

ISSN 2590-9770 The Art of Discrete and Applied Mathematics 1 (2018) #P2.09 **https://doi.org/10.26493/2590-9770.1310.6e2** (Also available at http://adam-journal.eu)

Parallelism in Steiner systems[∗]

Maria Di Giovanni , Mario Gionfriddo

Department of Mathematics and Computer Science, University of Catania, Catania, Italy

Antoinette Tripodi

Department of Mathematical and Computer Science, Physical Sciences and Earth Sciences, University of Messina, Italy

Received 28 December 2017, accepted 27 April 2018, published online 23 July 2019

Abstract

The authors give a survey about the problem of parallelism in Steiner systems, pointing out some open problems.

Keywords: Steiner system, (partial) parallel class. Math. Subj. Class.: 05B05, 51E10

1 Introduction

A *Steiner system* $S(h, k, v)$ is a k-uniform hypergraph $\Sigma = (X, \mathcal{B})$ of order v, such that every subset $Y \subseteq X$ of cardinality h has degree $d(Y) = 1$ [\[4\]](#page-8-0). In the language of classical design theory, an $S(h, k, v)$ is a pair $\Sigma = (X, \mathcal{B})$ where X is a finite set of cardinality v, whose elements are called *points* (or *vertices*), and B is a family of k-subsets $B \subseteq X$, called *blocks*, such that for every subset $Y \subseteq X$ of cardinality h there exists exactly one block $B \in \mathcal{B}$ containing Y.

Using more modern terminology, if K_n^u denotes the complete u-uniform hypergraph of order *n*, then a Steiner system $S(h, k, v)$ is a K_k^h -decomposition of K_v^h , i.e. a pair $\Sigma = (X, \mathcal{B})$, where X is the vertex set of K_v^h and \mathcal{B} is a collection of hypergraphs all isomorphic to K_k^h (blocks) such that every edge of K_v^h belongs to exactly one hypergraph of B. An $S(2,3, v)$ is usually called *Steiner Triple System* and denoted by $STS(v)$; it is well-kown that an STS(v) exists if and only if $v \equiv 1,3 \pmod{6}$, and contains $v(v-1)/6$ triples. An $S(3, 4, v)$ is usually called *Steiner Quadruple System* and denoted by $SOS(v)$;

[∗]Supported by I.N.D.A.M. (G.N.S.A.G.A.).

E-mail address: mariadigiovanni1@hotmail.com (Maria Di Giovanni), gionfriddo@dmi.unict.it (Mario Gionfriddo), atripodi@unime.it (Antoinette Tripodi)

it is well-kown that an $SQS(v)$ exists if and only if $v \equiv 2, 4 \pmod{6}$, and contains $v(v-1)(v-2)/24$ quadruples.

Given a Steiner system $\Sigma = (X, \mathcal{B})$, two distinct blocks $B', B'' \in \mathcal{B}$ are said to be *parallel* if $B' \cap B'' = \emptyset$. A *partial parallel class* of Σ is a family $\Pi \subseteq B$ of parallel blocks. If Π is a partition of X, then it is said to be a *parallel class* of Σ . Of course not every Steiner system $S(h, k, v)$ has a parallel class (for example, when v is not a multiple of k) and so it is of considerable interest to determine in general just how large a partial parallel class a Steiner system $S(h, k, v)$ must have.

Open problem 1.1 (Parallelism Problem). Let $2 \leq h \leq k \leq v$, determine the maximum integer $\pi(h, k, v)$ such that any $S(h, k, v)$ has at least $\pi(h, k, v)$ distinct parallel blocks.

In this paper we will survey known results on the *parallelism problem* and give some open problems, including Brouwer's conjecture.

2 A result of Lindner and Phelps

In [\[6\]](#page-8-1) C. C. Lindner and K. T. Phelps proved the following result.

Theorem 2.1. Any Steiner system $S(k, k+1, v)$, with $v \geq k^4 + 3k^3 + k^2 + 1$, has at least $\lceil \frac{v-k+1}{k+2} \rceil$ *parallel blocks.*

Proof. Let $\Sigma = (X, \mathcal{B})$ be a Steiner system $S(k, k + 1, v)$, with $v \geq k^4 + 3k^3 + k^2 + 1$. Let Π be a partial parallel class of maximum size, say t, and denote by P the set of vertices belonging to the blocks of Π . Since Π is a partial parallel class of maximum size, every $Y \subseteq X - P$, $|Y| = k$, is contained in one block $B \in \mathcal{B}$ which intersects P in exactly one vertex. Denote by Ω the set of all blocks having k elements in $X - P$ (and so the remaining vertex in P) and by A the set of all vertices belonging to P and to some block of Ω :

$$
\Omega = \{ B \in \mathcal{B} : |B \cap (X - P)| = k \},
$$

$$
A = \{ x \in P : x \in B, B \in \Omega \}.
$$

For every $x \in A$, set

$$
T(x) = \{B - \{x\} : B \in \Omega\}.
$$

We can see that $\Sigma' = (X - P, T(x))$ is a partial Steiner system of type $S(k - 1, k, n)$ $v - (k+1)t$, with

$$
|T(x)| \le \frac{\binom{v - (k+1)t}{k-1}}{k},
$$

and $\{T(x)\}_{x\in A}$ is a partition of $\mathcal{P}_k(X-P)$, i.e., the set of all k-subsets of $X-P$. Observe that, if B is a block of Π containing at least two vertices of A, then for each $x \in A \cap B$ we must have

$$
|T(x)| \le \frac{k\binom{v-(k+1)t-1}{k-2}}{k-1}.
$$

Indeed, otherwise, let y be any other vertex belonging to $A \cap B$ and B_1 be a block of $T(y)$. Since at most $k\binom{v-(k+1)t-1}{k-2}/(k-1)$ of the blocks in $T(x)$ can intersect the block B₁, then $T(x)$ must contain a block B₂ such that $B_1 \cap B_2 = \emptyset$. Hence, the family $\Pi' =$

 $(\Pi - \{B\}) \cup \{B_1, B_2\}$ is a partial parallel class of blocks having size $|\Pi'| > |\Pi|$, a contradiction. It follows that, for every block $B \in \Pi$ containing at least two vertices of A,

$$
\sum_{x \in A \cap B} |T(x)| \le \frac{(k+1)k\binom{v-(k+1)t-1}{k-2}}{k-1}.
$$

Therefore, if we denote by r the number of blocks of Π containing at most one vertex of A and by s the number of blocks of Π containing at least two vertices of A, then

$$
\binom{v-(k+1)t}{k} = \sum_{x \in A} |T(x)| \le \left[\frac{(k+1)k\binom{v-(k+1)t-1}{k-2}}{k-1} \right] r + \left[\frac{\binom{v-(k+1)t}{k-1}}{k} \right] s.
$$

Now, consider the following two cases:

Case 1.
$$
\left[(k+1)k \binom{v-(k+1)t-1}{k-2} / (k-1) \right] \leq \binom{v-(k+1)t}{k-1} / k.
$$

It follows

$$
\binom{v-(k+1)t}{k} = \sum_{x \in A} |T(x)| \le \frac{(r+s)\binom{v-(k+1)t}{k-1}}{k} \le t \left[\frac{\binom{v-(k+1)t}{k-1}}{k} \right],
$$

from which $t \geq \frac{v-k+1}{k+2}$.

Case 2. $\left[(k+1)k\binom{v-(k+1)t-1}{k-2} / (k-1) \right] > \binom{v-(k+1)t}{k-1} / k.$

In this case, it follows $t \geq (v - k^3 - k^2) / (k + 1)$ and so

$$
t \ge \frac{v - k^3 - k^2}{k + 1} \ge \frac{v - k + 1}{k + 2},
$$

for $v \geq k^4 + 3k^3 + k^2 + 1$.

Combining Cases [1](#page-2-0) and [2](#page-2-1) completes the proof of the theorem.

For Steiner triple and quadruple systems Theorem [2.1](#page-1-0) gives the following result.

Corollary 2.2.

(i) Any $STS(v)$ *, with* $v \geq 45$ *, has at least* $\lceil \frac{v-1}{4} \rceil$ *parallel blocks.* (*ii*) *Any* $SQS(v)$ *, with* $v \geq 172$ *, has at least* $\left\lceil \frac{v-2}{5} \right\rceil$ *parallel blocks.*

Regarding $STS(v)$ s, the cases of $v < 45$ has been studied by C. C. Lindner and K. T. Phelps in [\[6\]](#page-8-1) and by G. Lo Faro in [\[7,](#page-8-2) [8\]](#page-8-3), while for $SQS(v)$ s, the cases of $v < 172$ has been examined by G. Lo Faro in [\[9\]](#page-8-4). Collecting together their results gives the following theorem.

Theorem 2.3.

- *(i) Any* $STS(v)$ *, with* $v \geq 9$ *, has at least* $\lceil \frac{v-1}{4} \rceil$ *parallel blocks.*
- (*ii*) *Any* $SQS(v)$ *has at least* $\lceil \frac{v-2}{5} \rceil$ *parallel blocks, with the possible exceptions for* v = 20, 28, 34, 38*.*

 \Box

The following result due to D. E. Woolbright [\[12\]](#page-8-5) improves the inequality of Lindner-Phelps for Steiner triple systems of order $v > 139$.

Theorem 2.4. *Any STS*(*v*) *has at least* $\frac{3v-70}{10}$ *parallel blocks.*

For large values of v (greater then $v' \approx 10000$), the above result in turn is improved by the following theorem which is due to A. E. Brouwer $[1]$ and is valid for every admissible $v > 127$.

Theorem 2.5. Any Steiner triple system of sufficiently large order v has at least $\left[\frac{v-5v^{2/3}}{3}\right]$ $\frac{5v^{2/3}}{3}$ *parallel blocks.*

In 1981 A. E. Brouwer stated the following open problem.

Open problem 2.6 (Brouwer's Conjecture). Any STS(v) has at least $\lceil \frac{v-c}{3} \rceil$ parallel blocks, for a constant $c \in N$.

By similar arguments as in Theorem [2.1,](#page-1-0) C. C. Lindner and R. C. Mullin [\[11\]](#page-8-6) proved a further result for an arbitrary Steiner system $S(h, k, v)$.

Theorem 2.7. *Any Steiner system* S(h, k, v)*, with*

$$
v \ge \frac{2k[2k(k-1)^2(k-h) - (h-1)(k-h-1)]+h-1}{k^2 - kh - h + 1},
$$

has at least $\frac{2(v-h+1)}{(k+1)(k-h+1)}$ *parallel blocks.*

3 A result on parallelism in $S(k, k+1, v)$, for $k > 3$

For $k > 3$, in [\[3\]](#page-8-7) (for $k = 3$) and in [\[2\]](#page-8-8) (for $k > 3$) the author proved the following result.

Theorem 3.1. Any Steiner system $S(k, k + 1, v)$, with $k \geq 3$, has at least $\left\lfloor \frac{v+2}{2k} \right\rfloor$ parallel *blocks.*

Proof. Let $\Sigma = (X, \mathcal{B})$ be a Steiner system $S(k, k + 1, v)$, with $k \geq 3$, and Π be a family of parallel blocks of Σ such that

$$
P = \bigcup_{B \in \Pi} B
$$

and

$$
|X - P| \ge (k - 1)|\Pi| + 2(k - 1),
$$

which implies $v \ge 2k(\Pi|+1)-2$. We will prove that Σ has a family Π' of parallel blocks such that $|\Pi'| > |\Pi|$. This is trivial if there exists a block $B \in \Sigma$ such that $B \subseteq X - P$. Therefore, we suppose that for every block $B \in \mathcal{B}, B \nsubseteq X - P$.

Note that, for any $Y \subseteq X - P, |Y| = k - 1$, if $R = (X - P) - Y$, then there exists an injection $\varphi: R \to P$ defined as follows: for every $x \in R$, $\varphi(x)$ is the element of P such that $Y \cup \{x, \varphi(x)\} \in \mathcal{B}$. Now let

$$
\{a_{i,1}, a_{i,2}, \ldots, a_{i,k+1}\} \in \Pi, \text{ for } i = 1, 2, \ldots, r,
$$

such that

$$
\{a_{i,1}, a_{i,2}, \ldots, a_{i,k}\} \subseteq \varphi(R);
$$

let

$$
\{b_{i,1}^j, b_{i,2}^j, \dots, b_{i,k+1}^j\} \in \Pi, \text{ for } j = 1, 2, \dots, k-1 \text{ and } i = 1, 2, \dots, p_j,
$$

such that

$$
\{b_{i,1}^j, b_{i,2}^j, \dots, b_{i,j}^j\} \subseteq \varphi(R) \text{ and } \{b_{i,j+1}^j, \dots, b_{i,k+1}^j\} \cap \varphi(R) = \emptyset;
$$

and let

$$
\{c_{i,1}, c_{i,2}, \ldots, c_{i,k+1}\} \in \Pi, \text{ for } i = 1, 2, \ldots, h,
$$

such that

$$
\{c_{i,1}, c_{i,2}, \ldots, c_{i,k+1}\} \cap \varphi(R) = \emptyset.
$$

Necessarily,

$$
(k+1)r + \sum_{i=1}^{k-1} ip_i \ge |\varphi(R)| = |X - P| - (k-1) \ge (k-1)t + k - 1.
$$

Since $t = r + \sum_{i=1}^{k-1} p_i + h$, it follows that

$$
(k+1)r + \sum_{i=1}^{k-1} ip_i \ge (k-1)r + (k-1)\sum_{i=1}^{k-1} p_i + (k-1)h + k - 1,
$$

and so

$$
r \geq \frac{1}{2} \left[\sum_{i=1}^{k-2} p_i(k-1-i) + h(k-1) + (k-1) \right].
$$

Let $x_{i,j} \in R$ such that $\varphi(x_{i,j}) = a_{i,j}$ and let $y_{i,u}^j \in R$ such that $\varphi(y_{i,j}^u) = b_{i,u}^j$. **Case 1.** Suppose $a_{i,k+1} \notin \varphi(R)$, for each $i = 1, 2, \ldots, r$. It follows that

$$
|X - P| - (k - 1) = \sum_{i=1}^{k-1} ip_i + kr.
$$

Since $|X - P| - (k - 1) \ge (k - 1)t + (k - 1)$ and $t = h + r + \sum_{i=1}^{k-1} p_i$, it follows

$$
\sum_{i=1}^{k-1} ip_i + kr \ge (k-1)t + k - 1 = (k-1)h + (k-1)r + (k-1)\sum_{i=1}^{k-1} p_i + k - 1,
$$

hence

$$
r \geq \sum_{i=1}^{k-2} p_i(k-1-i) + h(k-1) + (k-1).
$$

Now, consider the injection $\psi: R' \to P$, where $R' = \{x_{i,j} \in R : i \neq 1\}$, such that for all $x_{i,j} \in R', \psi(x_{i,j})$ is the element of $\varphi(R)$ satisfying the condition $\{x_{1,1}, x_{1,2}, \ldots, x_{1,k-1},$ $x_{i,j}, \psi(x_{i,j})\} \in \mathcal{B}.$

If Γ is the family of the blocks $\{x_{1,1}, x_{1,2}, \ldots, x_{1,k-1}, x_{i,j}, \psi(x_{i,j})\}$ and

$$
L = \{c_{i,j} : i = 1, 2, \dots, h, j = 1, 2, \dots, k+1\} \cup \{b_{i,1}^1 : i = 1, 2, \dots, p_1\} \cup \{a_{1,k}\},\
$$

then $|\Gamma| = k(r - 1)$ and $|L| = (k + 1)h + p_1 + 1$, with

$$
|\Gamma| = k(r - 1) = kr - k
$$

\n
$$
\geq \sum_{i=1}^{k-2} p_i(k - i - 1) + hk(k - 1) + k^2 - 2k > (k+1)h + p_1 + 1 = |L|,
$$

where we used the following inequalities, which hold for $k \geq 3$,

$$
r \ge \sum_{i=1}^{k-2} p_i(k-i-1) + h(k-1) + k - 1,
$$

$$
hk(k-1) > h(k+1),
$$

$$
k^2 - k > 1.
$$

Then, it is possible to find an element $x \in P - L$ such that

 ${x_{1,1}, x_{1,2}, \ldots, x_{1,k-1}, \psi^{-1}(x), x} \in \mathcal{B}.$

Further, there exists at least an element $y \in \varphi(R)$, $y \neq x$, with x and y belonging to the same $B_{x,y} \in \Pi$. If

$$
\Pi' = \Pi - \{B_{x,y}\} \cup \{\{x_{1,1}, x_{1,2}, \dots, x_{1,k-1}, \psi^{-1}(x), x\}, Y \cup \{\varphi^{-1}(y), y\}\},\
$$

then Π' is a family of parallel blocks of B with $|\Pi'| > |\Pi|$.

Case 2. Suppose there is at least one element $a_{i,k+1}$ such that $\{a_{i,1}, a_{i,2}, \ldots, a_{i,k+1}\}\subseteq$ $\varphi(R)$. Assume that

$$
\{a_{i,1}, a_{i,2}, \dots, a_{i,k+1}\} \subseteq \varphi(R), \text{ for each } i = 1, 2, \dots, r'
$$

and

$$
\{a_{i,1}, a_{i,2}, \ldots, a_{i,k}\} \subseteq \varphi(R), a_{i,k+1} \notin \varphi(R), \text{ for each } i = r'+1, \ldots, r.
$$

If $r \geq 2$, consider the injection $\mu: R'' \to P$, where

$$
R'' = \{x_{i,j} \in R : (i,j) \neq (1,1), (1,2), \ldots, (1, \lceil \frac{k-1}{2} \rceil), (2,1), (2,2), \ldots, (2, \lceil \frac{k-1}{2} \rceil)\},\
$$

such that for every $x_{i,j} \in R'', \mu(x_{i,j})$ is the element of $\varphi(R)$ satisfying the condition

$$
\left\{x_{1,1},x_{1,2},\ldots,x_{1,\left\lceil\frac{k-1}{2}\right\rceil},x_{2,1},x_{2,2},\ldots,x_{2,\left\lfloor\frac{k-1}{2}\right\rfloor},x_{i,j},\mu(x_{i,j})\right\}\in\mathcal{B}.
$$

If Γ' is the family of blocks

$$
\left\{x_{1,1}, x_{1,2}, \ldots, x_{1,\lceil\frac{k-1}{2}\rceil}, x_{2,1}, x_{2,2}, \ldots, x_{2,\lfloor\frac{k-1}{2}\rfloor}, x_{i,j}, \mu(x_{i,j})\right\}
$$

and

$$
L' = \{c_{i,j} : i = 1, 2, \dots, h, j = 1, 2, \dots, k+1\} \cup \{b_{i,1}^1 : i = 1, 2, \dots, p_1\},\
$$

it follows that

$$
|\Gamma'| \ge (k-1)t - \sum_{i=1}^{k-1} ip_i = (k-1)(r + \sum_{i=1}^{k-1} p_i + h) - \sum_{i=1}^{k-1} ip_i
$$

= $(k-1)r + (k-1)h + \sum_{i=1}^{k-2} (k-1-i)p_i$
 $\ge \frac{k+1}{2} \sum_{i=1}^{k-2} (k-1-i)p_i + \frac{h(k^2-1)}{2} + \frac{(k-1)^2}{2}$
> $(k+1)h + p_1 + 1 = |L'| + 1$,

where we used

$$
t = r + h + \sum_{i=1}^{k-1} p_i,
$$

\n
$$
r \ge \frac{1}{2} \left[\sum_{i=1}^{k-2} p_i (k - i - 1) + h(k - 1) + (k - 1) \right],
$$

\n
$$
k \ge 3.
$$

Therefore, it is possible to find at least two distinct elements x', x'' belonging to two distinct blocks B', B'' of Γ' :

$$
B' = \left\{ x_{1,1}, x_{1,2}, \dots, x_{1, \left\lceil \frac{k-1}{2} \right\rceil}, x_{2,1}, x_{2,2}, \dots, x_{2, \left\lfloor \frac{k-1}{2} \right\rfloor}, \mu^{-1}(x'), x' \right\},
$$

$$
B'' = \left\{ x_{1,1}, x_{1,2}, \dots, x_{1, \left\lceil \frac{k-1}{2} \right\rceil}, x_{2,1}, x_{2,2}, \dots, x_{2, \left\lfloor \frac{k-1}{2} \right\rfloor}, \mu^{-1}(x''), x'' \right\},
$$

such that $x', x'' \in P - L'$. Since $x' \neq x''$, we can suppose that

$$
x'\neq a_{2,\left\lceil\frac{k-1}{2}\right\rceil}.
$$

Therefore, it is possible to find an element $y \in \varphi(R)$, $y \neq x'$, with x' and y belonging to the same block $B_{x,y}$ of Π. It follows that there exists a family Π' of parallel blocks with $|\Pi'| = |\Pi| + 1.$

If $r = 1$, then $r' = r = 1$. Since

$$
r \geq \frac{1}{2} \left[\sum_{i=1}^{k-2} p_i(k-i-1) + h(k-1) + (k-1) \right],
$$

then

$$
\sum_{i=1}^{k-2} p_i(k-i-1) + h(k-1) + (k-1) \le 2.
$$

It follows necessarily: $k = 3$, $h = 0$, $p_1 = 0$. Hence $t = p_2 + 1$, $|X - P| = 2p_2 + 6$, and $v = 6p_2 + 10.$

If $p_2 = 0$, then $v = 10$ and $t = 1$, and it is well-known that the unique STS(10) has two parallel blocks.

If $p_2 \geq 1$, consider the blocks

$$
B' = \{x_{1,1}, \varphi^{-1}(b_{1,1}^2), X_{1,2}, x'\},
$$

$$
B'' = \{x_{1,1}, \varphi^{-1}(b_{1,1}^2), X_{1,3}, x''\},
$$

where $x', x'' \in \varphi(R)$. Since $x' \neq x''$, we can assume $x' \neq b_{1,2}^2$ and by applying the same technique as the previous cases we can find a family Π' of parallel blocks with $|\Pi'| =$ $|\Pi| + 1.$

Therefore, it is proved that if $\Sigma = (X, \mathcal{B})$ is any $S(k, k + 1, v)$, with $k > 3$, and Π is a family of parallel blocks of Σ such that $|\Pi| = t$ and $|X - P| \geq (k - 1)t$ + $2(k-1)$, where $P = \bigcup_{B \in \Pi} B$, then Σ has a partial parallel class Π' of cardinality $|\Pi'| >$ $|\Pi|$. It follows that, if $t = \lfloor \frac{v-2(k-1)}{2k} \rfloor$ $\frac{2(k-1)}{2k}$, then Σ has a partial parallel class of cardinality $t' = t + 1 = \left\lfloor \frac{v+2}{2k} \right\rfloor.$ \Box

By applying the same technique used in the previous proof, M. C. Marino and R. S. Rees [\[10\]](#page-8-9) improved the lower bound stated by Theorem [3.1](#page-3-0) to $\left| \frac{2(v+2)}{3(k+1)} \right|$.

4 Open problems

(a) *Remove the exceptions of Theorem [2.3.](#page-2-2)*

It is known that $\pi(3, 4, v) = \lfloor \frac{v}{4} \rfloor$ for $v = 4, 8, 10, 14$. In [\[5\]](#page-8-10) by means of an exhaustive computer search the authors classified the Steiner quadruple systems of order 16 up to isomorphism; following a private conversation, it turned out that the computer search showed that every $SQS(16)$ has a parallel class and so $\pi(3, 4, 16) = 4$.

(b) *Determine the smallest* v such that $\pi(3, 4, v) \neq \lfloor \frac{v}{4} \rfloor$.

Concerning the parallelism in Steiner systems, an interesting question arises when we consider resolvable systems. A Steiner system $\Sigma = (X, \mathcal{B})$ is said to be *resolvable* provided B admits a partition R (*resolution*) into parallel classes. A resolvable Steiner triple system is called *Kirkman Triple System* (KTS, in short). It is wellknown that a KTS(v) exists if and only if $v \equiv 3 \pmod{6}$ (any resolution contains $(v-1)/2$ parallel classes of size $v/3$).

(c) **Problem of A. Rosa** (1978): Let $\Sigma = (X, \mathcal{B})$ be any KTS(v) and R be a resolution *of* Σ*. Determine a lower bound for the size of partial parallel classes of* Σ *in which no two triples come from the same parallel class of* R.

The problem of A. Rosa can be posed for any resolvable Steiner systems $S(h, k, v)$:

(c) **Problem of A. Rosa:** Let $\Sigma = (X, \mathcal{B})$ be any Steiner system $S(h, k, v)$ and R be a *resolution of* Σ*. Determine a lower bound for the size of partial parallel classes of* Σ *in which no two blocks come from the same parallel class of* R.

References

[1] A. E. Brouwer, On the size of a maximum transversal in a Steiner triple system, *Canadian J. Math.* 33 (1981), 1202–1204, doi:10.4153/cjm-1981-090-7.

- [2] M. Gionfriddo, On the number of pairwise disjoint blocks in a Steiner system, in: C. J. Colbourn and R. Mathon (eds.), *Combinatorial Design Theory*, North-Holland, Amsterdam, volume 149 of *North-Holland Mathematics Studies*, pp. 189–195, 1987, doi:10.1016/ s0304-0208(08)72886-x.
- [3] M. Gionfriddo, Partial parallel classes in Steiner systems, *Colloq. Math.* 57 (1989), 221–227, doi:10.4064/cm-57-2-221-227.
- [4] M. Gionfriddo, L. Milazzo and V. Voloshin, *Hypergraphs and Designs*, Mathematics Research Developments, Nova Science Publishers, New York, 2015.
- [5] P. Kaski, P. R. J. Östergård and O. Pottonen, The Steiner quadruple systems of order 16, *J. Comb. Theory Ser. A* 113 (2006), 1764–1770, doi:10.1016/j.jcta.2006.03.017.
- [6] C. C. Lindner and K. T. Phelps, A note on partial parallel classes in Steiner systems, *Discrete Math.* 24 (1978), 109–112, doi:10.1016/0012-365x(78)90179-6.
- [7] G. Lo Faro, On the size of partial parallel classes in Steiner systems $STS(19)$ and $STS(27)$, *Discrete Math.* 45 (1983), 307–312, doi:10.1016/0012-365x(83)90047-x.
- [8] G. Lo Faro, Partial parallel classes in Steiner system S(2, 3, 19), *J. Inform. Optim. Sci.* 6 (1985), 133–136, doi:10.1080/02522667.1985.10698814.
- [9] G. Lo Faro, Partial parallel classes in Steiner quadruple systems, *Utilitas Math.* 34 (1988), 113–116.
- [10] M. C. Marino and R. S. Rees, On parallelism in Steiner systems, *Discrete Math.* 97 (1991), 295–300, doi:10.1016/0012-365x(91)90445-8.
- [11] R. C. Mullin and C. C. Lindner, Lower bounds for maximal partial parallel classes in Steiner systems, *J. Comb. Theory Ser. A* 26 (1979), 314–318, doi:10.1016/0097-3165(79)90109-2.
- [12] D. E. Woolbright, On the size of partial parallel classes in Steiner systems, *Ann. Discrete Math.* 7 (1980), 203–211, doi:10.1016/s0167-5060(08)70181-x.