In silico analysis of meat quality candidate genes among Nero Siciliano, and Italian heavy pigs genomes

ENRICO D'ALESSANDRO¹, IRENE SAPIENZA¹, DOMENICO GIOSA², LETTERIO GIUFFRÈ¹, ALESSANDRO ZUMBO¹

- ¹ Department of Veterinary Sciences, Division of Animal Production, University of Messina, Messina, Italy. Polo Universitario dell'Annunziata, 98168 Messina (Italy)
- ² Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy. Viale Ferdinando Stagno D'Alcontres, 31 - 98166 Messina (Italy)

SUMMARY

In a modern context, where consumers are becoming better educated and oriented towards native animal breeds including meat with a high nutritional profile, the autochthonous pig breeds represent an important genetic reserve to be utilized mainly for the production of typical Italian products.

Autochthonous pig breeds represent a valuable genetic reserve to be utilized for typical products linked to italian gastronomic traditions, or for recovering some organoleptic proprieties of pork which have been lost through of severe selective programmes. This can be a strong stimulus for the conservation of local breeds.

The Food and Agriculture Organization (FAO) has expressed concern about the lack of interest in local breeds compared to high-output animals and conservation programs have been implemented by various countries worldwide.

In this study we report an in silico comparison of 48 candidate genes involved in meat quality traits in pig. The genes were analyzed from different pig breeds [Nero Siciliano (NS), Large White (LW), Landrace (LAN) and Duroc (DU)] whose genomes were previously sequenced and published.

In particular, we focused on genes related to muscle mass deposition and carcass fatness as these traits influence technological processes adopted for long matured pork meats products such as cured ham. More than twenty thousand variants were identified by comparing the gene set of each breed to the reference genome assembly. Of these ~22,000 were SNPs, ~3,000 short insertions and ~1400 short deletions. Transitions/transversions ratio was 2,650 while missense/silent ratio resulting in 0.526. Furthermore, over 40% of intronic variants and ~45% of non coding transcript variants were also identified. Among all variants detected in this study, more than 3,000 were shared among NS, LW and LAN while ~7,000 were unique for NS, ~2,000 for LW and ~6000 for LAN, showing a high degree of genetic variability among studied breeds. This study represents a first preliminary study of genetic characterization of Nero Siciliano pig and also provides a platform for future comparative studies between this and other swine breeds.

KEY WORDS

Nero Siciliano pig, fatness gene, in silico analysis, unique variants, meat quality traits.

INTRODUCTION

Currently, the survival and the assessment of local breeds is linked to various factors such as their rusticity, adaptation to difficult environmental conditions and a higher market value of their products compared to industrial ones. In Italy, and more generally in Europe, the trend is no longer to produce more quantities of food but to move towards the assurance of high quality products, an attitude that could be a strong stimulus for the conservation of local breeds through the production of typical products¹.

Autochthonous pig breeds represent a valuable genetic resource to utilise for typical products linked to the gastronomic traditions of Italy, or for recovering some organoleptic proprieties of pork actually lost because of severe selective programmes².

Corresponding Author:

Enrico D'Alessandro (edalessandro@unime.it).

In the last few years, many local breeds have been subjected to genetic erosion and loss of biodiversity resulting in the impoverishment of a precious gene pool that has mainly affected marginal areas and low input breeding systems. Nero Siciliano (NS) pig is a local breed reared under semi-extensive system mainly in the Nebrodi mountains of Sicily (Italy)³. In 2003 was established a consortium for the valorization of Sicilian meat productions and a request to recognize the fresh Nero Siciliano meat with the Protected Denomination of Origin (PDO) was issued in 2005. In addition, an official request of PDO was also initiated for Nero Siciliano's cured ham in 2011.

The genetic variability of the Nero Siciliano pig has been assessed with the use of various genetic markers in several studies focusing on molecular characterization and genetic structure of coat colour genes (*MC1R* and *KIT* gene) in order to evaluate their usefulness for breed traceability⁴.

Although in the last years admirable efforts have been made to recover the extremely threatened biodiversity of pigs, today only few Italian local breeds are able to withstand the competition with foreign commercial breeds (i.e. the Large White, Landrace and Duroc) and/or with other commercial

crossbreeds today widespread in the market. Fat deposition is a trait extensively studied in pigs due to its implications on the efficiency of animal's growth and on the technological and nutritional characteristics of meat products, with significant implications on business management⁵. An important goal of pig selection program in Italy is to obtain animals with a high aptitude for dry-cured ham production, such as Parma or S. Daniele hams.

In the last few years, the genomes of different pig breeds have been sequenced and release in public freely accessible databases and therefore the efficiency of the selection process could be improved by the implementation of molecular data into breeding programs. For this reason, in this study, we analyzed 48 candidate genes involved in meat quality traits in 4 different pig breeds including the Nero Siciliano, whose genome sequence has also been recently determined.

MATERIALS AND METHODS

In this study, the *Sus scrofa 11.1* (DU) reference genome (Genbank: GCA_000003025.6) was used in the comparative analysis. The reads from the other pig breeds were retrieved from the NCBI Sequence Read Archive (SRA) database LW (SRR3123346; SRR3123347), LAN (ERX2292210), NS (SRX3406507). All the reads were initially checked with the FastQC program, cleaned with Trimmomatic v. 0.36,⁶ and then mapped against the reference genome using the BWA aligner for variant calling analysis⁷.

The reads of NS were obtained by our recent genome sequencing project8 and used for the genome-wide analysis carried out to identify potentially breed-related genetic variants. Briefly, for NS genome sequencing, genomic DNA (gDNA) was extracted from a blood sample of a male NS pig using the Wizard® Genomic DNA Purification Kit (Promega Corporation, Italy) and quantified by Qubit 2.0 fluorometer with Qubit dsDNA HS Assay Kit (Thermo Fisher, Italy). PCR-Free library preparation was performed using the TruSeq DNA kit (insert size 350 bp) and 1 g of gDNA, following the protocol provided by Illumina. Then, paired-sequencing was carried out using the HiSeqX platform (Illumina®). SNPs and short INDELs discovery in 48 genes related to lipid metabolism and fat deposition was performed using SUPER-CAP program and the potential effects of resulting mutations were evaluated by SnpEff software (v4_3m_core)9. Furthermore, unshared SNPs of NS were analyzed with VEP tool (www.ensembl.org) in order to evaluate novel and existing variants and to annotate them. These genes were chosen because they affect phenotypes related the meat quality and fatness traits.

 Table 1 - List of 48 fatness related genes investigated in this study. The table show the Chromosome, Gene Symbol, Sequence name, Starting and ending coordinates.

Gene	N° Variants (SNPs/short INDEL)	Seq_name	Chr	Start	End	
IGF2	95	CM000813.5	2	1469183	1496417	
LEP	222	CM000829.5	18	20106867	20124071	
LEPR	1028	CM000817.5	6	146802297	146896152	
MC4R	1	CM000812.5	1	160772013	160774124	
PIK3C3	1448	CM000817.5	6	125890598	126038753	
CTSB	221	CM000825.5	14	15014139	15035081	
CTSD	75	CM000813.5	2	1188548	1197642	
TRIB3	95	CM000828.5	17	34808273	34819592	
PCSK1	152	CM000813.5	2	103004794	103050707	
MUC4	135	CM000824.5	13	134192412	134248435	
FTO	2369	CM000817.5	6	31177112	31564674	
TBC1D1	2986	CM000819.5	8	29370344	29590574	
PDE1C	3536	CM000829.5	18	40818316	41410555	
CRISP1	416	CM000818.5	7	43883536	43911877	
STAT4	375	CM000826.5	15	95656206	95764099	
GPR120	72	CM000825.5	14	105011408	105033633	
CSTB	11	CM000824.5	13	206706060	206710598	
SCPEP1	558	CM000823.5	12	33265509	33296805	
SCD	66	CM000825.5	14	111461560	111478033	
FASN	55	CM000823.5	12	922405	937560	
LIPE	31	CM000817.5	6	49543671	49560126	
PLIN1	35	CM000818.5	7	55237517	55250797	
PLIN2	139	CM000812.5	1	203683867	203709277	
CA3	7	CM000815.5	4	51227485	51237861	
DECR1	179	CM000815.5	4	46731359	46767427	
STAB1	84	CM000824.5	13	34630448	34659371	
IDH3B	27	CM000828.5	<u>17</u>	32955061	32960110	
FYB	1900	CM000827.5	16	24332539	24507768	
FABP3	33	CM000817.5	6	87943003	87950708	
MTTP	492	CM000819.5	8	120820660	120871468	
PGAM2	316	CM000829.5	18	48693832	48712787	
CAST	1389	CM000813.5	2	103255738	103378623	
LEPROT	166	CM000817.5	6	146974641	146987261	
ATP1B1	39	CM000815.5	4	81912543	81937015	
APOE	5	CM000817.5	6	51373113	51375333	
CTSK	44	CM000815.5	4	98389459	98404969	
FABP4	3	CM000815.5	4	55096400	55101209	
GNRHR	26	CM000819.5	8	65470206	65488900	
IGF-1	563	CM000816.5	5	81762027	81909253	
LIF	58	CM000825.5	14	47221540	47239513	
MTHFR	262	CM000817.5	6	71863637	71882118	
PPARGC1A	6423	CM000819.5	8	17841844	18527953	
PPARD	328	CM000818.5	7	31222533	31295221	
RETN	5	CM000813.5	2	71484164	71485577	
TNNI1	98	CM000821.5	10	23788279	23800554	
TNNI2	17	CM000813.5	2	1251566	1253883	
VDBP	13	CM000819.5	8	68326287	68364937	
PPYR1	51	CM000825.5	14	88276340	88283720	

RESULTS AND DISCUSSION

More than 30,000 variants were identified by comparing the gene set of each breed to the reference genome assembly. Of these ~22,000 were SNPs, ~3,000 short insertions and ~1400 short deletions. Transitions/transversions ratio was 2,650 while missense/silent ratio resulting in 0.526. Furthermore, over 40% of intronic variants and ~45% of noncoding transcript variants were also identified (Table 1).

Among all variants detected in this study, more than 3,000 were shared among NS, LW and LAN while ~7,000 were unique for NS, ~2,000 for LW and ~6000 for LAN, showing a high degree of genetic variability among studied breeds. Among the 5,659 unshared Nero Siciliano SNPs, 856 were in homozygosity while 4803 were found in heterozygosity. Interestingly, 802 SNPs were novel while 4857 were previously submitted to the dbSNP (Fig. 1 and Table 2). Among these only five were classified as "high impact" mutations at the following genetic loci *PLIN1*, *TBC1D1*, *CTSB*, *PGAM2* and *PPYR1* (Table 3).

The *PLIN1* gene encodes a protein belonging to a family of structural proteins with regulatory functions on the deposition and mobilization of intracellular lipids. Mutations of these genes have been associated with fatness in mouse¹⁰ and human¹¹ but few other phenotypes have been associated with

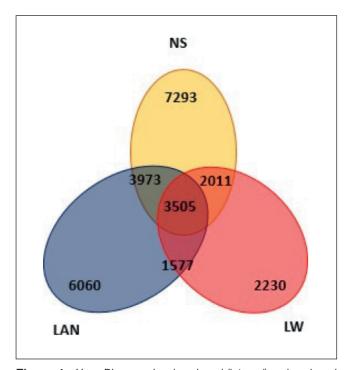


Figure 1 - Venn-Diagram showing shared (internal) and unshared (external) variant (SNPs and short INDEL) detected in this analysis.

this mutation so far, as evidenced by some papers by D'Avoli *et al.*, 2011¹² and Gol *et al.* 2015¹³.

Domain Family member 1 (*TBC1D1*) is correlated with lipid mobilization in pigs¹⁴. We identified a missense mutation (rs339837205) in position 29485163 affecting the start codon (ATG \rightarrow GTG, position 1331 by mRNA), which result in an amino acid change at the first position M [Met] \Rightarrow V [Val].

Porcine cathepsin B (*CTSB*) is correlated with growth, carcass and meat quality traits in heavy pigs^{15,16}. We identified a insertion in position 15034647, but its contribution to the phenotypic variation remains to be elucidated.

Phosphoglycerate mutase 2 (*PGAM2*) is correlated with meat color, carcass and meat quality traits in heavy pigs¹⁷. A mutation at the *PGAM2* locus was identified, exclusively in LAN breed, at position 48709077 (g.48709077 T>C). This mutation, classified as splicing, was already deposited in db-SNP (release 150) with ID: rs330054959.

Pancreatic Polypeptide Receptor 1 (*PPYR1*), influence gastric and pancreatic secretion¹⁸. A mutation in alternative homozygosity at the *PPYR1* locus was identified exclusively in LAN (rs335709223) at position 88276518 but its contribution to the phenotypic variation remains to be elucidated.

None of the homozygous variants were predicted to have high-impact effects on the biological function of the corresponding protein, with the exception of a missense mutation g. 160773437 G>A (rs81219178) found at the MC4R locus (ENSSSCG00000004904), which determines an amino acid substitution at position 298 (Asp \rightarrow Asn) of the protein.

CONCLUSION

In recent decades, the FAO (Food and Agriculture Organization) has expressed concern about the progressive replacement of local breeds with improved cosmopolitan breeds, since the latter cannot compete with the autochthonous ones characterized by rusticity, resistance to disease and adaptation to reduced food availability¹⁹. Many indigenous breeds show unique characteristics that can contribute to tackling

 Table 2 - SNPs identified in NS breed but not in LAN, LW and DU (Scrofa 11.1 Assembly).

Cotogony	Count				
Category	Homozygous	Heterozygous			
Variants processed	856	4803			
Novel variants	113 (13.2)	689 (14.3)			
Existing variants	743 (86.8)	4114 (85.7)			

Table 3 - Variants detected with "Hight impact" identified by SnpEff in NS pig.

Chr	Position	Gene	Туре	Effect/Impact	Ref	Alt
CM000818.5	55237669	PLIN1	INDEL	TCCCCCClframeshift_variantlHIGHIPLIN1ltranscriptl	TCCCCC	TCCCCCC
CM000819.5	29485163	TBC1D1	SNP	Glstart_lostlHIGHITBC1D1ltranscriptl	А	G
CM000825.5	15034647	CTSB	INDEL	$CGGGGGGGGGG frame shift_variant HIGH CTSB transcript $	CGGGGGGG	CGGGGGGGGG
CM000825.5	88276518	PPYR1	SNP	Clsplice_acceptor_variant&intron_variantlHIGHIPPYR11	Т	С
CM000829.5	48709077	PGAM2	SNP	Clsplice_donor_variant&intron_variantIHIGHIPGAM2I	Т	С

the challenges linked to climate change, the growing demand for food connected to the increase in the world population and food security. In this study, we identified 7,293 unique variants in a subset of fatness-related genes in Nero Siciliano pig. Unshared SNPs and fixed mutations in this important breed could be the starting point for developing rapid and inexpensive molecular assays based on specific detection of DNA markers useful for breed differentiation as well as the authentication of the NS pig meat and commercial by-products. Methods for the authentication of breed-specific products are key tools to defend the added economic value of these products that represent the strategy to obtain a sustainable conservation of local animal genetic resources.

ACKNOWLEDGEMENTS

Not applicable.

References

- Wilkinson S., Lu Z.H., Megens H.J., Archibald A.L., Haley C., Jackson I.J., Groenen M.A., Crooijans R.P., Ogden R., Wiener P. (2013). Signatures of Diversifying Selection in European Pig Breeds. PLoS Genetics, 9:4.
- (ANAS) Associazione Nazionale Allevatori Suini (2016.) Notizie: La selezione per il prosciutto DOP. Una sfida tecnica per un orizzonte dilungo periodo. Retrieved on 15 January 2018 from http://www.anas.it/ circolari/20170001A.PDF Google Scholar.
- D'Alessandro E., Fontanesi L., Liotta L., Davoli R., Chiofalo V. Russo V. (2007). Analysis of the MC1R gene in the nero siciliano pig breed and usefulness of this locus for breed traceability. Vet Res Commun, 31:389-392.
- Fontanesi L., D'Alessandro E., Scotti E., Liotta L., Crovetti A., Chiofalo V. Russo V. (2010). Genetic heterogeneity and selection signature at the KIT gene in pigs showing different coat colours and patterns. Anim Genet, 41:478-492.
- Bosi P., Russo V. (2004). The production of the heavy pig for high quality processed products. Ital J Anim Sci, 3:309-321.

- Bolger A.M., Lohse M., Usadel B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30:2114-2120.
- 7. Li H., Durbin R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25:1754-1760.
- D'Alessandro E., Giosa D., Sapienza I., Giuffrè L., Aiese Cigliano R., Romeo O., Zumbo A. (2019). Whole genome SNPs discovery in Nero Siciliano pig. Genet Mol Biol, http://dx.doi.org/10.1590/1678-4685gmb-2018-0169.
- Cingolani P., Patel V.M., Coon M., Nguyen T., Land S.J., Ruden D.M., Lu X. (2012). SnpSift. Front Genet, 3:35.
- Saha P.K., Kojima H., Martinez-Botas J., Sunehag A.L., Chan A.L. (2004). Metabolic adaptations in the absence of perilipin: increased beta-oxidation and decreased hepatic glucose production associated with peripheral insulin resistance but normal glucose tolerance in perilipinnull mice. J Biol Chem, 279:35150-35158.
- Ruiz J.R., Larrarte E., Margareto J., Ares R., Alkorta P., Labayen I. (2011). Preliminary findings on the role of PLIN1 polymorphisms on body composition and energy metabolism response to energy restriction in obese women. Br J Nutr, 106, 486-490.
- Davoli R., Gandolfi G., Braglia S., Comella M., Zambonelli P., Buttazzoni L., Russo V. (2011). New SNP of the porcine perilipin 2 (PLIN2) gene, association with carcass traits and expression analysis in skeletal muscle. Mol Biol Rep, 38:1575-83.
- Gol S., Ros-Freixedes R., Zambonelli P., Tor M., Pena R.N., Braglia S., Zappaterra M., Estany J. & Davoli R. (2015). Relationship between perilipin genes polymorphisms and growth, carcass and meat quality traits in pigs. J Anim Breed Genet, 1:24-30.
- 14. Fontanesi L., Colombo M., Tognazzi L., Scotti E., Buttazzoni L., Dall'Olio S., Davoli R., Russo V. (2011). The porcine TBC1D1 gene: mapping, SNP identification, and association study with meat, carcass and production traits in Italian heavy pigs. Mol Biol Rep, 38:1425-1431.
- Russo V., Nanni Costa L. (1995). Suitability of pig meat for salting and the production of quality processed products. Pig News and Information, 16:17-26.
- Virgili R., Schivazappa C. (2002). Muscle traits for long matured dried meats. Meat Science, 62:331-343.
- Davoli R., Fontanesi L., Zambonelli P., Bigi D., Gellin J., Yerle M., Milc J., Braglia S., Cenci V., Cagnazzo M., Russo V. (2002). Isolation of porcine expressed sequence tags for the construction of a first genomic transcript map of the skeletal muscle in pig. Anim Genet, 33:3-18.
- Stachowiak M., Szczerbal I., Switonski M. (2016). Genetics of Adiposity in Large Animal Models for Human Obesity–Studies on Pigs and Dogs. Prog Mol Biol Transl Sci, 140:233-70.
- Domestic Animal Diversity Information System (DAD-IS). Available: http://dad.fao.org/.