaro, 2008)

T1 = CH3/4 = 0.075(9.6)3/4 × 0.41s (4.30)
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FIGURE 4.24: Elastic response spectrum of the installation site of the
building

The lateral (equivalent) seismic forces acting along the building height are dis-
tributed according to the fundamental mode of vibration of the building (Todaro,
2008), and are scaled to the spectral acceleration of the elastic response spectrum at
the first mode of vibration Spa (T1)

Fi = Fh
zi ·Wi

∑j zj ·Wj
(4.31)

with Fh = Spa (T1) · λ ·Wtot/g, λ = 0.85 (Todaro, 2008), and Wtot = ∑j Wj is the total
weight of the building. Adopting the elastic- (rather than the design-) response spec-
trum for computing the seismic force distribution is consistent with the assumption
of a linear-elastic behavior of the masonry infilled RC frame as a whole, i.e., only
the elastic response is investigated in this work. Investigating the post-elastic be-
havior of the structure would imply a modification of the proposed procedure to
incorporate a nonlinear constitutive behavior of the diagonal struts (Crisafulli, Carr,
and Park, 2000) and, consequently, would justify the adoption of a behavior fac-
tor greater than one to describe the energy dissipation mechanisms occurring in the
structure. The main aim of this work is the probabilistic characterization of the in-
plane elastic response of the masonry infilled RC frame, while the analysis of this
postelastic behavior is left for future research.
The results presented in this Section aim to highlight the influence of the uncertain
characteristics of the masonry infills on a few response indicators of the RC frame.
To this aim, the PDFs of several response indicators have been computed through
the combined APDM and PTM methods of analysis. To validate the proposed prob-
abilistic procedure, comparison against Monte Carlo simulation results (obtained
with thousands of samples and, consequently, requiring much higher computational
effort) is made for just a few selected quantities. Moreover, to demonstrate the con-
sistency of the results of the combined APDM+PTM with the APDM method pro-
posed by Falsone and Impollonia (Falsone and Impollonia, 2002) in addition to the
Monte Carlo technique we also compare the results with the procedure presented in
(Falsone and Impollonia, 2002). In this way, the improvements and computational
savings achieved by the proposed probabilistic procedure can be assessed in com-
parison with two alternative probabilistic techniques.
Considering the geometric and mechanical properties of the analyzed masonry in-
filled RC frame, application of the empirical expressions reported in Table 1 along
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with the assumptions outlined above provides the probabilistic characterization of
the equivalent strut widths in terms of a physically-based (in the spirit of a macro-
modelling approach) JPDF pα(α) of the fluctuations α = [α1, · · · , α6]

T The adjective
“physically-based” refers to the fact that the input PDF pα(α) derives from some
empirical (macro-modelling) expressions proposed in the literature. Therefore, the
expressions reported in Table 1 form the basis of the probabilistic characterization
of the fluctuations in this probabilistic study Subsequently, the procedures proposed
are applied to obtain a probabilistic characterization of the system response in terms
of a variety of response indicators. As an example, in Fig. 4.25 the PDF of the last-
floor displacement (corresponding to node 4, i.e., ux4 ) is shown. In this first case,
we assumed that the α = [α1, · · · , α6]

T fluctuation variables are probabilistically de-
scribed by a zero-mean multivariate normal distribution that best fits the empirical
values. Moreover, the α = [α1, · · · , α6]

T fluctuations are also assumed as uncorre-
lated random variables in this first example. By inspection of Fig. 4.25 it is noted that
the proposed probabilistic procedure is able to provide the PDF of the displacement
response, which is only approximately described by the other two techniques (MCS
and APDM) depending on the number of samples utilized. The first consideration
is about the mean value of the top -story displacement, that is, µx4 = 8.87× 10−3 m.
The displacement response spectrum corresponding to the first natural period of the
frame without diagonal pin-jointed struts (T1 = 0.41s) is µx4,spectrum = 3.24× 10−2

m.

 

FIGURE 4.25: PDF of the last-floor displacement (node 4) for normal
distribution assumption and uncorrelated fluctuations: Comparison

between the three probabilistic methods

Obviously, the introduction of the struts leads to a significantly reduce, of al-
most four times, the displacement due to a stiffening contribution that reduces the
first natural period accordingly. Furthermore, the deterministic value of the dis-
placement computed adopting the largest stiffness of the diagonal struts among the
empirical expressions reported in Table 4.3 is ux,4min = 6.80 × 10−3 m, while that
corresponding to the minimum strut width (related to the minimum stiffness) is
ux,4max = 1.21 × 10−2 m. Next, in order to take into account the correlation that
may exist between the mechanical properties of masonry infills that are close to each
other, a correlation function has been introduced. According to the previous sec-
tions, this correlation function depends upon the distance between the centroid of
each diagonal strut element, i.e., ρ = ρ(d), in particular the following exponential
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decaying function has been assumed

ρ = exp
(
− d

λ

)
(4.32)

where d =
∥∥xi − xj

∥∥ is the Euclidean distance between the centroid of the strut i
and j, while λ = 15 m is an arbitrary correlation length that is here chosen such
that two adjacent masonry infills have a correlation equal to 0.8. In Fig. 4.26 the
PDF of the top-story displacement (node 4) is illustrated for normal distribution
assumption of the fluctuations, but assuming the correlation function given in Eq.
4.32. It is noted that the introducing cross-correlation terms within the covariance
matrix of the fluctuation Σα requires a larger number of samples to approximate the
PDF given by the proposed probabilistic procedure. Indeed, for the given number
of samples adopted also for the previous case ( 105 samples), little deviations are
observed by comparing the PDF with the APDM-based approximated one. The PDF
and cumulative distribution function (CDF) of the last-floor displacement in the two
cases of uncorrelated and correlated fluctuations α = [α1, · · · , α6]

T are depicted in
Fig. 4.27.

 

FIGURE 4.26: PDF of the last-floor displacement (node 4) for nor-
mal distribution assumption and correlated fluctuations between the

struts: Comparison between the three probabilistic methods

It is noted that the two assumptions not only lead to a slightly different mean
value µux4 (which is lower in the correlated case), but also produce remarkable dif-
ferences in terms of characteristic values (95th percentile of the distribution). In
particular, such characteristic value is about 20% higher in the correlated case due
to the different shape of the distribution. Also, in the more realistic scenario of cor-
related fluctuations the dispersion of the displacement values is found to be higher
than in the case of uncorrelated fluctuations. Furthermore, it is also noticed that
the deterministic value of the last-floor displacement computed assuming that no
fluctuations are present in the masonry panels (i.e., w = w0 and a = 0 for all the
equivalent diagonal struts) is in between the two mean values in the uncorrelated
and correlated cases.
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FIGURE 4.27: PDF (left) and CDF (right) of the last-floor displace-
ment (node 4) for normal distribution in the two hypotheses of un-

correlated and correlated fluctuations α = [α1, · · · , α6]
T

For completeness, the PDF of the last-floor displacement (node 4) has also been
computed via the uniform distribution assumption for the fluctuations, which im-
plies that all the empirical macro-modelling expressions have an equal probability of
occurrence. By looking at Fig. 4.28, similar trends to those already observed in Fig.
4.25 for the normal distribution assumption are obtained, and similar conclusions
can be drawn. In Fig. 4.29, the three distributions are compared with each other.
It is noted that both the mean value and the characteristic value (95th percentile of
the distribution) of the last-floor displacement are lower in the case of uniform dis-
tribution as compared to the two normal distributions. In the case of the uniform
distribution the dispersion around the mean value is reduced, whereas in the case of
normal distribution with correlated fluctuations the dispersion is amplified. More-
over, the deterministic value of ux4 in the absence of fluctuations is more or less
comprised between the three mean values of the three above mentioned distribu-
tions.

Once the displacement vector u has been characterized probabilistically through
the knowledge of the relevant PDF pu(u), any other response indicator of interest
can easily be computed as a linear combination of the components of the u vector,
according to the finite element method. As an example, in Fig. 4.31 the PDF of
the third inter-story drift ∆ux43 = ux4 − ux3 is displayed as computed by the three
probabilistic procedures considering that the fluctuations are uniformly distributed
between the αmin and αmax values.

In the same graph, we also report the deterministic interstory drift values calcu-
lated by assuming the minimum and maximum values of the i w discrete set. As ex-
pected, since αmin and αmax do not reflect the values of wmin and wmax, the determinis-
tic max value does not represent the 100th percentile of the PDF p∆ux43 , which is con-
sistent with what explained in the sections above. The PDF has a slightly asymmet-
ric shape and all the three probabilistic procedure are in good agreement with each
other. In Fig. 4.31, the PDF and CDF of the third inter-story drift ∆ux43 = ux4 − ux3
is illustrated and compared for the case of normal distribution (uncorrelated and
correlated) and uniform distribution of the fluctuations.
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FIGURE 4.28: PDF of the last-floor displacement (node 4) for uniform
distribution assumption of the fluctuations: Comparison between the

three probabilistic methods
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FIGURE 4.29: PDF of the last-floor displacement (node 4) for uniform
distribution assumption of the fluctuations: Comparison between the

three probabilistic methods

The results are more or less in line with the previous trends observed for the
last-floor displacement ux4: the characteristic value of the distribution is lower in
the case of uniform distribution than the normal distributions. However, the mean
value from the uniform distribution is in between that of the normal distribution
for uncorrelated and correlated assumptions, which is different from the results dis-
cussed above for ux4, although the three mean values are very close to each other.
The dispersion of the p∆ux43 is reduced for uniform distribution as compared to nor-
mal distribution, whereas it is amplified in the case of normal distribution with cor-
related fluctuations. The deterministic value obtained with w0 (in the absence of
fluctuations, α = 0 ) lies in between the two mean values calculated with the uni-
form and normal distributions assumptions of the fluctuations.
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FIGURE 4.31: PDF (left) and CDF (right) of the third interstory drift
( ∆ux43 = ux4 − ux3) for normal (uncorrelated and correlated) and

uniform distribution assumption

It has been observed that the influence of the stiffening contributions offered by
the equivalent pin-jointed diagonal struts is more significant for determining the
stress and strain in the column elements rather than in the beam elements. This
is reasonable, since the masonry infills increase the lateral stiffness of the frame as
compared to the case in which they are ignored in the calculation.
To quantify this effect, in Fig. 4.32, the PDF and CDF of the moment at the top of the
column 3-2 (M32) are shown. It is noted that the introduction of the struts with un-
certain mechanical properties even produce changes in the signs of the moments for
a frame subject to an equivalent distribution of seismic lateral forces as those consid-
ered in this example through Eq. 4.31. In this case, it is also noted that the correlated
fluctuations yield a PDF that has less dispersion than in the case of uncorrelated fluc-
tuations. This is in opposite trend as compared to the previous plots. However, from
a broader examination of other response quantities (not reported here for the sake
of brevity) it was found that the dispersion of such indicators can be higher or lower
by comparing the correlated and uncorrelated assumptions. Therefore, no apparent
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relationship between the correlation of the fluctuations and the shape of the PDF can
be inferred, since no clear tendency is observed.
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FIGURE 4.32: PDF (left) and CDF (right) of the moment at the top of
the column 3-2 (M32) for normal (uncorrelated and correlated) and

uniform distribution assumption

response quantity
response

designation

deterministic
value for

w = w0 (α = 0)

mean
value µ

standard
deviation σ

COV σ/µ

top-story
displacement

ux4 [m] 0.0087 0.0086 0.00034 0.039

last interstory drift ∆ux43[m] 0.0026 0.0026 0.00015 0.059
moment on the top

of the column
M32 [kNm] 24.02 23.38 12.47 0.53

moment on the
beam end

M37 [kNm] 33.10 33.61 3.97 0.12

moment reaction
at the base of the
central column

RM5 [kNm] 249.5 258.00 60.27 0.23

shear force on the
top of the column

V32 [kN] 6.10 5.88 7.92 1.35

shear force on the
beam end

V37 [kN] 81.43 81.64 1.28 0.016

TABLE 4.5: List of characteristic parameters of the probabilistic distri-
bution of a set of response quantities (uniform distribution assump-

tion of the fluctuations)

On the contrary, the influence of the fluctuations on the stress and strains in the
beam elements is less pronounced. As an example, in Fig. 4.33, the PDF and CDF of
the moment at the left side of the beam 3-7 ( M37 ) are illustrated. Unlike the prob-
abilistic characterization of the moment on the column, in this case the values are
almost entirely positive (i.e., they do not exhibit sign changes), and the influence of
the uncertainty in the masonry panels is less pronounced. In this case, the correlated
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fluctuations give more dispersed values, in line with other response quantities. Fur-
thermore, the deterministic value of M37 identified by an analysis with w = w0 and
α = 0 for all the struts is again bounded by the mean values of the PDFs for uniform
and normal distribution assumptions. In order to highlight the remarkably different
influence of the uncertain mechanical properties of the masonry infills on the column
and beam elements, in Fig. 4.34, the PDFs of the moments on the beam and column
elements are compared with each other. The two Figs refer to different distribution
assumptions of the fluctuations (normal and uniform), but the general qualitative
conclusions for the two cases are almost identical. These conclusions are confirmed
also for other response quantities, for instance, moments evaluated at other nodes
or shear forces.

response quantity
response

designation

deterministic
value for

w = w0 (α = 0)

mean
value µ

standard
deviation σ

COV σ/µ

top-story
displacement

ux4 [m] 0.0087 0.0089 0.0008 0.93

last interstory drift ∆ux43[m] 0.0026 0.0027 0.00038 0.14
moment on the top

of the column
M32 [kNm] 24.02 26.14 30.36 1.16

moment on the
beam end

M37 [kNm] 33.10 30.55 9.79 0.32

moment reaction
at the base of the
central column

RM5 [kNm] 249.5 256.15 47.29 0.18

shear force on the
top of the column

V32 [kN] 6.10 7.12 19.14 2.69

shear force on the
beam end

V37 [kN] 81.43 80.69 3.18 0.039

TABLE 4.6: List of characteristic parameters of the probabilistic distri-
bution of a set of response quantities (normal uncorrelated distribu-

tion of the fluctuations)
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FIGURE 4.33: PDF (left) and CDF (right) of the moment at the top of
the column 3-7 ( M37 ) for normal (uncorrelated and correlated) and

uniform distribution assumption

response quantity
response

designation

deterministic
value for

w = w0 (α = 0)

mean
value µ

standard
deviation σ

COV σ/µ

top-story
displacement

ux4 [m] 0.0087 0.0089 0.0017 0.19

last interstory drift ∆ux43[m] 0.0026 0.0027 0.0005 0.19
moment on the top

of the column
M32 [kNm] 24.02 26.87 20.58 0.77

moment on the
beam end

M37 [kNm] 33.10 30.27 14.65 0.48

moment reaction
at the base of the
central column

RM5 [kNm] 249.5 257.59 58.19 0.22

shear force on the
top of the column

V32 [kN] 6.10 5.24 10.62 2.03

shear force on the
beam end

V37 [kN] 81.43 80.65 5.2 0.064

TABLE 4.7: List of characteristic parameters of the probabilistic distri-
bution of a set of response quantities (normal correlated distribution

of the fluctuations))
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FIGURE 4.34: Comparison of PDF of the moment on the column ( M32
) and beam (M37) for normal uncorrelated (left) and uniform (right)

distribution assumption of the fluctuations

Therefore, uncertain mechanical properties of the masonry infills have a great
influence on the column stress and strain values, and a reduced influence on the
beam response quantities. The proposed procedure also enables the determination
of the JPDF between two or more response quantities. As an example, in Fig. 4.35,
the JPDF of the moments on the beam M37 and that on the column M32 is displayed,
namely pM32 M37 (M32, M37). This JPDF can be interpreted for drawing some general
conclusions from a design viewpoint. It is well-known that capacity design estab-
lishes a hierarchy of zones among the structural members (Avramidis et al., 2015),
which is a concept incorporated in seismic provisions (Council, 1997; Todaro, 2008).
The failure mode of the beam is usually deemed to be more ductile than that of the
column.

Therefore, capacity design principles promote failure mechanisms occurring in
the beam before those occurring in the column. In a simplified manner, it can be
assumed that the design flexural resistance MRd is related to the design bending
moment MEd calculated in the analysis. Therefore, it is interesting to scrutinize to
what extent the typical ratio between moments in beam and column elements is af-
fected by the uncertainty on the masonry panels. To this aim, in the contour plots
on the bottom part of Fig. 4.35 a dashed line has been reported that corresponds to
M32 = M37 . This means that points lying above this dashed line in the first quad-
rant and lying below this dashed line in the third quadrant represent situations in
which |M32| > |M37|, thus jeopardizing the correct principle of the strength hierar-
chy underlying the “weak-beam-strongcolumns” principle. This, in turn, is likely
to produce less ductile collapse mechanism in the masonry infilled RC frame, pro-
vided the design resistance is assumed in line with the design bending moments. It
is noted that there exists such a probability of occurrence of this phenomenon in both
the normal and uniform distribution assumption of the fluctuations. This outcome
is affected by the distribution of the stress in the masonry infilled RC frame induced
by the presence of the uncertain masonry panels. Although the present analysis is
extremely simplified, it is possible to recognize than this link is important to provide
physical meaning and usefulness of the proposed probabilistic approach of analysis
in the case of RC frames with uncertain masonry infills. A summary of the results is
reported in Table 4.5, Tables 4.6 and 4.7 for uniform, normal uncorrelated and nor-
mal correlated fluctuations, respectively. By inspection of these tables, the following
conclusions can be drawn:
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• from the PDF are very close to the deterministic values that can be computed
by an analysis of the RC frame in which the diagonal pin-jointed struts are as-
signed the mean width value w = w0, i.e., with a zero value of the fluctuations
according to a mere deterministic analysis;

• the dispersion of the distribution expressed by the standard deviation σ is dif-
ferent from case to case: in general, the sensitivity of the response indicators to
the uncertainty of the masonry infills is more pronounced for column-related
quantities (e.g., the moment on the top of the column M32 or the shear force
V32) than for beam-related variables;

• the more pronounced dispersions of the distribution, indicated by the value
of the COV, are higher in the cases of column-related quantities, especially the
shear forces on the columns.

It is concluded that careful attention must be paid to the values of the stress and
strains in a RC frame with masonry infills, especially if the panels are affected by
largely scattered results arising from preliminary experiments on the constituting
elements and materials. The examples shown in this work, although carried out on
a simple structure and under an equivalent static lateral force procedure, give a pre-
liminary idea of the influence of the masonry infills on a set of response indicators
for different modelling assumptions, all related to a macro-modeling approach, and
for different distribution assumptions of the relevant equivalent strut widths simu-
lating, in a simplified way, the presence of the stiffening contribution offered by the
masonry infills themselves.

 

 

32 37

straight line
M M

32 37
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FIGURE 4.35: JPDF between the moment on the column ( M32 ) and
on the beam ( M37 ) for normal uncorrelated (left) and uniform (right)

distribution assumption of the fluctuations.
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FIGURE 4.36: PDF of the last-floor displacement (ux4) and of the mo-
ment on the top of the column (M32) compared to deterministic val-

ues predicted by four different deterministic formulations

Finally, in order to provide insight into the reliability of the proposed predicting
expressions for the masonry infill stiffening contribution, a final analysis has been
conducted. In this final analysis, the influence of the uncertain nature of the Young’s
modulus has also been investigated. Instead of assuming a deterministic E value,
the sensitivity of the results to the variability of the Young’s modulus is here stud-
ied. The E value has been sampled by assuming a uniform distribution between
Ewmin = 4 GPa and Ewmax = 6 GPa, and the empirical expressions reported in Ta-
ble 4.3 have been repeatedly applied in order to have a wider set of statistical data
to assess the accuracy of the empirical expressions in comparison with probabilistic
results. We here report the PDF of two response indicators: the last-floor displace-
ment ux4 and the bending moment on the top of the column M32. Four alterna-
tives of empirical formulae predicting the same response quantities are employed,
within a deterministic framework, for comparison purposes. In this way, we can as-
sess the accuracy of four different predicting expressions when compared to a more
complete probabilistic analysis. From Fig. 4.36, it is noted that the influence of the
Young’s modulus on the probabilistic characterization of the response, at least in the
range of Ew explored here, is not particularly significant. Indeed, the obtained PDF
with modulus variation is very similar to that obtained with the mean value of Ew.
Furthermore, the four deterministic values of the two response quantities ux4 and
M32 predicted with the four considered formulations give very large scatter of re-
sults. In particular, it is seen that the Mainstone, 1974 expression (Mainstone, 1974),
also adopted by FEMA-274 and 306 (Council, 1997; Council and Response, 1999),
provides extremely large values of the response, on the conservative side. More
reasonable estimates of the response mean value as computed by the probabilistic
analysis are provided by the other three formulations considered. However, these
three formulations namely, Bazan and Meli 1980 (Bazan and Meli, 1980), Liauw and
Kwan 1984 (Te-Chang and Kwok-Hung, 1984), Cavaleri et al. 2005 (Cavaleri, Fos-
setti, and Papia, 2005)) leads to results that are not particularly close to the mean
value of the corresponding PDF, especially for the displacement.
It seems that the formula proposed by Bazan and Meli 1980 (Bazan and Meli, 1980)
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is the most accurate one because it is in reasonable agreement with the mean value
and it provides conservative estimates of the response.
As a final remark, this comparison definitely highlights the scatter of results that
the different formulations may produce, and underlines the importance of proba-
bilistic studies to account for the uncertain nature of the masonry infill mechanical
behaviour.

4.3.5 Some remarks

The main contents and findings of this research work are summarized as follows:

• A fully probabilistic approach has been proposed for the analysis of the in-
plane response of masonry infilled RC frames. More specifically, this work has
been focused on the investigation of the effects of the masonry infills uncer-
tainty on the structural response of RC frames. A macro-modeling approach
has been adopted in which the masonry panels are considered via equivalent
diagonal pin-jointed struts. The strut widths have been considered as random
variables in order to incorporate the stochastic nature of the masonry infills
ascribed to their inherent heterogeneous nature and to the large scatter of cor-
responding experimental results.

• The probabilistic characterization of the complex mechanical behavior of the
masonry infills has been based upon an ensemble of empirical expressions
proposed in the literature by different authors. For given geometrical and me-
chanical properties of an assigned masonry infilled RC frame, a procedure for
deriving the probabilistic input data of the strut widths has been described,
and different modelling assumptions in terms of correlation and shape of the
PDF have been explored.

• An effective numerical procedure has been proposed that, unlike Monte-Carlo-
based methods, avoids sampling techniques thus implying reduced computa-
tional effort, especially for structures with several DOFs. This procedure pro-
vides the probabilistic characterization of the system response directly, once
the probabilistic characterization of the masonry panels has been established
as per the previous bullet point. From the literature on this field, such a di-
rect probability-based procedure has never been considered for the analysis of
masonry infilled RC frames, which represents the main novelty of this contri-
bution.

• To demonstrate the kind of results that this procedure can offer, a simple ap-
plication has been presented, consisting in an equivalent linear analysis of a
regular masonry infilled reinforced concrete framed structure. The PDF of a
set of response indicators has been determined, and has been compared to the
PDF obtained via alternative (more cumbersome) techniques like Monte Carlo
method and other strategies earlier proposed in the literature, all requiring
sampling operations and providing just an approximation of the PDF as the
number of sampling increases.

• The sensitivity of the response to the modeling assumptions, mainly the shape
of the PDF and the inherent correlation between the fluctuations of the various
strut widths associated with the various masonry panels, has been discussed.
For most of the response indicators analyzed, incorporating the correlation of
the strut widths in the probabilistic characterization of the input data has led
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to more dispersed probabilistic characterization of the system response. Fur-
thermore, it has been observed that a deterministic analysis carried out con-
sidering the mean values of the strut widths provides reasonable estimates of
the mean response as determined by the probabilistic approach. However, as a
matter of fact, deterministic analysis cannot give indications on the probability
distribution, which is important for reliability-based design.

• As expected, the influence of the uncertainty of the masonry infills is more
pronounced for column-related quantities (e.g., the moment, shear forces, etc.)
rather than for beam-related variables. Furthermore, it has also observed that,
due to the presence of uncertain masonry infills, the weak-beam-strong-columns
principle underlying the strength hierarchy criterion might be jeopardized.

• Based on the last two conclusions, it is recommended that conservative safety
factors be applied for designing the columns in masonry infilled RC frames in
order to take into account, in a simplified way, the randomness of the response
due to the stochastic nature of the masonry panels.

• A more specific analysis on four different formulations proposed in the litera-
ture has revealed which are the more reliable formulations that are better able
to reproduce the mean value of the response as indicated in the present prob-
abilistic study.

4.4 Conclusion

In this chapter, the structural static response of systems characterized by uncertain-
ties in the model designed due to simplifying assumptions in analytical models
and/or simplified methods have been investigated. Two different stochastic ap-
proaches of two typical examples in structural engineering are proposed thanks to
the PTM. In particular, in section 4.2 a fully probabilistic approach has been pre-
sented to describe the structural response of steel beams and frames with uncertain
semi-rigid connections. From this study, it was clear that the semirigid connections,
by nature characterized by largely scattered results, should be more appropriately
dealt with via a probabilistic approach. The static analysis of the in-plane response
of masonry infilled RC frames is reported in section 4.3. The main focus of this sec-
tion is the probabilistic characterization of the complex mechanical behavior of the
masonry infills. Through the PTM a direct probability-based procedure has been
developed for the analysis of masonry infilled RC frames. From this chapter, it is
possible to draw how the PTM is a useful tool also for the stochastic analysis of
uncertain structural systems.





107

Chapter 5

Local and nonlocal randomness in
structures and in turbulent velocity
fields

5.1 Introduction

In many mechanical problems, the uncertainties in defining geometrical and/or ma-
terial properties lead to model these latter as random fields (RFs). RFs are character-
ized, besides of the single-point statistics, such as the mean value and the variance,
also by the correlation functions that give the level of stochastic correlation of the
RFs evaluated at two, or more, points. Even for equal single-point statistics, the re-
sponse of any mechanical problem may strongly depend on the kind of correlation
functions defining the RFs (Vanmarcke, 2010).
Here, two statistical aspects of random fields, the fractal and Hurst effects, will be
introduced. Generally, the fractal dimension, D, is described as a roughness param-
eter, i.e. a local behavior of the RF; while the Hurst parameter, H, describes the
long-range persistence, i.e. a non-local (global) behavior of the RF.
From the literature of the last decades, it is possible to find many papers dealing
with the analysis of fractal and Hurst effects in some mechanical problems, such as
in fracture surfaces (Turcotte, 1997; Laudani and Ostoja-Starzewski, 2020), turbu-
lence flows (Scotti, Meneveau, and Saddoughi, 1995; Jaw and Chen, 1999; Laudani
et al., 2020), random vibrations (Shen, Ostoja-Starzewski, and Porcu, 2015b). In this
chapter, a link between the statistical RF theory and the local and non-local random-
ness in stochastic mechanics will be addressed. In fact, in the literature, it is possible
to find some kinds of correlation functions that allow capturing the local behavior
of the RF (White Noise, Matérn, and Powered exponential correlation function) or
their both local and non-local characteristics (Cauchy and Dagum correlation func-
tion). In particular, with Cauchy and Dagum correlation function it is possible to
deal separately with the fractal dimension D and the Hurst exponent H, i.e. the lo-
cal and the non-local (global) behavior of the RF. Typically, i.e. for self-affine RFs
(and random processes), the latter two are linked by the relation H = 2− D. The
capability of the above two-parameter correlation families allowing a disjoint char-
acterization of fractal and long-dependence properties makes these functions highly
appealing, from an engineering point of view, for the study statistical analysis of
physical phenomena and mechanical problems.
The use of these classes of correlation functions has made it possible to investigate,
from a probabilistic point of view, three apparently different stochastic topics but
linked by the same purpose, that means to investigate the incidence of local and
nonlocal randomness effects. In particular, in section 5.1, the classical problem of
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peeling a beam off a substrate is studied through a re-examination of Griffith’s frac-
ture criterion in the presence of multiscale random properties. A paradigm of that
theory is offered by the experiment carried out by Obreimoff will be investigate from
a stochastic point of view. Although, this topic was treated in that stochastic setting
(Ostoja-Starzewski, 2004), albeit without the consideration of the correlation struc-
ture of the RF involved. So section 5.1, will investigate the latter aspect. Then, the
section 5.2 will try to give an answer to the following question: how a local or non-
local correlation of the flexibility field affects the level of the randomness response
in displacement and/or the internal forces of the redundant beams? Although these
kinds of investigations are not new in the literature (Demmie and Ostoja-Starzewski,
2016), here a mathematical similarity between them and the non-local integral con-
stitutive equations (Eringen, 1983) will be shown evidencing analogy between the
kernel function considered in the constitutive equations and the correlation func-
tion used for representing the statistic dependence level between the deformabilities
measured at two different sections of beams. Observations about the properties of
the kernel function in the non-local constitutive equations are also not new (Gha-
vanloo, Rafii-Tabar, and Fazelzadeh, 2019; Challamel, 2018), that is to say, that the
spatial non-locality deals with long-range interaction and that the kernel function
should converge to the Dirac delta function in order to reduce the non-local elastic-
ity to the classical (local) elasticity. Section 5.3 deals with the statistical description of
turbulence flows. The statistical description of turbulence dates back to the seminal
works of von Kármán, Robertson, Kolmogorov, Yaglom, and Batchelor (Batchelor,
1953). Various models of the spatial correlation structure and associated spectrum
of turbulent velocity fields have been proposed over the last several decades. Clas-
sic models, include, among others, the well-known von Kármán, Kaimal, Daven-
port, Harris, and Lumley-Panofsky. Various formulations for a range of flows using
different arguments have also been proprosed. For instance, Mann (Mann, 1994)
used Rapid Distorsion Theory to describe the spectral velocity tensor, and Segalini
et al. (Segalini et al., 2015) proposed a spectral model for the velocity tensor in strat-
ified flows. From the Generalized Cauchy and Dagum models, two novel velocity
spectrum will be presented. Close inspection and evaluation of these two models
using field data from a sonic anemometer located within the atmospheric surface
layer will be done. The content of this chapter is mainly based on two papers under
publication (Laudani et al., 2020; Falsone and Laudani, 2020a).

5.2 Fracture of beams with random field properties: fractal
and Hurst effects

In this section, the classical problem of peeling a beam off a substrate is studied
through a re-examination of Griffith’s fracture criterion in the presence of multiscale
random properties.

Four types of wide-sense homogeneous Gaussian random fields of the vector
Young’s modulus E, surface energy density γ, parametrized by the beam axis, are
considered: Ornstein–Uhlenbeck, Matérn, Cauchy, and Dagum. The latter two are
multiscale and allow decoupling of the fractal dimension and Hurst effects. Also cal-
culated is the variance of the crack driving force G with any given type of random
field in terms of the covariances of E and γ, under either fixed-grip or dead-load
conditions. This investigation is complemented by a study of the stochastic crack
stability which involves a stochastic competition between potential and surface en-
ergies.
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The linear elastic fracture mechanics involves two material properties: the mate-
rial stiffness tensor C and the surface energy γ. A paradigm of that theory is offered
by the experiment carried out by Obreimoff on the cleavage of mica off a rigid sub-
strate (Obreimoff, 1930), Fig. 5.1. In this one-dimensional (1d) situation, one deals
with the beam bending, so that C is represented by Young’s modulus E, while γ
pertains to the beam-substrate interface.

a

x

x=0

u

a

x

x=0

P

FIGURE 5.1: (A) Dead-load condition with P prescribed at x = 0. (B)
Fixed-grip condition with u prescribed at x = 0.

The theoretical method relies on the Griffith fracture criterion for crack growth
(Ostoja-Starzewski, 2004)

G =
∂W
∂A
− ∂U

∂A
= 2γ, (5.1)

where G is the strain energy release rate, W is the work performed by the applied
loads, U is the elastic strain energy, A is the crack surface area formed, and γ is
the energy required to form a unit of the new material surface. Two special cases –
the so-called “dead-load” and “fixed-grips” conditions – are usually encountered in
practice. In the dead-load case, with reference to Clapeyron’s theorem, the work per-
formed by the constantly applied loads is twice the increase of elastic strain energy
(∂W/∂A = 2∂U/∂A). Thus, Eq. 5.1 takes form

G =
∂U
∂A

= 2γ. (5.2)

In the fixed-grips case, the surface of the continuum on which the loads are applied
is assumed to remain stationary during crack growth. If the work of the body forces
is ignored, the work performed by the applied loads vanishes and Eq. 5.2 takes the
form:

G = −∂U
∂A

= 2γ. (5.3)

In the above and conventionally (Gdoutos, 1993), both E and γ are taken to be
constant, but, given the presence of a randomly multiscale-heterogeneous material
structure, E and γ should, more realistically, be taken as random fields (RFs) along
the beam’s span x. The beam is then described by a vector RF {E, γ}.

One way to classify RFs (equivalently, random processes) is to distinguish be-
tween those that do versus those do not possess fractal-and-Hurst properties. Mod-
els that do not allow such characteristics are those with white noise, exponential, and
Matérn correlations. The need to actually include such characteristics is motivated
by the richness of temporal and spatial phenomena in the real world: geophysics, at-
mosphere, biology, and economy (Mandelbrot, 1982). In particular, fracture mechan-
ics theory provides stepping-stone models to studies of many critical phenomena in
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geomechanics (Turcotte, 1997), where long cracks like fault lines in geologically un-
stable areas are relevant in geotechnical and foundation engineering. In this section,
we focus on fracture of beams described by two classes of wide-sense homogeneous
RFs with fractal-and-Hurst characteristics: Cauchy (Gneiting and Schlather, 2004b)
and Dagum (Porcu et al., 2007). The correlation functions of these two types allow
a decoupling (i.e., independent choice) of the fractal dimension D and the Hurst ex-
ponent H. Typically, i.e. for self-affine RFs (and random processes), the latter two
are linked by the relation H = 2− D.

The objective of the present study is to examine how the strain energy U and
the strain energy release rate G are affected by Gaussian RFs E and γ, taken as ei-
ther Ornstein-Uhlenbeck, Matérn, Cauchy, or Dagum. Moreover, since through the
Cauchy and Dagum models it is possible to decouple the fractal-and-Hurst effects,
it has been believed that they are particularly useful in order to investigate whether
in the mechanics of fracture the response leads more to local or no-local stochastic
characteristics.

5.2.1 Background on covariance functions, fractal dimension, and Hurst
effect

Here a real-valued Gaussian RF F defined over a probability space (Ω, A, P) is used,
where P here denotes a Gaussian measure, and with realizations on X ⊂ R. F is
taken to be zero-mean and wide-sense homogeneous so that it is completely speci-
fied by second-order moments, in particular by the associated covariance function
C(·, ·) : R×R→ R defines as:

C (x1, x2) := Cov (F (x1) , F (x2)) . (5.4)

In view of the wide-sense homogeneous assumption, there exists a mapping CF :
R+ : ∪ {0} → R, such that

C (x1, x2) := CovF (|x1 − x2|) . (5.5)

This framework allows us to identify two important properties of RFs:

• The fractal dimension D reflects the local properties; it is a roughness measure
with a range [n , n + 1); since the focus is on beams, n = 1 is used.

• The long memory in time series (or spatial data) is associated with power-law
correlations and often referred to as the Hurst effect, characterized by the H
parameter (Mateu, Porcu, and Nicolis, 2007b).

These properties relate to those of the associated correlation function. Next, it is
important to assess the local regularity properties of the sample paths of a Gaussian
process. To this end, it has been established that, if, in the weakly homogeneous
case, for some α ∈ (0, 1), there holds

lim
r→0

(1− CF(r)) r−α = K, 0 < K < ∞; r > 0, (5.6)

where r = x2− x1. Then, with probability one, the fractal dimension of F(·) satisfies

D = dim (GrF) = min
(

1
α/2

, 1− α/2
)

, (5.7)
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where, as before, CF= covariance function of F. In Eq. 5.7, GrF = graph(F) =
{(x, F(x)) , x ∈ [−1, 1]} ⊂ R2 so that parameter α determines the fractal dimension
D.

The scaling laws describe how rather elementary measurements vary with the
resolution, a subject that along with the relation between index-α and D is discussed
at length in (Hall and Wood, 1993). Besides to the index-α related to the fractal
dimension D, for Gaussian RFs, it is also possible to distinguish an index-β related
to H [see (Adler, 2010) for an exposition of Gaussian index-β RF, where β = α/2].
Here, if for some β ∈ (0, 1)

lim
r→∞

CF(r)r−1+β = 1. (5.8)

Then the field is said to have a long memory, with H = β/2. For H ∈ (1/2, 1) or
H ∈ (0, 1/2) the correlation is said to be, respectively, persistent or anti-persistent
(Beran, 2017). The same properties can be studied through the Fourier transform
of the covariance function (i.e., the spectral density) under the conditions stated in
Tauberian-type and Abelian-type theorems (Bingham, Goldie, and Teugels, 1989),
with the parameters α and β interpreted in the opposite way. Basically, α is as-
sociated with the velocity of decay of the spectral density, while β with the local
behaviour of the spectral density around near-zero frequencies.

We shall consider these four types of RFs:

1. Ornstein–Uhlenbeck. In this case:

COU (r, µ) :=
µ

2
e−µr, r ≥ 0, (5.9)

where µ is a positive scaling parameter which in the limit µ → ∞ becomes
white noise.

2. Matérn. In this case (Matérn, 1986):

CM (r, ν) := rνKν(r), r ≥ 0, (5.10)

where ν = a parameter that determines the smoothness at the origin of CM,
and thus the mean square differentiability of F. Here, Kν= a modified Bessel
function of order ν. Note three special cases:

• CM(r, 1/2) = e−r which (as is well known) coincides with the covariance
function of the Ornstein–Uhlenbeck type;

• CM(r, 3/2) = (1 + r)CM(r, 1/2);

• CM(r, 5/2) = (1 + r + 3r2/3)CM(r, 1/2);

3. Generalized Cauchy (Gneiting and Schlather, 2004b). In this case:

CC (r, θ, η) :=
(

1 + rθ
)−η/θ

, r ≥ 0, (5.11)

which is positive definite for η > 0 and 0 < θ < 2. Special cases of this class
will also be of interest. In particular, CC(·; 2; γ) is the characteristic function
of the symmetric Bessel distribution, CC(·; α; α) is the characteristic function
of the Linnik distribution, and CC(·; 1; γ) is the symmetric generalized Linnik
characteristic function.
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4. Dagum (Mateu, Porcu, and Nicolis, 2007b). In this case:

CD (r, δ, ε) := 1−
(

1 + r−δ
)−ε/δ

, r ≥ 0, (5.12)

which is positive definite for 0 < ε < δ and 0 < θ < 2.

Figure 5.2 shows some sample realizations of the Gaussian Ornstein–Uhlenbeck
(which in the limit becomes a white noise), Matérn, Cauchy, and Dagum RFs, for
distinct parameter settings, all on 1d (one-dimensional domains, i.e. the beam axis).
The plots illustrate the trends in linking the local and global properties of RFs with
their associated correlation functions. In particular, in relation to Eqs. 5.6 and 5.8,
respectively, the realizations of the RFs have D = n + 1 − α/2, with probability
1, while the RF has a long memory with H = 1 − β/2. Thus, the parameter α is
associated with the fractal dimension and the parameter β allows one to evaluate
the Hurst effect.

Furthermore, the sub-plots (a)-(d) clearly show that the white noise, Matérn, and
Ornstein–Uhlenbeck RFs have no Hurst effects. As is well known, the smoothing
parameter ν can be interpreted as the parameter α for the estimation of the fractal
dimension (Gneiting, Kleiber, and Schlather, 2010; Gneiting, Ševčíková, and Perci-
val, 2012). In particular, for the Matérn model, the fractal dimension of a sample
path in Rn equals the maximum of n and n + 1− ν. For a differentiable field with
smoothness parameter ν > 1, the fractal dimension of a sample path equals its topo-
logical dimension, n. Generally, the larger the ν, the smoother the process. So, with
the Matérn model we can take into account the fractal characteristics, albeit with
light tails, in fact, in the sub-plots (c)-(d) show a fractal dimension D = 1. Moreover,
about the Ornstein–Uhlenbeck model, keeping in mind that this model is a special
case of the Matérn model when ν = 0.5, for the sub-plot (b), D = 1.5. It is worth
underlining that, in Eq. (9), µ is only a scalar parameter not linked to the fractal
dimension, so for this model the fractal dimension is constant.

In contradistinction to the Ornstein–Uhlenbeck and Matérn models, the Cauchy
and Dagum models are capable of generating RFs with independently given fractal
dimension and Hurst parameter. One can easily verify that the Cauchy model be-
haves like Eq. (6) α = θ = (0, 2] and like Eq. (8), β = η = (0, 1). If we focus on the
sub-plots (e) and (f), the interpretation is twofold: a smoother profile is associated
to a low value of D, as in sub-plot (e), (θ = 1.6 corresponding D = 1.2), instead of a
rougher profile associated with a high D, as in sub-plot (f), (θ = 0.2 corresponding
D = 1.9). If the long-memory parameter is large, similar values occur in lengthy
patches or clusters, and the realization stays at approximately the same level for
quite some length without noticeable jumps in value, as in sub-plot (e), (η = 0.2 cor-
responding H = 0.9), whereas if the long-memory parameter is low, the profile does
not persist at any given level and fluctuates rather quickly between two extremes
with significant jumps in value, as in sub-plot (f), (η = 1.6 correspond H = 0.2).

Although the Dagum model inverts the relation, as it behaves respectively like
(6) and (8) for α = ε = (0, 2] and β = δ = (0, 1), we observe the same behavior
for Dagum RFs as for Cauchy RFs. The sub-plot (g), (ε = 0.8 correspond D =
1.6), show quite smoother profiles than the sub-plot (h), (ε = 0.2 correspond D =
1.9). Similarly, in the sub-plot (g), (δ = 0.2 corresponds H = 0.9), we can see less
noticeable jumps than the sub-plot (h), (δ = 0.8 corresponds H = 0.6).
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FIGURE 5.2: Samples of random fields in 1d showing models under
consideration: (a) white-noise; (b) Ornstein-Uhlenbeck; (c-d) Matérn;

(e-f) Cauchy; (g-h) Dagum

5.2.2 Variance of the Strain Energy and the Strain Energy Release Rate

5.2.2.1 Dead-load conditions

The force is deterministic, but the kinematic variable is random (Ostoja-Starzewski,
2004), implying that only the second term in Eq. 5.1 remains, and, assuming a Euler-
Bernoulli beam, the strain energy is:
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U =
∫ a

0

M(x)2

2IE
dx. (5.13)

Here a is the crack length, M is bending moment, I is beam’s moment of inertia, and
E is elastic modulus. Henceforth, we simply work with a = A/B, where B is the
constant beam (and crack) width, so that, on account of Clapeyron’s theorem, the
strain energy release rate is

G =
∂U
B∂a

. (5.14)

Now, the beam’s elastic modulus E is taken as a sum of a constant mean 〈E〉 and a
zero-mean Gaussian WSS random field E

′
(ω, x)

E (ω, x) = 〈E〉+ E
′
(ω, x) , (5.15)

where Ω is the sample space of elementary events. The random material is thus
defined as an ensemble B = {B (ω) ; ω ∈ Ω} = {E (ω, x) ; ω ∈ Ω, x ∈ [0, a]}. Here-
inafter, we explicitly show the dependence on Ω , whenever we wish to indicate the
random nature of a given quantity prior to ensemble averaging.

It follows from Eq. 5.15 that U is a random integral, such that, for each and every
realization (ω ∈ Ω), we should consider

U (a, ω) =
∫ a

0

M(x)2

2IE (ω, x)
dx. (5.16)

The variance of the strain energy U(a) is determined as follows. First, by applying
the expectation operation to Eq. 5.16, we obtain

〈U (a, )〉 =
〈∫ a

0

M(x)2

2IE (ω, x)
dx
〉

=
∫ a

0

M(x)2

2I

〈
1
E

〉
. (5.17)

Next, given two points x1 and x2, we have two random variables E (x1) and E (x2),
so that the variance of U is found as

Var [U(a)] := 〈(U (a, E(x1))− 〈U(a)〉) (U (a, E(x2))− 〈U(a)〉)〉

=
∫ a

0

∫ a

0

M(x1)
2M(x2)2

4I2 CE−1 (x1, x2) dx1dx2,
(5.18)

in which we have used the covariance of the reciprocal Young’s modulus E−1(·) :=
1/E(·):

CE−1 (x1, x2) =

〈(
1

E(x1)
−
〈

1
E

〉)(
1

E(x2)
−
〈

1
E

〉)〉
=
〈(

E−1(x1)−
〈

E−1
〉) (

E−1(x2)−
〈

E−1
〉)〉

.
(5.19)

At this point, the PTM is applied to relate the covariance CE (x1, x2) with C−1
E (x1, x2).

Hence, given the JPDF pE (E(x1), E(x2)), it is easy to prove that
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p−1
E

(
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)
=

1(
E−1

1

)2
1(

E−1
2

)2 pE

(
E−1

1 , E−1
2

)
, (5.20)

where E−1
1 = E−1(x1) = 1/E(x1) and E−1

2 = E−1(x2) = 1/E(x2). Then, the covari-
ance CE−1 (x1, x2) is found as
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(5.21)

On account of Eq. 5.14, the strain energy release rate G(a) becomes

G (a, ω) =
∂U (a, ω)

B∂a
. (5.22)

It follows that a similar procedure to the one used to determine the variance of
the strain energy U(a) can be employed in order to obtain the variance of the strain
energy relate rate G(a). The mean and the variance function of the strain energy
release rate are, respectively,

〈G (a, )〉 =
〈

∂U (a, ω)

B∂a

〉
=
〈U (a, ω)〉

B∂a
, (5.23)

Var [G(a)] := 〈(G (a, E(x1))− 〈G(a)〉) (G (a, E(x2))− 〈G(a)〉)〉

=
∂2Var [U(a)]

B2∂a2 .
(5.24)

Now, noting the variance Var [U(a)] of strain energy U(a), it is possible to obtain the
variance Var [G(a)] of the strain energy relate rate G(a). The expressions of these
two quantities are not derivable in explicit forms but, using numerical computation
of 5.18 and 5.24, have been determined for all the cases of CE(x1, x2) in Figs. 5.3 and
5.4. The results presented aim to investigate the influence of the fractal-and-Hurst
effects in the problem under examination. To this aim, several combinations of the
parameters that describe these effects are taken into account, Table 5.1. Mainly the
parameters have been set so as to have RFs with Hurst parameter (H) between 0.5
to 0.8 and fractal dimension (D) between 1.2 and 1.7.

Overall, we observe that, while the Cauchy and Dagum models represent more
realistic scenarios of RFs, the variance on the output is strongest for the Matérn
model. Then, for Ornstein-Uhlenbeck and Cauchy models, the variance on output
is between those of Matérn and Dagum models; in fact, the latter one is the model
with the weakest variance on output. So seems that this problem is more sensitive
to the stochastic local variation of E (ω, x) than to no-local stochastic behavior.

In order to evaluate the dependence on a of the PDF of the strain energy U(a), an
approach based on the direct evaluation of the response PDF (Falsone and Laudani,
2018) is applied. The crack axis has been discretized by intervals of constant ampli-
tude da, i.e. a generic crack length ai = ida is considered. Corresponding to ai, the
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Model Fractal dimension Long memory
Ornstein–Uhlenbeck
COU (r, µ) := µ

2 e−µr ; special case of
CM (r, ν = 1/2)

µ = 103 D = 1.5 - -
µ = 50 D = 1.5 - -
µ = 1.0 D = 1.5 - -

Matérn
CM (r, ν) := rνKν(r)

ν = 3/2 D = 1.0 - -
ν = 5/2 D = 1.0 - -

Generalized Cauchy
CC (r, θ, η) :=

(
1 + rθ

)−η/θ

θ = 1.0 D = 1.5 η = 1.0 H = 0.5
θ = 1.6 D = 1.2 η = 0.8 H = 0.6
θ = 0.6 D = 1.7 η = 0.4 H = 0.8

Dagum
CD (r, δ, ε) := 1−

(
1 + r−δ

)−ε/δ

δ = 1.0 D = 1.5 ε = 0.5 H = 0.75
δ = 1.6 D = 1.2 ε = 0.8 H = 0.6
δ = 0.6 D = 1.7 ε = 0.4 H = 0.8

TABLE 5.1: Parameters considered for each model.

strain energy U (ai) can be defined as a Riemann sum approximating the integral of
Eq. 5.16:

U (ai, ω) =
∫ ai

0

M (xi)
2

2IE (xi)
dxi

≈∑
i

M (xi)
2

2IE (xi)
∆xi = ∑

i

M (xi)
2

2I
∆xi

1
E (xi)

= ∑
i

M (xi)
2

2I
∆xiE−1 (xi)

(5.25)

where ∆xi = i∆xi = ida. Using the above relationship, U (ai) can now be written as

U (ai, ω) = ∑
i

GiE−1 (xi) . (5.26)
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Var@UHaLD
Cauchy: h = 1.0; q = 1.0 HH = 0.5; D = 1.5L
Cauchy: h = 0.8; q = 1.6 HH = 0.6; D = 1.2L
Cauchy: h = 0.4; q = 0.6 HH = 0.8; D = 1.7L
Dagum: d = 1.0; ¶ = 0.5 HH = 0.75; D = 1.5L
Dagum: d = 1.6; ¶ = 0.8 HH = 0.6; D = 1.2L
Dagum: d = 0.6; ¶ = 0.4 HH = 0.8; D = 1.7L
Matérn: n = 3ê2 HD = 1L
Matérn: n = 5ê2 HD = 1L

Ornstein–Uhlenbeck: m = 103 HD = 1.5L
Ornstein–Uhlenbeck: m = 50 HD = 1.5L
Ornstein–Uhlenbeck: m = 1 HD = 1.5L

FIGURE 5.3: The variance of strain energy, Var [U(a)], when is:
Cauchy (η = 1.0, θ = 1.0; η = 0.8, θ = 1.6; η = 0.4, theta = 0.6);
Dagum (δ = 1.0, ε = 0.5; δ = 1.6, ε = 0.8; δ = 0.6, ε = 0.4); Matérn
(ν = 3/2; ν = 5/2) and Ornstein–Uhlenbeck (µ = 103; µ = 50; µ =

1); h = B = 1,P = 1 and 〈E〉 = 1.

This implies that, in the interval of the length crack (a0, ai), the value at the
generic crack length up to ai of the strain energy U (ai) is given by the following
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linear algebraic equation system:

U (ai, ω) = ∑
i

GiE−1 (xi) = GiE−1
i , (5.27)

where Gi is the generic row. The Eq. 5.27 establishes a linear algebraic relationship
between the strain energy U (ai), evaluated at various crack lengths up to ai, and the
stochastic vector E−1

i , evaluated at from crack lengths up to ai.
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Var@GHaLD
Cauchy: h = 1.0; q = 1.0 HH = 0.5; D = 1.5L
Cauchy: h = 0.8; q = 1.6 HH = 0.6; D = 1.2L
Cauchy: h = 0.4; q = 0.6 HH = 0.8; D = 1.7L
Dagum: d = 1.0; ¶ = 0.5 HH = 0.75; D = 1.5L
Dagum: d = 1.6; ¶ = 0.8 HH = 0.6; D = 1.2L
Dagum: d = 0.6; ¶ = 0.4 HH = 0.8; D = 1.7L
Matérn: n = 3ê2 HD = 1L
Matérn: n = 5ê2 HD = 1L

Ornstein–Uhlenbeck: m = 103 HD = 1.5L
Ornstein–Uhlenbeck: m = 50 HD = 1.5L
Ornstein–Uhlenbeck: m = 1 HD = 1.5L

FIGURE 5.4: The variance of strain energy, Var [G(a)], when is:
Cauchy (η = 1.0, θ = 1.0; η = 0.8, θ = 1.6; η = 0.4, theta = 0.6);
Dagum (δ = 1.0, ε = 0.5; δ = 1.6, ε = 0.8; δ = 0.6, ε = 0.4); Matérn
t(ν = 3/2; ν = 5/2) and Ornstein–Uhlenbeck (µ = 103; µ = 50; µ =

1); h = B = 1,P = 1 and 〈E〉 = 1.
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Cauchy: h = 1.0; q = 1.0 HH = 0.5; D = 1.5L
Cauchy: h = 0.8; q = 1.6 HH = 0.6; D = 1.2L
Cauchy: h = 0.4; q = 0.6 HH = 0.8; D = 1.7L
Dagum: d = 1.0; ¶ = 0.5 HH = 0.75; D = 1.5L
Dagum: d = 1.6; ¶ = 0.8 HH = 0.6; D = 1.2L
Dagum: d = 0.6; ¶ = 0.4 HH = 0.8; D = 1.7L
Matérn: n = 3ê2 HD = 1L
Matérn: n = 5ê2 HD = 1L

Ornstein–Uhlenbeck: m = 103 HD = 1.5L
Ornstein–Uhlenbeck: m = 50 HD = 1.5L
Ornstein–Uhlenbeck: m = 1 HD = 1.5L

FIGURE 5.5: Probability density function of the strain energy pU(U),
for ai = 2da, when is: Cauchy (η = 1.0, θ = 1.0; η = 0.8, θ = 1.6; η =
0.4, theta = 0.6); Dagum (δ = 1.0, ε = 0.5; δ = 1.6, ε = 0.8; δ =
0.6, ε = 0.4); Matérn (ν = 3/2; ν = 5/2) and Ornstein–Uhlenbeck

(µ = 103; µ = 50; µ = 1); h = B = 1,P = 1 and 〈E〉 = 1.

The PTM is now applied to Eq. 5.27 in order to evaluate pU (ai) (U (ai)). Using
numerical computation, we obtain the PDF and plot it in Fig. 5.5, wherein the crack
axis is discretized by intervals of constant amplitude da = 0.2. It is gleaned from Fig.
5.5 that the PDF of the strain energy, evaluated for several cases of D and H, shows
a strongly nonlinear character of the relationship between the input and the output.
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The fractal-and-Hurst effects appear to be more or less in line with the previous
trends observed on the variance of output.

5.2.2.2 Fixed-grip conditions

In this case, the displacement is constant (i.e., non-random), while the load is ran-
dom. Now, only the first term in 5.1 remains, so that

G = − ∂U
B∂a

. (5.28)

With the force P at the tip, we have

G = − u
2B

∂P
∂a

. (5.29)

Taking the cantilever beam of Fig. 5.1 (b), implies P (a, ω) = 3uIE (ω, x) /a3, so that

G (a, ω) = − u
2B

∂P
∂a

=
9u2 IE (ω, x)

2Ba4 . (5.30)

Equation 5.30 gives a direct relationship between G (a, ω) and E (ω, x) from which
we first obtain the mean and variance functions of the strain energy release rate

〈G (a)〉 = − u
2B

〈
∂P
∂a

〉
=

9u2 I 〈E〉
2Ba4 , (5.31)

Var [G(a, r)] = 〈(G (a, E(x1))− 〈G(a)〉) (G (a, E(x2))− 〈G(a)〉)〉 =
(

9u2 I
2Ba4

)2

CE(r).

(5.32)
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Var@GHrLD
Cauchy: h = 1.0; q = 1.0 HH = 0.5; D = 1.5L
Cauchy: h = 0.8; q = 1.6 HH = 0.6; D = 1.2L
Cauchy: h = 0.4; q = 0.6 HH = 0.8; D = 1.7L
Dagum: d = 1.0; ¶ = 0.5 HH = 0.75; D = 1.5L
Dagum: d = 1.6; ¶ = 0.8 HH = 0.6; D = 1.2L
Dagum: d = 0.6; ¶ = 0.4 HH = 0.8; D = 1.7L
Matérn: n = 3ê2 HD = 1L
Matérn: n = 5ê2 HD = 1L

Ornstein–Uhlenbeck: m = 103 HD = 1.5L
Ornstein–Uhlenbeck: m = 50 HD = 1.5L
Ornstein–Uhlenbeck: m = 1 HD = 1.5L

FIGURE 5.6: The variance of the strain energy, Var [G(r)], when is:
Cauchy (η = 1.0, θ = 1.0; η = 0.8, θ = 1.6; η = 0.4, theta = 0.6);
Dagum (δ = 1.0, ε = 0.5; δ = 1.6, ε = 0.8; δ = 0.6, ε = 0.4); Matérn
t(ν = 3/2; ν = 5/2) and Ornstein–Uhlenbeck (µ = 103; µ = 50; µ =

1); h = B = 1,P = 1 and 〈E〉 = 1.

Thus, it is possible to obtain the variance of the strain energy relate rate G(a, r),
at a fixed value of r or for a fixed value of a. We employ the same method as before
in order to determine the effect of the covariance function CE(r). Figures 5.6 and
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5.7 show the variances Var [G(a, r)] for a fixed value of the crack length (a = 1)
and a fixed value of r (r = x2 − x1 = 0.1). Although in this case a linear relationship
appears between the input and output, the previous qualitative conclusions for these
two cases carry through as supported by several different cases of D and H.
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Var@GHaLD

Cauchy: h = 1.0; q = 1.0 HH = 0.5; D = 1.5L
Cauchy: h = 0.8; q = 1.6 HH = 0.6; D = 1.2L
Cauchy: h = 0.4; q = 0.6 HH = 0.8; D = 1.7L
Dagum: d = 1.0; ¶ = 0.5 HH = 0.75; D = 1.5L
Dagum: d = 1.6; ¶ = 0.8 HH = 0.6; D = 1.2L
Dagum: d = 0.6; ¶ = 0.4 HH = 0.8; D = 1.7L
Matérn: n = 3ê2 HD = 1L
Matérn: n = 5ê2 HD = 1L

Ornstein–Uhlenbeck: m = 103 HD = 1.5L
Ornstein–Uhlenbeck: m = 50 HD = 1.5L
Ornstein–Uhlenbeck: m = 1 HD = 1.5L

FIGURE 5.7: The variance of the strain energy release ratey,
Var [G(a)], for ai = 2da, when is: Cauchy (η = 1.0, θ = 1.0; η =
0.8, θ = 1.6; η = 0.4, theta = 0.6); Dagum (δ = 1.0, ε = 0.5; δ =
1.6, ε = 0.8; δ = 0.6, ε = 0.4); Matérn (ν = 3/2; ν = 5/2) and Orn-
stein–Uhlenbeck (µ = 103; µ = 50; µ = 1); h = B = 1,P = 1 and

〈E〉 = 1.

5.2.3 Stochastic crack stability

Crack stability in any particular realization of a random beam, in a general load-
ing situation, is governed by a condition of the same form as that in deterministic
fracture mechanics (Ostoja-Starzewski, 2004):

∂2 (Π (ω) + Γ (ω))

∂2 =


< 0 : unstable equilibrium
= 0 : neutral equilibrium
> 0 : stable equilibrium

(5.33)

Here both, the total potential energy Π (ω) and the surface energy Γ (ω) are random.
Two example problems will now be considered with respect to crack stability.

5.2.3.1 First example problem

The first concerns a line crack in an infinite plate subjected to a uniform stress per-
pendicular to the crack axis. The potential energy of the system is given by

Π (ω) = −U (ω) =
−σ2πa2

E(ω)
(5.34)

and the surface energy is
Γ (ω) = 4aγ(ω). (5.35)

The terms Π, Γ, and (Π + Γ) are plotted in Fig. 5.8 for E and γ constant. This figure
shows that the total potential energy of the system (Π+ Γ) at the critical crack length
ac presents a maximum, which corresponds to an unstable equilibrium.
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FIGURE 5.8: Potential energy Π, surface energy Γ and the sum of po-
tential and surface energy (Π + Γ), versus crack length a for a line
crack in an infinite medium subjected to a uniform stress perpendic-

ular to crack axis.

Taking into account that beam’s material is random, the mean and variance of
the potential energy Π(ω) are, respectively,

〈Π (ω)〉 = 〈−U (ω)〉 = −σ2πa2
〈

1
E(ω)

〉
, (5.36)

Var [Π(a, r)] = 〈(Π (a, E(x1))− 〈Π(a)〉) (Π (a, E(x2))− 〈Π(a)〉)〉 =
(
−σ2πa2)2

CE−1(r),
(5.37)

where CE−1(r) is evaluated by Eq. 5.21.
Next, if we take the surface energy density as an RF made up of a constant mean

〈γ〉 and a zero-mean fluctuation γ
′
(ω, x)

γ(ω, x)) = 〈γ〉+ γ
′
(ω, x). (5.38)

The mean and the variance function of the variance of the surface energy Γ(ω) are,
respectively

〈Γ (ω)〉 = 4a 〈γ〉 , (5.39)

Var [Γ(a, r)] = 〈(Γ (a, E(x1))− 〈Γ(a)〉) (Γ (a, E(x2))− 〈Γ(a)〉)〉 = (4a)2Cγ(r).
(5.40)

Finally, the variance of the sum (Π(ω) + Γ(ω)) is

Var [Π(ω) + Γ(ω)] = Var [Π(ω)] + Var [Γ(ω)] + 2Cov [Π(ω) + Γ(ω)] (5.41)

and taking, as in our earlier study, the two-component RFs to be uncorrelated, gives

Var [Π(ω) + Γ(ω)] = Var [Π(ω)] + Var [Γ(ω)] . (5.42)

Some numerical results are shown in Fig. 5.9 when it was fix r = x2 − x2 = 0.1.
In this case, the beam is described by a vector RF {E, γ}. Nevertheless, by inspec-
tion of Fig. 5.9, the qualitative trend is similar to the trends depicted in Subsection
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3.5.2, with the scatter of response being weaker than under the Dagum, Cauchy,
Ornstein–Uhlenbeck, and Matérn inputs.

Var@GD,Var@PD,Var@GD+Var@PD
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Cauchy: h = 1.0; q = 1.0 HH = 0.5; D = 1.5L
Ornstein–Uhlenbeck: m = 103 HD = 1.5L
Matérn: n = 5ê2 HD = 1L
Dagum: d = 1.0; ¶ = 0.5 HH = 0.75; D = 1.5L

FIGURE 5.9: The variance of the potential energy, Var [Π(a)] (dashed
line), surface energy, Var [Γ(a)] (continuous line) and the sum of po-
tential and surface energy, Var [Π(a) + Γ(a)] (dotted line); when is:
Cauchy (η = 1.0, θ = 1.0; η = 0.8, θ = 1.6; η = 0.4, theta = 0.6);
Dagum (δ = 1.0, ε = 0.5; δ = 1.6, ε = 0.8; δ = 0.6, ε = 0.4); Matérn
(ν = 3/2; ν = 5/2) and Ornstein–Uhlenbeck (µ = 103; µ = 50; µ =

1); h = B = 1,P = 1 and 〈E〉 = 1.

5.2.3.2 Second example problem

The second problem concerns the experiment carried out by Obreimoff on the cleav-
age of mica (Obreimoff, 1930). A wedge of thickness h is inserted underneath a flake
of mica, which is detached from a mica block along a length a, Fig. 5.10.

a

P

d
h

FIGURE 5.10: Wedge insert to peel mica off a substrate, according to
Obreimoff’s experiment.

The energy of the system is calculated by considering the mica flake as a can-
tilever beam with height d built-in at distance a from the point of application of the
wedge. During crack propagation, the force P does not do any work. According to
the elementary theory of beam bending, the stochastic elastic energy stored in the
cantilever is:

U(ω) =
E(ω)d3h2

8a3 , (5.43)

while the surface energy Γ(ω) is given by
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Γ(ω) = 2aγ(ω). (5.44)

In this second problem, the total energy of the system (U(ω) + Γ(ω)) at the critical
crack length ac is minimum, which corresponds to a stable equilibrium. From the
fracture criterion, the equilibrium crack length ac is obtained as

ac =

(
3E(ω)d3h2

16γ(ω)

)1/4

. (5.45)

Figure 5.11 plots Γ = U, Π and (U + Π) when E and γ are constant. This gives the
reference deterministic case.
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FIGURE 5.11: Potential energy Γ = U , surface energy Γ, and their
sum (U + Π) versus the crack length a for Obreimoff’s experiment

Now, we take the surface energy density and the beam’s stiffness as two RFs:
γ(ω, x), E(ω, x). The mean and variance of the elastic and surface energies are,
respectively,

〈U〉 = d3h2 〈E〉
8a3 , (5.46)

Var [U(a, r)] =
(

d3h2

8a3

)2

CE(r), (5.47)

and
〈Γ〉 = 2a 〈γ〉 , (5.48)

Var [Γ(a, r)] = (2a)2Cγ(r). (5.49)

Supposing these two RFs to be uncorrelated (i.e., Cov [U(ω) + Γ(ω)]→ 0), we find

Var [U(ω) + Γ(ω)] = Var [U(ω)] + Var [Γ(ω)] . (5.50)

Numerical results for several parameter cases are shown in Fig. 5.12, where we set
r = x2 − x1 = 0.1. Clearly, for the experiment of Obreimoff similar trends to those
already observed in Fig. 5.12 for the first example problem are obtained, and similar
conclusions can be drawn.
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Dagum: d = 1.0; ¶ = 0.5 HH = 0.75; D = 1.5L
Ornstein–Uhlenbeck: m = 103 HD = 1.5L
Matérn: n = 5ê2 HD = 1L
Cauchy: h = 1.0; q = 1.0 HH = 0.5; D = 1.5L

FIGURE 5.12: The variance of the potential energy, Var [U(a)] (dashed
line), surface energy, Var [Γ(a)] (continuous line) and the sum of po-
tential and surface energy, Var [U(a) + Γ(a)] dotted line); when is:
Cauchy (η = 1.0, θ = 1.0); Dagum (δ = 1.0, ε = 0.5) ; Matérn (ν =
5/2) and Ornstein–Uhlenbeck (µ = 103); σ = 1 and 〈E〉 = 〈γ〉 = 1;

(second example problem).

Considering the critical crack length, ac, taking into account the relation 5.46, it is
possible to obtain the relative PDF by applying the PTM. With the aim to investigate
the influence on the response output by the four RFs on input, it seems reasonable
to compare the PDF of the critical crack length for the following cases. Since in the
stochastic crack stability problem the beam is described by the vector RF {E, γ}, in
each sub-plot of Fig. 5.13 γ is fixed as Cauchy (A), Matérn (B), Ornstein–Uhlenbeck
(C) or Dagum (D), and then E varies for these four cases of RFs. Hence, the same
tendency is observed: the PDF of ac is the most dispersed for Matérn, then Orn-
stein–Uhlenbeck, Cauchy, and Dagum models, respectively. Therefore, we observe
the same ordering as before.
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g: Cauchy: h = 1.0; q = 1.0 HH = 0.5; D = 1.5L;
E: Cauchy: h = 1.0; q = 1.0 HH = 0.5; D = 1.5L

g: Cauchy: h = 1.0; q = 1.0 HH = 0.5; D = 1.5L;
E: Matern: n = 5ê2 HD = 1L

g: Cauchy: h = 1.0; q = 1.0 HH = 0.5; D = 1.5L;
E: Dagum: d = 1.0; ¶ = 0.5 HH = 0.75; D = 1.5L

g: Cauchy: h = 1.0; q = 1.0 HH = 0.5; D = 1.5L;
E: Ornstein–Uhlenbeck: m = 103 HD = 1.5L
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g: Matérn: n = 5ê2 HD = 1L;
E: Cauchy: h = 1.0; q = 1.0 HH = 0.5; D = 1.5L

g: Matérn: n = 5ê2 HD = 1L;
E: Matern: n = 5ê2 HD = 1L

g: Matérn: n = 5ê2 HD = 1L;
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FIGURE 5.13: PDF of the critical crack length for four sub-cases of co-
variance functions of γ and E. In (A) γ= Cauchy; in (B) γ= Matérn;
in (C) γ= Ornstein–Uhlenbeck; (D) γ= Dagum. Then, for each plot,
E= Cauchy (red line), Matérn (green line), Dagum (blue line) or Orn-
stein–Uhlenbeck (yellow line). Cauchy (η = 1.0, θ = 1.0); Dagum
(δ = 1.0, ε = 0.5); Matérn (ν = 5/2) and Ornstein–Uhlenbeck

(µ = 103); σ = 1 and 〈E〉 = 〈γ〉 = 1; (second example problem).
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5.2.4 Some remarks

This section employs the classical Obreimoff’s experiment to examine the fractal-
and-Hurst effects of the RF material properties on elastic brittle fracture. Two RF
models – Cauchy and Dagum – enable such an investigation and, in order to eluci-
date the fractal-and-Hurst effects, Ornstein–Uhlenbeck (which, in the limiting case,
becomes white noise) and Matérn RFs are also considered. All the RFs are assumed
to be truncated Gaussian so as to ensure positive values of the elastic modulus and
surface energy density along the beam axis. The variance function of the strain en-
ergy U(a) and of the strain energy release rate G(a), both for dead-load and fixed-
grip conditions, are found in explicit forms. For dead-load condition there is an
inverse relationship between U(a) or G(a), with the Young modulus E(ω, x). In
fact, the 2004 study found that, in the case of dead-load conditions, U(a) and/or
G(a) computed by straightforward averaging of the spatially random elastic mod-
ulus E(ω) is lower than that obtained by correct ensemble averaging of the stored
elastic energy. Thus, in the present study, in order to evaluate the exact covariance
function of energy and its release rate, a recently established PTM, has been applied.
However, there is a direct relationship between G(a) and E(ω, x) for fixed-grip con-
dition and, in fact, G(a) is to be computed by a direct ensemble averaging of E(ω).
It was find find that, under these conditions, the variance function depends on a
and r. Moreover, an approach based on the direct evaluation of the response PDF
by PTM is applied and the PDF of the strain energy U(a) is obtained. In general,
it was find that, given the same variance on input, the variance on output is more
pronounced for the Matérn RF. These results seem to allow to say that this problem
is more sensitive to the stochastic local properties, the fractal dimension, D, and less
to the no-local stochastic behavior of memory, H. Moreover, by assuming differ-
ent values of the fractal dimension and Hurst parameters on the input, we obtain
strong differences in the response on the output. Also, the response is stronger for
the Cauchy model than for the Dagum model. Furthermore, a study of the stochastic
crack stability is conducted: it involves a stochastic competition between potential
and surface energies. Then, also in this last case, the fractal and the Hurst effects are
taken into consideration through Gaussian Cauchy and Dagum RFs. In particular, it
is possible to evaluate the PDF of the critical crack length, pac (ac), from analysis of
Obreimoff’s experiment. Again, the Matérn model leads to a stronger dispersion of
the data than Cauchy and Dagum. Given the fact that fractal-and-Hurst effects are
multiscale properties of materials seen primarily in nature, the present study should
provide an indication as to the fracture phenomena in geomechanical/geophysical
settings.

5.3 The concept of local and non-local randomness for some
mechanical problems

Supposing the flexural deformability of the beams to be a Gaussian homogeneous
RF, the investigation of the concept of spatial randomness in local and non-local me-
chanical problems is the aim of this section.
The sensitivity of the stochastic response quantities to the local and non-local ran-
domness dependence of the flexural deformability will be investigated through some
examples of statically determinate and redundant stochastic beams, under different
conditions of load and constrain. In particular, the response stochastic quantities will
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Class Correlation functions Parameters
White Noise CWN(r) := δ(r) r ≥ 0
Powered exponential CEXP(r) := exp(|cr|α) α ∈ (0, 2]
Matérn CM(r) := 2(α/2)−1

Γ(α/2) |cr|α/2 Kα/2(|cr|) α ∈ (0, 2]

Cauchy CC(r) :=
(
1 + |cr|α

) β
α α ∈ (0, 2]; β > 0

TABLE 5.2: Some parametric classes of correlation functions for a
Gaussian process

be found thanks to the use of the PTM. It is important to note that, for statically de-
terminated beams, the cinematic response (transversal displacements and rotations)
are random. While, for redundant beams, also the internal forces (shear and bending
moment) are random responses (Elishakoff, Ren, and Shinozuka, 1995b; Elishakoff,
Impollonia, and Ren, 1999).

5.3.1 Local and non-local randomness

With the aim to examine the dependence of the stochastic response on the kind of
correlation functions defining the material/geometric RFs, the closed-form solutions
of statically and redundantly stochastic bending beams of section 3.4 have been ap-
plied. From the section 3.4, an in-depth view of the integral expressions of the vari-
ances, for both the statically and redundant stochastics beams, brings up the close
similarity of the latter ones with the constitutive equations of the mechanical non-
local theory of Eringen, 1983. The Eringen non-local integral constitutive equation
describes the dependence of the stress at a point on the strain in the rest of the do-
main through a positive-decaying kernel function (Fernández-Sáez et al., 2016). The
analogy with the equations giving the statistics of the response stochastic beam is
evident. In particular, the analogy between the effect of the kernel function and that
of the correlation function is clear.

The flexural deformability D(z) is constrained in such a way that it is statically
determinate and it is characterized by a flexural deformability (that is the inverse of
the flexural stiffness) that is supposed to be a Gaussian homogeneous RF given by:

D(z) =
1

EI(z)
= D0(1 + α(z)) (5.51)

D(z) appearing in Eq. 5.51 is assumed to be characterized by correlation functions
beloging to the classes reported in Table 5.2. It is well known that several properties
of a RF can be established through the study of their associated correlation function.
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FIGURE 5.14: Some parametric classes of correlation functions for a
Gaussian process.

The choice of the above correlation functions is motivated by their particular ca-
pability to interpret the local and non-local properties of a RF. Relatively to these two
characteristics, the correlation functions are strictly linked to the local and non-local
properties of the RF through two important parameters, respectively: 1) the frac-
tal dimension D reflects the local properties; it is a roughness measure with range
[d, d + 1), where d is the topological dimension. Since the focus of the present work
is on mono-axial beams, d = 1 is used; 2) the Hurst exponent H reflects a long-length
dependence in a RF, or, equivalently, a long memory dependence in time series. In
particular, the realization of the RF has D = d+ 1− α/2 with probability 1 (Gneiting,
Ševčíková, and Percival, 2012), while the RF has a long memory with H = 1− β/2
(Gneiting and Schlather, 2004b). Thus, the parameter α is linked to the fractal di-
mension while the parameter β is connected to the Hurst exponent. Therefore, in
the field of stochastic mechanics, it is possible to associate the fractal dimension with
the local randomness characteristics and the Hurst exponent with the non-local ran-
domness characteristics. The non-local randomness of the flexural deformability RF
means that its probabilistic dependence between two different x-points, even if they
are far apart from each other, is persistent, i.e. is non-negligible. In comparison, for
the local randomness of the flexural deformability RF, if two x-points are taken suf-
ficiently far to each other, then the corresponding RVs are almost uncorrelated. Fig.
5.14 illustrates the trend of correlation functions reported in Table 5.2, comparing the
different correlation lengths of correlation functions with the different beam lengths
that will be investigated in the next subsections.
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(A) (B)

(C) (D)

FIGURE 5.15: Statically determinate stochastic beams.

(A) (B)

FIGURE 5.16: Example 1: statically redundant stochastic beam.

In particular, the White Noise, the Powered exponential, and the Matérn corre-
lation functions allow capturing only the local randomness of the flexural deforma-
bility characteristics in contrast to the Cauchy class (Gneiting and Schlather, 2004b)
with which it is possible controlling at the same time the local and non-local ran-
domness dependence of the flexural deformability characteristic.

In order to investigate the sensitivity of the stochastic response quantities to the
local and non-local randomness dependence of the flexural deformability character-
istic, in the next subsections some examples of statically determinate and redundant
stochastic beams, under different conditions of load and constrain, are shown.

5.3.2 Statically determinate stochastic beams

The procedure presented in subsection section 3.4 has been applied to the stochastic
analysis of the statically determinate beams reported in Fig. 5.15 for the different

(A) (B)

FIGURE 5.17: Example 2: statically redundant stochastic beam.
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COV = σ/µ

Class (a) (b) (c) (d)
Cauchy|D=1.95;H=0.5 0.008 0.008 0.011 0.011
Cauchy|D=1.95;H=0.85 0.086 0.088 0.096 0.095

Powered exponential|D=1 0.131 0.143 0.198 0.196
Powered exponential|D=1.95 0.132 0.144 0.213 0.209

Matérn|D=1 0.161 0.172 0.224 0.223
Matérn|D=0.5 0.176 0.187 0.234 0.233

Cauchy|D=1;H=0.7 0.205 0.211 0.239 0.238
Cauchy|D=1;H=0.95 0.241 0.242 0.248 0.248

TABLE 5.3: COV values of the stochastic displacement statically de-
terminate stochastic beams.

(A) (B)

FIGURE 5.18: Example 1: PDF of the redundant force X: (A) L = 10;
(B) L = 20.

type of laws of σ2
α(|z1 − z2|) of Table 5.2. Table 5.3 reports a summary of the re-

sults, in particular, the estimation of the COV value of the stochastic displacement
is interesting in order to explore, for which class of correlation function, more pro-
nounced dispersions of the displacement distribution are. In subsection 5.3.4 some
more comments on these results will be reported.

5.3.3 Statically redundant stochastic beams

The stochastic response quantities, which are the redundant force and the displace-
ment of the two examples reported in Figures 5.16 and 5.17, are examined. To not
lose generality in the problem under examination, no-dimensional numerical anal-
yses have been evaluated and the mean value of the random variables involved is
taken unitary. In Fig. 5.18 the PDF of the redundant force X, pX(x), for the different
RF is reported. In particular, the PDF of the stochastic variable X has been examined
for two different value of length of the beam, i.e. L = 10 (Fig.5.18 (A)) and L = 20
(Fig. 5.18 (B)); while, Table 5.4 shows the respective COV values of the redundant
force. Then, Fig. 5.19 shows the PDF of the transversal displacement u(z̄), with
z̄ = L/2, for the all assumptions of Gaussian field D(z). Finally, in order to investi-
gate the influence of the abscissa z̄ on the stochastic response displacement, in Figs.
5.20 and 5.21 the pU(u) for different values of abscissa for L = 10 and for L = 20, are
reported. In Table 5.5 is stored all COV values about the investigation on u(z̄).
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(A) (B)

FIGURE 5.19: Example 1: PDF of the transversal displacement u(z̄) =
L/2: (A) L = 10; (A) L = 20.

(A) (B)

(C)

FIGURE 5.20: Example 1: PDF of the transversal displacement for
L = 10: (a) z̄ = 0.5; (b) z̄ = 9.5; (c) z̄ = 9.99.
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Class
COV = σ/µ

L = 10 L = 20
Cauchy|D=1.95;H=0.5 0.001 0.001
Cauchy|D=1.95;H=0.85 0.007 0.006

Powered exponential|D=1 0.016 0.015
Powered exponential|D=1.95 0.026 0.020

Matérn|D=1 0.028 0.021
Matérn|D=0.5 0.030 0.025

Cauchy|D=1;H=0.7 0.033 0.025
Cauchy|D=1;H=0.95 0.039 0.027

TABLE 5.4: Example 1: COV values of the redundant force X for L =
10 and for L = 20.

Class
COV = σ/µ

L = 10 L = 20

z̄ = 0.5 z̄ = 5 z̄ = 9.5 z̄ = 9.99 z̄ = 0.5 z̄ = 10 z̄ = 19.5 z̄ = 19.99
Cauchy|D=1.95;H=0.5 0.008 0.013 0.018 0.034 0.009 0.011 0.010 0.098
Cauchy|D=1.95;H=0.85 0.085 0.085 0.098 0.132 0.001 0.081 0.058 0.146

Powered exponential|D=1 0.122 0.124 0.195 0.220 0.113 0.095 0.208 0.224
Powered exponential|D=1.95 0.124 0.126 0.204 0.218 0.116 0.096 0.226 0.250

Matérn|D=1 0.146 0.148 0.210 0.209 0.181 0.117 0.185 0.185
Matérn|D=0.5 0.159 0.161 0.205 0.199 0.169 0.128 0.228 0.192

Cauchy|D=1;H=0.7 0.199 0.197 0.203 0.221 0.145 0.173 0.230 0.220
Cauchy|D=1;H=0.95 0.239 0.234 0.242 0.240 0.236 0.233 0.246 0.266

TABLE 5.5: Example 1: COV values of the redundant force X for L =
10 and for L = 20.

To finish, about the second example of the redundant beam (Fig. 5.17), the same
stochastic response quantities are shown. Fig. 5.22 reports the PDF of X for L = 10
(Fig. 5.22 (A)) and for L = 20 (Fig. 5.22 (B)) and the Table 5.6 shows the respective
COV values. While Fig. 5.23 shows the PDF of the transversal displacement for dif-
ferent values of abscissa z̄ when L = 10 and L = 20, respectively. Finally, the COV
values of the latter transversal displacements are all listed in Table 5.7.

Class
COV = σ/µ

L = 10 L = 20
Cauchy|D=1.95;H=0.5 0.004 0.003
Cauchy|D=1.95;H=0.85 0.025 0.024

Powered exponential|D=1 0.085 0.065
Powered exponential|D=1.95 0.087 0.064

Matérn|D=1 0.102 0.081
Matérn|D=0.5 0.110 0.090

Cauchy|D=1;H=0.7 0.106 0.091
Cauchy|D=1;H=0.95 0.055 0.057

TABLE 5.6: Example 2: COV values of the redundant force X for L =
10 and for L = 20.
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(A) (B)

(C)

FIGURE 5.21: Example 1: PDF of the transversal displacement for
L = 20: (A) z̄ = 0.5; (B) z̄ = 9.5; (C) z̄ = 9.99.

(A) (B)

FIGURE 5.22: Example 2: PDF of the redundant force X: (A) L = 10;
(B) L = 20.

(A) (B)

FIGURE 5.23: Example 2: PDF of the transversal displacement u(z̄) =
L/2: (a) L = 10; (b) L = 20.



5.3. The concept of local and non-local randomness for some mechanical problems133

Class
COV = σ/µ

L = 10 L = 20

z̄ = 5 z̄ = 10
Cauchy|D=1.95;H=0.5 0.010 0.013
Cauchy|D=1.95;H=0.85 0.078 0.082

Powered exponential|D=1 0.133 0.105
Powered exponential|D=1.95 0.137 0.106

Matérn|D=1 0.156 0.127
Matérn|D=0.5 0.168 0.140

Cauchy|D=1;H=0.7 0.198 0.177
Cauchy|D=1;H=0.95 0.241 0.235

TABLE 5.7: Example 2: COV values of transversal displacement
u(z̄) = L/2.

5.3.4 Comments on the results

By the analysis of the results of the previous section, the following conclusions can
be drawn:

• About the statically determinate stochastic beams, all the output values of the
displacement COV of the beams under examination are bounded in a lower
and upper bound limit. We obtain the upper limit, i.e. the maximum value of
the displacement COV, when the Gaussian RF D(z) follows the Cauchy class
characterized by a low value of local randomness (D = 1) but at the same
time with a high value of non-local randomness (H = 0.95). On contrary, a
lower bound limit can be appreciated when D(z) is modeled as a RF totally
uncorrelated (White Noise correlation function) with fractal dimension D = 2.
Analogous results are obtained in the case of the Cauchy class with D = 1.95
and H = 0.5. Another relevant result about the trend of the displacement vari-
ances related to the Cauchy class is that, for fixed values of D, the response
variance increases when H increases. Finally, about the response variance, for
the Powered exponential and Matérn classes of correlation, no significant dif-
ference has been revealed, and the concerning results are confined between the
above cited lower and upper bound limits.

• Regarding the statically redundant stochastic beams, comparing the results of
the transversal displacement at z̄ = L/2 with the results of the statically de-
terminate examples, it seems that the trend is similar, that is to say, it can be
observed an upper bound limit for a high value of non-local randomness of
D(z) and a lower bound limit as the local randomness characteristic increases.
However, the same conclusion cannot be made if the redundant force is an-
alyzed. Although for the assumption of RF totally uncorrelated a relatively
low value of COV can be observed, for other laws of σ2

D(|z1 − z2|), the trend
of the results seems to invert. More dispersed PDFs are obtained for the RF
classes that capture only the fractal dimension, i.e. the local randomness. Fur-
thermore, with a focus on the output for the Cauchy class, the variance value
of the redundant force increases as the non-local effect (H) decreases. From
this last observation, it seems that, in contrast to the response displacement
quantity, which is more sensitive to the non-local randomness of D(z), the
stochastic internal force response is more sensitive to the local randomness ef-
fect. In order to gain a deeper insight into the effect of the level of randomness
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on the type of stochastic response examined, the investigations of the sensitiv-
ity of the transversal displacement for different values of abscissa z̄ have been
evaluated. It can be appreciated how the tendency of sensitivity to the non-
local randomness of the transversal displacement decreases when an abscissa
value away from the centre of the beam is chosen, so approaching to a major
sensitivity to the local randomness, as the redundant force. About this last in-
vestigation, the second example of the redundant beam considered shows the
same results.

5.3.5 Some remarks

In this work, a study on the sensitivity of some random response quantities of stochas-
tic beams to the local and non-local randomness of their mechanical properties of de-
formability (or stiffness) has been conducted. In particular, it has been shown the ex-
istence of a relationship between the concept of local and non-local constitutive laws
in the Eringen mechanical theory integral constitutive and the concept of local and
non-local randomness in the RF describing the deformability of the stochastic uncer-
tain beams. In fact, the role of the kernel function, in the Eringen theory, is played by
the correlation function of the homogeneous RF considered in the stochastic beams.
The level of the response randomness has been related to the shape of the corre-
sponding PDFs and the values of COVs of the transversal displacements, together
with the COVs of the shear internal force and of the bending moment, when the stat-
ically redundant beams have been examined. From the analysis of the PDFs and the
COV values of the response quantities the following conclusions can be underlined:
a) for both statically determinate and redundant beams, the stochastic displacements
are characterized by COVs which are well ordered, in the sense that the largest COV
is related to the RF having the highest values of non-local randomness quantities,
while the smallest COV corresponds to the case in which the RF is practically un-
correlated; b) by using the properties of the Cauchy correlation function, referring
always the displacement response, when the coefficient H increases, for fixed value
of D, the response PDFs are more and more dispersed (that is the corresponding
COVs are higher and higher); c) an opposite trend has been observed about the re-
dundant force, that is greater values of COV have been obtained for the RF classes
that capture only the fractal dimension. For the Cauchy correlation function, the
COV values of the random redundant force increase when the non-local parameter
H decreases; d) the level of sensitivity to the non-local randomness of the transversal
displacement depends on choice of the position . In particular, the randomness level
of the transversal displacement is greater in the midpoint of the beam for RF having
non-local randomness, while, away from the midpoint, the randomness level of the
transversal displacement decreases and it is more affected by the local RFs. Defini-
tively, it can be affirmed that the randomness level of both cinematic beam response
and, for statically redundant beams, static response are strongly affected by the type
of correlation function characterizing the RF of the beam deformability. In particular,
it is very important to know if this RF has local or non-local properties.
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5.4 Empirical velocity spectra with fractal and long-memory
effects

The objective of the present study is to develop models of turbulent atmospheric
velocity fields with fractal and Hurst properties motivated by (i) the growing lit-
erature on the study of natural phenomena characterized by these properties, and
(ii) the need to introduce more realistic inputs into dynamic models (Shen, Ostoja-
Starzewski, and Porcu, 2015a).

Although, this work doesn’t see the application of the PTM, it is believed that
its contents enrich the topic of the local and nonlocal randomness addressed in this
Chapter.

While the widely-used formulations have been crucial in the understanding and
quantitative description of a wide range of environmental and engineering processes
across scales, they lack the ability to generate realizations of velocity fields having
fractal and long-term spatial (or temporal) memory or Hurst characteristics. As it
was described the previous section, D and H effects depend on the second-order
properties of a given Gaussian stochastic process.
Taking into account the background concepts on covariance functions reported in
section 3.5.1, the two covariance models for random fields (RFs) that decouple the
fractal dimension from the Hurst effects are shown below. The Generalized Cauchy
covariance function (Matthies et al., 1997b) is defined as

CC(h) = (1 + hα)−β/α , h ≥ 0; 0 < α ≤ 2, β > 0, (5.52)

whereas the Dagum covariance function is defined as

CD(h) = 1−
(

1 + h−β
)−α/β

, h ≥ 0; 0 < α < 1, 0 < β ≤ 1.

According to Berg et al (Berg, Mateu, and Porcu, 2008), D and H of a stationary
Gaussian process can be described through the behavior of their correlation function,
CX (h), with the following results for the limiting cases of h→ 0 and h→ ∞:

Theorem 5.4.1 If there exists α ∈ (0, 2], such that, when h→ 0,

1− CX (h) ∼ hα, (5.53)

then a realization of the random field X has a fractal dimension

D = d + 1− α

2
, (5.54)

with probability 1.

Theorem 5.4.2 If there exists β ∈ (0, 1), such that, when h→ ∞,

CX (h) ∼ h−β, (5.55)

then the field X is said to have long-memory with a Hurst exponent

H = 1− β

2
. (5.56)
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5.4.1 Asymptotic behavior of the covariance function for processes with
long-range dependence

5.4.1.1 Basic concepts

Over the past decades, the phenomenon of the long-range dependence in stochastic
processes has been defined through the second-order properties. For completeness,
some preliminary concepts are report. If C is symmetric, then C(τ) = CX(h), for
h = |τ|. Clearly, this is a special case of isotropy in Rd as discussed in the above,
when d = 1. Through the Fourier transform of the autocovariance function, the
spectral density function is defined as:

SX (ω) =
1
π

∫ +∞

0
CX (h) cos(ωh)dh, h ≥ 0, ! ≥ 0, (5.57)

where ω is in the frequency domain. In general, a discrete-time stationary stochastic
process X (t), with finite variance is said to have a long-memory if its covariance

CX (h) ∼ cρh−β, (5.58)

tends to zero hyperbolically, for 0 < β < 1 and for finite cρ 6= 0. A consequence of
the slow decay of a long-memory process is that the sum of covariance diverges:

+∞

∑
h=0
|CX (h)| = ∞. (5.59)

The dependence of events that are far apart diminishes very slowly with increas-
ing distance, implying that they are not summable. Because of the Tauberian and
Abelian theorems (Stein, 1999), the long/short-range dependence can also be de-
fined in terms of local behavior of the spectral density at the origin. This is equiva-
lent to having an unbounded spectral density at the origin. This implies:

SX (ω) ∼ csω
β−1, ω → 0 (5.60)

where cs > 0 is a positive constant. Thus for β < 1, SX (ω)→ ∞ as ω → 0.
In contrast, a weakly dependent or short-memory process has a summable covari-
ance that often tends to zero exponentially, and a continuous and bounded spectral
density (Giraitis, Koul, and Surgailis, 2012). In long-memory processes, the depen-
dence of two observations at different times is persistent, i.e. is non-negligible. In
comparison, for weakly dependent processes, observations distant from each other
are approximately uncorrelated.

5.4.1.2 On the absence of long-memory in classical probabilistic models of ve-
locity spectrum

Here, it is explored the behavior of the autocorrelation functions of the classic von
Kármán and Kaimal models (Giraitis, Koul, and Surgailis, 2012). The von Kármán
spectral density of the longitudinal velocity component u is

Su (ω) =
4Luσ2

u
ū

[
1 + 70.8

(
Luω

ū

)2
]5/6

. (5.61)
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Here, Lu is the turbulence length scale of the longitudinal velocity component, ū is
the mean velocity and σu is the associated standard deviation. From Eq. 5.61, the
spectral density of the longitudinal component follows the simplified form:

SVK (ω) =
(
1 + (cω)2)−5/6

, c > 0. (5.62)

Taking the inverse Fourier transform yields the autocorrelation function

CVK (h) =

√
3Γ
( 2

3

) 3
√

hK−1/3

(
h
c

)
3
√

2π 3
√

c
, c > 0, h ≥ 0, (5.63)

whereKn (z) is the modified Bessel function of the second kind of order n, also called
Macdonald function. It can be proved that

lim
h→0

(1− CVK (h)) h−2/3 = −
Γ
(
− 1

3

)
(2c)2/3Γ

( 1
3

) . (5.64)

Therefore, according to Theorem 5.4.1, the associated process has fractal dimension
D = 2− α/2 = 5/3. Also,

lim
h→ ∞

log(CVK(h))
h

= −1
c

, (5.65)

i.e.,

CVK(h) ∼ e−
h
c , h→ ∞. (5.66)

Therefore, the autocorrelation function decays exponentially, which does not fall into
the case described by Theorem 5.4.2; i.e., the random process does not have long-
memory. Indeed, the von Kármán autocorrelation function in Eq. 5.63 is nothing
nothing more than a special case of the Matérn covariance class (Stein, 1999), which
describes stochastic processes having only the fractal dimension characteristic.

The Kaimal spectral density of the longitudinal velocity component u is

Su(ω) =
6.8Luσ2

u
ū

[
1 + 1.5× 6.8

Luω

ū

]−5/3

. (5.67)

Therefore, the spectrum has the form

SK(ω) =
1

(cω + 1)5/3 , c > 0. (5.68)

Taking the inverse Fourier transform, the autocorrelation function is obtained as

CK(h) = 1F2

(
1;

1
6

,
2
3

;− h2

4c2

)
− 2π h

2
3

(√
3 cos

(
h
c

)
− 3 sin

(
h
c

))
,

where pFq(a1 · · · , ap; b1, · · · , bq; z) is the generalized Hypergeometric function. Thus,

lim
h→ 0

(1− CK(h))h−2/3 =
2π

3
√

3c2/3Γ( 5
3 )

. (5.69)

Again, this implies a fractal dimension of 5/3 according to Theorem 5.4.1. Also,
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FIGURE 5.24: The asymptotic behavior of the Kaimal covariance for
c = 1, 2, · · · , 30.

Figure 5.24 shows the asymptotic behavior of the Kaimal covariance, i.e. the limit
limh→∞ CK(h)h2 |c for c ∈ [1, 30). Therefore, it is plausible that

lim
h→∞

CK(h)h2 = const ∈ (0, ∞). (5.70)

Again, this indicates that the covariance decays slower than what is described by
Theorem 5.4.2, i.e., the random process does not have long-memory effects.

5.4.2 Generalized Cauchy model and Dagum models

Now, we focus on two models with long-memory effects, and take the variance of
the RF X(x) to be σ2

X = 1.

5.4.2.1 Modified Generalized Cauchy

Let us define the class Φd of continuous function f : (0, ∞) → R such that f (0) = 1
and f (‖·‖) is positive definite in Rd. Also, we define Φ∞ :=

⋂
d≥1 Φd. The Gen-

eralized Cauchy (GC) class CC, defined in (Daley and Porcu, 2014), is a member of
the class Φ∞, provided α ∈ (0, 2] and β > 0. The parameter α is crucial for the
differentiability at the origin and, as a consequence, for the degree of mean-square
differentiability of the associated sample paths. Specifically, they are infinitely dif-
ferentiable when α = 2. The GC family represents a breaking point with respect to
earlier literature based on the assumption of self-similarity, since it decouples the
fractal dimension and the Hurst effect. The next result follows from Lim and Teo
(Lim and Teo, 2009) and describes the spectral density of the GC covariance func-
tion.

Let CC be the Cauchy covariance function defined by Eq. 5.52. Then, for β > 0
and α ∈ (0, 2), the Fourier transform in Rd of CC is identically equal to

SC(ω; θ) = − ω−d

2d/2−1πd/2+1 ×=
(∫ ∞

0

Kν(h)
(1 + ei πα

2 (h/ω)α)β/α
hd/2dh

)
, ω ≥ 0,

where = denotes the imaginary part of a complex argument, ν = (d − 2)/2 and
θ = (α, β).

Let C (·; θ), the Modified Generalized Cauchy covariance function, defined as:

CMC(h; θ) = (1 + hα)−β/α−1(1 + (1− β)hα), h ≥ 0, (5.71)
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with θ = (α, β) ∈ (0, 2] × (0, ∞). The spectral density of this kind of covariance
family can be written according to the following result, that is new.

Theorem 5.4.3 For α ∈ (0, 2) and β > 0, we have

SMC(ω) =
ω−ν

2νπν+2=
(∫ ∞

0
Kν(ωh)hν+1 1 + (1− β)eiπα/2hα

(1 + ei πα
2 hα)β/α + 1

dh
)

, ω > 0,

where ν = −1/2.
Proof. Let ω = |v| with v ∈ R. We proceed by direct construction:

SMC (ω) =
1

2π

∫
R

e−ivhCMC(h)dh

=
1

2π

∫
R

e−ivh(1− β) (1 + hα)−β/α dh +
1

2π

∫
R

e−ivhβ (1 + hα)−β/α−1 dh

= (1− β)
1

2π

∫
R

e−ivh (1 + hα)−β/α dh + β
1

2π

∫
R

e−ivh (1 + hα)−β/α−1 dh

= (1− β)SC (ω; θ) + βSC (ω; θ1)

where θ1 = (α, β + α). Applying Theorem 1 of (Bevilacqua and Faouzi, 2019), we
have

SMC (ω) =
ω−ν

2νπν+2 ×=
(∫ ∞

0
Kν(ωh)hν+1 1 + (1− β)eiπα/2hα

(1 + ei πα
2 hα)β/α + 1

dh
)

.

Next, have been applied the Proposition 3.3 from Lim and Teo (Lim and Teo,
2009) to study the low frequency limit of the spectral density of SMC (ω).

Theorem 5.4.4 For α ∈ (0, 2) and β > 0 , the low frequency limit of the spectral density
SMC (ω) is given by

1. SMC(ω) ∼ (1−β)ωβ−1Γ( 1−β
2 )

2βπ1/2Γ(β/2) + β
ωβ+α−1Γ( 1−β−α

2 )

2β+απ1/2Γ( β+α
2 )

, if β + α < 1;

2. SMC(ω) ∼ (1−β)
π

(
log( 1

ω )−
β
α (ψ(β/α) + γ) + log(2)− 1

2 (γ− ψ(1/2))
)
+

βΓ(1/α)Γ( β+α−1
α )

παΓ( β+α
α )

, if β = 1.

3. SMC(ω) ∼ (1−β)ωβ−1Γ( 1−β
2 )

2βπ1/2Γ(β/2) + β
π

(
log( 1

ω ) −
β+α

α (ψ( β+α
α ) + γ) + log(2) − 1

2 (γ −
ψ(1/2))

)
, if β + α = 1,

4. SMC(ω) ∼ (1−β)Γ(1/α)Γ( β−1
α )

παΓ( β
α )

+
βΓ(1/α)Γ( β+α−1

α )

παΓ( β+α
α )

, if β > 1,

where γ is Euler's constant and ψ(z) = Γ(z)′

Γ(z) .

Lim and Teo (Lim and Teo, 2009) provide an expression of the spectral density of
the Generalized Cauchy covariance functions.

Theorem 5.4.5 Let CC be the Generalized Cauchy covariance function as defined in Eq.
5.71. Let α = a/b and β = e/ f > 0 be rational numbers with the greatest common divisor
gcd (a, b) = gcd (e, f ) = 1. If one of the following conditions hold:

1. a is not divisible by f ,

2. d is an odd integer and e/ f is an even integer,
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3. d is an even integer, a and f are both even integers and a/ f is an odd integer,

then, SC (ω) can be represented by:

SC(ω) =
ω−1

π3/2
1

Γ(β/α)
×

∞

∑
n=0

(−1)n

n!
Γ(β/α + n)Γ(1/2− (β + nα)/2)

Γ((β + nα)/2)

(ω

2

)β+nα

+
ω−1

π3/2
1

Γ(β/α)
×

∞

∑
n=0

(−1)n

n!

Γ
(

2n + 1
α

)
Γ
(

β− 2n− 1
α

)
Γ(n + 1/2)

(ω

2

)2n+1
,

with ω > 0, where α ∈ (0, 2] and β > 0.

Applying Theorem 5.4.5, we obtain another representation of our spectral den-
sity SMC.

Theorem 5.4.6 Let CMC be the Modified Generalized Cauchy covariance function as defined
in Eq. 5.71. Let α = a/b and β = e/ f > 0 be rational numbers with the greatest common
divisor gcd (a, b) = gcd (e, f ) = gcd (a f + be, b f ) = 1. If one of the following conditions
hold:

1. a is not divisible by f ,

2. e/ f and (a f + be)/(b f ) are an even integers,

SMC(ω) =
ω−1

π3/2
(1− β)

Γ(β/α)
×

∞

∑
n=0

(−1)n

n!
Γ(β/α + n)Γ(1/2− (β + nα)/2)

Γ((β + nα)/2)

(ω

2

)β+nα

+
ω−1

π3/2
(1− β)

Γ(β/α)
×

∞

∑
n=0

(−1)n

n!

Γ
(

2n + 1
α

)
Γ
(

β− 2n− 1
α

)
Γ(n + 1/2)

(ω

2

)2n+1

+
ω−1

π3/2
β

Γ(β/α + 1)
×

∞

∑
n=0

(−1)n

n!

Γ
(

β
α + 1 + n

)
Γ
(

1/2− β+(n+1)α
2

)
2β+(n+1)αΓ

(
β+(n+1)α

2

)
ω−β−(n+1)α

+
ω−1

π3/2
β

Γ( β
α + 1)

×
∞

∑
n=0

(−1)n

n!

Γ
(

2n + 1
α

)
Γ
(

β + α− 2n− 1
α

)
Γ(n + 1/2)

(ω

2

)2n+1
,

with ω > 0, where α ∈ (0, 2] and β > 0.
The proof comes as a corollary of Theorems 5.4.3 and 5.4.5.

5.4.2.2 Dagum

Let CD be the Dagum covariance function defined by Eq. 5.53. Berg et al. (Berg,
Mateu, and Porcu, 2008) have shown that CD(h) = 1− (hα/(1 + hα))β belongs to
Φ∞ if βα ≤ 2 and α ≤ 2. However, in our case, the Dagum covariance function is
defined on the real line.

Theorem 5.4.7 For β ∈N, βα ≤ 2 and α ≤ 2, we have

SD(ω) =
n−1

∑
k=0

(−1)n−kCn
k

ω−ν

2νπd/2+1=
(∫ ∞

0
Kν(ωu)hd/2 1

(1 + eiπα/2hα)n−k dh
)

.
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Proof. Let ω = |v| with v ∈ R. Then,

SD(ω) =
1

(2π)d

∫
Rd

e−ivCD(h)ddh =
1

(2π)d

∫
Rd

e−ihv

(
1−

(
hα

1 + hα

)β
)

ddh

=
1

(2π)d

n−1

∑
k=0

(−1)n−kCn
k

∫
Rd

e−i hv 1
(1 + hα)n−k ddh,

where Cn
k is a number of possible combinations of k objects from a set of n objects.

From Eq. 5.71, we obtain,

SD(ω) =
n−1

∑
k=0

(−1)n−kCn
k SC(ω; α, n− k).

5.4.3 Long-memory effects in time series

Since in a long-memory RF (or random process) the dependence between two in-
stants is persistent, i.e., not independent, it is worth inspecting here the assumption
of ergodicity in the estimation of temporal statistics. To that end, this problem, we
first show basic concepts of the ergodicity theory; we then use simulated data to ex-
amine the ergodic assumption for stochastic processes with short- and long-memory
characteristics.

5.4.4 Ergodicity

As is often the case in practice, the determination of probabilistic characteristics (e.g.,
moments, distributions) of a RF is obtained from the study of a single realization
X(ω) related by sample events ω of the Ω space. An intuitive explanation of such
an approach lies in the possibility of treating the realization X(ω) at hand as a rep-
resentation of the RF X, which is the ergodic property or ergodicity.

Recall that a process is mean-ergodic if any realization X(ω), ω ∈ Ω, is sufficient
to get the ensemble average 〈X (t)〉 at any t from its time average X (ω) for any
ω ∈ Ω taken over a sufficiently large interval:

X (ω) ≡ lim
T→∞

1
2T

∫ T

−T
X (ω, t) dt =

∫
Ω

X (ω, t) dP (ω) ≡ 〈X (t)〉 .

In practice, the time integration in Eq. 5.72, X (ω) must be replaced by the time av-
erage of a finite number N of sampling points (taken over one realization ω) (Ostoja-
Starzewski, 2007), i.e.,

X (ω) ≡ 1
N

N

∑
n=1

X (ω, tn) . (5.72)

And 〈X (t)〉 must be computed from the ensemble average over a finite number M
of realizations ω (taken at a chosen sampling time point t), i.e.,

〈X (t)〉 ≡ 1
M

M

∑
m=1

X (ωm, t) . (5.73)
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The conditions for Eq. 5.72 to hold are provided by the so-called ergodic theorems.
Slutsky's theorem (Papoulis and Pillai, 2001). A stationary process X (t) is mean-
ergodic if its autocovariance is such that

lim
T→∞

1
T

∫ T

0
C (h) dh ∼= lim

T→∞

1
T

T

∑
h=0

C (h) = 0. (5.74)

Sufficient conditions
(i) If ∫ ∞

0
C (h) dh ∼=

∞

∑
h=0
|C (h)| < ∞, (5.75)

then, Eq. 5.74 holds; hence the process X (t) is mean-ergodic if the autocovariance
function is absolutely summable.
(ii) If

lim
h→∞

C (h) = 0, (5.76)

then X (t) is mean-ergodic. In Eqs. 5.74 and 5.75 we show the cases pertaining to
continuous and discrete times.
Next, it is possible to extend the properties of ergodicity to the covariance function.
A process is covariance-ergodic if, independently of the particular sample function,

RX (ω, t) ≡ lim
T→∞

1
2T

∫ T

−T
X (ω, t1 + t) X (ω, t1) dt1r =

∫
Ω

X (ω, t1 + t) X (ω, t1) dP (ω) r

≡ 〈X (ω, t1 + t) X (ω, t1)〉 ,
(5.77)

i.e., the temporal covariance function of the process is equal to the ensemble covari-
ance function of any realization. The property of covariance-ergodicity is important
because it first allows the derivation of the covariance of the process from a single
sample function, and then the determination of the power spectrum of the process.
Moreover, Slutsky's theorem implies that the ergodic hypothesis is appropriate if the
two random variables X (t + h) and X (h) are almost uncorrelated for large h, or, if
taken sufficiently far apart, they are almost independently distributed.

Therefore, the covariance function plays a key role in the ergodic assumption and
it is also associated with the definition of long-memory processes, in which a non-
negligible persistent correlation may occur. Using simulation data, we investigate in
the following whether the ergodic assumption is consistent with the long-memory
definition. We present a non-ergodic analysis, i.e. the statistics of the time series are
measured across an ensemble of M independent realizations instead of from a single
realization.

5.4.5 Simulations

To illustrate the effect of the ergodic assumption on the correct estimation of the em-
pirical covariance, and, consequently, on the empirical spectral density function, we
perform a simulation of M-independent Gaussian time series, which are generated
using (Schlather, 2015). In particular, M = 500 independent observations are gener-
ated, each characterized by N = 2, 000 samples with a sampling frequency of 20 Hz.

We examine two cases characterized by short and long memories, respectively,
with Cauchy (Eq. 5.52) and Dagum (Eq. 5.53) covariance functions. Regarding the
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FIGURE 5.25: a) Correlogram; b) Spectral density; c) Variogram; d)
Spectral density in log scale. Cauchy autocorrelation function: α =
2/3 (D = 5/3); β = 1 (H = 0.5) (blue line), ensemble autocorrelation

function (black line) and time autocorrelation function (grey line).

parameters in the Cauchy and Dagum expressions, in the spirit of generalized ran-
dom processes consistent with the physical characteristics of the turbulence RF, the
time series are generated with α = 2/3 and different values of long-memory index,
β = 1 (H = 0.5), β = 0.2 (H = 0.9) and β = 0.32 (H = 0.84). The fractal index α is
consistent with the Kolmogorov −5/3 spectrum so that we can interpret the fractal
dimension as D = 5/3. The particular case of Hurst parameter H = 0.5 is chosen in
order to investigate the short-memory scenario. The other two cases, H = 0.9 and
H = 0.84, are close to the values of the Hurst parameter measured from the experi-
mental data presented in the next section.

With the generated time series, the theoretical autocorrelation of each model is
compared with the sample autocorrelation for one single realization (ergodic process
hypothesis):

ρ (h) =
∑N−h

n=1 (x (tn)− x̄) (x (tn + h)− x̄)

∑N
n=1 (x (tn)− x̄)2 =

C (h)
C (0)

, (5.78)

and then for the estimated autocorrelation over a finite number M of independent
realizations (absence of ergodic process hypothesis):

〈ρ (h)〉 = ∑M−h
m=1 (xm (t1)− 〈xm (t1)〉) (xm (t1 + h)− 〈xm (t1 + h)〉)

∑M
m=1

√〈
xm (t1)

2
〉
− 〈xm (t1)〉2

√〈
xm (t1 + h)2

〉
− 〈xm (t1 + h)〉2

=
〈C (h)〉
〈C (0)〉 .

(5.79)
As additional second-order moment statistics, the variogram and the spectral

density can be estimated as well either from one single realization (using the ergodic
assumption), or from an ensemble of independent realizations (without the ergodic
assumption). Specifically, we have variogram estimates

γ(h) = C(0)− C(h) (5.80)
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FIGURE 5.26: a) Correlogram; b) Spectral density; c) Variogram; d)
Spectral density in log frequency domain. Cauchy autocorrelation
function: α = 2/3 (D = 5/3); β = 0.2 (H = 0.9) (blue line), ensemble
autocorrelation function (black line) and time autocorrelation func-

tion (grey line).

and
〈γ(h)〉 = 〈C(0)〉 − 〈C(h)〉. (5.81)

Similarly, we can estimate S(ω) and 〈S(ω)〉 according to Eq. 5.57, by using C(h) and
〈C(h)〉, respectively.

In the short-memory case, the correlograms, variograms and power spectral den-
sities estimated with and without the ergodic assumption are compared with the
corresponding theoretical curves in Fig. 5.25. The autocorrelation function decays
to zero quite quickly, while the spectrum has a small peak (the mean effect) at the
zero frequency. The most relevant result of this example is that, for the simulated
data with the Hurst parameter H = 0.5, the sample functions based on the ergodic
assumption are in agreement with their theoretical counterparts. However, in the
long-memory scenarios as demonstrated in Figs. 5.26 and 5.27 where the simulated
data have H = 0.9 and H = 0.8, respectively, the sample functions evaluated on one
single realization significantly deviate from the theoretical curves.

In contrast, the ensemble-based covariance functions provide a close fit of the
theoretical autocorrelation functions and, consequently, also for the variogram func-
tions and the power spectral density functions.

The results above clearly suggest that caution needs to be taken in the presence
of data with long-memory, in that the ergodic assumption may lead to significant
errors. Nevertheless, these results seem not far from the restrictions introduced by
Slutsky's theorem on the definition of the ergodic process, indeed it seems to be a
direct consequence. With long-memory effects, the correlation between the random
variables at two distinct time instants, X(t + h) and X(h), cannot be considered neg-
ligible even for large a h. Consequently, in the presence of a strong long-memory, a
non-ergodic analysis is more appropriate; a non-ergodic assumption must be evalu-
ated in long-memory phenomena.
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FIGURE 5.27: a) Correlogram; b) Spectral density; c) Variogram; d)
Spectral density in log frequency domain. Dagum autocorrelation
function: α = 2/3 (D = 5/3); β = 0.32 (H = 0.84) (blue line), en-
semble autocorrelation function (black line) and time autocorrelation

function (grey line).

5.4.6 Field velocity data

We now explore field data from a meteoerological tower at a height of 79.1 m (see
details in (Chamorro et al., 2015)). Motivated by the discussion in the previous sec-
tion, the turbulence data observed in an interval [X (t0) , X (t0+T)], obtained at f =
ω/2π = 20 Hz during 24 hours (T = 24) are treated as a set of separate realizations
observed in M = 96 intervals [X (t0) , X (t1)] , [X (t1) , X (t2)] , ..., [X (tM−1) , X (t0+T)],
of length 18, 000 s each. In this way we are able to investigate the long-memory prop-
erties of the wind data collected.

First, we compare the ensemble averaged autocorrelation function (of the stream-
wise velocity) with the time averaged autocorrelation functions based on individual
intervals. Figure 5.28 shows the sample's autocorrelation and the corresponding
spectral density evaluated for three different intervals taken individually, in particu-
lar the 30th, 55th and 90th intervals of the 96, in comparison with the autocorrelation
function estimated from all the 96 realizations. By inspection, Fig. 5.28(a) shows that
each sample function, taken individually, is not representative of the ensemble that
constitutes the random process. The spectral density of the experimental velocity
data is computed with a discrete Fourier transform.

In order to fit the estimated autocorrelation and power spectrum functions, we
utilize the generalized form of the original Cauchy autocorrelation function (Gneit-
ing, 2000),

ρC(h) =
(

1 +
∣∣∣∣hc
∣∣∣∣α)−β/α

, c > 0; 0 < α ≤ 2, β > 0,

where c is a scale parameter, α is a shape parameter (known as the fractal index) and
β is a long-memory parameter. This class of RFs, referred to as the Cauchy family,
allows for simultaneous modelling of the long-range dependence and correlations
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FIGURE 5.28: a) Correlogram and b) Spectral density of the atmo-
spheric boundary layer data. Ensemble autocorrelation function (con-
tinuous black line), time autocorrelation function for the 30th interval
(dotted gray line), time autocorrelation function for the 55th interval
(dot-dashed gray line) and time autocorrelation function for the 90th

interval (continuous gray line).

at short and intermediate lags.

Similarly, the Modified Cauchy autocorrelation function (based on Gneiting and
Schlather, 2004a) is generalized to

ρMC(h) =
(

1 +
∣∣∣∣hc
∣∣∣∣α)−β/α−1 (

1 + (1− β)

∣∣∣∣hc
∣∣∣∣α) , c > 0; 0 < α ≤ 2, β > 0,

Finally, the Dagum autocorrelation function in Eq. 5.53 is generalized to

ρD(h) = 1−
(

1 +
∣∣∣∣hc
∣∣∣∣−β
)−α/β

, c > 0; 0 < α < 2, 0 < β ≤ 1,

Within the inertial sub-range, the Kolmogorov −5/3 power law implies the fractal
index α = 2/3.

Once the fractal index (and hence D) is fixed, the key parameter to determine
is the Hurst exponent H. The literature regarding the estimation of the Hurst ex-
ponent is extensive and various estimators have been proposed. Commonly used
estimators are R/S analysis, maximum likelihood method, variogram-based meth-
ods, box-counting, detrended fluctuation analysis, spectrum regression, and correla-
tion regression (Beran, 1994). Employing the R/S analysis (Borchers, 2018), we have
calculated the Hurst exponent of some extrapolated windows. A summary of the
obtained outputs is reported in Table 5.8, showing no significant dependence on the
time window size, or the choice of “simple R/S Hurst estimation" versus “corrected
R/S Hurst exponent". Hence we obtain the Hurst exponent ∼ 0.9.

Now, we examine the generalized autocorrelation function for the von Kármán
(Eq. 5.63) and Kaimal (Eq. 5.69) models. The non-linear least squares (NLS) method
is used to fit the sample data through the generalized Cauchy and Dagum autocor-
relation functions from Eqs. 5.82-5.82, and the von Kármán and Kaimal autocorrela-
tion functions from Eqs. 5.63 and 5.69. The results are summarized in Table 5.9. In
particular, we report the confidence bounds of the NLS fits. The values of β indicate
the Hurst parameter ∼ 0.9 for the Cauchy class and ∼ 0.84 for the Dagum class.
Note that both are very close to the Hurst parameters estimated directly from the
time series with the R/S method, despite the distinct approaches. The validity of
these estimations is also supported by the narrow confidence bounds.
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Window Simple R/S Hurst Corrected R/S Hurst
size estimation estimation

10 min 0.87 0.98
30 min 0.88 0.96
1 hour 0.81 0.92
2 hours 0.87 0.93
5 hours 0.86 0.93

TABLE 5.8: Hurst exponent using various temporal windows.

Class
β c[s]

2.5% 97.5% 2.5% 97.5%
Generalized Cauchy 0.21 0.22 11.7 12.8

Mod. General. Cauchy 0.20 0.20 26.1 28.3
Dagum 0.33 0.33 7.6 20.0

von Kármán - - 8.9×102 9.1×102

Kaimal - - 1.0×103 1.1×103

TABLE 5.9: Non-linear least squares fit of the long-memory parame-
ter, β, scale parameter c.

FIGURE 5.29: a) Correlogram; b) Spectral density; c) Variogram; d)
Log-log scaled spectral density of the atmospheric boundary layer
data. Ensemble functions (black line), Cauchy model (dotted blue
line), Cauchy Cauchy Modified I model (dashed blue line), Dagum
model (continuous blue line), von Kármán model (gray line) and

Kaimal model (dashed gray line).

Figure 5.29 shows the result of fitting of each of the models in terms of the auto-
correlation, variogram and spectral density. With von Kármán and Kaimal, we can
hardly get a good fit, whereas the Cauchy and Dagum models demonstrate excel-
lent agreement with the experimental data. These results support the plausibility of
using Cauchy or Dagum models to simulate turbulent velocity data.
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FIGURE 5.30: Correlogram for different interval lengths. Ensemble
autocorrelation function for: M = 96 (continuous black line), M = 48

(continuous gray line) and M = 24 (dotted gray line).

Finally, in order to verify that the analysis above is independent of the realiza-
tions obtained by segmenting the experimental data into M intervals. The ensemble
averaged autocorrelation function is also estimated with M = 48 realizations of 30
minutes each, and with M = 24 realizations of 1 hour each, respectively. The re-
sulting correlograms are displayed in Fig. 5.30, showing no significant effect of the
interval lengths. Moreover, because the other second-order moment statistics are
obtained from the autocorrelation function (Wiener Khinchin theorem), the same
considerations pertain to the influence of the interval lengths on the estimated vari-
ogram and spectral density functions.

5.4.7 Some remarks

The von Kármán and Kaimal models are able to represent the fractal dimension of
turbulent velocity field consistently with Kolmogorov −5/3 law, however, they fail
to capture the long-memory effect. Therefore, two model classes, has motivated
this research. To this end, two model classes, the so-called Cauchy (Gneiting and
Schlather, 2004a) and Dagum (Mateu, Porcu, and Nicolis, 2007a) belonging to wide-
sense-stationary or variogram random fields (Malyarenko and Ostoja-Starzewski,
2019), have been adapted from the modern probability theory. The applicability of
these models to turbulent velocity fields have been validated by a relatively large
dataset collected within the atmospheric boundary layer. For theoretical complete-
ness, we have also derived explicit forms of the energy spectral densities of Cauchy
and Dagum covariances.

5.5 Conclusion

In this Chapter, through a link between the statistical RF theory and the local and
non-local randomness in stochastic mechanics, three different mechanical engineer-
ing problems have been investigated. Two novel model classes belonging to wide-
sense-stationary RF, the so-called Cauchy and Dagum models, for which is possible
to deal separately with the local behavior (fractal dimension, D) and the non-local
behavior (Hurst effect, H) of the RF have been applied. The first section of this chap-
ter deals with fracture of beams with random filed properties. Thanks to the PTM the
Obreimoff experiment, treated first with a stochastic setting in (Ostoja-Starzewski,
2004) was extended taking into consideration the correlation structure of the RF in-
volved. In addition, some considerations about the sensitivity of the response to the
local and no-local randomness characteristics have been done. Section 5.2 shows a
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study of the effect of the local and non-local characteristics of the flexural deforma-
bility on the randomness level of the various stochastic response quantities. Some
examples of statically determinate and redundant stochastic beams, under different
conditions of load and constrain, showed different sensitivity to these effects if the
displacement or the internal forces of the redundant beams are examined. While in
Section 5.3, two new velocity spectrum models were presented, which explain and
decouple the fractal size and the Hurst effect. The evaluation of these two models us-
ing field data from a sonic anemometer located within the atmospheric surface layer
showed excellent agreement and much better performance than the conventionally
used models of turbulence velocity spectra.
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Chapter 6

Random analysis of dynamic
systems

6.1 Introduction

An efficient probabilistic characterization of the structural response of a system ex-
cited by random process actions often requires a high computational effort, above all
when the response is a non-Gaussian process. Actually, even for systems subjected
to static actions, the effort can be very high; this is related to the number of random
variables involved in the analysis and to the type of probability distribution that
characterizes them. A full probabilistic characterization of the structural response
of a stochastic dynamic system can be obtained by the knowledge of the evolution-
ary JPDFs, or, equivalently, by the knowledge of their Fourier transforms, that are
the evolutionary C-CFs. The only exception is when the response is represented by
a Gaussian process, for which the evolutionary PDF and C-CF depend only on the
statistics up to the second order, that are the time variant mean and the two-times
dependent correlation function. For all the other cases of response random pro-
cesses, the knowledge of higher order statistics at multiple times is necessary for a
sufficiently accurate probabilistic characterization. Obviously, the necessity of eval-
uating the response higher order multiple time moments or correlations increases
considerably the problem dimensions, without reaching often a satisfying character-
ization of the probabilistic response (Lin, 1967b; Roberts and Spanos, 2003; Wu and
Lin, 1984; Lutes and Sarkani, 2004; Di Paola, Falsone, and Pirrotta, 1992; Di Paola
and Falsone, 1994; Falsone, 1994; Di Paola and Falsone, 1997a; Di Paola and Fal-
sone, 1997b; Falsone, 2005; Morikawa and Kameda, 1997; Makarios, 2012; Gioffrè
and Gusella, 2002; Mazelsky, 1954; Bucher and Schueller, 1991). Recently, also the
perturbation approach has been used in this kind of studies (Kamiński, 2010). More-
over, in some relevant problem, such as the structural reliability evaluation or the
stochastic limit analysis, the accurate knowledge of the response PDF is essential,
above all at the PDF tails, (Chen and Li, 2007; Alibrandi, 2014). When a single vary-
ing time instant is considered in the analysis, the response random process can be
characterized through the knowledge of its time varying PDF, or by its time varying
CF. But its full probabilistic characterization requires the JPDFs (or the joint C-CFs)
at multiple time instants. In the literature, only some papers can be found work-
ing directly on the response PDFs, without passing through the knowledge of the
response moments or correlations at multiple times, (Conte and Peng, 1996; Ad-
hikari, 2007; Kalogeris and Papadopoulos, 2018; Li, 2016; Calatayud, Cortés, and
Jornet, 2018; Calatayud, Cortes, and Jornet, 2018; Liu and Liu, 2018; Hussein and
Selim, 2015; Meimaris, Kougioumtzoglou, and Pantelous, 2018; Mamis, Athanas-
soulis, and Kapelonis, 2019). Indeed, most papers working in this field deal with
the response statistics (moments or cumulants) at multiple times, if the dynamical
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problem is faced in the time domain (see e.g. Falsone and Settineri (2011b) and Fal-
sone and Settineri (2011a)), or with the spectral moments, if the frequency domain
is used (see e.g. Barbato and Conte (2008) and Barbato and Vasta (2010)). A possible
alternative to the previous methods is represented by Monte Carlo simulation meth-
ods (MCS) (Proppe, Pradlwarter, and Schuëller, 2003; Pradlwarter and Schuëller,
2010), but they exhibit the well-known drawback that the accuracy of the estimates
depends on the sampling size of the stochastic processes, besides of the number of
samples and this increases the corresponding computational effort.

This Chapter outlines an extension of the PTM to the case of dynamical systems.
The main contribution of the chapter is a probabilistic approach able to give the di-
rect relation between the single-time varying PDFs of input and output of a linear
structural system subjected to assigned non-Gaussian stochastic process excitations.
In particular, Section 6.2 will deal with the extension of the static PTM to the dynamic
response analysis. This extension was essentially made by discretizing the classical
Duhamel integral. In this way, it will be obtained an efficient approach, able to give
the response evolutionary PDF at a single time instant. Moreover, a stochastic pro-
cedure for the evaluation of the CF response of structural systems, whose dynamics
are characterized by random initial conditions, besides random excitations, will be
presented. Then, in Section 6.3 an extension of the above cited approach for the
probabilistic characterization of the response at multiple times by the direct evalua-
tion of the corresponding JPDFs will be presented. For each section, some numerical
examples are shown with the aim of evidencing the efficiency of the method. Finally,
this chapter will end with some notes for the study of dynamic systems having un-
certain parameters which lead to handle random differential equations. However, a
new formulation of an evolutive PTM for linear uncertain systems is still object of
study. So, the contents of Section 6.3 represent the first possible assumptions under-
studies. Lastly, in Section 6.4, some final overall considerations will be reported. The
contributions of this chapter essentially refer to two papers already published (Fal-
sone and Laudani, 2018; Falsone and Laudani, 2020c) and another one under review
(Laudani and Falsone, 2020).

6.2 Dynamic stochastic analysis of linear structures

When the dynamic analysis of a linear deterministic structure is performed, the ne-
cessity of performing a stochastic analysis may arise: a) if the time-dependent ac-
tions are random processes; b) if the system initial conditions are random. Both
these possibilities, that could happen contemporaneously, will be treated in the fol-
lowing. The differential motion equations of a n-degree of freedom structure, subject
to a time-dependent vector-force F(t), is written as follows:

MÜ(t) + CU̇(t) + KU(t) = F(t) U(0) = U0 (6.1a-b)

where M, C and K are the mass, damping and stiffness matrices, respectively; U(t)
is the n-vector of the response displacements, U0 defines the initial conditions of the
response and F(t) represents the excitation vector.
If the vector of state variables XT(t) =

(
UT(t) U̇T(t)

)
is introduced, Eqs. 6.1 can be

rewritten in the following form:

Ẋ(t) = DX(t) + vF(t); X(0) = X0 (6.2a-b)
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where:

D =

(
0 I

−M−1K −M−1C

)
; v =

(
0

M−1

)
; X0 =

(
U(0)
U̇(0)

)
; (6.3a-c)

The response vector X(t) can be calculated by the Duhamel integral, that is:

X(t) = Θ(t)X0 +
∫ t

0
Θ(t− τ)vF(τ)dτ (6.4)

Θ(t) being the transition (or fundamental) matrix corresponding to the dynamical
system; it is expressed as:

Θ(t) = exp(Dt) =
∞

∑
n=0

1
n!

Dntn (6.5)

The Eq. 6.4 is usually solved numerically and several methods are available in the
literature (Di Paola and Falsone, 1994). When the stochastic analysis is performed,
the response characterization cannot be obviously reduced to the solution of Eq. 6.4.
But the probabilistic description of the response is necessary in this case. Actually,
there are a lot of methods in literature that allow obtaining the response PDF. Most
parts of them are based on the evaluation of the moments (or cumulants) of the
response. These procedures are efficient when the response process is Gaussian.
But, if it is not so, it is well known that an accurate probabilistic description of the
response, based on the moments (or cumulants) series, is usually a very heavy task.

6.2.1 Random excitations

When the stochastic structural analysis is necessary because of the randomness of
the external loads, these last ones are modeled as non-Gaussian random processes,
because, as said before, in the case of Gaussian actions, the PTM is unnecessary.
In the following the PTM is applied by making two assumptions: a) the PFFs of
input and output are considered at a single time variable t; b) the continuous time
axis is discretized by intervals of constant amplitude ∆τ, so that the generic time
instant tk = k∆τ is considered. The assumption b) implies the transformation of the
system of differential equations governing the problem (Eqs. 6.2) into an equivalent
discrete algebraic one. Consequently the integral expressed in Eq. 6.4 is transformed
into an algebraic equation having the following form:

X (tk) = Θ (tk)X0 +
∫ tk

0
Θ(tk − τ)vF(τ)dτ ≈ Θ(tk)X0 +

k−1

∑
i=0

Θ(tk − τi)vF(τi)∆τ

= Θk(∆τ)X0 +
k−1

∑
i=0

Θk−i(∆τ)vF(τi)∆τ

(6.6)

where τi = i∆τ and where use has been made of the property of the transition
matrix, following the which it is: Θ (t1 + t2) = Θ (t1)Θ (t2). Using the above rela-
tionship, the r-th element of X (tk), X(r) (tk), can be written as follows:

X(r) (tk) = 1TΘk(∆τ)X0 +
k−1

∑
i=0

H(r)T

ki F(τi)∆τ (6.7)
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where 1T is such a (2n)-vector that only its r-th element is equal to the unit and all

the other ones are zeros, while the row H(r)T

ki is given by:

H(r)T

ki = 1T
r

[
Θk−i(∆τ)v

]
. (6.8)

Without losing the generality of the approach, deterministic zero initial conditions
are considered. This implies that, in the time interval (t0, tk], the value at the generic
time instant up to tk of the component response X(r)) is given by the following linear
algebraic equation system:


X(r)(t1)

X(r)(t2)
...

X(r)(tk)

 =


H(r)T

10 0T · · · 0T

H(r)T

20 H(r)T

21 · · · 0T

...
...

. . .
...

H(r)T

k0 H(r)T

k1 · · · H(r)T

k(k−1)




F(t0)
F(t1)

...
F(tk−1)

∆τ (6.9)

0 being the zero n-vector. The previous relation implies:

X(r)(tk) =
k−1

∑
i=0

H(r)T

ki F(ti)∆τ = H(r)T

k Fk∆τ (6.10)

where:

Fk =


F(t0)
F(t1)

...
F(tk−1)

 ; H(r)
ki =


H(r)

k0

H(r)
k1
...

H(r)
k(k−1)

 (6.11)

Eq. 6.10 establishes a linear algebraic relationship between the response com-
ponent evaluated at various time instants up to tk, and the stochastic load vector
evaluated at various time instants up to tk−1. It evidences a very simple way of
approximating a dynamic problem in an equivalent discrete problem. The shape

of the time-dependent functions appearing as elements of the generic row H(r)T

ki es-
sentially depends on the powers of the impulse response function of the system.
Consequently, these functions decrease to zero more or less rapidly, depending on
the system damping and on the power exponent of Θ(∆τ). In particular, Eq. 6.8
shows that the exponent of this power is given by k− i. This implies that elements

of the row H(r)T

ki become more and more negligible when it is more and more distant
from the diagonal blocks. This can be clearly seen in Fig. 6.1, where with reference

to an example analyzed in the next section, the first component of the rows H(r)T

ki
with i = 0, 5, 10, · · · , k is reported. Hence, the blocks that are very distant from the
diagonal blocks can be neglected. The number of the negligible blocks obviously
depends also on the system damping.
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FIGURE 6.1: Typical evolution of the first component of the generic

rows H(r)T

ki for i = 0, 150, 500.

From the point of view of the PTM application, Eq. 6.10 defines a linear trans-
formation between the response random variable X(r) (tk) (output) and the super-
vector Fk (input), built by all the vectors F(ti), with i = 0, 1, · · · , k− 1.
Due to this form of transformation, it is clear that the more efficient way to apply the
PTM is through the evaluation of the response CF, that is:

MX(r)(tk)
(ωr) = (2π)nk−1MFk(θk)|θk=ωjH

(r)
k

(6.12)

from which the corresponding PDF can be obtained by applying the inverse Fourier
transform.
Analogously the JCF of two response components can be obtained by:

MX(r)(tk)X(p)(tk)

(
ωr, ωp

)
= (2π)nk−2MFk(θk)|θk=ωrH(r)

k +ωpH(p)
k

(6.13)

The expressions of the results and the way used for obtaining them make clear that
this approach can be generalized for the response probabilistic characterization at
more than two time instants. It is worth noting that the Eqs. 6.12-6.13 enable a direct
relation between the PDFs of the time-dependent input and that one of the time-
dependent output. Furthermore, it is important to underline that this approach can
be applied for any probabilistic characterization of the stochastic vector-processes
F(t), in both the cases of Gaussian and, above all, non-Gaussian processes.

Another approach, always based on the PTM, could be applied for the stochastic
analysis of the structural system governed by Eqs. 6.1 and whose mean square so-
lution is given into Eq. 6.4. By assuming zero initial conditions, Eq. 6.4 is rewritten
as:

X(t) =
∫ t

t0

Θ(t− τ)vF(τ)dτ =
∫ t

t0

Z(τ)dτ (6.14)

where the vector process Z(τ) = Θ(t − τ)vF(τ) can be probabilistically defined
by the JPDF pZ (z, τ), that is evaluated through the application of the PTM to the
linear transformation F(τ) → Z(τ). The last step to do is the characterization of the
random vector process X, once that the characterization of the vector process Z has
been found. Due to the time integral relationship between these two processes, an
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efficient numerical solution can be used; it is based on the following theorem on the
JCFs of X and Z:

Theorem 6.2.1 (Soong, 1973) If the m.s. integral X(t), t ∈ T, exists, then:

MX(ω, t) = lim
m→0

∆m→0

MZ
(
ω (τ1 − τ0) , τ′1; · · · ; ω (τm − τm−1) , τ′m

)
; τ′j ∈

(
τj−1, τj

)
(6.15)

where ∆m = max
(
τj−1 − τj

)
.

By truncating the value of m to a sufficiently high value, the expression of this theo-
rem becomes an efficient way to evaluate numerically the response CF.
If the characterization of the response random process is required at more instant,
Eq. 6.15 must be generalized. This is always possible, even if the corresponding nu-
merical evaluation becomes more and more heavy increasing the number of time
instants.

x 

y 

3 

2 

1 

4  5

6 

7 

8 

L 

L 

L 

L 

m m 

m m 

m m 

ag  (t)

FIGURE 6.2: Truss structure system.

6.2.1.1 Numerical examples

The effectiveness of the proposed method is tested through some numerical exam-
ples. The truss structure represented in Fig. 6.2 is first considered. It is characterized
by the following geometrical and physical parameters: L = 10 m; the cross-element
area is A = 0.04 m2. The mass is considered as lumped in the nodes 2, 3, 4, 5, 6 and 7,
and its value is m = 10, 000 kg. The Young’s modulus value is E = 2.1× 1011 N/m2,
and it is assumed equal for all the bars. The structure is forced by the inertial actions
because of a base acceleration ag(t) that is assumed to be represented as a random
process To verify the good level of accuracy for non-Gaussian processes, ag(t) has
been hypothesized to have a PDF given by the weighted mean of two Gaussian
PDFs, i.e. as follows:

pag(t)
(
ag(t)

)
=

1
2

pa(t) (a(t)) +
1
2

pb(t) (b(t)) (6.16)
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where a(t) is the zero-mean Gaussian stationary process corresponding to the Clough–
Penzien spectrum, having the following power spectral density:

Sa(ω) =
ω4

r + 4ξ2
r ω2

r ω2

(ω2
r −ω2)2 + 4ξ2

r ω2
r ω2

ω4(
ω2

p −ω2
)2

+ 4ξ2
pω2

pω2

0.141ξ2
r a2

g0

ωr
√

1 + rξ2
r

(6.17)

where the following values of the parameters have been chosen: ωp = 2.0, ωr = 19,
ξp = 0.6 and ag0 = 0.25g. Once that the correlation function Ra(τ) is evaluated by a
Fourier transform of the previous spectrum, the covariance function is obtained as:

σ2
a (t + τ, t) = Ra(τ) (6.18)

The Gaussian PDF pb(t)(b(t)) has unitary mean and covariance function given by:

σ2
b (t + τ, t) = 0.3σ2

a (t + τ, t) (6.19)

(A) t = 0.2 s (B) t = 0.45 s

(C) t = 1.2 s (D) t = 5 s

FIGURE 6.3: Horizontal displacement PDF of Node 4 evaluated for
four different instants. PTM (continuous line); MCS (dashed line)

To apply the PTM, it is to note that the load vector F(t) is given by −Mτag(t),
τ being the structural incidence vector. The random characterization of the dis-
placements of the r-th DOF at the time instant tk, X(r)(tk), has been obtained by the
application of Eq. 6.12 or, alternatively, by the application of Eq. 6.15. In Fig. 6.3, the
horizontal displacement PDFs of node 4 for four instants are shown in which it is
possible to observe that, for the first instants, the random characteristics of the PDF
outputs are strongly affected by the random characteristics of the input force, then
the responses PDF are gradually filtered. These results are compared with the cor-
responding quantities obtained by MCS performed with 15, 000 samples. From the
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analysis of these results, one can appreciate a good level of accuracy of the proposed
approach.

(A) (B)

(C) (D)

FIGURE 6.4: Example 1: horizontal displacement–velocity JPDF of
Node 4 evaluated for four different instants.

Furthermore, it is possible to evaluate the JPDFs displacement–velocity by ap-
plying Eq. 6.13. In Fig. 6.4, the JPDFs displacement–velocity for four instants is
shown. Finally, in Fig. 6.5, the horizontal displacement PDFs of node 4 are shown in
the time instant range [0.15, 1.00].

t = 0.10 sec
t = 0.35 sec
t = 1 sec

-1.4µ10-6 -9.5µ10-7 -5.µ10-7 4.µ10-7 8.5µ10-7 1.3µ10-6 ux4HmL

4.µ105

8.µ105

1.2µ106

1.6µ106

pux4Hux4L

FIGURE 6.5: Example 1: horizontal displacement PDFs of Node 4
evaluated for the time interval [0.10, 1.00]

Here, it is want emphasize that the application of the PTM has allowed obtaining
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some good results in an efficient way even if the input and, consequently, the out-
put, are defined by strongly non-Gaussian processes. The same quality cannot be
appreciated for most of the approaches in literature, such as the moment equation
method. Moreover, the present approach has been noticed very effective in the com-
putational effort even with respect to the previous approach (Settineri and Falsone,
2014).
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FIGURE 6.6: Shear-type plane system

(A) t = 0.35 s (B) t = 1 s

(C) t = 3 s (D) t = 5 s

FIGURE 6.7: Example 2: last floor displacement PDF evaluated for
four different instants
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Then, as a second example, the shear-type plane system shown in Fig. 6.6 is taken
into account. The Young’s modulus value is E = 31× 109 N/m2; all the columns
have the same length h = 3.2 m, while the moments of inertia of each column are
I1 = I2 = 0.0054 m4, I3 = I4 = 0.0031 m4 and I5 = I6 = 0.016 m4; for the first
five floors, a mass m = 36, 000/g kg is assumed; for the sixth floor, a mass equal to
m/2 is considered. The structure is forced by the inertial actions because of a base
acceleration ag(t) and is assumed the same non-Gaussian process considered in the
previous example.

By application of the equation 6.12, it is possible to obtain the PDF of any degree
of freedom. In particular, in Fig. 6.7, the horizontal displacement PDF of the last
floor is shown for four instants, and the comparison is made with the analogous
results obtained by the MCS performed with 15, 000 samples. While, in Figs. 6.8 and
6.9, the jPDFs displacement–velocity for four instants and the displacement PDFs of
last floor in the time instant range [0.15, 2.00] are, respectively, shown.

(A) (B)

(C) (D)

FIGURE 6.8: Example 2: last floor displacement–velocity JPDF evalu-
ated four different instants
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t = 0.15 sec

t = 1 sec

t = 2 sec
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FIGURE 6.9: Example 2: last floor displacement PDF evaluated for
the time interval [0.15, 2.00]

Finally, the same plane shear-type structure considered in the previous example
is now assumed to be forced by actions of wind kind. In this case, the vector load
F(t) is written as follows

F(t) = AV2(t) (6.20)

where A is a constant vector that in this example has been assumed to have the
following expression:

A =
[
1.1 1.2 1.3 1.4 1.5 1.6

]
× 31.50 kg/m (6.21)

V(t) represents the stochastic wind velocity (in m/s), comprehensive of a fluctuat-
ing part. It is here assumed to be a stationary Gaussian process, having a constant
mean value µV = 30 m/s, and covariance function σ2

V (t1, t2)that is described by the
following correlation function:

RVV (t1, t2) = RVV (t2 − t1) = 100exp [−0.5 |t2 − t1| cos (t2 − t1)] (6.22)

Therefore the system is forced by six stochastic concentrated forces, applied at each
floor, depending on the squares of the random process V(t) (Fig. 6.10).
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FIGURE 6.10: Shear-type plane system excited by wind-type actions
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Gaussian, depending on the square of a Gaussian process. Finally, the PDF of
the r-th floor displacement is obtained. In Fig. 6.11, the displacement PDFs of last
floor for three increasing instants are shown. The comparisons with the same results
obtained by MCS performed with 20, 000 samples confirm the efficiency of the pro-
posed approach. Furthermore, the evaluation of the JPDF displacement–velocity of
the sixth floor leads to the results depicted in Fig. 6.12. Finally, in Fig. 6.13, the eval-
uation of the displacement PDFs of last floor in the time instant interval [0.15, 1.00]
is shown.

(A) t = 0.25 s (B) t = 0.9 s

(C) t = 4 s

FIGURE 6.11: Example 3: last floor displacement PDF evaluated for
three different instants
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(A) (B)

(C)

FIGURE 6.12: Example 3: last floor displacement– velocity JPDF eval-
uated at three different instants

t = 0.15 sec

t = 0.3 sec

t = 1 sec
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FIGURE 6.13: Example 3: last floor displacement PDF evaluated for
the time interval [0.15, 1.00]

6.2.2 Random initial conditions

In this subsection, the structural systems, whose dynamics is characterized by ran-
dom initial conditions, besides of random excitations, are studied. In particular,
here, the more plausible assumption of independence between these two kinds of
actions is made. This means that, in the expression of the solution X(t), given in
Eq. 6.4, X0 is a vector of assigned random variables and F(τ) is a vector of assigned
random process and they are statistically uncorrelated.
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The expression of the response vector can be rewritten as follows:

X(t) = X̄0(t) + X̄F(t) (6.23)

X0 and X̄F(t) being two independent random processes given by:

X̄0(t) = Θ(t)X0; X̄F(t) =
∫ t

0
Θ(t− τ)vF(τ)dτ (6.24a-b)

Each of these processes can be easily characterized through the evaluation of their
CFs. Indeed, X̄0(t) is a linear combination of the elements of X̄F(t) and, thus, its CF
can be evaluated in the form given in Eq. 2.46. The process X̄F(t) is the time integral
of the process Z(τ) = Θ(t− τ)vF(τ). In the previous subsection a procedure giving
numerically the CF has be given through Eq. 6.15. Lastly, the response CF MX(t)(ω, t)
can be obtained by considering an important property of the CF of the sum of two
independent random process (Soong, 1973), following the which it is:

MX(t)(ω, t) = MX̄0(t)(ω, t)MX̄F(t)(ω, t) (6.25)

Even in this case, the response PDF is obtained by the Fourier anti-transform of this
CF.
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FIGURE 6.14: Displacement PDF evaluated for four different instants.
PTM (continuous line); MCS (dashed line)

6.2.2.1 Numeical examples

The following one-degree-of-freedom linear system is now taking into account:

ẍ(t) + 2ξ0ω0 ẋ(t) + ω2
0x(t) = f (t); x(0) = x0; ẋ(0) = ẋ0 (6.26a-b)
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characterized by damping ratio ξ0 = 0.05 and undamped angular frequency ω0 =
46, 13 rad/s . The system is forced by a the zero-mean Gaussian stationary ground
motion acceleration defined by its one-side power Clough–Penzien spectra density
of Eq. 6.17. The initial displacement condition is assumed as random variable with
marginal PDF uniformly distributed with σx0 = 0.15.
The random characterization of the displacement x(t) has been obtained by the ap-
plication of Eq. 6.25. In Fig. 6.14, the displacement PDFs for four instants are shown.
From the inspection of this last figure, it is possible to appreciate that for the first
instants, the PDF outputs are significantly influenced by the random initial condi-
tions, then the responses PDF depends only on the random characteristics of the ex-
citation. Finally, the comparisons with the same results obtained by MCS performed
with 50, 000 samples evidence the validity of the proposed approach.

6.3 Multi-time probability density functions of the dynamic
non-Gaussian response of structures

In Section 6.2.1, the extension of the static PTM to the dynamic response analysis
was essentially made by discretizing the classical Duhamel integral, obtaining an
efficient approach able to give the response evolutionary PDF at a single time instant.

Aim of the present section is the extension of the above cited approach for the
probabilistic characterization of the response at multiple time by the direct evalua-
tion of the corresponding JPDFs.

6.3.1 Proposed approach

The approach that will be presented in this section mainly is the extension to the
multiple time case of a previously introduced dynamic PTM working on a single
evolution of the response statistics.
Let take into account Eq. 6.10 which establishes a linear algebraic relationship be-
tween the response component, evaluated at various time instants up to tk, and the
stochastic load vector, evaluated at various time instants up to tk−1. If now the time
instant tj = j∆τ, with j < k, is considered, then it is easy to verify that the following
expression holds:

X(r)(tj) ≈
j−1

∑
i=0

H(r)T

ji F(ti)∆τ = H(r)T

j Fj∆τ = Ĥ(r)T

jk Fk∆τ (6.27)

where Ĥ(r)T

jk is the j-th super-row of the matrix defined in the first of Eqs. 6.9, that is:

Ĥ(r)T

jk = (H(r)T

j0 H(r)T

j1 . . . H(r)T

j(j−1) 0T . . . 0T) (6.28)

In Section 6.2.1 have been shown the way for characterizing the response component
X(r) at a fixed time instant tk. In particular, assuming that the load JPDF, pFk(Fk), is
known, it is possible to express the response PDF as follows:

pX(j)(tk)
(X(j)(tk)) =

∫ +∞

−∞
· · ·

∫ +∞

−∞
pFk(yk)δ(X(j)(tk)−H(j)T

k yk)dy1 · · · dyn·k (6.29)

As noted in Section 6.2.1, in the cases of linear relationships between input and out-
put random variables, as this is the case here in examination, a very useful formula
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can be obtained if the analysis is made in terms of CFs, instead of PDFs. Indeed, it
has been shown that the following expression holds:

MX(r)(tk)
(ω) = (2π)n·k−1 MFk(θk)

∣∣
θk=ωH(r)

k
(6.30)

Now, the analysis is extended to the case in which the response probabilistic char-
acterization is required at two different time instants tj and tk, with tj < tk. At this
purpose, taking into account Eq. 6.27, it is easy to show that the following relation-
ship holds:

pX(r)(tj)X(r)(tk)
(X(r)(tj), X(r)(tk)) =∫ +∞

−∞
· · ·

∫ +∞

−∞
pFk(yk)δ(X(r)(tj)− Ĥ(r)T

jk yk)δ(X(r)(tk)−H(r)T

k yk)dy1 · · · dyn·k
(6.31)

Consequently, the response C-CF, can be related to the load CF as follows:

MX(r)(tj)X(r)(tk)
(ω1, ω2) = (2π)n·k−2 MFk(θk)

∣∣
θk=ω1Ĥ(r)

jk +ω2H(r)
k

(6.32)

It is obvious that this last relationship can be generalized to the case in which X(r)

and X(s), with r 6= s, are two distinct response components, obtaining:

MX(r)(tj)X(s)(tk)
(ω1, ω2) = (2π)n·k−2 MFk(θk)

∣∣
θk=ω1Ĥ(r)

jk +ω2H(s)
k

(6.33)

At this point, the generalization of the previous formulation to the case in which the
probabilistic characterization of the response components X(r), X(s), · · · , X(t), evalu-
ated at the different temporal instants tj, tk, · · · , tl , is straightforward. For example,
it is not difficult to verify that the following expression holds:

MX(r)(tj)X(s)(tk)···X(t)(tl)
(ω1, ω2, · · ·ωm) = (2π)n·l−m MFk(θk)

∣∣
θk=ω1Ĥ(r)

jl +ω2Ĥ(s)
kl +···+ωmH(t)

l

(6.34)
Once that the response C-CFs have been obtained, the corresponding JPDFs can be
evaluated by the application of the inverse Fourier transform.

6.3.2 Numerical example

6.3.2.1 Example 1

The numerical examples reported in this subsection aim for verifying the feasibility
and the accuracy of the proposed approach. In particular, two numerical examples,
already studied in Section 6.2.1 in terms of evolutionary single time instant PDFs,
have been examined.

At first, the shear-type plane system shown in Fig. 6.7 is taken into account.
By using Eq. 6.31, or Eq. 6.32, it is possible to evaluate the JPDF of the response
component, X(r), at two different time instants, tj < tk. The Figs. 6.15-6.18 show
the JPDFs of the horizontal displacement of the last floor for tj = 0.01 s and for four
different time instants: tk = 0.02 s, tk = 0.5 s, tk = 2.5 s and tk = 5 s.
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     (a) (b)

FIGURE 6.15: Example 1: the JPDF of the horizontal displacement of
the last floor at two different time instants tj = 0.01 s and tj = 0.02 s.

(a) PTM, (b) MCS.

In particular, in Figs. 6.15-6.18 the results are compared with the corresponding
quantities obtained by MCS performed with 50.000 samples. From the observation
of these figures, it can be observed the high level of correlation between the random
variables X(r)(tj) and X(r)(tk) when the two time instants are close (Fig. 6.15), while,
when the time distance is larger the correlation decreases (Fig. 6.18). Then, another
analysis has been performed with tj = 0.25 s and tk = 0.5 s and the corresponding
JPDF of the same response components has been reported in Fig. 6.19.
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FIGURE 6.16: Example 1: the JPDF of the horizontal displacement of
the last floor at two different time instants tj = 0.01 s and tj = 0.5 s.

FIGURE 6.17: Example 1: the JPDF of the horizontal displacement of
the last floor at two different time instants tj = 0.01 s and tj = 2.5 s.

At last, in order to show better the accuracy of the proposed method, the multi-
time moment, E[u6 (t1) u6(t)], and the multi-time variance, Cov[u6 (t1) , u6(t)] =
E[u6 (t1) u6(t)] − E[u6 (t1)]E[u6(t)], have been shown in Fig. 6.20. From the anal-
ysis of these results, the good level of accuracy of the proposed approach can be
appreciated. The present approach has been noticed to be very effective in the com-
putational effort, too; the use of the approach has allowed a computing time-saving
of about 80% respect to the MCS under the same accuracy condition.
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FIGURE 6.18: Example 1: the JPDF of the horizontal displacement of
the last floor at two different time instants tj = 0.01 s and tj = 5.0 s.

(a) PTM, (b) MCS.
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FIGURE 6.19: Example 1: the JPDF of the horizontal displacement of
the last floor at two different time instants tj = 0.25 s and tj = 0.5 s.

(a) PTM, (b) MCS.
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FIGURE 6.20: Example 1: (A) multi-time moment, E[u6 (t1) u6(t)]; (B)
multi-time variance. Cov[u6 (t1) , u6(t)].

6.3.2.2 Example 2

The same plane shear-type structure forced by actions of wind kind considered in
the previous sections now is assumed (Fig. 6.11) The evaluation of the JPDF of the
horizontal displacement of the six-th floor for tj = 0.01 s and for four different time
instants: tk = 0.02 s, tk = 0.5 s, tk = 2.5 s and tk = 5 s, has been obtained by the
application of Eq. 6.31 or Eq. 6.32, leading to the results depicted in Figs. 6.21-6.24.
Finally, another analysis has been performed with tj = 0.25 s and tj = 0.5 s and
the corresponding JPDF of the same response components has been reported in Fig.
6.25. These figures show that the level of correlation between the random variables
X(r)(tj) and X(r)(tk) depends again on the distance between the time instants con-
sidered in the analysis. Also for this second example, the comparisons with the same
results obtained by MCS performed with 50.000 samples. The multi-time moment
E[u6 (t1) u6(t)] and the multi-time variance, Cov[u6 (t1) , u6(t)] reported in Fig. 6.26
confirm the efficiency of the proposed approach. At last, a computing time-saving
of about 80% respect to the MCS has been confirmed, even for this example.



172 Chapter 6. Random analysis of dynamic systems

    (a)
(b)

FIGURE 6.21: Example 1: the JPDF of the horizontal displacement of
the last floor at two different time instants tj = 0.01 s and tj = 0.02 s.

(a) PTM, (b) MCS.
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FIGURE 6.22: Example 2: the JPDF of the horizontal displacement of
the last floor at two different time instants tj = 0.01 s and tj = 0.5 s.

(a) PTM, (b) MCS.

FIGURE 6.23: Example 2: the JPDF of the horizontal displacement of
the last floor at two different time instants tj = 0.01 s and tj = 2.5 s.
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     (a) (b)

FIGURE 6.24: Example 2: the JPDF of the horizontal displacement of
the last floor at two different time instants tj = 0.01 s and tj = 5.0 s.
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     (a) (b)

FIGURE 6.25: Example 2: the JPDF of the horizontal displacement of
the last floor at two different time instants tj = 0.25 s and tj = 0.5 s.

(a) PTM, (b) MCS.

6.3.3 Some remarks

The results of the applications reported in the previous section show the good level
of accuracy characterizing the proposed approach, even when the response is clearly
non-Gaussian. But it is to be emphasized that the computational effort related to
the application of this approach is relatively low, above all if compared with those
ones corresponding to the approaches that require the evaluation of the statistical
moments at multiple times or of the correlations. The present method can be consid-
ered as an extension to the multiple time analysis of the single time approach treated
in Section 6.2 that, in turn, is the extension to the dynamic systems of the PTM pre-
viously considered for the static case. That this approach can be applied to the study
of large scale structures, obviously making some approximation about the number
of the degree of freedom on which they are working on. Moreover, they are sure that
the approach can be applied to the non-linear systems, too, when the input-output
law can be defined.
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FIGURE 6.26: Example 2: (A) multi-time moment, E[u6 (t1) u6(t)]; (B)
multi-time variance. Cov[u6 (t1) , u6(t)].

6.4 Dynamic systems with uncertain parameters

In the dynamic systems of the previous sections, the sources of randomness have
been the stochastic excitation and/or the stochastic initial conditions. Taking the
multi-degree-of-freedom (MDF) system of Eq. 6.1(a), there may be uncertainty about
the appropriate values of the mass (M), damping (C) and stiffness matrices (K). Sim-
ilarly, in the state-space formulation of the equations of motion (Eq. 6.1(a)), it is pos-
sible there is uncertainty about the appropriate values for the D matrix and for the
v vector.
Given the fact that there is almost always uncertainty about the energy dissipation
during dynamic motion of a mechanical or structural system, so the components of
the C matrix may vary significantly from their "design" values (Lutes and Sarkani,
2004). Moreover, there may be significant uncertainty about both mass and stiffness,
though, in structural engineering systems, particularly buildings. The mass magni-
tude and distribution within a building depend on the details of the usage of the
building. While a building is in use, the mass distribution can surely be ascertained
reasonably well by careful study of the contents, but this can be time-consuming
and costly. If one wishes to do a "post mortem" of a building after a disaster, such as
an earthquake, there may be much more uncertainty about the mass matrix. Then,
probably the greatest uncertainty about the stiffness matrix for a structure has to
do with the effect of "nonstructural" components. Testing has shown that partitions
within a building do add significant stiffness, at least during small deflections, even
though they are not considered load-bearing components (Lutes and Sarkani, 2004).
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Therefore, the performance of a dynamical system is a function of the uncertain pa-
rameters which constitute the system.
It results from the above that the study of dynamic systems and structures having
uncertain parameters leads to handle random differential equations. The term “ran-
dom differential equations” in general refers to differential equations with random
coefficients, having either deterministic or random inhomogeneous parts and initial
conditions (Soong, 1973). This section deals with the problem of solving a stochas-
tic differential equation in terms of in time evolutive probability density function.
However, it is right to underline that the contents of this section are not new in the
literature, but they are the first assumptions underlying the aim of finding a new
formulation of an evolutive PTM for linear uncertain systems.

6.4.1 Differential equations with random constant coefficients

Let assume that the system under consideration is random only on its geometri-
cal/mechanical characteristics and let assume that these uncertain properties are
defined by the p-vector θ of random variables. The governing differential equation
is written as follows:

Ẋ(t) = A(θ)X(t) + BF(t), X(t0) = X0 (6.35)

where, now, F(t) is deterministic. The random vector θ (constant in t) enters the
equation through the coefficients, and it is assumed that the joint probability distri-
bution of θ and the initial condition X0, is known.
It is easy to show that Eq. 6.35 can be cast in the form of differential equations with
only random initial conditions. For this purpose, it is convenient the introduction of
the (n + p)-th order vector process built as follows:

Z(t) =
(

X(t)
θ

)
(6.36)

Consequently, the governing equation (Eq. 6.35) becomes:

Ż(t) = k(Z(t), t); Z(t0) = Z0 (6.37)

where

k =

(
A(θ)X(t) + BF(t)

0

)
; Z0 =

(
X0

θ

)
(6.38)

Here it is important to observe that in terms of Z(t), Eq. 6.37 describes a vector
differential equation where randomness enters only through the initial condition
(Soong, 1973). Hence, it is generally possible to determine the statistical properties
of the solution process Z(t), and consequently that of X(t). An alternate method
of solution for Eq. 6.37 is to make use of the fundamental Liouville’s theorem in
the theory of dynamic systems. This approach, which will be shown in the next
subsection, converts the problem to one of solving an initial value problem involving
a first-order partial differential equation.
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6.4.1.1 Applications of the Liouville equation

For completeness, some preliminary concepts are given below. Let consider the ran-
dom system described by

Ẋ(t) = f(X(t), t); X(t0) = X0 (6.39)

where the only random element involved is the n-dimensional initial value vector
X0, whose JPDF, pX0 (X0), is known. Assuming that the solution process X(t) exists,
one basic tool for the determination of some of the probability distributions associ-
ated with the solution process given the JPDF of X0, is the Liouville’s Theorem.

Theorem 6.4.1 (Liouville’s Theorem). Assume that the mean square solution process
X(t) of Eq. 6.39 exists. Then, the joint density function pX(x, t) satisfies the Liouville
equation

∂pX(x, t)
∂t

+
n

∑
j

∂pX(x, t)
∂xj

= 0 (6.40)

.

Now, taking into account the (n + p)-vector process Z(t) defined by Eq. 6.36,
from the Liouville’s theorem, the JPDF, pZ(z, t) satisfies

∂pZ(z, t)
∂t

+
n+p

∑
j

∂k j pZ(z, t)
∂zj

= 0 (6.41)

The substitution of Eqs. 6.37 into Eq. 6.41 gives

∂pXθ(x, θ, t)
∂t

+
n

∑
j

∂(θX(t) + BF(t))pXθ(x, θ, t)
∂xj

= 0 (6.42)

Eq. 6.42 is satisfied by the joint density function of the solution process X(t) together
with the random coefficient vector θ. The initial condition associated with Eq. 6.42
is the joint density function of X0 and θ, i.e. pX0,θ (x0, θ).
The general solution of Eq. 6.42 is obtained by examining the associated Lagrange
system. Following the procedure proposed by Soong, pXθ(x, θ, t) is given by

pXθ(x, θ, t) = pX0,θ (x0, θ) exp
{
−
∫ t

t0

∇pXθ[x = h(x0, θ, τ), θ, t]dτ

}∣∣∣∣
x0=h−1(x,θ,τ)

(6.43)
It is important to say that in general, the procedure presented for the determination
of the joint density function of the mean square solution X(t) presents no conceptual
difficulty if the solution of the corresponding deterministic differential equation can
be found.

6.5 Conclusion

In this chapter, the suitable applicability of the PTM for the study of the dynamic
analyses of structural systems, whose dynamics are characterized by random initial
conditions, besides random non-Gaussian actions, has been shown. An approach
able to give the single-time varying PDFs of the output for linear structural system
subjected to non-Gaussian stochastic process excitations has been developed. Then,
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a subsequent approach for the probabilistic characterization of the response at mul-
tiple time by the direct evaluation of the corresponding JPDFs has been provided.
The applications of the PTM here reported have been confirmed the goodness of the
results in terms of evolutive PDF, evidencing, even for the dynamic analyses, good
levels of accuracy coupled with a computational effort that is lesser and lesser than
that related to MCS. As seen, this chapter does not cover two important classes of
dynamic stochastic analyses: a) the nonlinear one for random excitations; b) those
related to the uncertain structures. The extension of the PTM on these last two issues
is under work and the first assumptions portend possible satisfactory results.
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Chapter 7

Conclusions

The research community has become aware that there is a clear need of including
uncertainties in the analysis of mechanical and structural systems. In the literature,
there are several papers related to the stochastic analysis of structures and, in the
last fifty years, many significant results have been obtained in this field.

In this PhD thesis, the use of the probability transformation method (PTM) and
of some of its extensions for solving mechanical and structural systems have been
addressed. The task of the stochastic analysis of structures is to capture all uncertain-
ties of the system in order to measure how much them influence the out response,
which means characterize the structural response from a probabilistic point of view.
Unfortunately, a full probabilistic characterization of the response requires a high
computational effort, just consider of the evaluation of the response statistical mo-
ments or cumulants when the response is a non-Gaussian variable (or process). The
PTM introduces a new philosophy in the study of uncertain systems, working di-
rectly in terms of input and output PDFs. Operating directly on the response PDF is
certainly the easiest and accurate way to do an efficient stochastic analysis.

Several stochastic frameworks have been investigated and a probabilistic ap-
proach has been proposed for each framework. Stochastic systems, whose geo-
metric and/or material properties are random, have been analyzed by coupling the
PTM with another approach that is the approximated principal deformation mode
(APDM) method. An approach able to give the exact probabilistic solution of redun-
dant stochastic beams, when the flexural deformability is random, is proposed. This
approach makes the use of the application of the force method for solving the redun-
dancy and of the application of the PTM. The static stochastic analysis of cracked Eu-
ler–Bernoulli beams is studied when the cracks are modeled as a rotational internal
spring with random amplitude and positions. Then, the PDF of cinematic and static
beam stochastic quantities have been found through the application of the PTM. In
the context of uncertain structural systems, two practical examples in which the un-
certainties in the model designed are due to simplifying assumptions in analytical
models and/or simplified methods. In particular, the stochastic analyses carried out
through the PTM, allowed to describe the structural response of steel beams and
frames with uncertain semi-rigid connections and the effects of the masonry infills
uncertainty on the structural response of RC frames. Design considerations have
emerged when comparing the presented probability approaches with the determin-
istic ones based on the average values, the latter could conduct the designer engineer
to misguided results. The topic of the local and non-local randomness in stochastic
mechanics has been addressed through three research works. Starting from the re-
cent contributions in statistical random filed theory on the fractal dimension and
long memory, a link between these two statistical characteristics and the local and
non-local randomness in stochastic mechanics is introduced. In particular, the study
of the presence of multiscale random properties in Griffith’s fracture criterion has
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been tackled. Then some examples of statically determinate and redundant stochas-
tic beams, under different conditions of load and constraint when flexural deforma-
bility is supposed to be a Gaussian homogeneous RF with correlation functions that
capture the fractal and Hurst effects, have been investigated. For both studies, it was
possible to make some considerations on the sensitivity of the response quantities to
the local and non-local randomness. This thanks to the PTM, which was the tool that
has allowed the stochastic analysis, working directly in terms of PDF. At last, models
of turbulent atmospheric velocity fields with fractal and Hurst properties have been
developed. Although in this last research work the PTM is not applied, however, it
has been included in this thesis because it is believed that its contents enrich the topic
of the local and non-local randomness, from a physical point of view. An extension
of the PTM to the case of dynamical systems has been presented. The main contribu-
tion is to provide the definition of an approach that is able to give, instant by instant,
a direct relation between the PDFs of input and output of a linear structural system
subjected to assigned stochastic process excitations. Then the development of this
approach has been presented, which consists of a multi-time probabilistic character-
ization of the response, necessary if the response probabilistic correlations at various
time instants are required. Moreover, this study covers the application of the PTM
for the dynamic analyses of structural systems, whose dynamics are characterized
by random initial conditions, besides random non-Gaussian actions. Anyway, new
formulations of PTM for the cases of nonlinear systems and those related to the un-
certain structures are under work.

In conclusion, this PhD thesis collects several research works in which the pre-
sented method, the PTM, turned out to be an efficient and easy tool able to perform
stochastic analysis in all the studied frameworks.
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