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Abstract 

A non-probabilistic approach for analyzing the effects of Young’s modulus uncertainty on the 

response of Euler-Bernoulli beams under deterministic static loads is presented. The uncertain 

material property is described by applying an interval field model based on the so-called improved 

interval analysis. The bounds of the interval response are determined in approximate closed-form 

by performing a finite difference discretization of the governing interval ordinary differential 

equation and applying the so-called Rational Series Expansion.  

The proposed procedure is applied to investigate the effects of Young’s modulus uncertainty on 

the bending response of beams with different boundary conditions. 
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1. INTRODUCTION 

Over the last decades, many researchers have focused on the development of non-deterministic 

procedures for assessing structural performance under fluctuations of design parameters. A variety 

of probabilistic methods, based on the concept of random variables and random fields, has been 

proposed. As known, a large amount of information is needed to define the probability density 

function and autocorrelation function characterizing random variables and random fields. When 

sufficient data are not available, as is commonly the case in early design stage, the credibility of 

probabilistic predictions may be questionable, especially in the context of reliability analysis.  

Non-probabilistic methods, such as convex models, interval models and fuzzy sets (see e.g. [1]) 

are gaining increasing interest as alternative approaches for handling uncertainties with fragmentary 

or incomplete information. Among these approaches, the interval model, derived from the interval 

analysis [2,3], is widely used for incorporating uncertainties in design problems when only the 

upper and lower bounds of non-deterministic properties are well defined. Several interval-based 

finite element procedures for the static and dynamic analysis of structures have been developed. For 

a general overview of the state-of-art and recent advances in interval finite element analysis readers 

are referred to [4,5]. Recently, the analysis of structures with interval uncertainties under stochastic 

excitations has also been addressed [6-8].  

Two are the main drawbacks commonly faced in the development of interval-based procedures 

for structural analysis: the drastic overestimation of the interval solution range due to the so-called 

dependency phenomenon [3]; the high computational costs. The dependency phenomenon is a 

consequence of the inability of the classical or “ordinary” interval arithmetic to keep track of the 

dependency between interval variables. Indeed, it occurs when an expression contains multiple 

instances of one or more interval variables and often leads to useless results for structural design 

purposes. In the literature, several approaches have been introduced to limit the effects of the 

dependency phenomenon, such as: the generalized interval arithmetic [9], the affine arithmetic 
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[10,11], the parameterized interval analysis [12] and the improved interval analysis (IIA) [7,8]. The 

high computational costs are inherent in any non-deterministic approach either probabilistic or non-

probabilistic. The challenging task is to build efficient procedures alternative to the repeated 

deterministic analyses needed in principle to predict the effects of uncertainties on the structural 

response. Within the interval framework, researchers focus their effort on obtaining a good 

compromise between tight enclosures of the solution and low computational costs. 

Another crucial issue is the need to account for the spatial character of uncertainties like material 

properties or load distributions. Probabilistic methods handle the spatial dependency of non-

deterministic properties by using the well-established concept of random field (see e.g. [13]. 

Conversely, taking into account the spatial variability of uncertainties within the same realization of 

a model is still a main challenge in a non-probabilistic context. Indeed, the inability of the classical 

interval analysis (CIA) to describe the spatial dependency of interval properties within a given 

domain is one of the main drawbacks of interval finite element (IFE) procedures which commonly 

assign an interval variable to each FE. This approach relies on the extreme assumption of spatial 

independency of the uncertain properties which is both unrealistic and computationally onerous. 

Alternatively, a single interval variable over the entire model can be assumed which implies the 

introduction of the opposite extreme hypothesis of total spatial dependency. In an effort to provide a 

more realistic description of spatially variable interval uncertainties, the so-called interval field 

[14,15] has been introduced as a natural extension of the random field concept. Explicit and implicit 

interval fields [16] have been defined to represent dependent uncertainties arising both in the model 

definition phase and in the post-processing phase of a static FE analysis. Basically, the explicit 

interval field model describes a spatially dependent interval parameter as superposition of a limited 

number of reference patterns, say basis vectors, and interval factors. The reference patterns are 

defined based on expert knowledge of the modeled system. This concept has been recently extended 

by the authors [17] who proposed a novel interval field model of input uncertain parameters based 

on the IIA and the related extra unitary interval (EUI). The underlying idea is to account for the 
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dependency between interval values of a non-deterministic property at various locations by 

introducing a deterministic symmetric non-negative bounded function playing the same role of the 

autocorrelation function in random field theory.  

This paper presents a non-probabilistic procedure for analyzing the response of Euler-Bernoulli 

beams with uncertain-but-bounded Young’s modulus subjected to deterministic static loads. The 

problem of the propagation of material uncertainties to the bending response of beams is a topic of 

great interest which is commonly tackled in the literature by applying probabilistic methods. 

Accordingly, the spatially variable uncertain material property is modelled as a random field with 

assigned autocorrelation function and the probabilistic characterization of the response random field 

is performed (see e.g. [18-21]). In the present paper, two key issues are addressed: i) the description 

of the spatial character of the uncertain material property within the interval framework; ii) the 

limitation of the overestimation of the interval solution range affecting the CIA. To cope with the 

first issue, the spatial variability of the uncertain Young’s modulus along the Euler-Bernoulli beam 

is here described by applying the interval field model based on the IIA recently proposed by the 

authors [17]. By exploiting the main properties of the IIA, a meaningful analogy between the 

interval and random field concept is established which suggests to apply a Karhunen-Loève (KL)-

like decomposition of the Young’s modulus interval field. Then, performing a finite difference (FD) 

discretization of the fourth-order ordinary interval differential equation governing the equilibrium 

of the Euler-Bernoulli beam, approximate closed-form expressions of the lower bound (LB) and 

upper bound (UB) of the interval displacement field are derived. This remarkable result is achieved 

by combining the IIA with the so-called Rational Series Expansion (RSE) recently proposed by the 

authors [8,22] for evaluating the inverse of an interval matrix with small rank-r modifications. Both 

the consistency of the interval field model and the accuracy of the proposed estimates of the 

response bounds are demonstrated through numerical results. 
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The paper is organized as follows: in the next section, the fundamentals of the IIA are briefly 

outlined; Section 3 is devoted to the definition of the interval field model based on the IIA, recently 

proposed by Muscolino et al. [17] for describing the spatial dependency of uncertain-but-bounded 

properties; in Section 4, the problem of an Euler-Bernoulli beam with interval Young’s modulus is 

formulated and an efficient procedure for deriving approximate explicit expressions of the bounds 

of the interval displacement field is presented; finally, for validation purposes, numerical results 

concerning both statically determinate and indeterminate beams with interval Young’s modulus 

under a deterministic uniformly distributed load are reported in Section 5.   

 

2. IMPROVED INTERVAL ANALYSIS (IIA) BASED ON THE EXTRA UNITARY 

INTERVAL (EUI) 

The interval model of uncertainty has been originally developed from the classical interval analysis 

(CIA) [3] which, unlike classical arithmetic, deals with intervals of real numbers. The key idea is to 

treat the uncertain parameters ever present in structural engineering problems as interval numbers 

with given lower bound (LB) and upper bound (UB). An interval variable is denoted by 

[ , ]


     such that     ,  being the set of all real interval numbers. The symbols 

  and   denote the LB and UB of the interval, respectively, while the apex I characterizes the 

interval variables. Unlike the widely used probabilistic approach, the interval model allows to 

handle uncertainties based on limited information, say their range of variability, without requiring 

the knowledge of the type of distribution within such range. The response of structural systems with 

interval uncertainties turns out to have an interval nature. In other words, the response does not take 

a given value but it varies within a complicated region and the aim of the interval structural analysis 

is to evaluate the maximum and minimum values of the response. To cope with such a hard task, the 

hypercubic approximation is commonly adopted [5].  
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Despite the simplicity of the interval model of uncertainty, its application to real engineering 

problems often leads to serious shortcomings. The main limitation is the so-called dependency 

phenomenon [3] which arises when an expression contains multiple instances of one or more 

interval variables due to the inability of the CIA to keep track of the dependency between interval 

variables. Such phenomenon introduces a high amount of conservatism leading to useless results for 

real sized structures. In the literature, several approaches have been introduced in an attempt to limit 

the overestimation of the interval solution width caused by the dependency phenomenon, such as: 

the generalized interval arithmetic [9], the affine arithmetic [10,11], the parameterized interval 

analysis [12] and the improved interval analysis (IIA) [7,8]. 

The aim of this section is to present the fundamentals of the IIA developed by the authors [7,8] in 

the framework of structural analysis following the philosophy of the affine arithmetic [10,11]. The 

essence of the IIA can be identified with the introduction of the so-called extra unitary interval 

(EUI), ˆ [ 1, 1]I
ie   , defined in such a way that the following properties hold: 

     

 

   

   

2

2

ˆ ˆ ˆ ˆ ˆ0,0 ;      1,1 ;

ˆ ˆ ˆ 1, 1 ,   ;

ˆ ˆ ˆ ˆ ˆ/ 1,1 ; ;

ˆ ˆ ˆ 1,1 .

I I I I I

i i i i i

I I I

i j ij

I I I I I

i i i i i i i i i

I I I

i i i i i i i i i

e e e e e

e e e i j

e e x e y e x y e

x e y e x y e x y

    

     

   

  

 (1a-f) 

where the subscript i indicates that the EUI is associated to the i-th uncertain-but-bounded 

parameter. In the previous equations, [1,1] 1  denotes the so-called unitary thin interval. It is 

recalled that a thin interval occurs when    and it is defined as [ , ]
I

   , so that   . 

Notice that the EUI, ˆ [ 1, 1]I
ie   , differs from the classical unitary interval (CUI), [ 1, 1]Ie   , 

which follows the rules of the CIA, leading to the following properties: 
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   

 

2, 2 ;      1, 1 ;

/      does not exist because 0 1, 1 ;

, ;

, .

I I I I

I I

I I

i i i i i i

I I

i i i i i i

e e e e

e e

x e y e x y x y

x e y e x y x y

       

  

      

    

 (2a-e) 

A remarkable difference between the EUI, ˆ [ 1, 1]I
ie   , and the CUI, [ 1, 1]Ie   , is that the first 

one is associated to the i-th uncertain-but-bounded parameter. This allows to keep track of the 

dependencies between interval variables throughout calculations thus limiting the overestimation 

due to the dependency phenomenon. Furthermore, the use of the EUI enables to eliminate some 

physically inconsistent results of the CIA such as the subcancellation property (see Eq. (2a)).  

The IIA expresses the i-th interval variable [ , ]
I

i i i     in the so-called affine form, i.e.: 

0,
ˆI I

i i i ie     (3) 

where ˆ I
ie  is the EUI associated to 

I

i  (see Eq. (1a-f)) and 

   0,

1 1
;     

2 2
i i i i i i          (4a,b) 

denote the midpoint and the deviation amplitude of 
I

i , respectively. 

The IIA has been applied by the authors to handle uncertainties arising in quite different 

structural problems such as randomly excited linear structures [7,8] or one-dimensional non-local 

heterogeneous continua [17]. Numerical results have demonstrated that the IIA enables to 

drastically reduce the effects of the dependency phenomenon. In the present paper, the main 

properties of the IIA are exploited to handle the spatial dependency of interval uncertainties in 

structural engineering problems. 
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3. SPATIAL DEPENDENCY OF INTERVAL UNCERTAINTIES 

3.1 Interval field model based on the IIA 

Interval variables fail to describe spatially varying uncertainties since they do not allow to quantify 

any sort of dependency between adjacent values of an uncertain property within a given domain. To 

cope with this problem, Moens et al. [14] introduced the so-called interval field as a natural 

extension of the random field concept. An interval field is conceived as being able to define a form 

of dependency between adjacent interval values of an uncertain property that cannot differ as much 

as values that are further apart.  

In this section, the main features of a novel interval field model based on the IIA and the related 

EUI are presented [17]. Without loss of generality, attention is focused on the variability of a 

structural parameter, such as the Young’s modulus of the material, within the 1D domain 0 x L   

which commonly occurs, for instance, in beam problems. It is assumed that the uncertain elastic 

modulus is represented by the following interval function: 

( ) ( ), ( )
I

E x E x E x     (5) 

where ( )E x  and ( )E x  denote the LB and UB for every x  within the domain [0, ]L . In other 

words, it is assumed that each realization of the uncertain Young’s modulus may vary arbitrarily 

within the region enclosed by the LB and UB, ( )E x  and ( )E x , as sketched in Fig.1 where for the 

sake of simplicity the bounds are assumed constant. 

Let ( ) ( ), ( )IB x B x B x     denote a dimensionless interval function having zero midpoint and 

deviation amplitude ( ) 1B x  . Then, without loss of generality, the interval function ( )IE x  can be 

defined as follows: 

0( ) 1 ( ) , [0, ]
I I

E x E B x x L      (6) 

http://en.wikipedia.org/wiki/Vector_field
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with midpoint value 0E  , taken constant over the whole domain [0, ]L , and deviation amplitude 

( )E x  given, respectively, by  

  0

0

( ) ( )
mid ( ) ;

2

( ) ( )
( ) ( ), [0, ].

2

I E x E x
E x E

E x E x
E x E B x x L


 


    

 (7a,b) 

In Eq. (7a), mid{ }  denotes the midpoint of the interval quantity into curly parentheses. 

Furthermore, according to Eq. (6), the midpoint value coincides with the nominal value of the 

uncertain material property. 

The key issue is to assume an appropriate pattern for modelling the spatial dependency of the 

interval function ( )IB x  which in turn reflects the dependency between values of the interval field 

( )IE x  at different locations. Such spatial dependency is assumed to be governed by a real 

deterministic symmetric non-negative function, ( , )B x  , defined as follows: 

 
 
 

2

0

mid ( ) ( )
( , ) mid ( ) ( ) 1,    , [0, ].

I I

I I

B

E x E
x B x B x L

E


        (8) 

Notice that ( , )B x   represents the midpoint of the dimensionless interval function ( ) ( )I IB x B   

which is related to the midpoint of the interval function ( ) ( )I IE x E   by Eq. (8). The function 

( , )B x   is herein named spatial dependency function. 

If the midpoint operator, mid{ } , is viewed as the equivalent of the stochastic average operator, 

it may be stated that within the interval framework the function ( , )B x   plays the same role of the 

autocorrelation function characterizing probabilistically a random field. Based on this analogy, a 

Karhunen-Loève (KL)-like decomposition [23] can be applied, i.e.: 
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  
2

2

1 1

( , ) ( ) ( ) ( , ) mid ( ) ( )I

B i i i B i i

i i

x x x x B x x        
 

 

      (9) 

where i , ( 1,2, )i  , is the i-th eigenvalue of the bounded symmetric non-negative function, 

( , )B x  , and ( )i x  ( 1,2, )i   is the corresponding eigenfunction, solutions of the following 

homogeneous Fredholm integral equation of the second kind: 

0

( , ) ( )d ( ).

L

B i i ix x x       (10) 

The eigenvalues, 
i , are real positive numbers and the associated eigenfunctions, ( )i x , are real 

functions satisfying the following orthogonality condition: 

0

1 if 
( ) ( )d

0 if  .

L

i j

i j
x x x

i j
 


 


  (11) 

The expansion in Eq. (9) is usually truncated to the first N terms to reduce the computational burden 

of the subsequent structural analysis.  

Taking into account the definition (8) of the function ( , )B x   and the decomposition (9) 

truncated to the first N terms, the following expression of the dimensionless interval function ( )IB x  

is readily found: 

 
1

ˆ( ) ( ) , 0, .
N

I I

i i i

i

B x x e x L 


   (12) 

Indeed, replacing Eq. (12) into Eq. (8) and exploiting the properties (1b,c) of the EUI, ˆI
ie , yields 

exactly the same expression of the function ( , )B x   given by Eq. (9). Notice that Eq. (12) 

provides the dimensionless interval function ( )IB x  as linear combination of deterministic functions 

( )i i x   and EUIs ˆ I
ie  ( 1,2, ,i N ). This remarkable result cannot be obtained by applying the 

http://en.wikipedia.org/wiki/Integral_equation
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CIA since the product between interval functions ( ) ( )I IB x B   in Eq. (8) provides a quite different 

result, i.e.: 

 

 

( ) ( ) min ( ) ( ), ( ) ( ), ( ) ( ), ( ) ( ) ,

                        max ( ) ( ), ( ) ( ), ( ) ( ), ( ) ( ) .

I IB x B B x B B x B B x B B x B

B x B B x B B x B B x B

    

   

 




 (13) 

This implies that the definition (12) of the dimensionless interval function ( )IB x  does not hold in 

the context of the CIA.  

Substituting Eq. (12) into Eq.(6), the interval field ( )IE x  can be recast as: 

 0

1

ˆ( ) 1 ( ) , 0,
N

I I

i i i

i

E x E x e x L 


 
   

 
  (14) 

where ˆI
ie  is the i -th EUI. Then, the LB and UB, ( )E x  and ( )E x , of the interval Young’s modulus 

( )IE x  in Eq. (14) can be defined as: 

     0 0( ) 1 ( ) ; ( ) 1 ( ) ,    0,E x E B x E x E B x x L       (15a,b) 

where 

 
10

( )
( ) ( ) , 0,

N

i i

i

E x
B x x x L

E
 






    (16) 

with   denoting the absolute value of  . 

 

3.2 Interval field as non-probabilistic counterpart of random field 

Though the interval field (14) is formally analogous to the model proposed by Verhaeghe et al. [15], 

it is conceptually different. The main difference consists in the use of the IIA and the related EUI, 

ˆ I
ie , which allows to give a meaningful interpretation of the function ( , )B x   as the non-
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probabilistic counterpart of the autocorrelation function in random field theory. Such interpretation 

suggests to build the interval field model by analogy with the random field definition [17]. To gain 

further insight into this concept, let us assume now that the uncertain Young’s modulus is modelled 

as a homogeneous Gaussian random field, defined as: 

 0( ) 1 ( ) , 0,E x E B x x L      (17) 

where ( )B x  is a homogeneous zero-mean Gaussian random field describing the dimensionless 

fluctuation of the elastic modulus about the nominal or mean-value, 0 E ( )E E x , E   being the 

mathematical expectation operator. In order to guarantee positive values of ( )E x , the random field 

( )B x  must satisfy the restriction ( ) 1B x  . Notice that, such a condition is not mathematically 

satisfied for Gaussian random fields unless small fluctuations are considered. The zero-mean 

random field ( )B x  is completely characterized from a probabilistic point of view by the 

autocorrelation function: 

( , ) E ( ) ( ) .
BB

R x B x B   (18) 

By comparing Eqs. (17) and (18) with Eqs. (6) and (8), respectively, the analogy between the 

midpoint operator, mid{ } , and the stochastic average operator, E  , can be naturally established 

and the real deterministic symmetric non-negative function, ( , )B x  , can be consistently viewed 

as the non-probabilistic counterpart of the autocorrelation function.  

 

3.3 Limit cases: total spatial dependency and spatial independency of uncertainties 

The interval field may be viewed as an intermediate model of uncertainty between two extreme 

approaches commonly used within a non-probabilistic context. Such approaches rely on the basic 

assumption that the uncertain parameters exhibit either total spatial dependency or spatial 
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independency. In the first case, an uncertain parameter can be represented as a single interval 

variable constant over the whole domain. Conversely, spatially independent uncertainties can be 

handled by introducing an interval variable for each element of a finite element (FE) model or of a 

discretized system. Obviously, both the aforementioned approaches are unrealistic and a more 

reliable description is generally obtained assuming that the values of an uncertain property at 

different locations depend on each other to some extent, according to the interval field concept. An 

interesting feature of the interval field based on the IIA to be investigated is the capability of 

describing total spatially dependent and spatially independent uncertainties as limit cases. To this 

aim, without loss of generality, it is here assumed that the real deterministic symmetric non-

negative function, ( , )B x  , governing the spatial dependency of the interval field ( )IE x  has the 

following exponential form: 

2
( , ) expB B

B

x
x C

l


 

 
  

 
 (19) 

where 
BC  and 

Bl  are appropriate parameters to be set based on the available information on the 

uncertain property. Specifically, the parameter 
BC  affects the deviation amplitude of the interval 

field and thus the uncertainty level, while the value of 
Bl  rules the spatial dependency of the 

uncertain Young’s modulus. In this connection, 
BC  and 

Bl  may be regarded, respectively, as the 

non-probabilistic counterpart of the standard deviation and correlation length in random field 

theory. Indeed, based on Eq.(19), it can be seen that as 
Bl  decreases, the interval Young’s modulus 

( )IE x  at a given position x  depends only on the values ( )IE   at close locations  . In the limit, as 

0Bl   the uncertain material property becomes spatially independent and the proposed interval 

field model ideally reduces to a series of independent interval variables, one for each abscissa 

within the domain [0, ]L . On the other extreme, if 
Bl  , the exponential function in Eq. (19) 

approaches the value 
2

BC . This implies that the dimensionless interval function ( )IB x  describing 
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the zero-midpoint fluctuation of the interval Young’s modulus with respect to its nominal value (see 

Eq. (6)) reduces to a symmetric interval variable, i.e.: 

ˆ( )
I I I

B x b be   (20) 

whose radius b  can be evaluated from Eq.(8) taking into account that   2
,B Bx C   : 

  2 2
( , ) mid ( ) ( )

I I

B B Bx B x B b C b C        (21) 

being ˆ ˆ [1,1]I Ie e   (see Eq. (1b)). Physically, this circumstance corresponds to the total spatial 

dependency condition in which the uncertain Young’s modulus is described by a single interval 

variable constant over the whole domain [0, ]L , i.e.: 

   0
ˆ1 , 0, .

I I
E E be x L    (22) 

The bounds of the interval Young’s modulus IE  clearly correspond to the bounds of the EUI, 

ˆI
e , i.e.: 

   0 01 ;    1 .E E b E E b     (23a,b) 

 

4. EULER-BERNOULLI BEAM WITH INTERVAL YOUNG’S MODULUS 

4.1 Interval differential equilibrium equation 

Let us now consider a linear elastic Euler-Bernoulli beam under a deterministic transversally 

distributed load ( )zp x  with uncertain Young’s modulus of the material, ( )
I

E x , modelled as an 

interval field according to the definition presented in the previous section (see Fig. 2). 

The transverse displacement of the beam is described by an interval field ( )
I

w x  ruled by the 

following fourth-order ordinary interval differential equation: 

2 2

2 2

d d ( )
( ) ( ) ( )

d d

I
I

z

w x
E x J x p x

x x

 
 

 
 (24) 
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where ( )J x  denotes the moment of inertia of the beam cross-section. Equation (24) must be 

supplemented by the pertinent kinematic and static boundary conditions, herein assumed 

deterministic, i.e. independent of interval variables. Substituting the expression (14) of the interval 

Young’s modulus ( )IE x , Eq. (24) reads: 

2 2 2 2

0 02 2 2 2
1

d d ( ) d d ( )
ˆ( ) ( ) ( ) ( )

d d d d

I IN
I

i i i z

i

w x w x
E J x E e x J x p x

x x x x
 



   
    

   
  (25) 

which differs from the equilibrium equation of the beam with nominal value of the modulus of 

elasticity, 
0E , just for the second term on the left-hand side. 

Within the interval framework, the solution of Eq. (25) consists in finding the narrowest interval 

containing all possible transverse displacement fields, ( )w x , corresponding to all realizations of the 

interval Young’s modulus ( )
I

E x  between its bounds (see Eqs. (15a,b)). Within the context of the 

IIA, in this study a procedure for deriving approximate closed-form expressions of the bounds of the 

interval displacement field ( )
I

w x  is presented. The first step of the procedure involves the finite 

difference (FD) discretization of the governing equation. Then, let us subdivide the beam domain 

[0, ]L  into n  intervals x , so that jx j x  is the abscissa of the j -th grid point with 

0,1,2, ,j n . Introducing the standard finite difference approximation of second-order 

derivative, the following discretized version of the equilibrium equation (25) is obtained: 

     

     

0 1 2 0 1 1 0 1 1 0 1 1 0 1 2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 2 1 1 1 1 1 1 1 2

1

2 4 2

ˆ2 4 2

I I I I I

j j j j j j j j j j j j j j

N
i I i i I i i i I i i I i I I

j j j j j j j j j j j j j j i j

i

E J w E J J w E J J J w E J J w E J w

s w s s w s s s w s s w s w e F

         

         



        

          
 

  

 (26) 

where 
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4 4 4

( )

0 0 0

( ) ( );   

( ) ( );  

( ) ( ) ;

( ) ( ) ( ) ( ).

I I I

j j

j j

j zj z j z

i

j j i ij j i i j i i

w w x w j x

J J x J j x

F p x p x x p j x x

s E J E J x x E J j x j x  





   

 

 

 

  

  

 (27a-d) 

Equation (26) represents a set of linear interval equations which can be recast in the following 

compact form: 

 0

I I I I

BK w K K w F    (28) 

where Iw  is the vector of order m  collecting the unknown interval displacements I
jw  at the grid 

points whose order m  can be determined once the boundary conditions are imposed; F  is the m -

vector listing the forces at the grid points jF  (see Eq. (27c)). The ( )m m  interval coefficient 

matrix 
I

K  in Eq. (28) is sum of two terms: the first one is the coefficient matrix 0K  pertaining to 

the elastic beam with nominal Young’s modulus, 0E , constant over the whole domain [0, ]L ; the 

second term is the interval matrix 
I
BK  accounting for the uncertain nature of the elastic modulus, 

which can be expressed as superposition of N  deterministic matrices, ,B iK , multiplied by the 

corresponding EUIs, i.e.: 

,

1

ˆ .
N

I I

B B i i

i

e K K


  (29) 

 

4.2 Bounds of the interval displacement field  

Once the set of linear interval equations governing the interval displacements at the grid points 
I
jw  

has been determined, the aim of the analysis is to determine the narrowest interval 
Iw  containing 

all possible vectors w  satisfying Eq.(28), when the matrices , ˆI
B i ieK  assume all possible values 

within the intervals , ,[ , ]B i B i K K  , ( 1,2, , )i N . It is worth remarking that the square interval 
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matrix 
I

K  is regular, that is each matrix 
I

K K  is non-singular (Rohn, 1990), so that the solution 

Iw  of Eq.(28), exists for all I
K K  and can be formally written as 

   
1

1 1

0 0 ,

1

ˆ .
N

I I I I

B B i i

i

e 


 



 
     

 
w K K K F K K F  (30) 

Under the assumption of small dimensionless deviation amplitude of the interval elastic modulus, 

i.e. ( ) 1B x  for all [0, ]x L  (see Eq. (16)), the interval vector 
I

w  is herein derived in 

approximate closed-form by applying the so-called Rational Series Expansion (RSE), recently 

proposed by the authors [8,22] as an alternative explicit expression of the Neumann series 

[23,25,26] for evaluating the inverse of a matrix with small rank-r modifications. The starting point 

to apply the RSE is the decomposition by columns of the matrix ,B iK  in Eq. (29) which leads to 

the following expression of the interval coefficient matrix 
I

K : 

0 0 ,

1 1

ˆ
N m

I I T I

B B i i

i

eK K K K k v
 

     (31) 

where ,B ik  is the -th column of the matrix ,B iK  and v  is a column vector of order m  

containing all zeros except the -th element which is equal to 1. By applying the RSE, the 

approximate inverse of the interval matrix in Eq.(31) takes the following explicit form: 

   
1 1

1

0 0 ,

1 1 ,

ˆ

ˆ1+

IN m
I I i

B B iI
i i B i

e

e d
K K K K D

 


 

     (32) 

where 

1 1 1

, 0 , , 0 , 0;     .
T T

B i B i B i B id v K k D K k v K
  

   (33a,b) 

It is worth mentioning that the RSE of the inverse of the interval coefficient matrix 
I

K  in Eq. (32) 

holds if and only if the condition 
, 1B id   is satisfied.  
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Upon rewriting the ratio appearing in the summation in Eq. (32) in affine form and replacing the 

resulting expression of the inverse matrix  
1

I
K



 into Eq. (30), the interval displacement vector 

I m
w   can be recast as follows: 

 1

0 0, ,

1 1

ˆ .
N m

I I

i i i B i

i

a a ew K D F


 

 
   
 

  (34) 

In the previous equation, 0,ia  and ia  denote the midpoint and deviation amplitude of the generic 

series term ,
ˆ ˆ/ (1+ )

I I

i i B ie e d  in Eq. (32), which after some interval algebra, can be written as: 

,

0, 2 2

, ,

1
; .

1 1

B i

i i

B i B i

d
a a

d d
 

 
 (35a,b) 

Based on the closed-form solution in Eq. (34) and following the IIA, the LB and UB, w  and w , of 

the interval response vector 
I

w  can be evaluated as follows:  

0 0;     w w w w w w     (36a,b) 

where 

1

0 0 0, , ,

1 1 1 1

;     
N m N m

i B i i B i

i i

a a

   

 
     
 

 w K D F w D F  (37a,b) 

are the midpoint and the deviation amplitude of the interval displacement vector 
I

w , while the 

symbol   in Eq. (37b) denotes the component wise absolute value. 

 

5. NUMERICAL APPLICATIONS 

Extensive numerical studies have been carried out to validate the non-probabilistic approach 

presented in the paper. In this section, some representative numerical results are reported. The 

section is organized as follows. First, the main features of the interval field model (see Eq. (14)) 

adopted to represent the uncertain elastic modulus ( )
I

E x  are scrutinized. To this aim, an 
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exponential spatial dependency function, ( , )B x  , is assumed (see Eq.(19)) and the midpoint value 

of the Young’s modulus is set to 0 30 GPaE  . Different values of the parameters 
Bl  and 

BC  

governing, respectively, the spatial dependency and the deviation amplitude of the interval field are 

considered. The eigenvalues, 
i , and eigenfunctions, ( )i x , of the exponential spatial dependency 

function are evaluated as outlined in Appendix. Then, attention is focused on the effects of Young’s 

modulus uncertainty on the interval displacement field of both statically determined and 

indeterminate Euler-Bernoulli beams. Specifically, two different boundary conditions are 

considered: simply supported (see Fig. 5) and fixed-simply supported (see Fig. 10). In both cases, 

the beam is assumed to carry a deterministic uniformly distributed load of intensity 
zp  per unit 

length. The geometrical properties of the beam are selected as follows: span-length 24 mL   and 

rectangular cross-section with 0.5 mb   and 1.6 mh   (see Figs. 5 and 10). The interval ordinary 

differential equation (24) governing the response of the beam is discretized by the FDM using a 

uniform grid with 240n   subdivisions. More refined grids do not provide appreciable 

improvement of the accuracy. 

 

5.1 Interval field with exponential spatial dependency function 

Figures 3a,b display the bounds of the interval Young’s modulus ( )
I

E x  evaluated according to 

Eqs. (15a,b) for different values of the parameters 
Bl  and 

BC  versus the dimensionless abscissa 

/x L , with [0, ]x L . The midpoint 
0E  is also reported for completeness. For any choice of the 

parameters 
Bl  and 

BC , the exponential spatial dependency function, ( , )B x  , is decomposed by 

applying Eq. (9) truncated to the first 24N   terms with the eigenvalues, 
i , and eigenfunctions, 

( )i x , evaluated as outlined in Appendix. In Fig. 3a, the bounds of the interval Young’s modulus 

( )
I

E x  corresponding to 0.05BC   and three different values of the parameter 
Bl  are plotted. 

Notice that the region of the uncertain material property becomes wider as 
Bl  decreases. Figure 3b 
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shows that, for a given value of the parameter 
Bl , say 0.5Bl L , the Young’s modulus region 

widens to a larger extent as the coefficient 
BC  increases. Indeed, the deviation amplitude of the 

proposed interval field model, ( )E x , with exponential spatial dependency function (19), turns out 

to depend linearly on 
BC  (see Eqs. (16) and (A.3)).  

To gain further insight into the influence of the parameter 
Bl  on the interval field, Figs. 4a,b 

show the UB and LB of the interval Young’s modulus field ( )
I

E x  along with the samples ( )
( )

r
E x  (

1,2, ,2
N

r  ) pertaining to all possible combinations of the bounds of the EUIs ˆ I

ie  ( 1,2, ,i N ) 

in Eq.(14) for two different values of 
Bl , say 0.5Bl L  and 2Bl L . For the sake of clarity, only 

the first 4N   terms are retained in the decomposition (9) of the function ( , )B x   so that the 

number of samples of the interval field is 2 16
N
 . As expected, the bounds of the interval Young’s 

modulus field, ( )E x  and ( )E x , turn out to be the envelopes of the 2 16
N
  samples. Furthermore, 

it can be observed that the samples ( )
( )

r
E x  are significantly affected by the parameter 

Bl . 

Specifically, as shown in Fig. 4b, an increase of the parameter 
Bl  implies that the pattern of the 

samples ( )
( )

r
E x  becomes more uniform over the spatial domain since the value of the uncertain 

material property at a given abscissa x  depends on the values it takes at different abscissas   

within a larger distance from x . As outlined in Section 3.3, when 
Bl  , the total spatial 

dependency condition is recovered and the interval field reduces to an interval variable constant 

over the whole domain (see Eq.(22)). Conversely, Fig. 4a shows that, as smaller values of the 

parameter 
Bl  are considered, the pattern of the samples becomes more irregular since the value of 

the interval field at a given abscissa x  depends only on the values it takes at different locations   

close to x . In the limit, as 0Bl   the interval field ideally reduces to a set of independent interval 

variables one at each abscissa [0, ]x L . The results reported in Figs. 4a,b demonstrate the 
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capability of the proposed interval field model of describing the uncertain material property under 

the extreme assumptions of total spatial dependency and total spatial independency. 

 

5.2 Simply supported beam with interval Young’s modulus 

Consider the simply supported beam under a deterministic uniformly distributed load zp  shown in 

Fig. 5.  

Let the uncertain Young’s modulus of the material be described by the interval field ( )
I

E x  with 

exponential spatial dependency function ( , )B x   characterized in the previous sub-section. The 

main purpose of numerical simulations is to analyze the effects of the uncertain elastic modulus on 

the interval displacement field ( )
I

w x  by applying the procedure described in Section 4. To this 

aim, as a first step, the accuracy of the RSE (see Eq. (32)) has to be assessed. Figures 6a,b show 

samples of the normalized interval displacement field, 
4

0( ) / ( )
I

zw x E J p L , pertaining to realizations 

of the interval Young’s modulus ( )
I

E x  with ˆ 1
I

ie    ( 1,2, , 24)i N   for 0.5Bl L  and two 

different values of 
BC , say 0.05BC   and 0.08BC  . The FD solution obtained by numerical 

inversion of the coefficient matrix in Eq.(28), herein labelled as “exact”, is contrasted with the 

approximate solution provided by the RSE (see Eq. (32)). The nominal response of the beam with 

Young’s modulus 
0( )E x E  is also plotted. It can be seen that the RSE approximation is almost 

coincident with the exact one. Furthermore, as expected, the deviation of the sample of the interval 

displacement field from the nominal value becomes more appreciable as larger values of the 

parameter 
BC  are considered, say as the uncertainty level increases (see Fig. 3). Figure 6 b shows 

that the RSE enables to predict with great accuracy the response of the beam even when large 

deviations from the nominal solution occur due to Young’s modulus fluctuations. 
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In Fig. 7, the estimates of the UB, LB and midpoint of the normalized interval displacement 

field, 
4

0( ) / ( )
I

zw x E J p L , provided by the approximate explicit expressions in Eqs. (36) and (37) are 

plotted for 0.5Bl L  and two different values of the parameter 
BC , say 0.05BC   and 0.08BC  . 

For validation purpose, in Fig. 8 the proposed bounds of the normalized interval displacement field 

are contrasted with those obtained by applying a combinatorial procedure based on the philosophy 

of the vertex method [4]. Such procedure consists in evaluating the beam response for all possible 

combinations of the bounds of the EUIs ˆ I

ie  ( 1,2, ,i N ) in Eq.(14), say 2
N

, and then take at 

each discretization point jx  of the domain [0, ]L  the maximum and minimum among all the 

solutions so obtained. The computational time required by the combinatorial procedure becomes 

prohibitive even when a small number N  of terms is retained in the decomposition (9) of the 

spatial dependency function ( , )B x  . For this reason, numerical results reported in Fig. 8 are 

obtained assuming 16N   instead of 24N  . By inspection of Fig. 8, it is noted that the proposed 

explicit expressions (36) of the response bounds provide very accurate estimates of the region of the 

interval displacement field even when large fluctuations of the uncertain Young’s modulus are 

involved. It is worth emphasizing that unlike the combinatorial procedure, the proposed approach 

guarantees high computational efficiency also for very refined FD discretizations and a large 

number of series terms N  in Eq. (9). This implies that the closed-form expressions of the interval 

displacement field can be efficiently exploited to carry out a parametric analysis which is very 

useful to investigate the effects of Young’s modulus uncertainty on the response of the beam. The 

attention is focused here on the non-probabilistic counterpart of the coefficient of variation, say the 

so-called coefficient of interval uncertainty of the response, defined as the ratio ( ) / mid{ ( )}
I

w x w x  

between the deviation amplitude and the midpoint of the interval displacement field. Figure 9a 

displays the coefficient of interval uncertainty of the displacement at two different locations, 

/ 2ix L  and / 4ix L , versus the ratio /Bl L  governing the spatial dependency of the interval 
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Young’s modulus field. It is observed that the coefficient of interval uncertainty at / 4ix L  is 

larger than the one at mid-span which implies that the response at quarter span is more affected by 

the material property uncertainty. Furthermore, as the ratio /Bl L  increases, the coefficient of 

interval uncertainty tends to 0.05BC   which is the value of the ratio ( ) / mid{ ( )}
I

w x w x  

pertaining to the beam with totally spatial dependent Young’s modulus field. Indeed, as outlined in 

Section 3.3, in this case the uncertain elastic modulus is described by an interval variable with 

deviation amplitude 
BC  over the whole domain (see Eq. (22)). In Fig. 9b, the coefficient of interval 

uncertainty of the response versus the parameter 
BC  is plotted. As expected, the coefficient 

increases linearly with the parameter 
BC  which governs the deviation amplitude of the interval 

Young’s modulus. 

 

5.3 Fixed-simply supported beam with interval Young’s modulus 

The fixed-simply supported beam under a deterministic uniformly distributed load zp  shown in 

Fig.10 is now considered.  

The proposed procedure is applied to analyze the response of the beam with uncertain Young’s 

modulus described by an interval field ( )
I

E x  with exponential spatial dependency function 

( , )B x  . In order to demonstrate the accuracy of the RSE (see Eq. (32)), in Figs. 11a,b samples of 

the normalized interval displacement field, 
4

0( ) / ( )
I

zw x E J p L , pertaining to realizations of the 

interval Young’s modulus ( )
I

E x  with ˆ 1
I

ie    ( 1,2, , 24i N  ) for 0.5Bl L  and two different 

values of 
BC , say 0.05BC   and 0.08BC  , are plotted. The “exact” FD solution, obtained by 

numerical inversion of the coefficient matrix in Eq.(28), is compared with the RSE approximation 

of the response (see Eq. (32)). For the sake of completeness, the nominal response of the beam with 

Young’s modulus 
0( )E x E  is also reported. Notice that the RSE allows to capture with great 
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accuracy the deviation of the sample of the interval displacement field from the nominal value due 

to Young’s modulus uncertainty.  

Figure 12 shows the proposed estimates of the UB, LB and midpoint (see Eqs. (36) and (37)) of 

the normalized interval displacement field, 
4

0( ) / ( )
I

zw x E J p L , for 0.5Bl L  and two different 

values of the parameter 
BC , say 0.05BC   and 0.08BC  . As expected, the region of the response 

widens as the parameter 
BC  governing the deviation amplitude of the Young’s modulus interval 

field increases (see Fig. 12b). In Fig. 13, the accuracy of the proposed bounds of the response is 

demonstrated by comparison with the LB and UB obtained following the philosophy of the vertex 

method [4], say considering the 2
N

 combinations of the bounds of the EUIs ˆ I

ie  ( 1,2, ,i N ) in 

Eq.(14). Notice that the approximate closed-form expressions in Eqs. (36) and (37) provide a very 

good match with the exact bounds of the interval displacement field even when larger uncertainties 

are considered. As in the previous example, due to the heavy computational burden associated with 

the combinatorial procedure, the comparison between the proposed bounds and the exact ones is 

performed retaining 16N   terms in Eq.(9) instead of 24N  .  

Finally, the effects of the parameters 
Bl  and 

BC  characterizing the proposed interval field model 

( )
I

E x  with exponential spatial dependency function ( , )B x   are investigated. Figure 14a displays 

the coefficient of interval uncertainty of the displacement, ( ) / mid{ ( )}
I

w x w x , at two different 

locations, / 2ix L  and / 4ix L , versus /Bl L . By inspection of Fig. 14a, it can be inferred that 

the response is much more affected by the material property uncertainty at / 4ix L  than at mid-

span. Indeed, the coefficient of interval uncertainty at / 4ix L  is much larger than the one at mid-

span. Nevertheless, at both locations as the ratio /Bl L  increases the coefficient of interval 

uncertainty tends to the value 0.05BC   pertaining to the beam with totally spatial dependent 

Young’s modulus field. As expected, Fig. 14b shows that the coefficient of interval uncertainty of 
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the response increases linearly with the parameter 
BC  taking larger values at / 4ix L  than at mid-

span. 

 

6. CONCLUSIONS 

A non-probabilistic approach for analyzing the effects of Young’s modulus uncertainty on the 

response of Euler-Bernoulli beams under deterministic static loads has been presented. A novel 

interval field model [17] has been adopted to describe the variability of the uncertain material 

property along the beam. Such model has been developed in the context of the so-called improved 

interval analysis (IIA), recently proposed by the authors [7,8] to limit the overestimation affecting 

the solutions provided by the classical interval analysis (CIA) as a result of the dependency 

phenomenon. The key feature of the IIA consists in the introduction of an extra unitary interval 

(EUI) able to overcome the main drawbacks of the CIA. The novel interval field model accounts for 

the dependency between interval values of a non-deterministic property at various locations by 

introducing a deterministic symmetric non-negative bounded function playing the same role of the 

autocorrelation function in random field theory. Based on the analogy with the random field 

concept, the interval field has been decomposed as superposition of interval functions by applying a 

Karhunen-Loève-like expansion in conjunction with the IIA. Then, such decomposition has been 

efficiently exploited in the context of a finite difference discretization of the governing interval 

ordinary differential equation to derive approximate explicit expressions of the bounds of the 

interval displacement field along the beam. This remarkable result has been achieved by applying 

the so-called Rational Series Expansion (RSE) [8,22] for evaluating the inverse of the interval 

coefficient matrix of the discretized equations in approximate closed-form. 

The main features of the proposed approach can be summarized as follows: i) the capability of 

accounting for the spatial dependency of uncertain properties within the interval framework by 
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adopting a novel interval field definition; ii) the high computational efficiency due to the possibility 

of deriving approximate closed-form expressions of the bounds of the interval displacement field 

after performing a finite difference discretization of the governing interval differential equation.  

The proposed approach has been applied to analyze the effects of the interval Young’s modulus 

on the response of both statically determined and indeterminate beams subjected to deterministic 

static loads. Numerical results have demonstrated the accuracy of the proposed estimates of the 

bounds of the interval displacement field even for large uncertainty levels. To this aim, appropriate 

comparisons with the exact solution derived on a combinatorial basis have been performed. The 

effects of spatial dependency have been thoroughly investigated contrasting the proposed solution 

with those obtained under the extreme hypotheses of total spatial dependency and spatial 

independency. 

Future research will focus on the extension of the proposed approach to the analysis of two-

dimensional problems within a finite element framework. 

 

 

APPENDIX A 

If the real deterministic symmetric non-negative function ( , )B x   governing the spatial 

dependency of the interval field is selected so as to have the exponential form reported in Eq. (19), 

the eigenfunctions solutions of the homogeneous Fredholm integral equation of the second kind 

(10) are given by [23]: 

*

*

*

*

cos( ) sin( )
( ) ;     ( )

sin(2 ) sin(2 )

2 2

j j

j j

j j

j j

x x
x x

l l
l l

 
 

 

 

 
  

 

 (A.1 a,b) 

http://en.wikipedia.org/wiki/Integral_equation
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where / 2x x L   : / 2l L ; 
j  and *

j  can be obtained as solutions of the following 

transcendental equations: 

* *tan( ) 0;     + tan( ) 0c l c l      (A.2 a,b) 

where 1/ Bc l . 

The eigenvalues associated to the eigenfunctions (A.1 a,b) are given by: 

2 2
*

2 2 *2 2

2 2
;     .B B

j j

j j

C c C c

c c
 

 
 

 
 (A.3 a,b) 
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Highlights 

 

 The response of Euler-Bernoulli beams with interval Young’s modulus is analyzed 

 Spatial variability of uncertainty is handled by a novel interval field model 

 A finite difference discretization of the interval equilibrium equation is performed 

 The bounds of the interval displacement field are evaluated in explicit form 

 Numerical results demonstrate both the accuracy and consistency of the proposed model 

Highlights (for review)



 
 

Figure 1 

 

 

 

Figure 1. Illustrative representation of the interval field concept. 
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Figure 2. Euler-Bernoulli beam under distributed load. 
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Figure 3 

 

 

 

Figure 3. Region of the interval Young’s modulus field along the beam for different values of: a) 

the parameter 
B

l  governing the spatial dependency of the interval field; b) the parameter 
B

C  

governing the deviation amplitude of the interval field (see Eq.(22)). 
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Figure 4 

 

 

 

Figure 4. Bounds, E  and E , and samples 
( )r

E  ( 1,2, ,2
N

r …==== ) of the interval Young’s modulus 

field corresponding to all possible combinations of the bounds of the EUIs ˆ
I

i
e , ( 1,2, , 4i N…= == == == = ), 

(see Eq.(14)). 

0 0.2 0.4 0.6 0.8 1

x/L

27

28

29

30

31

32

33
[G

P
]

 l
B
=0.5L, C

B
=0.05, N=4

0 0.2 0.4 0.6 0.8 1

x/L

27

28

29

30

31

32

33

[G
P

]

 l
B
=2L, C

B
=0.05, N=4

)a

)b

E

E

( )r
E

E

( )r
EE

Figure 4



 
 

Figure 5 
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Figure 5. Simply supported beam with interval Young’s modulus under uniformly distributed load. 
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Figure 6 

 

 

 

Figure 6. Sample of the normalized interval displacement field along the simply supported beam: 

comparison between the “exact” FD solution and the RSE approximation for a) 0.05
B

C ====  and b) 

0.08
B

C ====  ( 0.5
B

l L==== ). 

0 0.2 0.4 0.6 0.8 1

x/L

0.015

0.01

0.005

0
w

(r
) 
(x

) 
E

0
 J

 /
( 

p
z 
L

4
)

E=E0
 

ei
I =-1 (Exact)

ei
I =-1 (RSE)

lB=0.5L, CB=0.05

^

^

N=24

0 0.2 0.4 0.6 0.8 1

x/L

0.015

0.01

0.005

0

w
(r

)  
(x

) 
E

0
 J

 /
( 

p
z 
L

4
)

E=E0 

ei
I =-1 (Exact)

ei
I =-1 (RSE)

^

^

lB=0.5L, CB=0.08 N=24

)a

)b

Figure 6



 
 

Figure 7 

 

 

 

 

Figure 7. Proposed LB, UB and midpoint of the normalized interval displacement field along the 

simply supported beam for a) 0.05
B

C ====  and b) 0.08
B

C ====  ( 0.5
B

l L==== ). 
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Figure 8 

 

 

 

Figure 8. Comparison between the proposed bounds of the normalized interval displacement field 

along the simply supported beam and the exact ones obtained by a combinatorial procedure for a) 

0.05
B

C ====  and b) 0.08
B

C ====  ( 0.5
B

l L==== ). 

0 0.2 0.4 0.6 0.8 1

x/L

0.016

0.012

0.008

0.004

0
w

I (
x
) 

E
0
 J

 /
( 

p
z 
L

4
)

Proposed

2
N
 combinations

lB=0.5L, CB=0.05 N=16

LB

UB

0 0.2 0.4 0.6 0.8 1

x/L

0.016

0.012

0.008

0.004

0

w
I (

x)
 E

0
 J

 /
( 

p
z 
L

4
)

Proposed

2
N
 combinations

lB=0.5L, CB=0.08 N=16

LB

UB

)a

)b

Figure 8



 
 

Figure 9 

 

 

Figure 9. Coefficient of interval uncertainty at the abscissas / 2
i

x L====  and / 4
i

x L====  of the simply 

supported beam versus: a) the ratio /
B

l L  and b) the coefficient 
B

C  governing the spatial 

dependency and deviation amplitude of the interval Young's modulus field, respectively. 
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Figure 10 
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Figure 10. Fixed-simply supported beam with interval Young’s modulus under uniformly 

distributed load. 
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Figure 11 

 

 

 

Figure 11. Sample of the normalized interval displacement field along the fixed-simply supported 

beam: comparison between the “exact” FD solution and the RSE approximation for a) 0.05BC ====  

and b) 0.08BC ====  ( 0.5Bl L==== ). 
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Figure 12 

 

 

 

 

Figure 12. Proposed LB, UB and midpoint of the normalized interval displacement field along the 

fixed-simply supported beam for a) 0.05
B

C ====  and b) 0.08
B

C ====  ( 0.5
B

l L==== ). 

0 0.2 0.4 0.6 0.8 1

x/L

0.006

0.004

0.002

0
w

I 
(x

) 
E

0
 J

 /
( 

p
z 
L

4
)

Midpoint

LB

UB

lB=0.5L, CB=0.05 N=24

0 0.2 0.4 0.6 0.8 1

x/L

0.006

0.004

0.002

0

w
I 
(x

) 
E

0
 J

 /
( 

p
z 
L

4
)

Midpoint

LB

UB

lB=0.5L, CB=0.08 N=24

)a

)b

Figure 12



 
 

Figure 13 

 

 

 

Figure 13. Comparison between the proposed bounds of the normalized interval displacement field 

along the fixed-simply supported beam and the exact ones obtained by a combinatorial procedure 

for a) 0.05
B

C ====  and b) 0.08
B

C ====  ( 0.5
B

l L==== ). 
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Figure 14 

 

 

Figure 14. Coefficient of interval uncertainty at the abscissas / 2
i

x L====  and / 4
i

x L====  of the fixed-

simply supported beam versus: a) the ratio /
B

l L  and b) the coefficient 
B

C  governing the spatial 

dependency and deviation amplitude of the interval Young's modulus field, respectively. 
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