
UNIVERSITY OF MESSINA

DOCTORAL THESIS

Advances in finite mixture models:
new methodologies and applications

Author:
Salvatore Daniele Tomarchio

Supervisor:
Prof. Antonio Punzo

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy

in

Economics, Management and Statistics
Curriculum: Statistics

XXXIII Cycle
Department of Economics





iii

Abstract

The extent of finite mixture models has widened considerably over the last century,
from both a theoretical and a practical point of view. Their usefulness and flexibility
is discussed in this thesis, which consists of a collection of four manuscripts that have
as common background new methodologies and applications of finite mixture mod-
els. The first two manuscripts focus on specific economics and financial topics, and
the finite mixture models are mainly used as a mathematical device for obtaining a
flexible and tractable density. This has important consequences for the estimation of
some commonly used risk measures. The other two manuscripts aim to use finite
mixture models for clustering in a matrix-variate framework. In all the manuscripts,
parameter estimation is carried by using the maximum-likelihood approach, imple-
mented directly or via variants of the expectation-maximization algorithm. Both
simulated and real datasets are used for illustrative purposes in each manuscript.
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Chapter 1

Introduction

The extent of finite mixture models has widened considerably over the last century,
from both a theoretical and a practical point of view. Indeed, finite mixtures mod-
els have provided a mathematical-based tool for the statistical modeling of a broad
variety of random phenomena. Fields in which they have been successfully studied
and applied include for instance medicine, biology, marketing, finance, engineer-
ing and social sciences (for examples see, Schlattmann, 2009; Wedel and Kamakura,
2012; Bouguila and Fan, 2020). Their usefulness and flexibility is also discussed in
this thesis, which consists of a collection of four manuscripts that have as common
background new methodologies and applications of finite mixture models.

After a brief presentation of some preliminary concepts in Chapter 2, a family of
zero-and-one inflated mixture models is considered in Chapter 3 for the modeliza-
tion of the loss given default (LGD) distribution. This chapter is based on the publi-
cation Tomarchio and Punzo (2019). The LGD is an important parameter that banks
and other financial institutions have to properly estimate. However, its distribution
has posed substantial challenges, since it is generally defined between 0 and 1 (both
included), often exhibits bimodality and, more in general, multimodality and it has a
high amount of observations at the boundary values 0 and 1. With the zero-and-one
inflated mixture models proposed, it is possible to take into account all these pe-
culiar characteristics. To allow for more flexible shapes of the mixture components
on (0, 1), other then considering distributions already defined on (0, 1), distributions
defined on (−∞, ∞) and mapped to (0, 1) via the inverse-logit transformation are in-
vestigated. This yields to a family of thirteen zero-and-one inflated mixture models,
which are applied to two real data sets: one from an European Bank and the other
from the Bank of Italy. The best models, selected via a classical information criterion,
are then compared with several well-established semi-parameteric/nonparametric
approaches via a convenient simulation-based procedure.

Chapter 4 discusses the modelization of the insurance losses distribution, that
is crucial in the insurance industry, and it based on the publication Tomarchio and
Punzo (2020). This distribution is generally highly positively skewed, unimodal
hump-shaped, and with a heavy right tail. A profitable way to accommodate these
characteristics is by using a dichotomous unimodal compound model. It consists
of 2-component mixture model, in which the first component (defined on a positive
support, reparameterized with respect to the mode and to another parameter related
to the distribution variability) is mixed with an inflating component (with the same
support and mode, scaled variability parameter and small prior probability). The
proposed model can also allow for automatic detection of typical and atypical losses
via a simple procedure based on maximum a posteriori probabilities. The unimodal
gamma and log-normal distributions are considered as examples for the mixture
components. The resulting models are firstly evaluated in a sensitivity study and
then fitted to two real insurance loss data sets, along with several competitors. The
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comparisons are made via a classical information criterion and by the computation
of some well-known risk measures.

Chapter 5 introduces two new matrix-variate distributions, which are subse-
quently used as components of the corresponding mixture models. This chapter is
based on the publication Tomarchio et al. (2020). Both distributions are heavy-tailed
generalization of the matrix-variate normal distribution, with respect to which are
characterized by only one additional parameter that governs the tail-weight. The
resulting mixtures, being able to handle data with atypical observations in a bet-
ter way than the matrix-variate normal mixture, can avoid the disruption of the
true underlying group structure. Different variants of the well-known expectation-
maximization (EM) algorithm are implemented for parameter estimation and tested
in terms of computational times and parameter recovery. These mixture models are
fitted to simulated and real data sets, and their fitting and clustering performances
are analyzed and compared to those obtained by other well-established competitors.

By continuing within the matrix-variate framework, Chapter 6 introduces the
first matrix-variate cluster weighted model (CWM). This chapter is based on a paper
currently under review at the Journal of Classification. Specifically, it consider finite
mixture of regression models. The traditional way of regressing data in presence of
an underlying grouping structure is via the finite mixtures of regressions with fixed
covariates. However, they assume assignment independence, i.e. the allocation of
data points to the clusters is made independently of the distribution of the covari-
ates. In order to take into account this last aspect, finite mixtures of regressions with
random covariates, also known as CWMs, have been proposed in the univariate and
multivariate literature. Here, the CWM approach is extended to matrix data by using
the matrix normal distribution both for the cluster-specific conditional distribution
of the responses given the covariates and the cluster-specific marginal distribution
of the covariates. Maximum likelihood parameter estimates are derived by using
an ECM algorithm. The parameter recovery and the classification assessment of
the algorithm are analyzed on simulated data. Finally, two real data applications
concerning educational indicators and the Italian non-life insurance market are pre-
sented.

Lastly, Chapter 7 drawn some conclusions as well as possible extensions for each
the four manuscripts discussed.
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Chapter 2

Background on finite mixture
models

This chapter contains background aspects that are useful for a better understanding
of the next chapters. In detail, it includes concepts that will mentioned or used in
more than one chapter throughout the thesis. This should avoid their repetition in
different chapters and make easier the reading.

2.1 A general overview of finite mixture models

A random variable X arises from a finite mixture model if its probability density
function (PDF) can be written

g(x; Θ) =
K

∑
k=1

πk f (x; φk), (2.1)

where πk is the mixing proportion of the k-th component, with πk > 0 and such that

∑
K
k=1 πk = 1, f (x; φk) is the PDF of the k-th component with parameters φk, and Θ

contains all of the parameters of the mixture. Notice that, as commonly done in the
mixture modeling literature, the component densities are taken to be of the same
type. Extensive details on finite mixture models can be found in the well-known
texts by Titterington et al., 1985; McLachlan and Peel, 2000; Frühwirth-Schnatter,
2006; McNicholas, 2016.

According to Titterington et al. (1985), finite mixture models are generally used in
two different ways. In the indirect applications, they are used as a mathematical device
in order to obtain a flexible and tractable density. Typical examples are mixture
models with smooth curve-fitting design, which resemble a nonparametric density
technique, or 2-component mixture models in which one of the components has an
inflated variance, so that the overall model can approximate an intractable heavy-
tailed distribution. Both examples are extremely close to the models discussed in
Chapters 3 and 4. Therefore, they represent an indirect application of finite mixture
models.

In the direct applications, finite mixture models are considered a powerful tool for
clustering, and each mixture component is assumed to represent a group (or cluster)
in the original data. The aim is to recover the underlying grouping structure and to
evaluate the classification produced by the model. Therefore, the manuscripts dis-
cussed in Chapters 5 and 6 can be considered mainly devoted to a direct application.
However, it is important to notice that both applications can be considered two sides
of the same coin, since the dividing line between them is not always clear and, in
any case, relies on which of the two is more applicable by the researcher.
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2.2 The scale mixture model

Historically, the most popular finite mixture model has made use of the normal dis-
tribution for f (x; φk) in (2.1) (McNicholas, 2016). However, for many real phenom-
ena, the tails of the normal distribution are lighter than required, with a direct effect
on the corresponding finite mixture model. A common way to generalize the nor-
mal distribution, in order to obtain distributions with heavier tails, is by means of
the normal scale mixture model (McLachlan and Peel, 2000). Specifically, a random
variable X arises from a normal scale mixture (NSM) model if its PDF is

fNSM(x; µ, σ2, ν) =
∫ ∞

0
fN(x; µ, σ2/w)h(w; ν)dw, (2.2)

where fN(x; ·) is the PDF of the normal distribution and h(w; ·) is the PDF or PMF
(probability mass function) of a mixing random variable W with positive support.
Therefore, the PDF in (2.2) is a finite/continuous mixture of normal distributions
on σ2 obtained via a convenient discrete/continuous mixing distribution, whose pa-
rameter(s) ν control the tailedness of the model. Several well-known distributions
can be obtained from (2.2), such as the t, Pearson type VII, variance gamma, logistic,
symmetric generalized hyperbolic and power exponential distributions (Boris Choy
and Chan, 2008; Dang et al., 2015; Lee and McLachlan, 2019).

It is clear that model (2.2) can be also used to generalize distributions different
from the normal one. For example, Punzo et al. (2018) consider unimodal hump-
shaped positively skewed distributions, defined on a positive support, instead of
fN(x; ·). Therefore, a scale mixture model can be intended as a general tool for re-
weighting the tails of a distribution.

This model is the basis on which the manuscripts in Chapters 4 and 5 are based.

2.3 Parameter estimation of finite mixture models

2.3.1 The EM algorithm and its variants

Since the advent of the expectation-maximization (EM) algorithm by Dempster et al.
(1977), the maximum likelihood (ML) approach has been by far the most commonly

used to estimate the parameters of a finite mixture model. Let S = {Xi}N
i=1 be a

sample of N independent observations from model (2.1). Then, the incomplete-data
likelihood function is

L (Θ) =
N

∏
i=1

g(xi; Θ) =
N

∏
i=1

[
K

∑
k=1

πk f (x; φk)

]
. (2.3)

In the context of the EM algorithm, S is considered incomplete because, for each
observation, we do not know its component membership. Let zi = (zi1, . . . , ziK) be
the component membership vector such that zik = 1 if Xi comes from group k and

zik = 0 otherwise. Now, the complete-data are Sc = {Xi, zi}N
i=1, and the complete-

data likelihood is

Lc (Θ) =
N

∏
i=1

K

∏
k=1

[πk f (x; φk)]
zik . (2.4)

The EM algorithm approaches the problem of solving the incomplete-data likelihood
function in (2.3) indirectly, by proceeding iteratively in terms of the logarithm of
the complete-data likelihood in (2.4), say lc (Θ). Since the latter is unobservable,
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it is replaced by its conditional expectation given the observed data and using the
current fit for Θ. More specifically, let Θ

0 be an initial value for Θ. Then on the first
iteration, the E-step requires the calculation of

Q
(

Θ; Θ
(0)

)
= E

Θ(0) {lc (Θ) |S} . (2.5)

The M-step requires the maximization of Q
(

Θ; Θ(0)
)

with respect to Θ, i.e.

Θ
(1) = arg max

Θ

Q
(

Θ; Θ
(0)

)
. (2.6)

Then, both steps are carried out again, by replacing Θ(0) with Θ(1) in (2.5), and Θ(1)

with Θ(2) in (2.6). This procedure is repeated until the difference between two con-
secutive likelihood values is lower than an arbitrary small threshold. In Chapters 5
and 6, and by following the notation used by Melnykov and Zhu (2019), the param-
eters marked with one dot correspond to the updates at the previous iteration and
those marked with two dots represent the updates at the current iteration.

The EM algorithm, as previously described, is used for parameter estimation in
Chapter 3. However, in some situations the EM algorithm cannot be directly imple-
mented, and modified versions of the algorithm must be adopted. An example is
the expectation-conditional maximization (ECM) algorithm proposed by Meng and
Rubin (1993). The only difference with respect to the EM algorithm is that the M-step
is replaced by a sequence of simpler and computationally convenient CM-steps. It
will be used for parameter estimation in Chapters 5 and 6. Other examples, are
the expectation-conditional maximization either (ECME) algorithm (Liu and Rubin,
1994) and the alternating expectation-conditional maximization (AECM) algorithm
(Meng and Van Dyk, 1997). Both algorithms generalize the ECM and will be consid-
ered for parameter estimation in Chapter 5. More specifically, the ECME allows to
maximize on some or all of the CM-steps the incomplete-data log-likelihood, while
the AECM algorithm always maximize the complete-data log-likelihood in all the
CM-steps, but the complete data are allowed to be different on each CM-step.

2.3.1.1 Initialization strategies

The choice of the starting values constitutes an important aspect for any EM-based
algorithm, since the solution at convergence can highly depend on its starting po-
sition. This topic has been vastly investigated in the literature (for details, see e.g.
McLachlan and Peel, 2000; Biernacki et al., 2003; Melnykov and Melnykov, 2012)
and, in a broad way, it is possible to group the initialization strategies in two main
categories, depending on which of the following two paths is followed:

1. start from the M-step by providing an initial value to the quantities involved
in (2.5);

2. start from the E-step by providing an initial value to the parameters of the
model.

For each category, several methods have been proposed. If we start from the M-step,
and by assuming that only the updates for the posterior probabilities zi are required
in (2.5), a possibility is to use the classification produced by some clustering algo-
rithm such as k-means or, say, a hierarchical procedure. Alternatively, such “hard”
values can be randomly generated via a multinomial distribution with probabilities
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(1/K, . . . , 1/K) (Mazza et al., 2018). Another way of specifying initial values for the
zi is by using “soft” values, which can be randomly generated by a uniform distri-
bution, and that are subsequently normalized in order to sum to 1. It is clear that
when (2.5) does not require only the updates for the zi, applying such approach may
become more complicated, and should be carefully evaluated according to the case
under consideration.

When we start from the E-step, a common strategy consists in randomly draw
values for some or all the parameters. For example, in the case of multivariate Gaus-
sian mixtures, McLachlan and Peel (2000) suggest to randomly generate the compo-
nent means from a Gaussian distribution having mean and covariance matrix equal
to the corresponding mean and covariance sample estimates. The component co-
variance matrices are then all initialized by using the sample covariance matrix and
the mixture proportions are all assumed to be 1/K. Another strategy, introduced by
Biernacki et al. (2003), is the so-called short-EM initialization. It consists in H short
runs of the EM algorithm for different random set of parameters. The term “short”
means that the algorithm is run for a very small number of iterations s, without wait-
ing for convergence. Then, the parameter set producing the highest log-likelihood
value is used to initialize the final EM algorithm.

It should be noted that, regardless of the chosen approach, the log-likelihood for
finite mixture models usually has multiple roots, corresponding to local maxima.
Therefore, in order to find the global maximum, the algorithm should be run multi-
ple times from a wide choice of starting values and then the solution corresponding
to the largest log-likelihood must be selected.

2.3.2 A glimpse on alternative estimation approaches

The EM algorithm and its variants are the most commonly used tools for param-
eter estimation of finite mixture models (McLachlan and Krishnan, 2007). How-
ever, other methods are advocated in the literature as possible alternatives to EM-
type algorithms. For instance, it might be convenient to directly maximize the log-
likelihood of the mixture. This is particularly useful when closed-form estimates are
not available or when the log-likelihood can be easily evaluated (MacDonald, 2014).
To this end, a general-purpose numerical optimizer, such as the quasi-Newton type
Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm (Fletcher, 2013), can be used.
This approach will be implemented in Chapter 4.

A stochastic-type technique is provided by the Simulated Annealing (SA) algo-
rithm. To optimize a real-valued function h(Θ) on a compact set D, the SA generates
an inhomogeneous Markov process on D depending on a positive parameter T. This
Markov process has the following Gibbs distribution as its unique stationary distri-
bution

pT (Θ) =
exp (−h(Θ)/T)∫

D exp (−h(Θ)/T) dΘ
, Θ ∈ D. (2.7)

In the limit as T tends to 0, the stationary distribution tends to a distribution con-
centrated on the points of global optimum of h. In a homogeneous version of the
algorithm, a sequence of homogeneous Markov chains is generated at decreasing
values of T. The general algorithm requires the following steps:

1. select a starting value for T, say T0 and for Θ, say Θ0, with h(Θ0) = h0;

2. choose a proposed point Θ1 at random from a neighborhood of Θ0 and com-
pute the corresponding h-value;
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3. calculate ∆1 = h(Θ1)− h(Θ0). If ∆1 ≤ 0, move to the new point Θ1, otherwise
draw a value u from the uniform distribution over [0, 1]. Accept the new point
Θ1 if u ≤ exp (−∆1/T), i.e., exp (−∆1/T) is the probability of acceptance;

4. repeat steps 2 and 3, after updating the appropriate quantities, until an equi-
librium has been reached by the application of a convenient stopping criterion;

5. lower T according to an “annealing schedule” and start at Step 2 with the equi-
librium value at the previous T as the initial value. Again a suitable stopping
criterion between consecutive T values is used to decide when to stop the al-
gorithm, obtaining the solution to the optimization problem.

As can be easily intuitable, the behavior of the SA algorithm crucially depend on
the choice of the stopping rules, the annealing schedule, and the initial and next
values of the first two steps. In the context of finite mixture models, Ingrassia (1991,
1992) compared the performances of the SA and EM algorithms. It was found that
although the SA algorithm performed more satisfactorily in some cases, it was much
slower than the EM algorithm. Additionally, even if in these cases the SA algorithm
gave estimates closer to true values, the value of the likelihood was greater at the
EM solution. Therefore, neither algorithm overwhelmingly outperforms the other.

2.3.3 Standard errors of the estimates

Let Θ̂ be the ML estimator of Θ. To assess the precision of the ML estimates, the

estimated covariance matrix of Θ̂, say Ĉov(Θ̂), is typically computed. The square

root of the diagonal elements of Ĉov(Θ̂) are then reported as standard errors of the
ML estimates.

One criticism of the EM algorithm is that it does not automatically provide an

estimate of Ĉov(Θ̂), as do some other approaches, such as Newton-type methods.

Nevertheless, in ML theory, Ĉov(Θ̂) can be usually obtained from the information
matrix I(Θ). Under regularity conditions, and if the model is correctly specified,
I(Θ) is given either by the covariance of the score function E(S(Θ)S(Θ)′) or by
the negative of the expected value of the Hessian matrix −E(H(Θ)). However, an
analytical evaluation of these expected values is often cumbersome.

A first solution to such problem relies on numerical methods. Specifically, by
using some asymptotic results concerning ML estimation (see, e.g. White, 1982), it is
possible to obtain the following asymptotic estimators of I(Θ)

I1 =
N

∑
i=1

Si(Θ̂)SiΘ̂
′, I2 = −

N

∑
i=1

Hi(Θ̂),

where Si(Θ̂) and Hi(Θ̂) represent the contribution of the ith observation to the score
function and Hessian matrix at the ML estimate, respectively. The inverses I−1

1 and

I−1
2 are consistent estimators of Ĉov(Θ̂) if the model is correctly specified (Boldea

and Magnus, 2009). In general, the so-called “sandwich” (or robust) approach pro-

vides a consistent estimator of Ĉov(Θ̂), whether or not the model is not correctly
specified. It is computed by

I3 = I−1
2 I1I−1

2 .

A second solution is based on bootstrap techniques. Specifically, it is possible to
mention the parametric and the nonparametric bootstrap (see, McLachlan and Peel,
2000 for further details), and the weighted bootstrap (Newton and Raftery, 1994),
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which is a version of the nonparametric bootstrap based on scaling the data with
weights that are proportional to the number of times an original point occurs in the
bootstrap sample (Boldea and Magnus, 2009).

2.4 Model selection and clustering assessment

In many applications, the number of groups K is unknown, and it is commonly
selected by using some likelihood-based information criterion. Information criteria
are also used for selecting the best fitting model among a set of competitors. The
Bayesian information criterion (BIC; Schwarz, 1978) is undoubtedly one of the most
commonly used, and for this reason it will be considered in this thesis. In its original
formulation, it is defined as

BIC = −2l(Θ̂) + ln(N)#par,

where l(Θ̂) is the maximized log-likelihood value and #par is the number of param-
eters of the model. The value of K, and consequently the model, associated to the
smallest BIC value is preferred for modeling a given data sets.

To evaluate the clustering performance of a model, when the true classification of
the data is known, the adjusted rand index (ARI; Hubert and Arabie, 1985) and the
misclassification percentage (ǫ) will be considered. The ARI evaluates the agreement
between two partitions, with an upper bound of 1 indicating a perfect classification,
whereas ǫ measures the percentage of statistical observations that are misclassified.

2.5 A short introduction on matrix-variate data

In (2.1), the variable X under consideration is univariate, as in the analyses con-
tained in Chapters 3 and 4. In the multivariate literature, X is replaced by a p-
dimensional random vector containing p measurements on the phenomenon under
study. When p measurements are collected over r different times or situations, this
leads to a matrix-variate (or three-way) data structure. This type of data has re-
ceived an increasing interest by the researchers, especially within the finite mixture
model literature (see, e.g., Gallaugher and McNicholas, 2018; Melnykov and Zhu,
2019; Sarkar et al., 2020; Tomarchio et al., 2020 for recent contributions). Typical ex-
amples of this data structure include spatial multivariate data, longitudinal data on
multiple response variables or spatio-temporal data. In all these cases the data can
be arranged in a three-way array characterized by the following dimensions: mea-
surements (rows), situations (columns) and observations (layers). In other terms,
each statistical observation is a p × r matrix X.

In the matrix-variate literature, the matrix-variate normal (MVN) distribution
plays the same pivotal role that the multivariate normal distribution has in the mul-
tivariate literature. A random p × r matrix X is said to follow a MVN distribution if
its PDF can be written

fMVN(X; M, Σ, Ψ) = 1

(2π)
pr
2 |Σ| r

2 |Ψ|
p
2

exp
{
− 1

2 tr
[
Σ
−1(X − M)Ψ−1(X − M)′

]}
, (2.8)

where M is the p × r mean matrix, Σ is the p × p row covariance matrix and Ψ is
the r × r column covariance matrix. In (2.8), tr

[
Σ
−1(X − M)Ψ−1(X − M)′

]
is the

squared Mahalanobis distance from X to the center M with respect to Σ and Ψ, and
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for brevity’s sake will be denoted as δ(X; Ω), with Ω = {M, Σ, Ψ}. Upon vector-
ization, the MVN distribution can be reformulated as a pr-multivariate normal dis-
tribution with covariance matrix given by Ψ ⊗ Σ, where ⊗ is the Kronecker prod-
uct (Gupta and Nagar, 1999). However, a MVN distribution has the desirable fea-
ture of simultaneously model and identify the between and within-variables vari-
abilities as well as reducing the number of free parameters from pr(pr + 1)/2 to
[p(p + 1)/2] + [r(r + 1)/2]− 1. The MVN distribution plays a fundamental role in
Chapters 5 and 6.
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Chapter 3

Modelling the loss given default
distribution via a family of
zero-and-one inflated mixture
models

1

3.1 Introduction

The Advanced Internal Ratings Based approach, within the Basel II/III regulatory
framework, allows banks to calculate the capital requirements on the basis of their
internal credit risk models (Basel Committee on Banking Supervision, 2006). Specif-
ically, they need to develop methods for estimating the following three key risk pa-
rameters: PD (probability of default), LGD (loss given default) and EAD (exposure
at default). The target of this work is the LGD parameter (the equivalent of one mi-
nus the recovery rate), which is defined as the percentage of the exposure that is lost
in case of default. Other than for regulatory reasons, an accurate LGD estimation is
crucial for the correct evaluation of credit derivatives and asset-backed securities, as
well as for gaining a competitive advantage in case of models with high predictive
power (Grunert and Weber, 2009; Gürtler and Hibbeln, 2013).

As discussed by Baesens et al. (2016), the LGD can be measured in several ways.
The first method is called “market approach” and looks at the market price of debt
securities of the firms soon after their bankruptcy. This market price is then used
as a proxy for the recovery rate (Gupton and Stein, 2005). A disadvantage of this
method is that it cannot be applied to all types of debts, but only to those traded in
the financial markets. A second method is the “implied market approach” (Seidler,
2008). In this case, the LGD is estimated through the analysis of the market price of
not defaulted risky securities using asset pricing models. The idea is that prices re-
flect market’s expectation of the loss and hence the LGD can be extracted from there.
Another and more widespread method is the “workout approach”, and it is based
on an economic notion of loss. In detail, all the relevant incoming and outgoing cash
flows or costs related to the collection process should be considered and discounted,
via a suitable discount rate, to the moment of default to calculate the loss. This
approach is adopted within the Basel Accord (Basel Committee on Banking Super-
vision, 2006), which identifies three types of costs: (1) those associated to the loss of

1This work is based on the following publication: Tomarchio S.D., Punzo A. (2019). Modelling the
loss given default distribution via a family of zero-and-one inflated mixture models. Journal of the Royal
Statistical Society: Series A (Statistics in Society), 182(4), 1247–1266. The current manuscript is a combined
effort of the authors. However, Tomarchio S.D. contributed in conceptualization, implementation, data
elaboration and writing–original draft preparation; Punzo A. contributed in conceptualization and
supervision.



3.1. Introduction 11

principal and the foregone interest income, (2) those linked to the recovery process
(for example administrative and operating costs), and (3) those related to the time
incurring between the emergence of default and the actual recovery (represented by
an appropriate discount rate).

However, modeling the LGD has posed serious challenges. The first one is re-
lated to the lack or the confidentiality of data, which make difficult for researchers to
develop and test their models (Grunert and Weber, 2009; Gürtler and Hibbeln, 2013;
Li et al., 2016). A second problem is connected to the peculiarities of its distribution.
In fact, the LGD distribution is generally defined between zero and one (both in-
cluded), often exhibits bi-, and more in general, multi-modality (Schuermann, 2004;
Gürtler and Hibbeln, 2013) and it has a high amount of observations at the bound-
ary values 0 and 1 (Friedman and Sandow, 2003; Calabrese, 2010; Tong et al., 2013;
de Oliveira Jr et al., 2015). Some studies (see, e.g. Schmit, 2004; Gürtler and Hibbeln,
2013; Miller and Töws, 2018) discuss that when the “workout approach” is used, the
LGD can assume values lower than 0 (i.e. the creditor recovers more than the out-
standing amount) or greater than 1 (i.e. the creditor loses more than the outstanding
amount). However, as pointed out by Gouriéroux and Monfort (2006), this bound-
ary problem has been early noted by the Basel Committee, that imposes to truncate
the LGD to the [0, 1] interval, avoiding negative or greater than one values. In the
two real data applications considered in this work, the LGD has been computed via
the “workout approach”, but the data have been previously pre-processed in order
to constrain them within the interval [0, 1].

Because of these peculiar characteristics, different approaches have been dis-
cussed in the literature. A first class of models is based on regression analyses (see,
e.g Huang and Oosterlee, 2008; Sigrist and Stahel, 2011; Bellotti and Crook, 2012).
A second set of models make use of machine learning techniques such as artificial
neural networks, random forests, regression tree algorithms and many others (see,
e.g Bastos, 2010; Qi and Zhao, 2011; Loterman et al., 2012; Tobback et al., 2014; Yao
et al., 2017; Nazemi et al., 2017). A third category of models, on which this work
focuses, aims to estimate the LGD distribution, either parametrically or nonpara-
metrically. The nonparametric models are mainly based on different kernel density
estimators (see, e.g Renault and Scaillet, 2004; Hagmann et al., 2005; Calabrese and
Zenga, 2010; Chen and Wang, 2013). Under the parametric model category, we can
mention the works of Calabrese (2014b,a); de Oliveira Jr et al. (2015), which con-
sider the LGD as a mixed random variable, obtained via the mixture of a Bernoulli
random variable (addressing the problem of excess of zeros and ones), and either a
single or a mixture of two beta distributions for the continuous part on (0, 1). These
latter models are also known as zero-and-one inflated models (Ospina and Ferrari,
2010).

The proposal contained in this chapter is placed in this last branch of the litera-
ture. Indeed, the LGD distribution is herein modeled via a family of zero-and-one
inflated mixture models, but where the number of mixture components on (0, 1) is
not fixed in advance. There is no specific reason for limiting such number of com-
ponents, since doing this may lead to erroneous and sub-optimal solutions, as will
be shown by the real data analyses. As components of the mixture, distributions di-
rectly defined on (0, 1) are used, such as the beta and the generalized beta of type 1
(GB1), but also distributions with support (−∞, ∞) mapped on (0, 1) via an inverse-
logit transformation (see Section 3.2 for details). Therefore, by using these trans-
formed distributions, this work overcomes the scarcity of distributions commonly
used in the LGD modeling.

Overall, the models herein proposed can be considered as a flexible device for
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inflated mixture models

modeling the LGD distribution, in a similar manner to a nonparametric approach.
Hence, an indirect application of the finite mixture models, as discussed in Chap-
ter 2, seems to be the more appropriate. Relatedly, in the two real data analyses of
Section 3.3, a comparison with several standard semiparametric/nonparametric ap-
proaches used in the credit risk literature is presented. Finally, some conclusions are
drawn in Section 3.4.

3.2 Methodology

Let X be a random variable taking values in [0, 1]. Suppose that part of the distribu-
tion of X is concentrated at {0, 1}, while the rest of the distribution is continuously
spread over (0, 1). In such a case, X is said to be a mixed random variable (Bertsekas
and Tsitsiklis, 2008); see also Calabrese and Zenga (2010); Calabrese (2010, 2014a,b)
within the LGD literature.

To model the distribution of X in a flexible way, a zero-and-one inflated mixture
model is herein proposed. Its PDF can be defined as

q (x; ϑ) =





α0 if x = 0

(1 − α0 − α1) g(x; Θ) if x ∈ (0, 1)

α1 if x = 1,

(3.1)

where α0 = P (X = 0) and α1 = P (X = 1) are the parameters of a three level multi-
nomial model over the categories {0}, {1} and (0, 1), with α0 > 0 and α1 > 0 such
that α0 + α1 < 1. In (3.1), g(x; Θ) is the PDF of the mixture as defined in (2.1) and
with support (0, 1), while ϑ contains all the parameters.

As said in Chapter 2, the mixture components in g(x; Θ) are taken to be of the
same type. Naturally, given K, the flexibility of the mixture model improves if more
flexible distributions, i.e. distributions having a greater number of parameters m, are
considered. In this regard, 13 different type of distributions for the mixture compo-
nents are considered in this work. Conversely, for a given distribution, the flexibility
of the mixture model improves when K increases. In this work, K is free to vary in a
large enough set of positive integer values, and then selected by the BIC. Thus, two
sources of flexibility are investigated.

Possible component distributions with support (0, 1) are the beta and the GB1,
having m = 2 and m = 4 parameters, respectively. Special cases of model (3.1),
based on the beta distribution, already exist (see Ospina and Ferrari, 2010 for the
cases K = 1, and de Oliveira Jr et al., 2015 for K = 2). However, the extension to a
generic number of components, as well as the alternative use of the GB1 distribution,
are new in the LGD literature.

To further increase the number of parametric distributions on (0, 1) to be used
as components in g(x; Θ), the approach discussed in Düllmann and Gehde-Trapp
(2004); Rösch and Scheule (2006); Stasinopoulos et al. (2017a) is followed. Specifi-
cally, it consists in transforming classical distributions with support (−∞, ∞) via the
inverse logit transformation

X =
1

1 + exp (−Y)
, (3.2)

where Y is the random variable taking values in (−∞, ∞). For example, if Y has
a normal distribution, and the inverse logit transformation in (3.2) is applied, the
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logit-normal distribution for X is obtained (see, e.g., Atchison and Shen, 1980). Fol-
lowing this idea, 11 further candidates are considered for the mixture components,
and are obtained via the inverse logit transformation of the following distributions:
exponential generalized beta of type 2 (EGB2; m = 4), ex-Gaussian (m = 3), Gumbel
(m = 2), Johnson Su (m = 4), logistic (m = 2), normal (m = 2), reverse Gum-
bel (m = 2), sinh-arcsinh (m = 4), skew-normal (m = 3), skew-t (m = 4), and t
(m = 3). For details about these distributions, see Rigby et al. (2014). Apart from the
logit-normal distribution, which is considered to define the zero-and-one inflated
mixture of K = 2 logit-normal distributions by de Oliveira Jr et al. (2015), the logit
version of the remaining distributions have never been used to define zero-and-one
inflated models.

3.2.1 Parameter estimation

Given a sample {Xi}N
i=1 of N independent observations from the PDF in (3.1), the

log-likelihood function of the model can be decomposed – because of the orthogo-
nality between (α0, α1) and Θ (Stasinopoulos et al., 2017a) – as

l (ϑ) = N0 log (α0)︸ ︷︷ ︸
{0}

+ (N − N0 − N1) log (1 − α0 − α1) + l(0,1) (Θ)
︸ ︷︷ ︸

(0,1)

+ N1 log (α1)︸ ︷︷ ︸
{1}

, (3.3)

where N0 = ∑
N
i=1 I{0} (xi) and N1 = ∑

N
i=1 I{1} (xi), with IA (x) being the indicator

function on the set A, are the number of 0s and 1s in the sample, respectively, and
l(0,1) (Θ) is the log-likelihood function of the mixture model in (2.1), with the sum-
mation running only over the observations in the interval (0, 1). By looking at (3.3),
it is possible to see that the of parameters sets (α0, α1) and Θ can be estimated sep-
arately. The ML estimates of α0 and α1 correspond to the sample proportions N0/N
and N1/N, respectively. On the contrary, the ML estimate of Θ are obtained by
means of the EM algorithm. Specifically, it is implemented via the gamlssMX() func-
tion, contained in the gamlss.mx package (Stasinopoulos and Rigby, 2016), for the R

(Team, 2019) statistical software. Further details about the gamlssMX() function can
be found in Stasinopoulos et al. (2017b).

3.2.2 Some notes on identifiability

Generally, for finite mixtures of distributions, we need to distinguish among differ-
ent types of non identifiability (see, e.g. Frühwirth-Schnatter, 2006):

1. first of all, non-identifiability is caused by the invariance of a mixture distri-
bution to relabeling the components (label switching), as first noted by Red-
ner and Walker (1984): indeed, K kept fixed, all the K! permutations of the
K products π1 f (x; φ1), . . . , πK f (x; φK) yield the same mixture model. This is
not a serious problem and someone in the literature (see, e.g. Aitkin and Ru-
bin, 1985) handled it by a constraint on the mixing proportions of the form
π1 < π2 < . . . < πK.

2. A further identifiability problem, noted by Crawford (1994), is non-identifiability
due to potential overfitting. Crawford (1994) showed that any mixture with
K − 1 components can be equivalently rewritten as a mixture with K compo-
nents, where either one component is empty (i.e. πk = 0) or two components
are equal (i.e. φk = φl , with k 6=l). However, in all the analyses of Section 3.3,
this non-identifiability issue has not been encountered.
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Nevertheless, finite mixtures may remain unidentifiable even if formal identifiabil-
ity constraints are considered to rule out the non-identifiability problems described
above. Among the models herein considered (beta, GB1, EGB2, ex-Gaussian, Gum-
bel, Johnson Su, logistic, normal, reverse Gumbel, sinh-arcsinh, skew-normal, skew-
t, and t), in my knowledge the identifiability issue have been discussed only for
the beta (Ahmad and Al-Hussaini, 1982), normal (Teicher, 1963), t (Holzmann et al.,
2006), skew-normal and skew-t (Otiniano et al., 2015) distributions.

3.3 Real data applications

This section contains the results of the real data analyses. Firstly, the two data sets
are accordingly described in Section 3.3.1. Secondly, the zero-and-one inflated mod-
els are fitted to the data and discussed in Section 3.3.2. Since some of the parametric
models used in the credit risk literature to fit the LGD distribution are special cases
of the models herein proposed, a comparison with them is obtained as a by-product.
Lastly, in Section 3.3.3, the best fitting models are compared, via a convenient sim-
ulation study, to semiparametric and nonparametric density estimation approaches
used in the LGD literature.

3.3.1 Data description

The first data set (Data set A), consists of N = 2545 LGDs on loans of a European
bank (see Baesens et al., 2016, for details). As discussed in Section 3.1, the data has
been preprocessed by the owners in such a way that only values in the interval [0, 1]
occur. For their application, Baesens et al. (2016) converted 0 and 1 values to 0.00001
and 0.99999, respectively. Therefore, to recover the original data, this transformation
is eliminated, obtaining a data set with N(0,1) = 1674 observations defined on the
interval (0, 1), N0 = 728 observations equal to 0 and N1 = 143 observations equal to
1. Therefore, about the 34.2% of the observations is at the boundaries.

The second data set (Data set B) contains N = 149378 loan recovery rates from
a comprehensive survey conducted by the Bank of Italy on about 250 banks in the
years 2000–2001 (Banca d’Italia, 2001). Considering that this survey deals with loans
privately held, the market approach is not feasible, and consequently the Bank of
Italy applies the workout approach. Also in this case, the data have been pre-
processed following the methodology proposed by Calabrese and Zenga (2008),
which permits to compute the recovery rate in the workout approach constrain-
ing this variable within [0, 1]. Additional details about this data set can be seen
in Calabrese and Zenga (2010). The corresponding LGD values are obtained as
LGD = 1 − recovery rate. There are N(0,1) = 103511 on (0, 1), N0 = 11514 obser-
vations equal to 0 and N1 = 34353 equal to 1. Therefore, more than 30% of the LGDs
is confined to the boundaries.

Table 3.1 reports some descriptive statistics for the data sets, whereas Figure 3.1
shows the histograms of the LGD values on (0, 1) only; these values are also repre-
sented as tick marks below the horizontal LGD-axis for Data set A. Tick marks of
the observations are not plotted for Data set B due to the huge number of values
covering the whole horizontal axis below the histogram.
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TABLE 3.1: Descriptive statistics

Statistic Value
Data set A Data set B

Number of observations (N) 2545 149 378
Number of zeros (N0) 728 11 514
Number of observations in (0, 1) (N(0,1)) 1674 103 511

Number of ones (N1) 143 34 353
Mean 0.228 0.616
Standard deviation 0.329 0.340
Skewness 1.308 −0.415
Kurtosis (excess) 0.274 −1.176
First quartile 0.000 0.333
Median 0.032 0.667
Third quartile 0.398 0.958
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FIGURE 3.1: Histograms of the LGD values on (0, 1)

3.3.2 Zero-and-one inflated mixture models

3.3.2.1 Computational details

Considering that the likelihood function for mixture models usually has multiple
local maxima, the EM algorithm is generally run several times for different start-
ing values. Then, in order to ensure that a global maximum has been reached, the
gamlssMX() function is run five times, with different starting values randomly deter-
mined. In case of different solutions, the one producing the highest log-likelihood
is preferred. Furthermore, in the attempt of reducing the cases of overparameteriza-
tion, we limit to K = 4 the maximum number of mixture components to be tried.

As concerns the component densities of the mixture, the 11 distributions ob-
tained via inverse-logit transformation are generated via the gen.Family() function
contained in the gamlss.dist package (Stasinopoulos and Rigby, 2017). This func-
tion offers the possibility to generate the logit version of all the distributions with
support (−∞, ∞) contained in that package. At a preliminary stage of the real data
analyses, all the distributions have been considered as components of the mixture.
However, the logit version of the power exponential and skew exponential power
distributions presented computational issues in at least one of the considered data
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sets. Specifically, the EM algorithm fails to converge probably due to the genera-
tion of an indeterminate form of the type 0/0 when the posterior probabilities of
group-membership are computed in the E-step. Changing the starting values of
the parameters seems not to fix this problem. Given that a considerable number of
logit-distributions is still considered, it should not be a great loss to exclude these
two models from the analyses. In addition to these 11 transformed distributions,
the 2 distributions directly defined on the support (0, 1) included in the gamlss.dist

package are considered, i.e. the beta and GB1.

3.3.2.2 Results

The zero-and-one inflated mixture models are fitted to both data sets for values of
K ∈ {1, 2, 3, 4}, yielding to a total of 13 × 4 = 52 fitted models for each data set.
Table 3.2 reports a model comparison in terms of −2l(ϑ̂) and BIC. For a better com-
parison, the ranking induced by the BIC is also shown in correspondence of the
selected value of K for each of the 13 models. The first and most immediate result is
that a model with a single component (K = 1) is never the best choice in both data
sets, and this confirms the previous conjectures about the need of a more flexible
model to better capture the behavior of the LGDs on (0, 1).

As concerns Data set A, according to the BIC, K = 2 components are selected
only for the models whose component PDFs have m = 4 parameters as well as for
the zero-and-one inflated mixture with logit-t components; for the remaining ones,
K = 3 components are chosen. This is because the BIC tends to penalize model
complexity, and to prefer more parsimonious models. The best models are those
with K = 3 logit-normal and logit-logistic components, ranked as first and second,
respectively. The best zero-and-one inflated mixture with beta components has K =
3, and it is ranked third. This confirms how the often used beta distribution is not
always the best choice to be used as mixture component in the analysis of LGD data.
The graphical representation of the mixture of K = 3 logit-normal distributions, i.e.
the best fitting model, is given via a solid line superimposed on the histogram, in
Figure 3.2(a), with dotted curves showing the component densities multiplied by
the corresponding estimated mixture weights π̂1, π̂2 and π̂3. The bar-plot of the
discrete part of models is displayed in Figure 3.2(b).
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(a) Mixture of 3 logit-normal distributions
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FIGURE 3.2: Data set A. Histogram with superimposed curves from
the mixture model selected by the BIC (panel 3.2(a)), and estimated

α̂0 and α̂1 (panel 3.2(b)).



3.3. Real data applications 17

TABLE 3.2: Values of −2l(ϑ̂) and BIC for the zero-and-one inflated
mixture models fitted for K ∈ {1, 2, 3, 4}. The best BIC value, for each

model, is written in bold font; for these models, a ranking is given.

Data set A Data set B

Mixture component m k −2l(ϑ̂) BIC rank −2l(ϑ̂) BIC rank

beta 2 1 2092.12 2123.49 228502.95 228550.60
2 1779.02 1833.91 226465.72 226549.12
3 1746.13 1824.55 3 224102.27 224221.41
4 1738.58 1840.53 224063.10 224217.99 6

GB1 4 1 2058.15 2105.20 228497.27 228568.76
2 1760.20 1846.46 12 226538.30 226669.36
3 1744.95 1870.42 224092.90 224283.52 8
4 1741.99 1906.67 224078.87 224329.07

logit-logistic 2 1 1884.19 1915.55 229064.03 229111.68
2 1781.27 1836.16 226038.54 226121.94
3 1738.43 1816.85 2 224119.95 224239.09
4 1738.06 1840.00 224027.16 224182.04 3

logit-Gumbel 2 1 2343.96 2375.32 253904.90 253952.50
2 1970.95 2025.84 235106.25 235189.65
3 1756.67 1835.09 6 225902.65 226021.79
4 1734.28 1836.22 224821.14 224976.02 11

logit-normal 2 1 1863.19 1894.55 227856.91 227904.57
2 1835.12 1890.01 227502.65 227586.05
3 1738.25 1816.66 1 225103.08 225222.22
4 1737.65 1839.59 224006.29 224161.18 2

logit-rev.Gumbel 2 1 1973.74 2005.11 245260.46 245308.12
2 1871.52 1926.41 232438.10 232521.50
3 1754.45 1832.87 5 229426.51 229545.65
4 1748.66 1850.61 224747.63 224902.52 10

logit-exGaus 3 1 1847.83 1887.03 227833.25 227892.82
2 1834.51 1905.09 227532.84 227640.07
3 1738.60 1840.55 10 227433.32 227588.20
4 1738.34 1871.66 226445.84 226648.39 12

logit-skew-normal 3 1 1863.19 1902.40 227856.90 227916.47
2 1835.98 1906.55 227565.19 227672.42
3 1738.38 1840.32 9 227458.73 227613.62
4 1737.62 1870.93 227303.12 227505.66 13

logit-t 3 1 1857.97 1897.18 227536.57 227596.14
2 1765.57 1836.14 7 224836.77 224943.99
3 1736.51 1838.45 224050.17 224205.05 5
4 1735.59 1868.90 224014.18 224216.72

logit-Johnson Su 4 1 1830.49 1877.54 227488.90 227560.39
2 1750.64 1836.90 8 224631.03 224762.09
3 1734.14 1859.61 223908.11 224098.74 1
4 1732.18 1896.86 223862.84 224113.04

logit-sinh-arcsinh 4 1 1867.28 1914.33 229500.56 229572.04
2 1743.13 1829.39 4 224505.80 224636.86
3 1740.64 1866.11 224348.28 224538.91
4 1736.43 1901.11 224099.13 224349.33 9

logit-skew-t 4 1 1844.48 1891.54 227490.92 227562.41
2 1757.48 1843.73 11 227380.36 227511.42
3 1735.97 1861.44 224000.32 224190.95 4
4 1734.62 1899.30 223962.61 224212.81

logit-EGB2 4 1 1861.26 1908.31 228755.06 228826.55
2 1768.12 1854.38 13 226177.91 226308.96
3 1737.97 1863.44 224225.57 224416.20
4 1737.16 1901.84 224014.51 224264.71 7
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Analyzing Data set B, the results are even stronger because there are no cases
where a mixture model with K = 1 or K = 2 components is the best choice. Specif-
ically, the BIC select K = 4 components for almost all the competing models, expect
for four cases where the it indicates a model with K = 3 components. Among them,
there is the best one, i.e. the mixture of K = 3 logit-Johnson Su distributions. In
comparison with the ranking reported for the previous data set, the zero-and-one
inflated mixture based on the beta distribution performs worse, while the one based
on the logit-normal distribution is still competitive, although with a greater number
(K = 4) of mixture components; this remarks the need, for these mixtures fitted on
these data, of more than two mixture components. The continuous part of the best
zero-and-one inflated mixture model selected by BIC is shown in Figure 3.3(a), while
the plot of the discrete part is displayed in Figure 3.3(b).
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FIGURE 3.3: Data set B. Histogram with superimposed curves from
the mixture model selected by the BIC (panel 3.3(a)), and estimated

α̂0 and α̂1 (panel 3.3(b)).

3.3.3 A comparison with semiparametric/nonparametric approaches

3.3.3.1 Simulation study

Some semiparametric and nonparametric approaches, used in the LGD literature,
are now compared with the zero-and-one inflated models. In detail:

• the semiparametric density considered by Hagmann et al. (2005), labeled “H-
BK”;

• the Gaussian kernel considered by Renault and Scaillet (2004) and Chen and
Wang (2013), labeled “GK”;

• the beta kernel introduced by Chen (1999), and applied by Renault and Scaillet
(2004), labeled “C-BK”;

• the beta kernel proposed by Calabrese and Zenga (2010), labeled “CZ-BK”.

In this case, the comparison is made challenging because the BIC cannot be used to
compare semiparametric and nonparametric approaches, to the author knowledge.
To allow such an overall comparison, a simulation-based procedure, similar to the
one considered by Renault and Scaillet (2004), is implemented. In their work, the
authors assessed the impact of assuming a parametric beta distribution for the LGD,
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on the Value at Risk (VaR) computed on the loss distribution of a well diversified
portfolio. The VaR represents the maximum loss which can occur with probability c
over a specified period of time, and it is defined as

VaRc(X) = inf {x : F(x) ≥ c} , 0 ≤ c ≤ 1,

where F is the cumulative distribution function of X.
With a similar procedure, ten thousand losses

{
Lj

}10000

j=1
are simulated via a de-

fault or non-default approach (Bellotti, 2010, 2017), and by considering {Ni}50000
i=1

debtors. In detail:

1. for j = 1, . . . , 10000

(a) for i = 1, . . . , 50000

i. generate a latent factor Yi, which describes the uncertainty on repay-
ment (Vasicek, 2002), as

Yi = T
√

ρ + Ti

√
1 − ρ,

where T ∼ N(0, 1) represents a common systematic risk factor affect-
ing all the debtors (e.g., the state of the economy), Ti ∼ N(0, 1) is
an idiosyncratic factor independent for each debtor and ρ is the pair-
wise correlation coefficient which is assumed the same for any two
debtors;

(b) compute the expected loss for that portfolio via

Lj =
N

∑
i=1

I(−∞,zPDi)
(Yi)× EADi × LGDi, (3.4)

where zPDi
is the quantile of order PDi from the standard normal distribu-

tion and IA (x) denotes the indicator function, which is equal to 1 when
x ∈ A and 0 otherwise.

2. when L1, . . . , L10000 are computed, a simulated loss distribution is obtained and
the VaR is calculated. The probability level used for the VaR is c = 0.99.

In (3.4) all the debtors have the same EAD (which is assumed to be EADi = 1) and
PD. On the contrary, the LGD values are randomly drawn either from the empirical
distribution (that is used as a benchmark) of the available LGD values or from one
of the competing models.

Two different risky scenarios are also evaluated, according to the values of PD
and ρ shared by all the debtors. The Basel II Accord assumes a decreasing relation-
ship between PD and ρ. However, some studies (see Dietsch and Petey, 2004 and Lee
et al., 2009) show that this stylized decreasing relationship seems to have neither the-
oretical nor empirical support. For this reason, an increasing relationship between
PD and ρ is considered. Specifically, the two risky scenarios are: (1) PD = 0.05 and
ρ = 0.10; (2) PD = 0.10 and ρ = 0.20.

3.3.3.2 Computational details

The following R functions and packages are used to implement the semiparametric
and nonparametric competitors:
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• the function kdensity() included in the kdensity package (Moss and Tveten,
2018) for the H-BK;

• the function density() contained in the stats package for the GK;

• the function chen99Kernel() included in the bde package (Santafe et al., 2015)
for the C-BK.

A convenient R code has been implemented for the CZ-BK. Bandwidth values are:
σN−2/5 for H-BK and C-BK (Renault and Scaillet, 2004; Hagmann et al., 2005), where
σ is the empirical standard deviation; 0.9AN−1/5 for GK (Renault and Scaillet, 2004;
Silverman, 1986), where A = min (σ, interquantile range/1.34); estimated by likeli-
hood cross-validation for CZ-BK.

3.3.3.3 Results

In the following, for each of the 13 zero-and-one inflated mixture models, only those
with K selected by the BIC are considered. The VaR99(X) values for both data sets,
along with their percentage of variation with respect to the empirical VaR99(X), are
reported in Table 3.3.

The first result is that our models provide estimates that are very close to the em-
pirical ones, in both risky scenarios. Comparing them with the semiparameteric and
nonparameteric approaches, only the CZ-BK seems to behave comparably. This is
because the C-BK and H-BK, applied as in Renault and Scaillet (2004) and Hagmann
et al. (2005), respectively, are strongly affected by the structure of the data at the
boundaries (Gouriéroux and Monfort, 2006). The GK, instead, performs badly be-
cause it suffers from the boundary bias problem (Renault and Scaillet, 2004), i.e. the
allocation of probability masses outside the theoretical support of the LGD distribu-
tion.

Figure 3.4 shows an overall graphical comparison, for both data sets, between
the competing models. For simplicity’s sake, only the best overall zero-and-inflated
model selected by the BIC, and already depicted in Figures 3.2–3.3, are considered.
Specifically, they are superimposed to the competing semiparametric and nonpara-
metric densities in Figure 3.4(a) for Data set A, and Figure 3.4(b) for Data set B.
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FIGURE 3.4: Comparison between parametric, semiparametric, and
nonparametric densities for Data set A, in panel 3.4(a), and Data set B,
in panel 3.4(b). Among the parametric models, only the best selected

by the BIC is depicted.
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TABLE 3.3: Estimated VaR99(X), and difference (in percentage) with
respect to the empirical VaR99(X), for the best zero-and-one in-
flated mixture models according to the BIC and the semiparamet-

ric/nonparametric densities.

Model m K PD = 0.05, ρ = 0.10 PD = 0.10, ρ = 0.20
VaR99(X) Difference % VaR99(X) Difference %

Data set A
empirical 1905.79 4445.26

beta 2 3 1886.59 −1.00 4371.00 −1.67
GB1 4 2 1888.52 −0.91 4555.93 2.49
logit-logistic 2 3 1894.61 −0.59 4542.75 2.19

logit-Gumbel 2 3 1919.75 0.73 4471.65 0.59
logit-normal 2 3 1875.60 −1.58 4415.49 −0.67

logit-rev.Gumbel 2 3 1882.55 −1.22 4511.99 1.50

logit-exGaus 3 3 1908.00 0.12 4274.67 −3.84

logit-skew-normal 3 3 1935.73 1.57 4398.44 −1.05

logit-t 3 2 1892.31 −0.71 4356.53 −2.00
logit-Johnson Su 4 2 1843.19 −3.28 4384.85 −1.36
logit-sinh-arcsinh 4 2 1938.08 1.69 4373.87 −1.61

logit-skew-t 4 2 1946.75 2.15 4531.06 1.93
logit-EGB2 4 2 1904.94 −0.04 4383.17 −1.40
C-BK 2202.29 15.56 5376.00 20.94

H-BK 2184.86 14.64 5226.58 17.58

CZ-BK 1898.44 −0.39 4589.08 3.24

GK 1673.63 −12.18 4042.99 −9.05

Data set B
empirical 5225.72 12475.91

beta 2 4 5191.68 −0.65 12200.98 −2.20

GB1 4 3 5185.73 −0.77 12019.52 −3.66
logit-logistic 2 4 5040.42 −3.55 12295.00 −1.45

logit-Gumbel 2 4 5077.97 −2.83 12230.92 −1.96

logit-normal 2 4 5116.21 −2.10 12102.48 −3.00

logit-rev.Gumbel 2 4 5129.31 −1.84 12698.18 1.78

logit-exGaus 3 4 5158.77 −1.28 12245.80 −1.84

logit-skew-normal 3 4 5124.58 −1.94 12453.30 −0.18

logit-t 3 3 5168.55 −1.09 12045.76 −3.45
logit-Johnson Su 4 3 5206.82 −0.36 12121.95 −2.84
logit-sinh-arcsinh 4 4 5143.43 −1.57 12233.89 −1.94

logit-skew-t 4 3 5060.07 −3.17 12298.01 −1.43
logit-EGB2 4 4 5172.43 −1.02 12307.16 −1.35

C-BK 5026.75 −3.81 11780.16 −5.58

H-BK 5434.86 4.00 13101.11 5.01

CZ-BK 5142.40 −1.59 12097.50 −3.03

GK 4149.65 −20.59 9445.05 −24.29
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To sum up, the results of this simulation study remark the necessity of taking
into account the multilevel dimension of the LGD. Indeed, among the considered
semiparametric and nonparametric approaches, only the one based on a zero-and-
one inflated approach shows a competitive performance.

3.4 Conclusions

Modelling the loss given default is an important aspect, both from a regulatory and
a risk management point of view. Unfortunately, the distinctive characteristics of its
distribution makes this task difficult. In this work, zero-and-one inflated mixture
models, in which a three level multinomial model is considered for the membership
of the LGD values to the sets {0}, (0, 1) and {1}, and a finite mixture of distribu-
tions is used on (0, 1), are proposed. Differently from de Oliveira Jr et al. (2015),
where the number of mixture components is limited to two, this number is herein
left free and selected by the BIC. Moreover, the family of candidate distributions on
(0, 1) to be used as mixture components is extended by applying the inverse-logit
transformation to some classical distributions with support (−∞, ∞).

The real banking loans data applications suggested that limiting the number of
mixture components to one or two is too restrictive. In fact, according to the BIC,
quite often all the estimated models had at least 3 mixture components. This family
of models showed its effectiveness also when compared to other well-established
semiparametric and nonparametric approaches used in the credit risk literature. A
further main finding from the empirical analysis was that there is not a specific
model that works universally better than the others. So, almost all the proposed
zero-and-one inflated mixture models were reasonably good candidates for fitting
the LGD distribution, and the suggestion is to fit all of them and to choose the best
one a posteriori. Given the flexibility, interpretability, and tractability of these models,
they should be closer considered in credit risk modelling.
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Chapter 4

Dichotomous unimodal compound
models: Application to the
distribution of insurance losses

1

4.1 Introduction

It is pivotal in the insurance industry to find adequate models for loss data, in or-
der to correctly compute premiums, risk measures and the required reserves. This
necessity has been accelerated over the last ten years by a revised regulatory frame-
work such as Solvency II and Basel II/III (Brazauskas and Kleefeld, 2016). However,
modeling insurance losses is not an easy task because of the distinctive characteris-
tics of their distribution. As widely documented, the loss distribution is unimodal
hump-shaped, highly positively skewed and with a heavy right tail (Furman, 2008;
Ahn et al., 2012; Jeon and Kim, 2013; Abu Bakar et al., 2015).

Among the different approaches, the parametric one has been the most followed
in the actuarial literature. The flexibility of a parametric distribution is a desir-
able feature, but usually multi-parameter distributions can present several compu-
tational challenges. This prompted researchers to seek parsimonious yet sufficiently
flexible and interpretable models for insurance losses. Some authors argue that ob-
served losses can be described by a single probability distribution, such as the log-
normal (Bickerstaff, 1972; Burnecki et al., 2000), or the Pareto distribution (Packová
and Brebera, 2015; Burnecki et al., 2005). However, as pointed out by Cooray and
Ananda (2005), the Pareto distribution, due to the monotonically decreasing shape
of the density, does not provide a reasonable fit when the density of data is hump-
shaped. In these cases the log-normal distribution is typically used, but it fades
away to zero more quickly than the Pareto distribution. This implies that the log-
normal model fails to cover the higher losses. Some models have been proposed to
solve this issue in the actuarial literature (see, e.g., Cooray and Ananda, 2005; Pigeon
and Denuit, 2011; Abu Bakar et al., 2015; Punzo et al., 2018). Alternative models are
based on the skew-normal, skew-t or skew-logistic Adcock et al. (2015); Eling et al.
(2010); Kazemi and Noorizadeh (2015). However, these distributions defined on the
whole real line are not adequate to the positive support of the losses, because of the
boundary bias problem mentioned in Section 3.3.3.3.

In Section 4.2 a compound approach is proposed, accommodating all the pecu-
liarities of the loss distribution until here discussed. Starting from the scale mixture

1This work is based on the following publication: Tomarchio S.D., Punzo A. (2020). Dichotomous
unimodal compound models: application to the distribution of insurance losses. Journal of Applied
Statistics, 47(13–15), 2328–2353. The current manuscript is a combined effort of the authors. How-
ever, Tomarchio S.D. contributed in conceptualization, implementation, data elaboration and writing–
original draft preparation; Punzo A. contributed in conceptualization and supervision.
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model illustrated in Section 2.2, a 2-parameter unimodal hump-shaped distribution,
defined on a positive support and reparameterized with respect to the mode θ > 0
and to another parameter γ > 0 related to the distribution variability, is considered.
The γ parameter is then scaled by a dichotomous mixing variable that depends on
a vector of parameters ν governing the tails behavior. The resulting model can be
seen as a 2-component contaminated model (Punzo and McNicholas, 2017a; Punzo
et al., 2019; Mazza and Punzo, 2020) in which one component, often called “contam-
inant”, is an inflated version of the other, herein called “conditional”, and allows a
more flexible accommodation of the outlying observations. Additionally, since both
components have the same mode, the model guarantees unimodality in θ.

The proposed model can also allow for an automatic detection of atypical losses
via a simple procedure based on maximum a posteriori probabilities. Specifically,
and in the fashion of Aitkin and Wilson (1980), atypical losses are defined with re-
spect to the conditional distribution as points producing an overall distribution that
is too heavy-tailed in order to be modeled by the conditional distribution only. Fur-
thermore, such a detection rule allows the partition of the positive real line in two
regions (see, Duda et al., 2012; Ingrassia and Punzo, 2016) that could be used to iden-
tify different categories of losses. Indeed, their classification can be of interest for
insurance companies in tuning premiums and credit scores (Yeo et al., 2001; Kellison
and Brockett, 2003).

A drawback of the proposed model is that when extremely large losses need to
be accounted for, this makes also heavier its left tail, rising the probability of losses
close to zero. Nevertheless, this is a minor problem for at least two reasons: 1)
because of its distinctive characteristics, the loss distribution has a very short left
tail that could be considered negligible; 2) risk managers are mainly interested in a
good description of the right tail, because large losses, though rare in frequency, are
the ones that have the most impact on the financial stability of insurance companies
Berkowitz (2001).

Two examples of unimodal hump-shaped distributions are examined in Sec-
tion 4.2. Parameter estimation via the ML approach is discussed in Section 4.3, while
computational aspects are analyzed in Section 4.4. A sensitivity analysis is described
in Section 4.5, where the robustness of the ML estimator for the proposed models is
investigated. These models are then applied to two real insurance loss data sets,
along with other well-known competitors, in Section 4.6. Lastly, some conclusions
are commented in Section 4.7.

4.2 Methodology

4.2.1 Dichotomous unimodal compound models

Let X be a positive random loss. Requiring that the PDF of X is unimodal hump-
shaped and positively skewed, the scale mixture model introduced in Section 2.2
and proposed by Punzo et al. (2018) has PDF

fSM(x; θ, γ, ν) =
∫ ∞

0
f (x; θ, γ/w)h(w; ν)dw, x > 0, (4.1)

where f (x; θ, γ) is the PDF of a unimodal hump-shaped distribution, with mode
θ > 0 and variability parameter γ > 0. If W is degenerate in 1 (i.e. W ≡ 1), then
f (x; θ, γ) is obtained.
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An interesting special case of model (4.1), is obtained if

W =

{
1 with probability π

1/η with probability 1 − π,
(4.2)

where π ∈ (0, 1) and η > 1. The PMF of W in (4.2) is

h(w; π, η) = π
w−1/η
1−1/η (1 − π)

1−w
1−1/η , w ∈ {1, 1/η} .

Then, model (4.1) can be written as a contaminated model with PDF

g(x; θ, γ, η, π) = π f (x; θ, γ) + (1 − π) f (x; θ, ηγ), x > 0, (4.3)

in which the contaminant distribution f (x; θ, ηγ) is an inflated version of the condi-
tional one f (x; θ, γ). Consequently, atypical losses can be modeled in a better way.
As discussed in Chapter 2, Titterington et al. (1985) identifies such type of model as
an example of indirect application of finite mixture models.

As often happens in robust statistics half of the losses are assumed to be typical
(Punzo and McNicholas, 2016; Templ et al., 2019; Cerioli et al., 2019); this is the rea-
son why in this work π ∈ (0.5, 1). It is also important to notice that, because both
components have their maximum in θ, g (x) will have mode θ. Furthermore, consid-
ering that W ∈ {1, 1/η}, g (x) will have heavier tails with respect to f (x; θ, γ) (or at
the limit they are equal when π → 1− and η → 1+).

Differently from Punzo et al. (2018), the additional parameters π and η have an
interpretation of practical interest:

• π is the proportion of points from the conditional distribution; in other words,
it represents the proportion of typical losses.

• η is the degree of contamination and, since η > 1, it can be meant as the in-
crease in variability due to the points which do not come from the conditional
distribution, i.e. due to the presence of either an excessive number of losses
close to zero or to excessively large losses. Therefore, it is an inflation parame-
ter.

Another interesting characteristic of model (4.3) is that, once the parameters are
estimated (marked with a “hat”), it is possible to determine whether a generic loss x
is typical via the a posteriori probability

v
(

x; θ̂, γ̂, η̂, π̂
)
=

π̂ f
(

x; θ̂, γ̂
)

g
(
x; θ̂, γ̂, η̂, π̂

) . (4.4)

Specifically, x is considered typical if v(x; θ̂, γ̂, η̂, π̂) > 0.5, while it is considered
atypical otherwise. Such a decision rule can be equivalently defined in terms of the
discriminant functions

Dtypical

(
x; θ̂, γ̂, π̂

)
= π̂ f

(
x; θ̂, γ̂

)

and
Datypical

(
x; θ̂, γ̂, η̂, π̂

)
= (1 − π̂) f

(
x; θ̂, η̂γ̂

)
,

such that x is classified as typical if

Dtypical

(
x; θ̂, γ̂, π̂

)
> Datypical

(
x; θ̂, γ̂, η̂, π̂

)
, (4.5)
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and atypical otherwise (Duda et al., 2012; Ingrassia and Punzo, 2016). By solving (4.5)
as a function of x, the positive real line is partitioned in two regions of typical and
atypical data, delimited by the intersection points between the two discriminant
functions. Indeed, these points represent the situation of maximum assignment un-
certainty, where the probabilities to be a typical or an atypical point coincide. As
better shown in Section 4.6, the region of atypical data involves the two tails of the
model, whereas the area between them entails the typical region. This might be use-
ful to identify different categories of losses that could be classified as atypically low
(left tail), typical (center) and atypically high (right tail) with respect to the condi-
tional distribution.

Among the existing 2-parameter unimodal hump-shaped distributions that can
be used for f , log-normal and unimodal gamma are considered in the next para-
graphs. Furthermore, by using and extending the notation of Punzo et al. (2018), the
model in (4.3) will be referred as dichotomous unimodal compound model in the
following.

4.2.2 Specific cases

4.2.2.1 Mode-parametrized log-normal distribution

The PDF of a log-normal (LN) distribution with the standard parameterization is
given by

f (x; µ, σ) =
e
− (ln(x)−µ)2

2σ2

√
2πσx

, x > 0,

where µ ∈ and σ > 0 are the mean and the standard deviation of the variable’s
natural logarithm, respectively.

With the purpose of having a distribution that can be inserted in model (4.3), a
reparameterization is needed. Imposing

{
µ = ln (θ) + γ

σ2 = γ
⇒





θ = eµ−σ2

γ = σ2
,

the PDF becomes

f (x; θ, γ) =
e−

(ln(x)−ln(θ)−γ)2

2γ

√
2πγx

, x > 0, (4.6)

with θ > 0 and γ > 0.
The effect of varying the mode θ, keeping fixed γ, is shown in Figure 4.1(a). The

variance of a random variable with density function (4.6) is

(eγ − 1) θ2e3γ. (4.7)

For a fixed θ in (4.7), the variance rises if γ increases, confirming that γ governs the
variability of the distribution. This is illustrated in Figure 4.1(b).

When the LN distribution is chosen in (4.3), the LN dichotomous unimodal com-
pound (LN-DUC) model is obtained. An example of LN-DUC model is illustrated
in Figure 4.2. It is possible to see that the tails of the compound model (4.3) are
heavier than those of the simple conditional distribution.
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FIGURE 4.1: Mode-parameterized log-normal densities (4.6) in (a)
and (b).
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FIGURE 4.2: A LN-DUC compared to a LN distribution in (b) with a
specific zoom in the left (a) and right (c) tails, respectively.

Finally, when the LN-DUC model is considered, the intersection points between
the discriminant functions, delimiting the typical and the atypical regions, are

x1 = θe
−
√

γ(η−1)η[γ(η−1)−2 ln(1−α)+2 ln(α)+ln(η)]
η−1 ,

with x1 ∈ (0, θ), and

x2 = θe

√
γ(η−1)η[γ(η−1)−2 ln(1−α)+2 ln(α)+ln(η)]

η−1 ,

with x2 ∈ (θ, ∞).

4.2.2.2 Mode-parametrized unimodal gamma distribution

The PDF of a unimodal hump-shaped gamma (UG) distribution with the standard
parameterization is

f (x; α, β) =
xα−1e

− x
β

βαΓ (α)
, x > 0,

with shape parameter α > 1 and scale parameter β > 0. In order to have a distribu-
tion that can be inserted in model (4.3), a reparameterization is needed. Setting





α =
θ

γ
+ 1

β = γ

⇒
{

θ = β (α − 1)

γ = β
,
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the PDF becomes

f (x; θ, γ) =
x

θ
γ e−

x
γ

γ
θ
γ+1

Γ
(

θ
γ + 1

) , x > 0, (4.8)

with θ > 0 and γ > 0.
The effect of varying the mode θ, keeping fixed γ, is shown in Figure 4.3(a). The

variance of a random variable X with density function (4.8) is

γ2 + θγ. (4.9)

Fixing θ in (4.9), the variance increases if γ increases, confirming that γ governs the
variability of the distribution. The effect of varying γ, keeping fixed θ is shown in
Figure 4.3(b).
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FIGURE 4.3: Mode-parameterized unimodal gamma densities (4.8).

When the UG distribution is chosen in (4.3), the UG dichotomous unimodal com-
pound (UG-DUC) model is obtained. An example of UG-DUC model is presented
in Figure 4.4. Also in this case, it is possible to notice how the tails of the UG-DUC
model are heavier than those of the UG distribution.
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FIGURE 4.4: A UG-DUC model compared to a UG distribution in (b)
with a specific zoom in the left (a) and right (c) tails, respectively.

Lastly, when the UG-DUC model is considered, recovering a closed-form expres-
sion for the intersection points between the discriminant functions is analytically
cumbersome. However, they can be easily obtained numerically by using, for in-
stance, the uniroot.all() function of the rootSolve package Soetaert (2009).
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4.3 Parameter estimation

As mentioned in Section 2.3.2, the direct maximization approach is used to estimate
the parameters of model (4.3). This is because closed-form expressions are not avail-
able for most of the parameters involved in the M-step; for these parameters, nu-
merical methods, such as the BFGS algorithm, must be used. On this regard, the
optim() function, included in the stats package, is used for the maximization of the
log-likelihood function. The BFGS algorithm, is passed to this function via the argu-
ment method.

To start the optimization algorithm, the initial values for the parameters must
be specified. A system of two equations is solved to initialize θ and γ. The first
equation matches the empirical and the theoretical modes. The second equation is
model-dependent. In detail, it matches the empirical and the theoretical variances,
for the UG-DUC model, and the empirical and the theoretical means for the LN-
DUC model. As discussed in Section 4.2, when π → 1− and η → 1+, the conditional
distribution f (x; θ, γ) is obtained. For this reason, the starting values for π and η are
set to π0 = 0.99 and η0 = 1.01. From an operative point of view, thanks to the mono-
tonicity of the BFGS algorithm, this ensures that the log-likelihood of model (4.3)
will be always greater than, or equal to, the log-likelihood of the conditional dis-
tribution. This is an important consideration for choosing between the conditional
distribution and its corresponding dichotomous unimodal compound version, when
using likelihood-based model selection criteria.

All the parameters involved are subject to constraints, and to make the maxi-
mization of the log-likelihood unconstrained, as required by the BFGS algorithm,
a transformation/back-transformation approach has been implemented (Zucchini
et al., 2017; Bagnato and Punzo, 2019). In detail, the original constrained parame-
ters are mapped to unconstrained real values (marked with a “tilde”) and, after the
log-likelihood is maximized with respect to the unconstrained parameters, a back-
transformation is applied to obtain the constrained parameter estimates. The fol-
lowing transformations and back-transformations are used:

θ̃ = ln (θ) ↔ θ = exp
(
θ̃
)

, γ̃ = ln (γ) ↔ γ = exp (γ̃) ,

η̃ = ln (η − 1) ↔ η = exp (η̃) + 1,

π̃ = ln

(
φ

1 − φ

)
↔ π =

0.5 + exp (π̃)

1 + exp (π̃)
,

where φ = (π − 0.5) /0.5.

4.4 Computational and operative aspects

4.4.1 Model comparison

Several measures are used to compare the fitted models. Specifically, in Section 4.4.1.1
a likelihood-ratio (LR) test is discussed, whereas in Section 4.4.1.2 a specific analysis
on the right tail goodness of fit is conducted.

4.4.1.1 Global fit evaluation

A LR test is often used to compare the goodness of fit of two competing models, one
of which (the null model) is a special case of the other (the alternative model). In
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this work, when the null model is the UG distribution, then the alternative model
is the UG-DUC, while when the null model is the LN distribution, then the alterna-
tive model is the LN-DUC. Under the null hypothesis of no improvement, the test
statistic is

LR = 2
[
l(δ̂1)− l(δ̂0)

]
,

where δ̂1 and δ̂0 are the parameter vectors of the alternative and null models, respec-
tively, and l(δ̂1) and l(δ̂0) are their maximized log-likelihood values, respectively.
However, regularity conditions do not hold for mixture-based models, and the LR
statistic has not its usual asymptotic null distribution of a χ2 random variable with
m degrees of freedom, where m ∈ N+ is the difference between the number of es-
timated parameters of the alternative and the null models. To overcome this issue,
under the same null and alternative hypotheses, the following parametric double
bootstrap procedure is implemented (McLachlan and Peel, 2000; MacKinnon, 2009):

1. Fit the null and alternative models to the sample and compute the LR statistic,
say LRobs;

2. Generate B1 bootstrap samples, of size N, from the model fitted under the null;

3. For each of the B1 bootstrap samples, fit the null and the alternative models,
and compute the first-level bootstrap LR statistic, say LR∗

j , with j = 1, . . . , B1;

4. Calculate the first-level bootstrap p∗-value as 1
B1

∑
B1
j=1 I

(
LR∗

j > LRobs

)
;

5. For every B1 bootstrap sample, generate B2 bootstrap samples, of size N, from
the model fitted under the null to B1;

6. For each of the B2 bootstrap samples, fit the null and the alternative mod-
els, and compute the second-level bootstrap LR statistic, say LR∗∗

jl , with l =
1, . . . , B2;

7. For every B1 bootstrap sample, compute the second-level bootstrap

p∗∗j -value as 1
B2

∑
B2

l=1 I
(

LR∗∗
jl > LR∗

j

)
;

8. Calculate the double bootstrap p-value as the proportion of the p∗∗j that are

more extreme than p∗, i.e. p = 1
B1

∑
B1
j=1 I

(
p∗∗j < p∗

)
.

The double bootstrap procedure reduces the bias in the bootstrap estimates obtained
from the first level, but is computationally demanding, since 1 + B1 + (B1 × B2) test
statistics must be calculated. In this work, B1 = 500 and B2 = 250, yielding to a
total of 125501 estimates. The double bootstrap p-value is compared with the 0.05
significance level.

Besides comparing the dichotomous unimodal compound models with their cor-
responding conditional distributions, the BIC is used to make comparisons with
some benchmark distributions, making possible to draw up an overall goodness
fit ranking.

4.4.1.2 Right tail fit evaluation

A standard procedure in the insurance literature consists in comparing the empirical
value of some risk measures, with those estimated by the fitted models (see, e.g. El-
ing, 2012; Bernardi et al., 2012; Kazemi and Noorizadeh, 2015; Abu Bakar et al., 2015;
Punzo et al., 2018). This is useful for assessing the estimated tail behavior, since it is
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of particular interest for risk managers. Specifically, two well-known risk measures
are considered: the value at risk (VaR) and the tail-value at risk (TVaR). Being re-
lated to the quantiles of a distribution, the closer the estimated risk measures are to
the empirical ones, the better the fitting on the tail is.

The VaR has been already defined in Section 3.3.3. The TVaR quantifies the ex-
pected value of the loss given that an event outside a given probability level has
occurred. It is defined as

TVaRc(X) = E [X|X ≥ VaRc(X)] , 0 ≤ c ≤ 1.

If the underlying distribution for X is continuous, then the TVaR is the same as the
expected shortfall. An alternative formulation, that will be useful in the following,
expresses the TVaR in terms of the VaR as

TVaRc(X) =
1

1 − c

∫ 1

c
VaRu(X)du. (4.10)

In this work, the probability levels used for both risk measures are c = 0.95 and
c = 0.99.

To evaluate the goodness of the VaR and TVaR estimates produced by the com-
peting models, two backtesting procedures are also implemented. For the VaR, a
binomial test examines, under the null hypothesis, if the proportion of violations ρ̂

obtained using the estimates of the VaR (ρ̂ = y/n, where y is the number of losses
exceeding the estimated VaR and N is the sample size), is compatible with the one
expected ρ = (1 − c) Kupiec (1995). The test is performed via the VaRTest() function
of the rugarch package Ghalanos (2015).

For the TVaR, the backtest suggested by Emmer et al. (2015) is implemented.
Specifically, it relies on a simple approximation of the TVaR representation in (4.10).
Given a TVaRc(X), they suggest to compute and backtest the VaR at the following
four levels: VaRc(X), VaR0.75c+0.25(X), VaR0.5c+0.5(X) and VaR0.25c+0.75(X). If all the
four backtests are not rejected, then the estimate of TVaR can be considered accept-
able. As a consequence, the minimum among the four p-values is enough to decide
whether the TVaR estimate has to be discarded; such a minimum will be reported in
the analyses of Section 4.6.

In this work, both backtesting procedures are compared with the 0.05 signifi-
cance level.

4.4.2 Competing models and approaches

The proposed models are compared to several standard distributions used in the
actuarial literature, and whose parameters are estimated by using the ML approach.
Specifically, they are listed in Table 4.1, along with the R functions and packages
used to fit them to the data. About the UG and LN distributions, a convenient code
is implemented to find the ML estimates of the parameters of these distributions, as
done for the proposed models. Indeed, the θ and γ parameters are estimated via the
optim() function, by using the same strategy explained in Section 4.3.

In addition to the ML approach, two further methodologies are considered: the
t-score and the the PORT-MOp. Specific details about them are provided in Sec-
tion 4.4.2.1 and Section 4.4.2.2, respectively.
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TABLE 4.1: R functions and packages used for the ML-based com-
petitors.

Distribution Function Package

Exponential fitdistr() MASS (Venables and Ripley, 2002)
Weibull fitdist() fitdistrplus (Delignette-Muller and Dutang, 2015)
Normal fitdist() fitdistrplus

Logistic fitdist() fitdistrplus

Skew-logistic glogisfit() glogis (Zeileis and Windberger, 2014)
Skew-Normal snormFit() fGarch (Wuertz and Chalabi, 2016)
Skew-t sstdFit() fGarch

Hyperbolic hyperbFit() HyperbolicDist (Scott, 2009)

4.4.2.1 The t-score approach

The t-score moment estimator has been proposed and discussed by Fabián (2006,
2007, 2010). In the insurance literature this estimator has been used by Stehlík et al.
(2008, 2010). Specifically, the authors discussed the t-score moment estimator for
the Pareto distribution, both in its “American” and “European” parametrization.
The main difference between these two parametrizations is that the former starts in
zero, whereas the latter begins in a threshold that either should be carefully esti-
mated (Stehlík et al., 2008, 2010) or is assumed to be known (Rytgaard, 1990). Both
versions have been fitted in the two real data applications, but the risk measures
obtained with the “European” parametrization were very far from their empiri-
cal counterparts, suggesting that this parametrization is not adequate for modeling
these data. On the contrary, the estimated risk measures obtained with the “Ameri-
can” parametrization are close to the empirical values, and for this reason only this
version of the Pareto distribution is considered hereafter. Specifically, it has PDF

αλα/ (x + λ)α+1, with α > 0 and λ > 0. According to Fabián (2007), its parameters
are estimated by solving the following system of two equations:

n

∑
i=1

αxi − λ

xi + λ
= 0 (4.11)

1

n

n

∑
i=1

(
αxi − λ

xi + λ

)2

=
α

α + 2
(4.12)

Therefore, by using a generalized method of the moments approach, (4.11) and (4.12)
match the theoretical t-score moments to their empirical counterparts.

4.4.2.2 The PORT-MOp approach

The peaks over a random threshold-mean of order p (PORT-MOp) estimator has
been recently introduced by Gomes et al. (2016) and used for VaR estimation by
Figueiredo et al. (2017). Specifically, given a sample of ascending order statistics
x1:N ≤ · · · ≤ xN:N , the PORT-MOpVaR is

PORT-MOpVaR (k; p, s) = (xn−k:n − xns :n)

(
k

nc

)Hk(p,s)

+ xns :n,
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where Ns := ⌊Ns⌋+ 1, with ⌊·⌋ denoting the floor function, Hk (p, s) is the PORT-MOp

estimator, c is the probability level for compute the VaR and {k, p, s} are the tuning
parameters to be estimated. Relatedly, the tuning parameters are estimated by com-
bining the bootstrap scheme in Longin (2016) with the double bootstrap algorithm
discussed by Brilhante et al. (2013). This results in a reasonably sophisticated and
time-consuming procedure. Due to the specificity of the underlying concepts and
the length of the entire procedure, its detailed explanation is here avoided. In the
following, the references and the execution order of the steps are mentioned, with a
comment only on those where an arbitrary choice is required:

1. Steps 1 to 2.1 of Longin (2016), page 130;

(a) In step 1, we set Q to be the sequence of values from 0 to 1, with incre-
ments of 0.1.

2. Steps 1 to 16 of Brilhante et al. (2013), pages 527–528;

(a) In step 5, we set b to be the sequence of values from 0.925 to 0.995, with
increments of 0.01.

3. Steps 3 to 5 of Longin (2016), page 130.

4.5 Simulation study

The aim of this section is to investigate how atypical observations affect the ML es-
timator for the θ and γ parameters of the UG and LN distributions, and how its
robustness is increased when the corresponding UG-DUC and LN-DUC models are
considered. A similar simulation study can be found in Stehlík et al. (2010), where
the authors show how the ML estimator for the shape parameter of the Pareto dis-
tribution is affected when atypical observations are added to the data. For similar
purposes, two sensitivity analyses are conducted, that differ depending on how the
data are contaminated. The first analysis in Section 4.5.1 considers the following
scenario:

1. generate πn typical observations from a UG distribution;

2. generate (1 − π)n atypical observations from the same UG distribution, with
the only difference that the γ-parameter is multiplied by an inflation factor η;

3. fit both the UG and UG-DUC to the merged data.

The same procedure is repeated by changing the UG with the LN distribution and
the UG-DUC model with the LN-DUC. Therefore, in the first analysis, typical and
atypical points come from a distribution of the same type, as assumed in model (4.3).
Furthermore, only the UG and the LN distribution misspecify the data.

The second analysis in Section 4.5.2 considers the following scenario:

1. generate πn typical observations from a UG distribution;

2. generate (1− π)n atypical observations from a LN distribution, with the same
θ∗ = θ of the UG distribution and with variability parameter γ∗;

3. fit the UG and UG-DUC models to the merged data.
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Also in this case, the procedure is repeated for the complementary situation where,
in steps 1 and 3 the UG and UG-DUC models are substituted by the LN and LN-
DUC models, respectively, and the UG replaces the LN distribution in step 2. In this
second study, the atypical points come from a distribution of a different type with
respect to the one generating the typical points. Therefore, the estimation perfor-
mances are evaluated in a context of misspecification also for model (4.3).

In each analysis, the sample size is N = 1000, and three different proportions of
typical points π are combined with three levels of contamination, governed by η in
the first analysis and by the variability parameter γ∗ of the contaminant distribution
in the second one. This yields a total of 9 different contamination cases. For each of
them, 10000 replications are considered; then, a total of 2 × 10000 × 9 × 2 = 360000
samples are generated. The mean and the standard deviation (in brackets) of the es-
timated θ and γ, over these replications, are reported. For the sake of simplicity, each
simulation scenario is identified according to the data generating process (DGP), la-
beled by matching with a “+” the name of the distributions generating the typical
and the atypical observations, respectively.

4.5.1 Sensitivity analysis I

The parameters used for the UG+UG DGP are θ = 1 and γ = 1, while those for the
LN+LN DGP are θ = 1 and γ = 0.5. The average estimated parameters, along with
their standard deviation, under each scenario, are shown in Table 4.2. Specifically,
each subtable displays the ML estimates of θ and γ obtained by fitting the UG and
UG-DUC models for the UG+UG DGP, and by the LN and LN-DUC models for the
LN+LN DGP.

It is easy to see that, for a fixed π, the more η increases, the more the differences
between the estimates produced by the competing models become. The same occurs
keeping fixed η and decreasing π. Furthermore, in presence of atypical observations,
the estimates produced by the UG-DUC and LN-DUC models are always closer to
the true values, indicating the increased robustness of the ML estimator.

Since the VaR and the TVaR are based on quantiles, it is interesting to investigate
how the differences between the parameter estimates produced by the competing
models have an effect on the corresponding quantile estimates. For illustrative pur-
poses, only the (π, η) combinations that are highlighted with a gray background
in Table 4.2 are considered. They represent situations with growing levels of con-
tamination in the data, within each DGP. Figure 4.5 illustrates the quantile values of
the conditional distributions and their dichotomous unimodal compound versions,
obtained by using the average estimated parameters in the diagonals of Table 4.2,
against the true quantiles of the corresponding DGPs, for growing probability lev-
els. It is worth to notice that, within each DGP and for low levels of contamina-
tion, the estimated quantiles of the competing models are close enough to true ones.
However, when the contamination in the data starts to increase, the estimated quan-
tiles of the conditional distributions start to diverge from the true ones, whereas the
corresponding dichotomous compound models fit always better.

4.5.2 Sensitivity analysis II

The parameters used for the UG+LN DGP are θ = θ∗ = 1 and γ = 1, whereas those
for the LN+UG DGP are θ = θ∗ = 1 and γ = 0.5. The average estimated parameters,
along with their standard deviation, under each scenario, are shown in Table 4.3.
Also in this case, each subtable displays the ML estimates of θ and γ obtained by
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TABLE 4.2: Average θ̂ and γ̂ values, with standard deviations in
brackets, estimated over 10000 replications by the UG and UG-DUC
models for the UG+UG DGP, and by the LN and LN-DUC models for

the LN+LN DGP.

UG+UG DGP LN+LN DGP

η η

2.5 3.75 5 1.5 2 2.5

UG LN

π

0.9
θ̂ = 0.97

(0.05)
θ̂ = 0.91

(0.06)
θ̂ = 0.83

(0.07)
θ̂ = 0.99

(0.03)
θ̂ = 0.97

(0.03)
θ̂ = 0.95

(0.04)

γ̂ = 1.18
(0.06)

γ̂ = 1.37
(0.08)

γ̂ = 1.57
(0.11)

γ̂ = 0.53
(0.02)

γ̂ = 0.57
(0.03)

γ̂ = 0.62
(0.03)

0.8
θ̂ = 0.94

(0.06)
θ̂ = 0.83

(0.07)
θ̂ = 0.67

(0.09)
θ̂ = 0.99

(0.03)
θ̂ = 0.96

(0.04)
θ̂ = 0.92

(0.04)

γ̂ = 1.36
(0.07)

γ̂ = 1.72
(0.10)

γ̂ = 2.13
(0.14)

γ̂ = 0.56
(0.03)

γ̂ = 0.64
(0.03)

γ̂ = 0.74
(0.04)

0.7
θ̂ = 0.92

(0.06)
θ̂ = 0.76

(0.08)
θ̂ = 0.54

(0.10)
θ̂ = 0.98

(0.03)
θ̂ = 0.95

(0.04)
θ̂ = 0.89

(0.04)

γ̂ = 1.53
(0.08)

γ̂ = 2.06
(0.12)

γ̂ = 2.66
(0.17)

γ̂ = 0.59
(0.03)

γ̂ = 0.70
(0.03)

γ̂ = 0.84
(0.04)

UG-DUC LN-DUC

π

0.9
θ̂ = 1.00

(0.05)
θ̂ = 1.00

(0.05)
θ̂ = 1.00

(0.05)
θ̂ = 1.00

(0.03)
θ̂ = 1.00

(0.04)
θ̂ = 1.00

(0.03)

γ̂ = 0.95
(0.13)

γ̂ = 0.98
(0.10)

γ̂ = 0.99
(0.08)

γ̂ = 0.48
(0.06)

γ̂ = 0.48
(0.06)

γ̂ = 0.49
(0.05)

0.8
θ̂ = 1.00

(0.05)
θ̂ = 1.00

(0.06)
θ̂ = 1.00

(0.06)
θ̂ = 1.00

(0.03)
θ̂ = 1.00

(0.04)
θ̂ = 1.00

(0.04)

γ̂ = 0.96
(0.14)

γ̂ = 0.99
(0.11)

γ̂ = 0.99
(0.09)

γ̂ = 0.49
(0.06)

γ̂ = 0.48
(0.06)

γ̂ = 0.49
(0.05)

0.7
θ̂ = 1.00

(0.06)
θ̂ = 1.00

(0.06)
θ̂ = 1.00

(0.06)
θ̂ = 1.00

(0.04)
θ̂ = 1.00

(0.04)
θ̂ = 1.00

(0.04)

γ̂ = 0.98
(0.16)

γ̂ = 0.99
(0.13)

γ̂ = 0.99
(0.12)

γ̂ = 0.50
(0.07)

γ̂ = 0.49
(0.07)

γ̂ = 0.49
(0.06)

(a) UG+UG DGP (b) LN+LN DGP

FIGURE 4.5: Quantile values from the conditional distributions, their
dichotomous unimodal compound versions, and the true DGPs.

fitting the UG and UG-DUC models for the UG+LN DGP, and by the LN and LN-
DUC models for the LN+UG DGP.

Similar conclusions to those previously discussed can be drawn, in terms of dif-
ferences between the estimates produced by the competing models. Even in pres-
ence of a misspecification effect, the ML estimation carried out by the UG-DUC and
LN-DUC models is more robust than the one obtained by fitting the corresponding
conditional distributions.

Again, a comparison in terms of quantile values, for the (π, η) combinations that
are highlighted with a gray background in Table 4.3, is illustrated in Figure 4.6 for
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TABLE 4.3: Average θ̂ and γ̂ values, with standard deviations in
brackets, estimated over 10000 replications by the UG and UG-DUC
models for the UG+LN DGP, and by the LN and LN-DUC models for

the LN+UG DGP.

UG+LN DGP LN+UG DGP

η η

0.75 1 1.25 5 10 15

UG LN

π

0.9
θ̂ = 0.98

(0.05)
θ̂ = 0.90

(0.07)
θ̂ = 0.73

(0.13)
θ̂ = 0.95

(0.04)
θ̂ = 0.88

(0.04)
θ̂ = 0.82

(0.04)

γ̂ = 1.12
(0.07)

γ̂ = 1.35
(0.12)

γ̂ = 1.72
(0.22)

γ̂ = 0.64
(0.03)

γ̂ = 0.76
(0.04)

γ̂ = 0.87
(0.04)

0.8
θ̂ = 0.96

(0.06)
θ̂ = 0.80

(0.09)
θ̂ = 0.46

(0.17)
θ̂ = 0.91

(0.04)
θ̂ = 0.81

(0.04)
θ̂ = 0.72

(0.04)

γ̂ = 1.25
(0.08)

γ̂ = 1.69
(0.16)

γ̂ = 2.44
(0.31)

γ̂ = 0.76
(0.04)

γ̂ = 0.99
(0.04)

γ̂ = 1.18
(0.05)

0.7
θ̂ = 0.95

(0.06)
θ̂ = 0.71

(0.11)
θ̂ = 0.22

(0.17)
θ̂ = 0.88

(0.05)
θ̂ = 0.77

(0.04)
θ̂ = 0.67

(0.04)

γ̂ = 1.37
(0.10)

γ̂ = 2.03
(0.19)

γ̂ = 3.13
(0.33)

γ̂ = 0.87
(0.04)

γ̂ = 1.18
(0.05)

γ̂ = 1.43
(0.06)

UG-DUC LN-DUC

π

0.9
θ̂ = 1.02

(0.05)
θ̂ = 1.02

(0.05)
θ̂ = 1.01

(0.05)
θ̂ = 0.99

(0.04)
θ̂ = 1.00

(0.04)
θ̂ = 1.00

(0.03)

γ̂ = 0.95
(0.10)

γ̂ = 1.01
(0.08)

γ̂ = 1.04
(0.07)

γ̂ = 0.44
(0.06)

γ̂ = 0.44
(0.04)

γ̂ = 0.45
(0.03)

0.8
θ̂ = 1.04

(0.05)
θ̂ = 1.03

(0.05)
θ̂ = 0.91

(0.24)
θ̂ = 0.98

(0.04)
θ̂ = 1.00

(0.04)
θ̂ = 1.00

(0.04)

γ̂ = 0.96
(0.11)

γ̂ = 1.03
(0.09)

γ̂ = 1.08
(0.10)

γ̂ = 0.45
(0.07)

γ̂ = 0.41
(0.04)

γ̂ = 0.41
(0.03)

0.7
θ̂ = 1.06

(0.05)
θ̂ = 1.05

(0.05)
θ̂ = 1.03

(0.09)
θ̂ = 0.96

(0.05)
θ̂ = 1.00

(0.04)
θ̂ = 1.01

(0.04)

γ̂ = 0.96
(0.11)

γ̂ = 1.05
(0.10)

γ̂ = 1.13
(0.14)

γ̂ = 0.55
(0.11)

γ̂ = 0.41
(0.04)

γ̂ = 0.38
(0.03)

growing probability values. With the exclusion of the combination (π = 0.9, γ∗ =
0.75) for the UG+LN DGP case, representing a situation of low contamination and
where the right tail of the UG-DUC model is heavier than necessary, in all the other
situations the dichotomous unimodal compound models provide a better fit then
their conditional counterparts. This is due to their greater flexibility, that allows the
accommodation of the contaminating points in a better way, regardless of whether
they are generated by a distribution of the same type or not.

(a) UG+LN DGP (b) LN+UG DGP

FIGURE 4.6: Quantile values from the conditional distributions, their
dichotomous unimodal compound versions, and the true DGPs.
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4.6 Real data applications

In this section, the dichotomous unimodal compound models, along with the nested
conditional distributions, are applied to two real insurance loss data sets.

4.6.1 Data description

The first data set (labeled Frebiloss hereafter) consists of N = 2387 French business
interruption losses (in French francs; FF), over the period 1985 to 2000, and it is con-
tained in the CASdatasets package (Dutang and Charpentier, 2016). For each obser-
vation, the total cost in FF is considered. For scaling purposes, payments amount is
divided by 1000; thus, thousand of French francs (TFF), instead of FF, are considered.

The second data set (called Swefire hereafter) contains 218 Swedish fire losses
(in millions of Swedish krona; SEK) collected in 1982, and it can be extracted from
Embrechts and Schmidli (1994). The claims equal to zero are removed from the
analysis, implying a final number of N = 215 observations.

The histograms of both data sets are displayed in Figure 4.7, whereas their sum-
mary statistics are reported in Table 4.4. As it is possible to see, both data sets share
the classic characteristics of the insurance losses described in Section 4.1. Indeed, the
mean is considerably higher than the median and the third quartile, suggesting ex-
treme right skewness and a heavy right tail, as also confirmed by some large losses
that lay quite far from the bulk of the data.
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FIGURE 4.7: Histograms of the (a) Frebiloss and (b) Swefire data sets.

TABLE 4.4: Summary statistics of the Frebiloss and Swefire data sets.

Frebiloss Swefire

Min 100.29 0.09
1st Quart. 304.90 0.63
Median 762.25 1.00
Mean 2027.74 2.31
3rd Quart. 1829.39 2.00
Max 168654.35 34.00
St. Dev 5938.06 4.18
Skewness 17.62 4.81
Kurtosis 438.89 27.48
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4.6.2 Global results

The comparison between the likelihood-estimated models is presented in Table 4.5,
for both data sets. In detail, the l(δ̂) and the BIC values, with corresponding rank-
ing, are provided. In both data sets, the LN-DUC model is the best, while UG-
DUC model is ranked third and second, respectively. Importantly, they provide an
improvement compared to their conditional distributions, since the p-values of the
double bootstrap LR test are 0.00. As highlighted by Kazemi and Noorizadeh (2015),
the skew-logistic seems to work slightly better than the skew-normal, and the nor-
mal distribution is the worst in any case. Globally, the dichotomous unimodal com-
pound models appear to be very competitive.

TABLE 4.5: Values of l(δ̂) and BIC for the competing models. A rank-
ing is also provided.

Model Frebiloss Swefire

l(δ̂) BIC rank l(δ̂) BIC rank

UG-DUC -19983.29 39997.69 3 -328.93 679.34 2
LN-DUC -19842.98 39717.08 1 -320.30 662.08 1

UG -20563.23 41142.01 8 -395.35 801.45 8
LN -19893.29 39802.14 2 -345.68 702.10 4
Exponential -20563.23 41134.23 7 -395.35 796.08 7
Weibull -20254.73 40525.02 5 -389.98 790.70 6
Normal -24127.48 48270.51 12 -612.16 1235.07 12
Logistic -22261.65 44538.85 10 -521.02 1052.78 11
Skew-logistic -21270.53 43464.40 9 -462.27 940.66 9
Skew-normal -22592.65 45208.64 11 -490.06 996.24 10
Skew-t -20039.17 40109.44 4 -339.10 699.69 3
Hyperbolic -20445.57 40922.26 6 -377.72 776.93 5

It may be interesting to notice that the estimated value of the degree of contam-
ination parameter, in the Frebiloss data set, is η̂ = 2.64 for the LN-DUC model and
η̂ = 11.36 for the UG-DUC one. Similarly, in the Swefire data set, it is η̂ = 8.73 for
the LN-DUC model and η̂ = 27.95 for the UG-DUC one. This means that in both
data sets there are atypical values that contaminate the conditional distribution, but
a higher level of contamination is detected in the Swefire data set.

4.6.3 Risk measures analysis

4.6.3.1 Frebiloss data set

Table 4.6 reports the empirical and the estimated VaR values of all the competing
models and approaches. Again, a ranking is introduced to simplify the reading, but
this time it is based on the absolute value of the percentage of variation with respect
to the empirical VaR; the lower the difference, the better the position in the ranking.
The corresponding backtesting results are also provided in the last two columns.

When c = 0.95, the LN-DUC model is ranked first, extremely close to the empir-
ical value. On the contrary, some models seem to provide better VaR values than the
UG-DUC model. However, if the corresponding backtesting p-values are examined,
only the LN-DUC model does not lead to the rejection of the null hypothesis.
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In contrast with the previous case, when the c = 0.99, the best model is the UG-
DUC, providing a good estimate of the VaR. The LN-DUC model falls in sixth po-
sition, exceeding the empirical value. Even if the proposed models have acceptable
p-values, four benchmark models have good values too, among which there are the
Pareto t-estimator and the PORT-MOp (with estimated tuning parameters k = 47,
p = 0.19 and s = 0.2).

TABLE 4.6: Frebiloss: VaR95(X) and VaR99(X) with corresponding
ranking and backtesting p-values.

Model Value at Risk p-value
VaR95(X) Rank VaR99(X) Rank VaR95(X) VaR99(X)

Empirical 7675.81 18293.88

UG-DUC 9454.65 8 18931.39 1 0.00 0.55
LN-DUC 7787.84 1 21810.33 6 0.90 0.05

UG 6074.52 7 9338.02 11 0.00 0.00
LN 6189.57 5 14304.85 7 0.00 0.00

Exponential 6074.55 6 9338.07 10 0.00 0.00
Weibull 6893.35 2 12358.04 9 0.01 0.00
Normal 11792.92 13 15838.83 4 0.00 0.16
Logistic 5097.50 11 7257.37 13 0.00 0.00

Skew-Logistic 4930.70 12 7093.86 14 0.00 0.00
Skew-Normal 12385.83 14 16246.27 3 0.00 0.31

Skew-t 5809.08 10 12804.28 8 0.00 0.00
Hyperbolic 5879.79 9 8986.22 12 0.00 0.00

Pareto(t-score) 6327.10 4 15284.05 5 0.00 0.08
PORT-MOp 8772.87 3 19041.06 2 0.03 0.55

Table 4.7 shows the empirical and estimated values of the TVaR along with the
corresponding backtesting results. The rankings are computed as in Table 4.6. Ac-
cording to the backtesting procedure, when c = 0.95, only the LN-DUC provides a
p-value that does not lead to the rejection of the null hypothesis. On the contrary,
when c = 0.99, both the LN-DUC and UG-DUC model pass the backtest, along with
the Pareto t-estimator. Overall, the dichotomous unimodal compound models seem
to suggest a good description of the tail behavior of the empirical distribution.

4.6.3.2 Swefire data set

Table 4.8 reports the empirical VaR as well as the VaR for all the considered models
and approaches, along with the corresponding backtesting results. When c = 0.95,
about the dichotomous unimodal compound models, only the LN-DUC performs
well, even if by the analysis of the p-values, all models except the skew-t seem able to
produce acceptable estimates of the empirical VaR (the estimated tuning parameters
for the PORT-MOp are k = 11, p = 4.24 and s = 0.9). It is possible to appreciate
the real difference between the dichotomous unimodal compound models and the
benchmark ones, moving deeper in the right tail of the empirical distribution. In fact,
when c = 0.99 the UG-DUC and LN-DUC models are the best, as also confirmed by
the p-values of the backtest.

Table 4.9 reports the empirical and estimated values of the TVaR, with always the
same ranking mechanism. Also in this case, the LN-DUC is the best model, as also
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TABLE 4.7: Frebiloss: TVaR95(X) and TVaR99(X) with corresponding
ranking and backtesting p-values.

Model Tail Value at Risk min p-value
VaR95(X) Rank VaR99(X) Rank VaR95(X) VaR99(X)

Empirical 17062.59 38135.05

UG-DUC 15341.69 2 24789.96 3 0.00 0.07
LN-DUC 17872.90 1 40499.24 1 0.09 0.05

UG 8102.25 9 11365.75 9 0.00 0.00
LN 11822.42 6 23777.22 5 0.00 0.00

Exponential 8102.29 10 11365.80 10 0.00 0.00
Weibull 10335.17 8 16253.92 8 0.00 0.00
Normal 14273.68 4 17850.61 7 0.00 0.00
Logistic 6393.65 12 8508.83 12 0.00 0.00

Skew-logistic 6274.92 13 8422.52 13 0.00 0.00
Skew-normal 14754.25 3 18227.81 6 0.00 0.00

Skew-t 11297.15 7 24449.78 4 0.00 0.00
Hyperbolic 7809.57 11 10914.98 11 0.00 0.00

Pareto(t-score) 13176.71 5 29258.68 2 0.00 0.05

TABLE 4.8: Swefire: VaR95(X) and VaR99(X) with corresponding
ranking and backtesting p-values.

Model Value at Risk p-value
VaR95(X) Rank VaR99(X) Rank VaR95(X) VaR99(X)

Empirical 7.84 19.93

UG-DUC 9.45 10 16.47 2 0.80 0.10
LN-DUC 8.43 3 19.40 1 0.94 0.58

UG 6.93 6 10.65 9 0.50 0.00
LN 6.14 11 11.90 7 0.50 0.01

Exponential 6.93 5 10.65 8 0.50 0.00
Weibull 7.43 1 12.20 5 0.94 0.01
Normal 9.18 7 12.02 6 0.81 0.01
Logistic 5.38 13 7.54 14 0.12 0.00

Skew-logistic 5.44 12 7.78 13 0.12 0.00
Skew-normal 9.36 8 12.27 4 0.81 0.01

Skew-t 4.33 14 9.33 11 0.00 0.00
Hyperbolic 6.26 9 9.44 10 0.50 0.00

Pareto(t-score) 7.01 4 13.62 3 0.70 0.03
PORT-MOp 7.37 2 8.60 12 0.94 0.00

confirmed by the backtest results. In an opposite way with respect to the previous
application, the UG-DUC seems to provide a good estimate of the TVaR only when
c = 0.95. Overall, the TVaR values from both LN-DUC and UG-DUC models are the
only ones being not rejected for at least one probability level c.
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TABLE 4.9: Swefire: TVaR95(X) and TVaR99(X) with corresponding
ranking and backtesting p-values.

Model Tail Value at Risk min p-value
TVaR95(X) Rank TVaR99(X) Rank TVaR95(X) TVaR99(X)

Empirical 17.39 28.37

UG-DUC 13.81 2 20.77 2 0.20 0.03
LN-DUC 15.90 1 31.23 1 0.20 0.30

UG 9.25 9 12.97 10 0.00 0.00
LN 9.97 7 17.45 5 0.01 0.00

Exponential 9.25 8 12.97 9 0.00 0.00
Weibull 10.41 6 15.34 6 0.01 0.00
Normal 10.92 5 13.43 8 0.03 0.00
Logistic 6.73 13 8.86 13 0.00 0.00

Skew-logistic 6.90 12 9.22 12 0.00 0.00
Skew-normal 11.14 4 13.76 7 0.03 0.00

Skew-t 8.35 10 18.20 4 0.00 0.00
Hyperbolic 8.23 11 11.41 11 0.00 0.00

Pareto(t-score) 11.46 3 20.27 3 0.03 0.01

4.6.4 Comments on typical and atypical losses

Finally, Figure 4.8 illustrates the estimated probabilities to be typical or atypical
points, as defined in (4.4), according to the UG-DUC and LN-DUC models for the
Frebiloss data set. The same is done in Figure 4.9 for the Swefire data set. For a better
graphical visualization, the attention is focused to the (0, 7000] and (0, 5] intervals for
the two data sets, respectively. As discussed in Section 4.2.1, these probabilities co-
incide in the intersection points between the discriminant functions, delimiting the
typical and the atypical regions (marked with the vertical dashed lines in Figure 4.8
and Figure 4.9).

(a) UG-DUC (b) LN-DUC

FIGURE 4.8: Frebiloss: estimated probabilities to be typical or atypical
points by the UG-DUC (a) and LN-DUC models (b). The correspond-
ing typical and atypical regions are separated by the vertical dashed

lines.

In detail, when the Frebiloss data set is considered, the intersection points are
in x1 = 0.12 and x2 = 2531.82 for the UG-DUC model and in x1 = 52.21 and
x2 = 1057.17 for the LN-DUC model. Since x1 is lower than the minimum observed
(100.29; see Table 4.4) for both models, none of the points is considered atypically
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(a) UG-DUC (b) LN-DUC

FIGURE 4.9: Swefire: estimated probabilities to be typical or atypical
points by the UG-DUC (a) and LN-DUC models (b). The correspond-
ing typical and atypical regions are separated by the vertical dashed

lines.

low. However, a different classification of typical and atypically high data is pro-
duced in the interval (1057.17, 2531.82), containing the 21.49% of the data. When a
classification of the data is of interest, a possible way to choose among the two mod-
els could be to rely on the model producing the best overall fitting according to the
information criteria, i.e. in this case the LN-DUC one. If it is of particular interest
the set of atypically high data, another option could be to choose the classification
produced by the model with the best fit in the right tail. Again the LN-DUC model
seems to be the best option even if, when VaR99(X) is selected, it performs worse
than the UG-DUC one.

When the Swefire data set is analyzed, the intersection points delimiting the typ-
ical and the atypical regions are in x1 = 0.19 and x2 = 1.73 for the UG-DUC model
and in x1 = 0.33 and x2 = 1.31 for the LN-DUC one. The differences between the
partitions produced by the two models concern the interval (0.19, 0.33), containing
the 1.39% of the data, and the interval (1.31, 1.73), containing the 10.23% of the data.
Therefore, they are more similar to each other than they are in the Frebiloss data set.
Here, both from a global and a right tail goodness of fit point of view, the best model
is the LN-DUC one, and then its partition of the data should be preferred.

In any case, regarding of the data set considered, it is possible to see both models
agree always more in defining the losses as atypically high, as their values become
larger and larger.

4.7 Conclusions

Several models have been suggested in the actuarial literature for insurance loss
data. However, losses distributions show characteristics that are hardly compatible
with the choice of fitting a single parametric distribution, calling for more flexible
models.

In this work, a general dichotomous unimodal compound model has been in-
troduced by compounding a unimodal hump-shaped conditional distribution on a
positive support with a convenient mixing dichotomous distribution. As a result,
the density of the proposed model is: defined on positive support, unimodal hump-
shaped, positively skewed, and with tails heavier than those of the conditional dis-
tribution. For illustrative purposes, two hump-shaped distributions have been con-
sidered, i.e. the log-normal and the unimodal gamma. The resulting models have
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been firstly analyzed in a sensitivity study, and therefore fitted to two real data sets,
along with several benchmark competitors (among which there are the t-score esti-
mator and the PORT-MOp approach). A double-bootstrap likelihood-ratio test, the
BIC and two well-known risk measures, VaR and TVaR, which typically focus on
the right tail of the distribution, have been used for comparisons. The main findings
are: 1) by using a dichotomous unimodal compound model the ML estimator of the
parameters of the conditional distribution is more robust compared to the case in
which the simple conditional distribution is fitted; 2) the proposed models behave
very well both in terms of global and right tail fit of the data; 3) by using a dichoto-
mous unimodal compound model it is possible to detect typical and atypical losses,
with respect to the conditional distribution, and to define the corresponding typical
and atypical regions on the x-axis.
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Chapter 5

Two new matrix-variate
distributions with application in
model-based clustering

1

5.1 Introduction

As mentioned in Section 2.5, over the last years there has been an increased interest
in the analysis of matrix-variate data via mixture models. Originally proposed by Vi-
roli (2011a), the matrix-variate normal mixtures (MVN-Ms) are the first example of
model-based clustering in the context of matrix-variate data. The same author gen-
eralizes the MVN-Ms in a Bayesian framework in Viroli (2011b). However, for many
real phenomena, the tails of the MVN distribution are lighter than required, with a
direct effect on the corresponding mixture model. This is often due to the presence of
mild outliers (Ritter, 2015), i.e. observations that produce an overall distribution that
is too heavy-tailed to be modeled by MVN-Ms. The most commonly used solution
for managing this type of situations consists in relaxing the normality assumption of
the mixture components. Unfortunately, and differently from the multivariate liter-
ature (see, e.g. Peel and McLachlan, 2000 and Dang et al., 2015), only finite mixtures
of matrix-variate t (MVt-Ms) distributions have been proposed, as three-way ellip-
tical heavy-tailed model, to cope with this issue (Doğru et al., 2016). Therefore, in
this work two new heavy-tailed matrix-variate distributions are introduced, namely
the matrix-variate shifted exponential normal (MVSEN) and the matrix-variate tail-
inflated normal (MVTIN), generalization of the corresponding multivariate distri-
butions recently presented in Punzo and Bagnato (2020a) and Punzo and Bagnato
(2020b), respectively. As explained in Section 5.2, to define the MVSEN and MVTIN
distributions, the well-known normal scale mixture model is used. Then, these dis-
tributions are used for model-based clustering via mixture models. Because of their
heavier-than-normal tails, these models are able to cope with clusters having poten-
tial mild outliers in a proper way. This implies a better fit of the data, and may avoid
the disruption of the true underlying grouping structure.

Section 5.3 examines parameter estimation, that is carried out by means of dif-
ferent extensions of the EM algorithm. Simulated data analyses involving computa-
tional time and parameter recovery of the aforementioned algorithms are discussed
in Section 5.4. Additionally, the fitting and clustering performances of the proposed

1This work is based on the following publication: Tomarchio S.D., Punzo A., Bagnato, L. (2020).
Two new matrix-variate distributions with application in model-based clustering. Computational Statis-
tics & Data Analysis, 152, 107050. The current manuscript is a combined effort of the authors. How-
ever, Tomarchio S.D. contributed in conceptualization, implementation, data elaboration and writing–
original draft preparation; Punzo A. and Bagnato, L. contributed in conceptualization and supervision.
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and some competing models, in presence of outlying matrices, are also therein eval-
uated. For similar comparative purposes, two real data applications are analyzed in
Section 5.5. Lastly, Section 5.6 concludes.

5.2 Methodology

5.2.1 The matrix-variate normal scale mixture model

In a matrix-variate framework, the normal scale mixture model introduced in Sec-
tion 2.2 has PDF

fMVNSM(X; Ω, ν) =
∫ ∞

0
fMVN(X; M, Σ/w, Ψ)h(w; ν)dw. (5.1)

where MVNSM stands for matrix-variate normal scale mixture. By looking at the
moments of the MVNSM, it is possible to see the impact of the mixing distribution
in terms of deviation from normality. Indeed, the mean, the covariance matrix and
the kurtosis of the MVNSM are

E (X) = M, (5.2)

Var (X) = a (ν)Ψ ⊗ Σ, (5.3)

Kurt (X) = b (ν) pr (pr + 2) , (5.4)

where pr (pr + 2) is the kurtosis of the nested MVN distribution, with p and r in-
dicating the number of rows and columns of X, respectively, a (ν) = E (1/W) and

b (ν) = E
[
(1/W)2

]
/ [E (1/W)]2, with W having PDF h(w; ν), are the multiplicative

factors governing the deviation from the nested MVN distribution. Notice that, in
the matrix-variate literature, Var (X) and Kurt (X) are computed on the vectorized
data (Sánchez-Manzano et al., 2002; Gupta et al., 2013). Results in (5.2) and (5.3) can
be found in Gupta et al. (2013), whereas (5.4) is a generalization of the results given
in Punzo and Bagnato (2020b), provided that the well-known Mardia’s measure of
kurtosis (Mardia, 1970) is considered.

Since E
[
(1/W)2

]
≥ [E (1/W)]2, the excess of kurtosis (with respect to the MVN

distribution) is non-negative, with the equality holding only when W ≡ 1. Then,
apart from this limit case, the resulting distribution is leptokurtic and ν can be meant
as the tailedness parameter of the MVNSM model. An example of distribution be-
longing to the MVNSM family is the matrix-variate t distribution, that is obtained
by considering a convenient gamma as mixing distribution (Doğru et al., 2016).

5.2.2 The matrix-variate shifted exponential normal distribution

Definition 5.2.1. A p × r random matrix X is said to have a matrix-variate shifted
exponential normal (MVSEN) distribution with p× r mean matrix M, p× p and r× r
scale matrices Σ and Ψ, and tailedness parameter θ > 0, if its PDF is given by

fMVSEN(X; φ) =
θ exp(θ)

(2π)
pr
2 |Σ| r

2 |Ψ| p
2

ϕ pr
2

(
δ(X; Ω)

2
+ θ

)
, (5.5)

where ϕm(z) is the Misra function (Misra, 1940), generalization of the generalized
exponential integral function (Abramowitz and Stegun, 1965), and φ contains all
the parameters of the PDF.
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The PDF in (5.5) can be obtained from the PDF in (5.1) by considering W as a
shifted exponential random variable defined on the (1, ∞) interval, with PDF hSE(w; ν) =
θ exp [−θ (w − 1)], as mixing distribution. Indeed, the PDF in (5.5) can be written as

fMVSEN(X; φ) =
θ exp(θ)

(2π)
pr
2 |Σ| r

2 |Ψ| p
2

∫ ∞

1
w

pr
2 exp

{
−w

[
δ(X; Ω)

2
+ θ

]}
dw.

By noting that

∫ ∞

1
w

pr
2 exp

{
−w

[
δ(X; Ω)

2
+ θ

]}
dw =

=

[
δ(X; Ω)

2
+ θ

]−( pr
2 +1)

Γ

(
pr

2
+ 1,

δ(X; Ω)

2
+ θ

)
= ϕpr

(
δ(X; Ω)

2
+ θ

)
,

where Γ(c, z) denotes the upper incomplete gamma function (Abramowitz and Ste-
gun, 1965), the PDF in (5.5) is obtained.

A hierarchical representation of the MVSEN distribution can be given as

1. W ∼ SE (θ),

2. X|W = w ∼ Np×r(M, Σ/w, Ψ),

where SE (θ) is a shifted exponential distribution on (1, ∞), and Np×r(M, Σ/w, Ψ)
is a matrix-variate normal distribution. This alternative way to see the MVSEN dis-
tribution is useful for random data generation and for the implementation of the
EM-based algorithm discussed in Section 5.3.

When the considered shifted exponential is chosen as mixing distribution, the
multiplicative factors to be inserted in (5.3) and (5.4) are

a (θ) = θ exp (θ) ϕ−1(θ), (5.6)

b (θ) =
θ [1 − a (θ)]

a (θ)2
, (5.7)

and their graphical representation, for growing values of θ, is drawn in Figure 5.1
(Punzo and Bagnato, 2020a). It is easy to see that a (θ) is a smoothly increasing func-
tion of θ and, because of its values, Var(X) is a deflated version of Ψ ⊗ Σ. However,
when θ → ∞, then a (θ) → 1 and Var(X) → Ψ ⊗ Σ. On the contrary b (θ) is decreas-
ing in θ and, because of its values, Kurt(X) is greater than pr (pr + 2), implying that
the MVSEN distribution is leptokurtic. However, when θ → ∞, then b (θ) → 1 and
Kurt(X) → pr (pr + 2). Notice that, the decrease of b (θ) is sudden when θ is close
to 0, meaning that only low values of θ allow to reach high levels of kurtosis.

5.2.3 The matrix-variate tail-inflated normal distribution

Definition 5.2.2. A p × r random matrix X is said to have a matrix-variate tail-
inflated normal (MVTIN) distribution with p × r mean matrix M, p × p and r × r
scale matrices Σ and Ψ, tailedness parameter θ ∈ (0, 1), if its PDF is given by

fMVTIN(X; φ) = 2(π)−
pr
2 |Σ|− r

2 |Ψ|−
p
2

θδ(X;Ω)
pr
2 +1

[
Γ
(

pr
2 + 1, (1 − θ) δ(X;Ω)

2

)
− Γ

(
pr
2 + 1, δ(X;Ω)

2

)]
, (5.8)

where φ contains all the parameters of the density.
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FIGURE 5.1: Multiplicative factors a (θ) (solid line) and b (θ) (dashed
line) for the MVSEN distribution.

The PDF in (5.8) can be obtained from the PDF in (5.1) by considering W as a uni-
form mixing random variable defined on the (1 − θ, 1) interval, with PDF hU(w; ν) =
1/θ. Indeed, the PDF in (5.8) can be written as

fMVTIN(X; φ) =
(2π)−

pr
2 |Σ|− r

2 |Ψ|− p
2

θ

∫ 1

1−θ
w

pr
2 exp

{
−w

2
δ(X; Ω)

}
dw.

By noting that

∫ 1

1−θ
w

pr
2 exp

{
−w

2
δ(X; Ω)

}
dw =

=

[
2

δ(X; Ω)

]( pr
2 +1) [

Γ

(
pr

2
+ 1, (1 − θ)

δ(X; Ω)

2

)
− Γ

(
pr

2
+ 1,

δ(X; Ω)

2

)]
,

the PDF in (5.8) is obtained.
For the same purposes of Section 5.2.2, a hierarchical representation of the MVTIN

distribution is given. Specifically,

1. W ∼ U (1 − θ, 1),

2. X|W = w ∼ Np×r(M, Σ/w, Ψ),

where U (1 − θ, 1) denotes a uniform distribution on (1 − θ, 1).
When the considered uniform is chosen as mixing distribution, the multiplicative

factors to be inserted in (5.3) and (5.4) are

a (θ) = − ln (1 − θ)

θ
, (5.9)

b (θ) =
θ2

(1 − θ) ln2 (1 − θ)
, (5.10)
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and their graphical representation, for growing values of θ, is drawn in Figure 5.2
(Punzo and Bagnato, 2020b). Similarly to the MVSEN distribution, a (θ) is a smoothly

FIGURE 5.2: Multiplicative factors a (θ) (solid line) and b (θ) (dashed
line) for the MVTIN distribution.

increasing function of θ and, because of its values, Var(X) is an inflated version of
Ψ ⊗ Σ. However, when θ → 0, then a (θ) → 1 and Var(X) → Ψ ⊗ Σ. Here, b (θ) is
increasing in θ and, because of its values, as for the MVSEN distribution, Kurt(X)
is greater than pr (pr + 2), implying leptokurtosis. However, when θ → 0, then
b (θ) → 1 and Kurt(X) → pr (pr + 2). Notice that b (θ) suddenly increases when θ is
close to 1, meaning that we need high θ-values to reach relevant levels of kurtosis.

5.3 Parameter estimation

When the PDFs (5.5) or (5.8) are chosen as component in model in (2.1), the corre-
sponding mixtures are obtained; these models will be denoted herein as MVSEN-

Ms and MVTIN-Ms, respectively. Here, the complete-data are Sc = {Xi, zi, wi}N
i=1.

By saying that Zi, random counterpart of zi, is distributed according to a multino-
mial distribution consisting of one draw from K categories with probabilities π =

{πk}K
k=1, say MK (π), the hierarchical representations introduced in Section 5.2 for

the single distributions can be extended, to the mixture modeling framework, as

Zi ∼ MK (π)

Wi|zik = 1 ∼
{
SE (θk) for MVSEN-Ms

U (1 − θk, 1) for MVTIN-Ms

Xi|Wi = wi, zik = 1 ∼ Np×r(Mk, Σk/wi, Ψk). (5.11)

Unfortunately, the EM algorithm cannot be directly implemented for MVSEN-
Ms and MVTIN-Ms, since the M-steps of both models present some issues. In detail,
there is no closed form solution for the covariance matrices, considering that one
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of the two depends on the value of the other at the previous iteration, inheriting
this characteristic from the MVN distribution (Dutilleul, 1999). Therefore, this is not
a specific problem of MVSEN-Ms and MVTIN-Ms, but of all the distributions that
can be obtained via the MVNSM model in (4.1). Additionally, for MVTIN-Ms, the
equation involving the tailedness parameter is not well-defined, since the update
for θ tends to 0 as the number of iterations of the algorithm grows. This implies
that regardless of its true but unknown value, the EM algorithm fails to converge.
For these reasons, the modified versions of the EM algorithm mentioned in Sec-
tion 2.3 are herein implemented. Specifically, an ECM algorithm is implemented for
MVSEN-Ms in Section 5.3.1. On the contrary, in Section 5.3.2 two alternatives are
discussed for MVTIN-Ms: an ECME algorithm and an AECM algorithm.

In any case, for the implementation of all these algorithms, it is convenient to
use the hierarchical representation in (5.11). Indeed, the complete-data likelihood
function Lc (Θ;Sc) can be factored as

Lc (Θ;Sc) =
N

∏∏∏
i=1

K

∏∏∏
k=1

[πk fMVN(Xi; Mk, Σk/wi, Ψk)h(wi; νk)]
zik ,

where h(wi; νk) is model dependent. Accordingly, the complete-data log-likelihood
function can be written as

ℓc (Θ;Sc) = ln [ℓc (Θ;Sc)] = ℓ1c (π;Sc) + ℓ2c (Ξ;Sc) + ℓ3c (ν;Sc) , (5.12)

where

ℓ1c (π;Sc) =
N

∑
i=1

K

∑
k=1

zik ln (πk) , (5.13)

ℓ2c (Ξ;Sc) = ∑
N
i=1 ∑

K
k=1 zik

[
− pr

2 ln (2πk) +
pr
2 ln (wik)− r

2 ln |Σk| − p
2 ln |Ψk| − wikδ(X;Ωk)

2

]
, (5.14)

with Ξ = {Mk, Σk, Ψk}K
k=1 and ℓ3c (ν;Sc), with ν = {θk}K

k=1, is different according to
the considered MVNSM model; see Section 5.3.1 for MSEN-Ms and Section 5.3.2 for
MTIN-Ms.

5.3.1 An ECM-algorithm for MVSEN-Ms

When MVSEN-Ms are considered, the last term in (5.12) is equal to

ℓ3c (ν;Sc) =
N

∑
i=1

K

∑
k=1

zik

[
ln (θk)− θg (wik − 1)

]
. (5.15)

Then, the ECM algorithm proceeds as follows (we recall that the dots refer to the
algorithm iterations, as explained in Section 2.3).

E-Step At the E-step, it is necessary to compute

z̈ik := E
Θ̇
(Zik|Xi) =

π̇k fMVSEN (Xi; φ̇k)

∑
K
h=1 π̇h fMVSEN (Xi; φ̇h)

, (5.16)
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which is the posterior probability that the unlabeled observation Xi belongs to the
kth component of the mixture, and

ẅik := E
Θ̇
(Wik|Xi, zi) =

ϕ pr
2 +1

(
δ(Xi ;Ω̇k)

2 + θ̇k

)

ϕ pr
2

(
δ(Xi ;Ω̇k)

2 + θ̇k

) , (5.17)

which corresponds to the expected value of a left-truncated gamma distribution with
parameters (pr/2) + 1 and [δ(Xi; Ωk)/2] + θk, on the interval (1, ∞); for details see
Punzo and Bagnato, 2020a. Finally, there is no need to compute the expectation of
ln(wik), since it is not related to the parameters.

Now, consider Θ1 = {πk, Mk, Σk, θk}K
k=1 and Θ2 = {Ψk}K

k=1.

CM-Step 1 At the first CM-step, by fixing Θ2 at Θ̇2, it is possible to obtain

π̈k =
∑

N
i=1 z̈ik

N
, (5.18)

M̈k =
∑

N
i=1 z̈ikẅikXi

∑
N
i=1 z̈ikẅik

, (5.19)

Σ̈k =
∑

N
i=1 z̈ikẅik

(
Xi − M̈k

) (
Ψ̇k

)−1 (
Xi − M̈k

)′

r ∑
N
i=1 z̈ik

, (5.20)

θ̈k =
∑

N
i=1 z̈ik

∑
N
i=1 z̈ik (ẅik − 1)

. (5.21)

CM-Step 2 At the second CM-step, keeping fixed Θ1 at Θ̈1, it is possible to obtain

Ψ̈k =
∑

N
i=1 z̈ikẅik

(
Xi − M̈k

)′ (
Σ̈k

)−1 (
Xi − M̈k

)

p ∑
N
i=1 z̈ik

. (5.22)

5.3.2 EM-based algorithms for MVTIN-Ms

When MVTIN-Ms are considered, the last term in (5.12) is equal to

ℓ3c (ν;Sc) =
N

∑
i=1

K

∑
k=1

zik

{
− ln (θk) + ln

[
1(1−θk ,1) (wik)

]}
, (5.23)

where 1A (·) is the indicator function on the set A. The ECME and AECM algo-
rithms have in common the E-step and the first two CM-steps, whereas the last CM-
step presents two options depending on which algorithm is chosen. In detail, both
algorithms proceed as follows.

E-Step The E-step requires the calculation of

z̈ik := E
Θ̇
(Zik|Xi) =

π̇k fMVTIN (Xi; φ̇k)

∑
K
h=1 π̇h fMVTIN (Xi; φ̇h)

, (5.24)
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which, also in this case, corresponds to the posterior probability that the unlabeled
observation Xi belongs to the kth component of the mixture, and

ẅik := E
Θ̇
(Wik|Xi, zi)

=
2

δ(Xi; Ω̇k)

[
Γ

(
pr
2 + 2,

(
1 − θ̇k

) δ(Xi ;Ω̇k)
2

)
− Γ

(
pr
2 + 2, δ(Xi ;Ω̇k)

2

)]

[
Γ
(

pr
2 + 1,

(
1 − θ̇k

) δ(Xi ;Ω̇k)
2

)
− Γ

(
pr
2 + 1, δ(Xi ;Ω̇k)

2

)] , (5.25)

which is the expected value of a doubly-truncated gamma distribution with parame-
ters (pr/2) + 1 and δ(Xi; Ωk)/2, on the interval (1 − θk, 1); for details see Punzo and
Bagnato, 2020b. Lastly, there is no need to compute the expectation of ln(wik), since

it is not related to the parameters, and the expectation of ln
[
1(1−θk,1)(wik)

]
, since the

conditional expectation of (5.23) is not used to update θ.

Now, consider the following parameter sets Θ1 = {πk, Mk, Σk}K
k=1, Θ2 = {Ψk}K

k=1

and Θ3 = {θk}K
k=1.

CM-Step 1-2 The first two CM-steps involve the updates π̈k, M̈k, Σ̈k and Ψ̈k, which
are the same as in (5.18), (5.19), (5.20) and (5.22), respectively.

CM-Step 3 The third CM-step depends on the selected algorithm.

• If an ECME algorithm is chosen, the following incomplete-data log-likelihood
function is maximized

ℓ (Θ;S) =
N

∑
i=1

ln

[
K

∑
k=1

πk fMVTIN(X; Mk, Σk, Ψk, θk)

]
, (5.26)

with respect to Θ3, keeping fixed Θ1 at Θ̈1 and Θ2 at Θ̈2. Operationally, the
optim() function, in the stats package is used to perform a numerical search of

ν̈ = {θk}K
k=1.

• If an AECM algorithm is chosen, the following specification of the complete-
data log-likelihood function is maximized

ℓc (Θ;Sc) = ℓ1c (π;Sc) +
N

∑
i=1

K

∑
k=1

zik ln fMVTIN(X; Mk, Σk, Ψk, θk), (5.27)

with respect to Θ3, keeping fixed Θ1 at Θ̈1 and Θ2 at Θ̈2. In (5.27), ℓ1c (π;Sc) is

equal to (5.13). Notice that in this case the complete data are Sc = {Xi, zi}N
i=1.

Operationally, the optimize() function, in the stats package, is used to perform
a numerical search of the maximum θ̈k of (5.27).

5.3.3 A note on the initialization strategy

As discussed in Section 2.3.1.1, the initialization of EM-based algorithms is an im-
portant aspect. Here, the short-EM procedure suggested by Biernacki et al. (2003)
is generalized in the matrix-variate framework. The reasons why such initialization
is chosen, with respect to an approach that starts from the M-step, derives from the
fact that initialize only the zik in (5.16) and (5.24) is not sufficient here. Indeed, start-
ing values should be provided also for the wik in (5.17) and (5.25), and this is not an
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easy task. On the contrary, the proposed strategy has shown stable results in both
simulated and real data analyses. The parameter estimates and the classification
produced have displayed excellent performances, as will be shown in Section 5.4.

About the short-EM procedure, by recalling that H is the number of short runs
of the considered algorithm, and s is the (small) number of iterations of these short
runs, in this work H = 100 and s = 1. Then, the parameter sets producing the ten
largest log-likelihood values are used to initialize ten complete runs of the consid-
ered algorithm. The solution providing the highest log-likelihood value is finally re-

ported. For better comparability purposes, the common parameters {πk, Mk, Σk, Ψk}K
k=1

of the different competing models considered in this work, are initialized with the
same values in the H runs.

5.4 Simulated data analyses

5.4.1 Comparison between ECME and AECM algorithms for MVTIN-Ms

The performance of the ECME and AECM algorithms for MVTIN-Ms are compared
in terms of computational times and average log-likelihood at convergence. Two
experimental factors are considered: the sample size N ∈ {200, 500, 1000} and the
inflation parameter θ ∈ {0.60, 0.75, 0.90}. The values of θ are unbalanced on the
right to have scenarios with more kurtosis (see Section 5.2.3). The dimension of
the matrices are p = 3 and r = 4. For each pair (N, θ), one hundred data sets
are sampled from a MVTIN-M with K = 2 by using the hierarchical representation
in (5.11). Overall, a total of 3 × 3 × 100 = 900 data sets are generated. For easiness,
it is assumed that all the mixture components have the same θ, whereas the other
parameters used to generate the data are displayed in Table 5.1.

TABLE 5.1: Parameters used in the MVTIN-M to generate the data of
Section 5.4.1.

Parameters Group 1 Group 2

πk 0.35 0.65

Mk



−5.00 −4.00 −4.00 −3.00

4.00 4.00 5.00 5.00
5.00 6.00 7.00 6.00







5.00 4.00 4.00 3.00
−5.00 −5.00 −6.00 −5.00
−2.00 −2.00 −3.00 −3.00




Σk




2.00 1.00 0.20
1.00 2.00 1.00
0.20 1.00 2.00







2.50 0.20 0.20
0.20 2.50 0.20
0.20 0.20 2.50




Ψk




1.00 0.50 0.20 0.10
0.50 1.00 0.50 0.20
0.20 0.50 1.00 0.50
0.10 0.20 0.50 1.00







1.50 0.80 0.30 0.20
0.80 1.50 0.80 0.30
0.30 0.80 1.50 0.80
0.20 0.30 0.80 1.50




On each generated data set, MVTIN-Ms with K = 2 are fitted by using both
the ECME and AECM algorithms. The computational time is calculated via the sys-
tem.time() function of the base package and refers to the execution of ten runs in
parallel of the selected algorithm. Specifically, each core executes one of the ten
runs discussed in Section 5.3.3 for the considered algorithm. The computation is
performed on a Windows 10 PC, with AMD Ryzen 7 3700x CPU, 16.0 GB RAM.
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Figure 5.3 illustrates the box-plots of the elapsed time for each combination of
θ and the chosen algorithm, when varying the sample size N. It easy to see that,
the AECM algorithm has always a much lower computational time than the ECME
algorithm. As it is reasonable to expect, the more the sample size grows, the greater
the computational time becomes, which in the case of the AECM algorithm seems to
double with each increase. Furthermore, it is interesting to notice that, the elapsed
time is approximately a decreasing function of θ, with the only exception of the
ECME algorithm when N = 500 and θ moves from 0.75 to 0.90.

(a) N = 200 (b) N = 500

(c) N = 1000

FIGURE 5.3: Elapsed time (in seconds) for each combination of θ and
the chosen algorithm, when varying N ∈ {200, 500, 1000}. Each box

plot refers to 100 replications.

Let ℓAECM
j and ℓECME

j be the log-likelihood values obtained by the AECM and ECME

algorithms, respectively, for the jth generated data set, j = 1, . . . , 100. Based on these
quantities, the performance of the algorithms is also evaluated in terms of: average

log-likelihood value over the 100 replications, say ℓ
AECM

for the AECM and ℓ
ECME

for

the ECME, and number of times that each algorithm reaches max
{
ℓAECM

j , ℓECME
j

}
, over

the 100 replications, say #maxAECM for the AECM and #maxECME for the ECME. Ta-
ble 5.2 reports these summary measures for each pair (N, θ). It is possible to notice
that the average log-likelihoods obtained via the AECM algorithm are constantly
slightly better than those produced by the ECME one. Furthermore, the differences
between these averages seem to increase for growing values of the sample size. By
looking at the last two columns of Table 5.2, and excluding three occasions in the case
(N = 200, θ = 0.60), the AECM algorithm produces a log-likelihood that is always
greater than, or equal to, the log-likelihood from the ECME algorithm. Therefore,
considering the results of this section, the AECM algorithm will be used in the rest
of the paper for MVTIN-Ms.
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TABLE 5.2: Average log-likelihood values and number of times the
best log-likelihood is reached, for the AECM and ECME algorithms

of the MVTIN-Ms, over 100 replications.

N θ ℓ
AECM

ℓ
ECME

#maxAECM #maxECME

0.60 -4946.89 -4947.06 97 85
200 0.75 -5141.09 -5141.11 100 97

0.90 -5441.68 -5443.06 100 95

0.60 -12394.10 -12394.11 100 98
500 0.75 -12909.98 -12910.19 100 98

0.90 -13647.17 -13647.91 100 99

0.60 -24807.21 -24807.66 100 96
1000 0.75 -25852.09 -25853.29 100 96

0.90 -27312.12 -27315.32 100 97

5.4.2 Parameter recovery

In this section, the parameter recovery of the AECM algorithm for MVTIN-Ms and of
the ECM algorithm for MVSEN-Ms is investigated. In detail, the analysis is focused
only on θ, since in the normal scale mixtures literature the parameter(s) governing
the tail-weight is (are) generally the most difficult to be estimated.

For MVTIN-Ms, the data analyzed in Section 5.4.1 are used. The parameter set
and the experimental factors used for MVTIN-Ms are also adopted for MVSEN-
Ms, with the only exception of the inflation parameter that assumes the values θ ∈
{0.15, 0.30, 0.60}, in order to have scenarios with more kurtosis (see Section 5.2.2).
Similarly to Section 5.4.1, the hierarchical representation in (5.11) is used for gener-
ate data from MVSEN-Ms.

Before showing the results, it is important to underline the well-known label
switching issue, caused by the invariance of the likelihood function under relabeling
the components of a mixture model (Frühwirth-Schnatter, 2006). There is no gener-
ally accepted labeling method, and considering the substantial separation between
the two groups, the label 1 is attached to the component with the lowest estimated
values in the first row of Mk.

In the case of MVTIN-Ms, Figure 5.4 and Figure 5.5 illustrate the box-plots of the
differences (θ̂k − θk) between the estimated and the true parameters for bias eval-
uation, and the squared differences (θ̂k − θk)

2 for mean square error (MSE) evalua-
tion, respectively. The same quantities are displayed in Figure 5.6 and Figure 5.7 for
MVSEN-Ms. In any case, each plot refers to a specific sample size and shows the box-
plots of both latent groups for the different values of θk. Specifically, each box-plot
summarizes the behavior of the considered differences with respect to the available
100 replications. The first and immediate result is that the differences under evalua-
tion improve as N increases, for both models. Furthermore, the higher is the kurtosis
in the data, the more precise are the estimates for both models. Indeed, the average
estimates of θ look quite unstable when the kurtosis is low. To understand this result
consider for example the MVSEN distribution and Figure 5.1. In this case the insta-
bility arises from the fact that, although θ can take all positive values, those larger
than (more or less) 1 lead to a mesokurtic distribution that is practically the same as
the matrix-variate normal. The same reasoning can be done for the MVTIN distri-
bution, since in Figure 5.2 it is illustrated that θ values approximately lower than 0.5
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lead to situations close to the normality. Overall, both algorithms seem to properly
estimate the tailedness parameters.

(a) N = 200 (b) N = 500

(c) N = 1000

FIGURE 5.4: Box-plots of (θ̂k − θk), in the case of the MVTIN distribu-
tion, for each latent group and pair (N, θ). Each box-plot summarizes

the results over 100 replications.

(a) N = 200 (b) N = 500

(c) N = 1000

FIGURE 5.5: Box-plots of (θ̂k − θk)
2, in the case of the MVTIN distribu-

tion, for each latent group and pair (N, θ). Each box-plot summarizes
the results over 100 replications.
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(a) N = 200 (b) N = 500

(c) N = 1000

FIGURE 5.6: Box-plots of (θ̂k − θk), in the case of the MVSEN distribu-
tion, for each latent group and pair (N, θ). Each box-plot summarizes

the results over 100 replications.

(a) N = 200 (b) N = 500

(c) N = 1000

FIGURE 5.7: Box-plots of (θ̂k − θk)
2, in the case of the MVSEN distri-

bution, for each latent group and pair (N, θ). Each box-plot summa-
rizes the results over 100 replications.

5.4.3 Assessing the impact of outlying matrices

Here, two scenarios are considered to evaluate the effect of outlying matrices on
model selection and clustering performance. On each scenario, p = 3, r = 3,
N = 200 and one hundred data sets are generated from a MVN-M with G = 2



5.5. Real data applications 57

and parameters in Table 5.3.

TABLE 5.3: Parameters used to generate the data of Section 5.4.3.

Parameters Group 1 Group 2

πg 0.50 0.50

Mg



−3.00 −2.00 −2.00
−1.00 0.00 0.00
−2.00 −1.00 −1.00







0.00 1.00 0.00
2.00 2.00 3.00
0.00 2.00 1.00




Σg




0.70 −0.05 −0.05
−0.05 0.70 −0.01
−0.05 −0.01 0.70







0.60 0.10 0.01
0.10 0.60 −0.05
0.01 −0.05 0.60




Ψg




0.60 0.10 −0.05
0.10 0.80 0.10

−0.05 0.10 0.70







0.60 −0.10 0.05
−0.10 0.90 0.01

0.05 0.01 1.00




Then, a certain percentage T of matrices is randomly selected and, in turn, for
each of them one column, say the jth, j = 1, . . . , r, is chosen at random. The values
in this column are substituted with random numbers lying on the surface of a 3-
dimensional sphere (since p = 3), with ray y and center in the corresponding jth
column of Mk. In this way, these T matrices have atypical values on one of their
columns. In the first scenario (Scenario A) T = 30% and y = 2.7 , while in the
second one (Scenario B) T = 15% and y = 4.0. This means that, in Scenario A there
are a large number of matrices that slightly deviate from the bulk of the data, while
in Scenario B there are few but more distant outlying matrices.

MVSEN-Ms and MVTIN-Ms are fitted to the data for K ∈ {1, 2, 3}, along with
MVN-Ms and MVt-Ms for comparison purposes. Table 5.4 and Table 5.5 report the
number of times each K is selected by the BIC, the average classification results and
the average BIC computed over the best BIC models on the 100 replications (BIC). In
Scenario A, because of the relative proximity of the outlying matrices to the bulk of
the data, the BIC correctly recognize the number of groups in the data and a perfect
classification is always obtained for all the competing models. However, in terms of
BIC, the MVN-Ms have the worst fitting performance, whereas the MVSEN-Ms are
the best.

In Scenario B, the BIC selects almost always three groups for MVN-Ms; addition-
ally, the BIC is clearly the worst among the competing models. This is due to the
tails of the mixture components, that are not sufficiently heavy to model data with
such atypical observations. In the attempt of modeling the outlying matrices, the
true underlying group structure is disrupted, and an additional third component is
detected. This has an implication on the resulting classification, as shown by the ARI
and ǫ values. On the contrary, for MVTIN-Ms and MVt-Ms the number of groups
selected is always equal to two, with an almost perfect classification. However, the
MVTIN-Ms show the best fitting performance as indicated by the lowest BIC value.

5.5 Real data applications

5.5.1 Data description

The first data set (herein called “Education data”) contains career indicators from the
Italian National Agency for the Evaluation of Universities and Research Institutes.
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TABLE 5.4: Scenario A: number of times each K is selected by the BIC
along with the average ARI, ǫ and BIC values computed over the best

BIC models with respect to the 100 replications.

Model G = 1 G = 2 G = 3 ARI ǫ BIC

MVN-Ms 0 100 0 1.00 0.00 4857.09
MVSEN-Ms 0 100 0 1.00 0.00 4846.38
MVTIN-Ms 0 100 0 1.00 0.00 4851.42

MVt-Ms 0 100 0 1.00 0.00 4852.36

TABLE 5.5: Scenario B: number of times each K is selected by the BIC
along with the average ARI, ǫ and BIC values computed over the best

BIC models with respect to the 100 replications.

Model G = 1 G = 2 G = 3 ARI ǫ BIC

MVN-Ms 0 2 98 0.85 8.52 4930.48
MVSEN-Ms 0 99 1 0.99 0.17 4839.73
MVTIN-Ms 0 100 0 1.00 0.03 4813.76

MVt-Ms 0 100 0 1.00 0.04 4825.83

It consists of p = 3 numerical indicators, collected over r = 3 years, for N = 75
study programs in the universities of southern Italy. Specifically, they measure (i)
the percentage of course credits earned in the first year over the total to be achieved
(V1), (ii) the percentage of students that continued in the second year of the same
study program (V2) and (iii) the percentage of students that completed their studies
within the normal duration of the course (V3). Therefore, each data point is a 3 × 3
matrix and reports the average value of all the study programs of the same type
across southern Italy. There are K = 2 groups in the data, i.e. N1 = 33 bachelor’s
degrees and N2 = 42 master’s degrees.

The second data set (herein called “R&D data”), contains p = 3 variables mea-
suring the level of (i) sales, (ii) employment and (iii) capital for N = 509 R&D-
performing US manufacturing companies in the years 1982-89 (r = 8). Therefore,
each data point consists of a 3 × 8 matrix. It is contained in the pder package (Crois-
sant and Millo, 2019) under the name RDPerfComp. Differently from the previous
data set, there is neither a classification of the data, nor any information about a pos-
sible underlying group structure. However, useful insights can be gained by looking
at Figure 5.8, where the histogram of each variable is displayed, for the full 8-years
of data. A similar way of thinking can be find in Melnykov and Zhu (2019). The
multimodality in all these histograms seems to suggest the existence of groups in
the data.

5.5.2 Results

5.5.2.1 Education data

The competing models are fitted to the data for K ∈ {1, 2, 3} and the results are re-
ported in Table 5.6. The BIC selects K = 3 groups for the MVN-Ms, with a third
group that is strongly overlapped to the second one. Additionally, they show the
worst fitting and classification performances. Notice that, even if MVN-Ms had
been fitted directly with K = 2 groups, the classification produced would be the
same as for MVt-Ms, but it would have anyway the worst performance in terms of
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FIGURE 5.8: Histograms of the distribution of each variable for the
R&D data.

TABLE 5.6: Number of selected groups (K), BIC values, and classifi-
cation performance (ARI and ǫ) of the competing models on the edu-

cation data.

Model K BIC ARI ǫ

MVN-Ms 3 -2212.05 0.62 16.00
MVSEN-Ms 2 -2262.12 0.84 4.00
MVTIN-Ms 2 -2265.37 0.84 4.00

MVt-Ms 2 -2264.07 0.79 5.33

BIC, i.e. −2201, 79. For all the other competing models K = 2 is chosen. In terms
of overall fitting, the best model according to the BIC is the MVTIN-M, whereas in
terms of classification both MVSEN-Ms and MVTIN-Ms produce the same partition
of the data, that yields a high value of the ARI and the lowest percentage of mis-
classified observations. This data partition is depicted in Figure 5.9 by using parallel
coordinate plots, and where group 1 corresponds to the bachelor’s degrees, while
group 2 represents the master’s degrees. The dashed line in each subfigure repre-
sents to the estimated mean for that variable, across the time, in that group. It is
possible to see that the two degree typologies are quite separated and, as it is rea-
sonable to expect, the performances of the master’s group are better than those of the
bachelor’s one. This might be due to the difficulties that bachelor’s students have
in the transition from high schools to universities, while master’s students have al-
ready overcome these problems. Anyway, there are study programs that seem far
from to the bulk of the data, with respect to the considered variable, in both groups.
These considerations might suggest the presence of outlying matrices. As a confir-
mation of this, the estimated tailedness parameters θ̂k and kurtoses by the compet-
ing models are reported in Table 5.7. The sample weighted kurtoses, with weights
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FIGURE 5.9: Education data: parallel coordinate plots constructed for
the best BIC model (MVTIN-Ms with K = 3).

given by the posterior probabilities produced by each model for the detected parti-
tion, are also reported for comparative purposes. The estimated values of θ̂k indicate
a strong deviation from the normality assumption in terms of tail weight (see Fig-
ure 5.1 and Figure 5.2). Additionally, the mixture component of the master’s degrees
has heavier tails than the bachelor’s degrees one. With the exclusion of the MVN-Ms
that, as already said, overfit the data, all the models agree in detecting a considerable
level of kurtosis. Compared to their sample counterparts, MVSEN-Ms and MVt-Ms
moderately overestimate the sample kurtoses, but in any case provide better values
than MVt-Ms.

TABLE 5.7: Estimated tailedness parameters and kurtoses by the com-
peting models, along with the sample weighted kurtoses of the soft

groups, on the education data.

Model Group θ̂k Sample kurtosis Estimated kurtosis

MVN-Ms 1 - 100.86 99.00
2 - 94.04 99.00
3 - 119.51 99.00

MVSEN-Ms 1 0.34 102.30 135.42
2 0.16 124.28 166.09

MVTIN-Ms 1 0.89 101.98 146.48
2 0.95 124.39 192.27

MVt-Ms 1 6.23 102.63 188.01
2 4.79 124.47 348.38
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5.5.2.2 R&D data

The competing models are fitted to the data for K ∈ {1, . . . , 5} and the results in
terms of BIC are reported in Table 5.8. Considering that the true group member-
ships are unknown, the ARI and ǫ cannot be used to compare the models. The best

TABLE 5.8: BIC values, and corresponding number of groups se-
lected, for the competing models under the R&D data.

Model K BIC

MVN-Ms 5 -9046.91
MVSEN-Ms 3 -10019.55
MVTIN-Ms 3 -9897.02

MVt-Ms 3 -9985.52

model in terms of BIC is the MVSEN-M with K = 3 components, and it is illustrated
in Figure 5.10 via parallel coordinate plots. Again, the dashed line in each subfig-
ure are the estimated mean for that variable, across the time, in that group. The
third group appears to be quite separated from the other two, that show a certain
degree of overlap instead. The classification produced by the MVSEN-Ms seems to
partition the manufacturing companies according to their resources and productive
capacities, that are high for Group 2, medium for Group 1 and scarce for Group 3.
It is interesting to note that all the models with heavy tailed component distribu-

FIGURE 5.10: R&D data: parallel coordinate plots constructed for the
best BIC model (MVSEN-M with K = 3).

tions agree in detecting three groups in the data, whereas for MVN-Ms the best BIC
is obtained when K = 5. Also in this data set, MVN-Ms seem to overfit the data
because, from the analyses of its mean matrices (not shown here for brevity’s sake),
the two additional detected groups are strongly overlapped to two of the other three
groups. Furthermore, they show the worst fitting performance. Similarly to the pre-
vious section, this may be an indication that the components of MVN-Ms are not
heavy tailed enough to adequately model these data. On a related note, Table 5.9 re-
ports the estimated tailedness parameters θ̂k and kurtoses by the competing models,
along with the sample weighted kurtoses, as done in Section 5.5.2.1. The θ̂k values
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are more extreme than those analyzed in the previous real data application, high-
lighting the presence of clusters with very high levels of kurtosis. Also in this case
there is a moderate overestimation of the sample kurtoses by our models, whereas
the kurtosis for MVt-Ms is undefined because the estimated θ̂k are lower than 4. In-
deed, compared to MVt-Ms, MVSEN-Ms and MVTIN-Ms have the advantage that
the kurtosis always exists and can be computed.

TABLE 5.9: Estimated tailedness parameters and kurtoses by the com-
peting models, along with the sample weighted kurtoses of the soft

groups, on the R&D performing companies data.

Model Group θ̂k Sample kurtosis Estimated kurtosis

MVN-Ms 1 - 645.23 624.00
2 - 654.12 624.00
3 - 661.63 624.00
4 - 684.67 624.00
5 - 652.08 624.00

MVSEN-Ms 1 0.10 947.05 1214.89
2 0.11 1023.40 1202.44
3 0.07 1005.65 1386.42

MVTIN-Ms 1 0.97 967.73 1492.39
2 0.97 1121.82 1513.12
3 0.97 928.89 1527.91

MVt-Ms 1 2.96 1193.50 -
2 3.47 1208.43 -
3 3.03 948.22 -

5.6 Conclusions

In this work two new matrix-variate distributions have been introduced, both be-
longing to the normal scale mixture family of models. In detail, when a convenient
shifted exponential is chosen as mixing distribution, the matrix-variate shifted ex-
ponential normal distribution is obtained. Instead, by choosing a convenient uni-
form as mixing distribution, the matrix-variate tail-inflated normal distribution is
defined. Both distributions have a closed-form characterization of the probability
density function and heavier tails than the (nested) matrix-variate normal distribu-
tion, implying that they are able to model data with mild outliers in a better way. The
application of both distributions in model-based clustering has been also discussed.
Specifically, each of the two distributions has been chosen as component distribution
of the respective finite mixture model. Different EM-based algorithms for maximum
likelihood parameter estimation have been considered and tested, in terms of com-
putational time and parameter recovery, via simulated analyses. For MVTIN-Ms,
the AECM algorithm has shown better performances with respect to the ECME al-
gorithm. It has been also illustrated that, because of their greater flexibility with
respect to matrix-variate normal mixtures, the proposed mixture models may avoid
the disruption of the true underlying group structure, and provide a better fit both
in simulated and real data sets.
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Chapter 6

The Matrix Normal
Cluster-Weighted Model

1

6.1 Introduction

In the general finite mixture model illustrated in Section (2.1), no exogenous vari-
ables explain the location and the variability parameters of each mixture component.
However, when there is a linear relationship between some variables, important in-
sight can be gained by accounting for functional dependencies between them. For
this reason, finite mixtures of regression models with fixed covariates (FMR) have
been proposed in the literature (see DeSarbo and Cron, 1988; Frühwirth-Schnatter,
2006, for examples). An extension of FMR are the so-called finite mixtures of re-
gression models with concomitant variables (FMRC; Dayton and Macready, 1988),
in which the mixing weights depend on some variables (which are often the same
covariates) and are generally modeled by a multinomial logistic model (see Ingras-
sia and Punzo, 2016, 2019, for details). Unfortunately, none of these methodologies
explicitly use the distribution of the covariates for clustering, i.e. the assignment of
data points to clusters does not directly utilize any information from the distribution
of the covariates. Differently from these approaches, finite mixtures of regressions
with random covariates (Gershenfeld, 1997; Gershenfeld et al., 1999), also known as
cluster-weighted models (CWMs), allow for such functional dependency. This oc-
curs because, for each mixture component, the CWMs decompose the joint distribu-
tion of responses and covariates into the product between the marginal distribution
of the covariates and the conditional distribution of the responses given the covari-
ates.

Several CWMs have been introduced in the univariate and multivariate litera-
ture. Most of them consider a univariate response variable, along with a set of co-
variates, modeled by a univariate and a multivariate distribution, respectively (see
Ingrassia et al., 2012, 2014; Punzo, 2014, for examples). Fewer CWMs exist in which
several responses and covariates are both modeled by multivariate distributions (see
Punzo and McNicholas, 2017b; Dang et al., 2017).

However, as discussed in Section (2.5), over the years there has been an increas-
ing interest in applications involving matrix-variate data. Nevertheless, there exists
a limited number of contributions involving matrix-variate regressions. Firstly in-
troduced by Viroli (2012), this model has been recently considered in the mixture
framework by Melnykov and Zhu (2019), where matrix-variate finite mixtures of

1This work is based on the following unpublished manuscript: Tomarchio S.D., McNicholas P.D.,
Punzo A.. Matrix Normal Cluster-Weighted Models. It is currently under review at the Journal of
Classification. The current manuscript is a combined effort of the authors. However, Tomarchio S.D.
contributed in conceptualization, implementation, data elaboration and writing–original draft prepa-
ration; McNicholas P.D. and Punzo A. contributed in conceptualization and supervision.
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regressions with fixed covariates (MVN-FMR) are introduced. There are no matrix-
variate CWMs presently in the literature and this work aims to fill this gap by intro-
ducing and discussing a matrix-variate CWM, in which the cluster-specific marginal
distribution of the covariates, and the cluster-specific conditional distribution of the
responses given the covariates, are assumed to be matrix normal.

In Section 6.2, the matrix normal cluster-weighted model (MVN-CWM) is intro-
duced. In Section 6.3, an ECM algorithm for maximum likelihood parameter esti-
mation is presented, along with some computational and operational aspects. In the
simulation studies outlined in Section 6.4, the parameter recovery, the classification
performance and the initialization strategy for the MVN-CWM are investigated as
well as the capability of the BIC to detect the underlying group structure. A compar-
ison with the MVN-FMR is also therein done. The application of the MVN-CWM to
two real data sets concerning educational and non-life Italian insurance data is then
analyzed in Section 6.5. Lastly, some conclusions are drawn in Section 6.6.

6.2 Methodology

6.2.1 Background

Initially, the matrix-variate regression model is recalled, since it can be considered
the fist building block for the MVN-CWM. Let Y be a continuous random matrix of
dimension p × r , containing p responses measured in r occasions. Suppose that a
set of q covariates is observed for each r, and inserted in a matrix X of dimension
q × r. A generic matrix-variate regression model for Y has the form

Y = βw⊤ + BX + U, (6.1)

where β is the p × 1 vector consisting in the parameters related with the intercept,
w is a r × 1 vector of ones, B is the p × q matrix containing the parameters related to
the q covariates and U is the p × r error term matrix. Model (6.1) can be expressed
in compact notation as

Y = B∗X∗ + U, (6.2)

where B∗ is the p × (q + 1) matrix involving all the parameters to be estimated and
X∗ is the (q + 1) × r matrix containing the information about the intercept and q
covariates (Viroli, 2012; Anderlucci et al., 2014). If U ∼ Np×r(0, Σ, Ψ), then Y |X∗ ∼
Np×r (B∗X∗, Σ, Ψ).

The second building block for the construction of the MNV-CWM consists in ex-
tending the matrix-variate regression model to a mixture setting. Specifically, within
a fixed covariates framework (FMR), we have

g (Y) =
K

∑
k=1

πk fk (Y |X∗) , (6.3)

where πk is the mixing weight and fk (Y |X∗) is the cluster-specific conditional distri-
bution of the responses.
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6.2.2 The matrix normal CWM

Now, let (X, Y) be a pair of random matrices, having the same meaning as in Sec-
tion 6.2.1, with joint distribution g (X, Y). Then, a general matrix CWM has the fol-
lowing joint distribution

g (X, Y) =
K

∑
k=1

πk fk (Y |X∗) fk (X) , (6.4)

where fk (Y |X∗) is the cluster-specific conditional distribution of the responses, fk (X)
is the cluster-specific marginal distribution of the covariates, and πk is the mixing
weight. Furthermore, in each group the conditional expectation E (Y |X∗) is assumed
to be a linear function of X∗ depending on some parameters.

Herein, it is assumed that in model (6.4) both fk (Y |X∗) and fk (X) are MVN dis-
tributions, and E (Y |X∗) = B∗X∗, as described in Section 6.2.1. Thus, model (6.4) can
be rewritten as

g (X, Y ; Θ) =
K

∑
k=1

πk fMVN

(
Y |X∗; B∗

k X∗, ΣYk
, ΨYk

)
fMVN (X; Mk, ΣXk

, ΨXk
) . (6.5)

For ease of understanding, a subscript with the variable name is added to the re-
spective covariance matrices.

Notice that there is a lack of model identifiability related to the properties of the
Kronecker product. Indeed, for a MVN distribution Ψ⊗Σ = Ψ

∗⊗Σ
∗ if Σ

∗ = aΣ and
Ψ

∗ = a−1
Ψ. As a result, matrices Σ and Ψ are identifiable up to a multiplicative con-

stant a (Melnykov and Zhu, 2019). According to Gallaugher and McNicholas (2018),
and as adopted in this thesis, a way to obtain a unique solution is to set the first
diagonal element of the row covariance matrix to 1. In detail, all the elements of the
estimated ΣYk

and ΣXk
are divided by their first diagonal element. Therefore, from

an interpretative point of view, all the elements of these matrices are proportionally
scaled with respect to the first one.

6.3 Parameter estimation

Parameter estimation is carried out by means of the ECM algorithm. The EM al-
gorithm cannot be directly implemented because of the characteristics of the MVN

distribution (see Section 5.3). Let Sc = {Xi, Yi, zi}N
i=1 be the complete-data. Then, the

complete-data likelihood is

Lc (Θ) = ∏
N
i=1 ∏

K
k=1

[
πk fMVN

(
Yi|X∗

i ; B∗
k X∗

i , ΣYk
, ΨYk

)
fMVN (Xi; Mk, ΣXk

, ΨXk
)
]zik . (6.6)

Therefore, the corresponding complete-data log-likelihood can be written as

lc (Θ) =
N

∑
i=1

K

∑
k=1

zik ln (πk) +
N

∑
i=1

K

∑
k=1

zik ln [ fMVN (Yi|X∗
i ; B∗

k X∗
i , ΣYk

, ΨYk
)]

+
N

∑
i=1

K

∑
k=1

zik ln [ fMVN (Xi; Mk, ΣXk
, ΨXk

)] .

(6.7)
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E-Step The E-step requires the calculation of

z̈ik := E
Θ̇
(Zik|Xi, Yi)

=
π̇k fMVN(Yi|X∗

i ; Ḃ∗
k X∗

i , Σ̇Yk
, Ψ̇Yk

) fMVN(Xi; Ṁk, Σ̇Xk
, Ψ̇Xk

)
K

∑
j=1

π̇j fMVN(Yi|X∗
i ; Ḃ∗

j X∗
i , Σ̇Yj

, Ψ̇Yj
) fMVN(Xi; Ṁj, Σ̇Xj

, Ψ̇Xj
)

, (6.8)

which corresponds to the posterior probability that the unlabeled observation (Xi, Yi)
belongs to the kth component of the mixture. Because the posterior probability
in (6.8) depends on the density of Xi, the accuracy of clustering can be increased
by using the covariates as well (Zarei et al., 2018).

Now, consider Θ1 = {πk, Mk, ΣXk
, Bk, ΣYk

}K
k=1, and Θ2 = {ΨXk

, ΨYk
}K

k=1.

CM-Step 1 At the first CM-step, by fixing Θ2 at Θ̇2, it is possible to obtain

π̈k =
∑

N
i=1 z̈ik

N
, (6.9)

M̈k =
∑

N
i=1 z̈ikXi

∑
N
i=1 z̈ik

, (6.10)

B̈∗
k =

[
N

∑
i=1

z̈ikYi(Ψ̇Yk
)−1X∗′

i

] [
N

∑
i=1

z̈ikX∗
i (Ψ̇Yk

)−1X∗′
i

]−1

, (6.11)

Σ̈Xk
=

∑
N
i=1 z̈ik

(
Xi − M̈k

) (
Ψ̇Xk

)−1 (
Xi − M̈k

)′

r ∑
N
i=1 z̈ik

, (6.12)

Σ̈Yk
=

∑
N
i=1 z̈ik

(
Yi − B̈∗

k X∗
i

) (
Ψ̇Yk

)−1 (
Yi − B̈∗

k X∗
i

)′

r ∑
N
i=1 z̈ik

. (6.13)

CM-Step 2 At the second CM-step, keeping fixed Θ1 at Θ̈1, it is possible to obtain

Ψ̈Xk
=

∑
N
i=1 z̈ik

(
Xi − M̈k

)′ (
Σ̈Xk

)−1 (
Xi − M̈k

)

q ∑
N
i=1 z̈ik

, (6.14)

Ψ̈Yk
=

∑
N
i=1 z̈ik

(
Yi − B̈∗

k X∗
i

)′ (
Σ̈Yk

)−1 (
Yi − B̈∗

k X∗
i

)

p ∑
N
i=1 z̈ik

. (6.15)

6.3.1 ECM initialization

The ECM algorithm is initialized by specifying the initial quantities in (6.8). Indeed,
with respect to the approach implemented in Section 5.3.3, it is more convenient to
start from the E-step, since it only requires the initialization of the zik. Furthermore,
starting from the M-step would require a random starting value for the B∗

k , and this
is not a straightforward task. In any case, an initial value also for ΨXk

and ΨYk
must

be provided. Therefore, the following initialization strategy is implemented:

1. generate K random positive definite matrices for ΨXk
and ΨYk

. This can be
done via the genPositiveDefMat() function of the clusterGeneration package
(Qiu and Joe., 2015).
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2. generate N random vectors z
(1)
i =

(
z
(1)
i1 , . . . , z

(1)
iK

)⊤
, i = 1, . . . , N. This is done

with the following three approaches:

(a) in a “soft” way, by generating K positive random values from a uniform
distribution in [0,1] for each observation, that are subsequently divided
by their total to sum 1. Being purely random, this procedure is repeated
15 times, and the solution maximizing the observed-data log-likelihood
among these runs is considered.

(b) in a “hard” way, by using the classification produced by the k-means al-
gorithm, computed on the vectorized data;

(c) in a “hard” way, by using the classification produced by mixtures of matrix-
normal distributions, computed on the merged data.

The approach producing the highest observed-data log-likelihood is finally selected.

6.4 Simulation studies

6.4.1 Simulation 1: A focus on the matrix-normal CWM

In this study, several aspects concerning the matrix-normal CWM are discussed.
First and foremost, since the ECM algorithm is used to fit the model, it is useful
to evaluate its parameter recovery, i.e. whether it can correctly recover the generat-
ing parameters. For this reason, simulated data are generated from a MVN-CWM
with p = q = r = 3 and K = 4. Two scenarios are then considered, according to
the different level of overlap of the mixture components. In the first scenario (called
“Scenario A1”), the mixture components are well-separated both in X, by assum-
ing relatively distant mean matrices, and in Y |X∗, by using different intercepts and
slopes. Conversely, in the second scenario (called “Scenario B1”), there is a certain
degree of overlap, since the intercepts are all equal among the mixture components,
and their mean matrices and slopes have nearly the same values. The parameters
used for Scenario A1 are displayed in Table 6.1. In Scenario B1, the set of parame-

TABLE 6.1: Parameters used to generate the simulated data sets under
Scenario A1.

Parameter Group 1 Group 2 Group 3 Group 4

πk 0.30 0.30 0.20 0.20

Mk




1.00 2.00 0.00
−4.00 −3.00 −3.00

1.00 2.00 1.00







6.00 8.00 6.00
2.00 1.00 3.00
5.00 6.00 6.00






−4.00 −3.00 −4.00
−9.00 −9.00 −7.00
−4.00 −3.00 −5.00







12.00 12.00 11.00
6.00 7.00 7.00

10.00 11.00 11.00




ΣXk




1.00 0.50 0.25
0.50 1.00 0.50
0.25 0.50 1.00







2.00 0.40 0.08
0.40 0.20 0.40
0.08 0.40 2.00







1.50 0.75 0.38
0.75 1.50 0.75
0.38 0.75 1.50







1.20 0.60 0.30
0.60 1.20 0.60
0.30 0.60 1.20




ΨXk




1.20 0.60 0.30
0.60 1.20 0.60
0.30 0.60 1.20







1.40 0.70 0.35
0.70 1.40 0.70
0.35 0.70 1.40







0.80 0.40 0.20
0.40 0.80 0.40
0.20 0.40 0.80







1.60 0.80 0.40
0.80 1.60 0.80
0.40 0.80 1.60




B∗
k




0.00 1.00 1.00 1.00
−2.00 1.00 1.50 1.00

1.00 1.50 1.50 1.00







6.00 −1.00 −1.50 −1.00
4.00 −1.00 −1.50 −1.00
8.00 −1.50 −1.50 −1.00






−5.00 1.00 1.00 1.00
−3.00 1.50 1.00 1.00
−6.00 1.50 1.50 1.00







1.00 −1.00 −1.00 −1.00
−5.00 −1.00 −1.50 −1.50

0.00 −1.50 −1.00 −1.50




ΣYk




1.40 0.84 0.50
0.84 1.40 0.84
0.50 0.84 1.40







1.80 1.26 0.88
1.26 1.80 1.26
0.88 1.26 1.80







1.20 0.84 0.59
0.84 1.20 0.84
0.59 0.84 1.20







1.60 0.96 0.58
0.96 1.60 0.96
0.58 0.96 1.60




ΨYk




2.00 0.60 0.18
0.60 0.20 0.60
0.18 0.60 2.00







1.10 0.55 0.28
0.55 1.10 0.55
0.28 0.55 1.10







1.90 1.71 1.54
1.71 1.90 1.71
1.54 1.71 1.90







1.40 1.26 1.13
1.26 1.40 1.26
1.13 1.26 1.40




ters {πk, ΣXk
, ΨXk

, ΣYk
, ΨYk

}4
k=1 and M1, as well as the slopes in B∗

1 and B∗
3 , are the

same of Scenario A. The other mean matrices are obtained by adding a number c to
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each element of the corresponding mean matrices used for Scenario A1. In detail, c
is equal to -5, 5 and -10 for M2, M3 and M4, respectively. The intercept column of

all the mixture components is equal to (7, 2, 5)⊤, while the slopes in B∗
2 and B∗

4 are
all multiplied by -1, with respect to those used in Scenario A1. Finally, two sample
sizes, i.e. N = 200 and N = 500, are considered within each scenario.

The MVN-CWM is fitted directly to each generated data set with G = 4, and the
bias and the mean squared error (MSE) of the parameter estimates are computed.
For the sake of brevity, and as also supported by the existing CWM literature (see,
e.g. Punzo, 2014; Ingrassia et al., 2015; Punzo and McNicholas, 2017a), the attention

is only focused on the
{

B∗
k

}K

k=1
. Similarly to Section 5.4.2, the label switching issue

is controlled by analyzing the overall estimated parameters on each generated data
set, in order to properly identify each mixture component.

Table 6.2 shows the estimated bias and MSE of the parameter estimates for Sce-
nario A1, over one hundred replications for each sample size N, after fitting the
MVN-CWM with G = 4. The same is illustrated in Table 6.3 for Scenario B1. The
first and most immediate result is that the biases and the MSE assume very small
values in both scenarios. This is particularly important for Scenario B1, because of
the presence of overlap between the mixture components. Additionally, within in
each scenario, an increase in the sample size leads to a rough improvement of the
parameter estimates, and it systematically reduces the MSE.

TABLE 6.2: Estimated bias and MSE of the
{

B∗
k

}K
k=1

, over one hun-
dred replications for each sample size N, under Scenario A1.

N = 200 N = 500

Group 1

Bias




0.032 −0.001 0.005 0.002
−0.025 −0.010 −0.008 −0.004
−0.028 0.006 −0.014 −0.004







0.001 −0.003 −0.002 0.007
−0.033 0.002 −0.007 0.004

0.003 −0.004 −0.002 0.005




MSE




0.343 0.011 0.018 0.014
0.337 0.010 0.017 0.018
0.365 0.011 0.020 0.016







0.111 0.004 0.006 0.007
0.114 0.004 0.006 0.006
0.104 0.004 0.006 0.005




Group 2

Bias




0.039 −0.004 0.001 −0.001
−0.005 −0.004 0.002 0.006
−0.004 −0.008 −0.004 0.009







0.001 −0.003 −0.002 −0.001
0.019 −0.000 −0.000 −0.000
0.042 −0.004 −0.002 −0.001




MSE




0.252 0.003 0.003 0.004
0.204 0.002 0.003 0.004
0.170 0.002 0.003 0.005







0.084 0.001 0.001 0.001
0.089 0.001 0.001 0.001
0.099 0.001 0.001 0.001




Group 3

Bias




0.005 −0.008 0.005 0.001
−0.020 −0.010 −0.002 −0.000
−0.051 −0.008 −0.003 −0.001







0.002 −0.000 −0.001 −0.000
0.055 0.001 0.004 0.001
0.018 0.003 0.002 −0.001




MSE




0.229 0.005 0.002 0.003
0.244 0.005 0.002 0.003
0.235 0.006 0.002 0.004







0.104 0.002 0.001 0.001
0.122 0.002 0.001 0.001
0.111 0.002 0.001 0.001




Group 4

Bias




0.097 −0.008 0.011 −0.005
0.027 −0.006 0.006 0.002

−0.017 −0.005 0.006 0.005






−0.041 0.003 0.001 −0.002
−0.045 0.003 0.005 −0.002
−0.006 0.002 0.003 −0.004




MSE




0.412 0.003 0.005 0.004
0.412 0.003 0.007 0.004
0.397 0.003 0.006 0.004







0.242 0.001 0.001 0.001
0.200 0.001 0.001 0.001
0.209 0.001 0.002 0.001




Other aspects that are evaluated consist in the analysis of the classification pro-
duced by the MVN-CWM, as well as the capability of the BIC in identifying the true
number of groups in the data. For this reason, under each scenario, the MVN-CWM
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TABLE 6.3: Estimated bias and MSE of the
{

B∗
k

}K
k=1

, over one hun-
dred replications for each sample size N, under Scenario B1.

N = 200 N = 500

Group 1

Bias



−0.058 −0.011 −0.015 0.015
−0.037 −0.008 −0.011 0.018
−0.082 −0.002 −0.027 0.010







0.052 −0.001 0.008 −0.002
0.034 −0.001 0.004 0.002

−0.018 0.000 −0.006 0.001




MSE




0.368 0.014 0.018 0.021
0.410 0.014 0.021 0.022
0.361 0.011 0.019 0.022







0.118 0.004 0.007 0.006
0.117 0.004 0.007 0.007
0.124 0.004 0.006 0.007




Group 2

Bias



−0.046 0.002 −0.013 −0.001
−0.037 0.005 0.001 0.001
−0.013 0.008 0.004 0.005






−0.014 0.006 −0.002 0.005
−0.030 0.004 −0.006 0.008
−0.008 0.000 −0.002 0.009




MSE




0.046 0.003 0.006 0.004
0.046 0.004 0.003 0.005
0.043 0.004 0.004 0.005







0.015 0.001 0.001 0.002
0.013 0.001 0.001 0.001
0.013 0.001 0.001 0.002




Group 3

Bias




0.035 −0.017 0.011 0.016
0.011 −0.006 0.012 0.008
0.023 −0.010 0.005 0.010







0.007 −0.004 0.002 −0.000
0.015 −0.004 0.001 0.000
0.028 −0.005 0.004 −0.000




MSE




0.078 0.006 0.003 0.003
0.073 0.005 0.003 0.003
0.080 0.005 0.002 0.003







0.027 0.002 0.001 0.001
0.025 0.002 0.001 0.001
0.030 0.002 0.001 0.001




Group 4

Bias




0.039 0.002 0.002 −0.003
0.005 −0.001 −0.004 −0.007

−0.051 −0.003 0.004 0.004






−0.043 0.004 0.001 −0.003
−0.014 −0.000 0.003 0.002
−0.008 −0.002 0.002 0.003




MSE




0.147 0.003 0.005 0.004
0.160 0.006 0.007 0.006
0.132 0.003 0.007 0.006







0.061 0.001 0.002 0.002
0.060 0.001 0.002 0.002
0.069 0.001 0.002 0.002




is fitted to the generated data sets for K ∈ {1, 2, 3, 4, 5}, and the results are reported
in Table 6.4. It is easy to see that in scenario A1, a perfect classification is always

TABLE 6.4: Average ARI and ǫ, along with the number of times in
which the correct K is selected by the BIC, over one hundred replica-

tions for each sample size N, under both scenarios.

N = 200 N = 500

ARI ǫ Correct K ARI ǫ Correct K

Scenario A1 1.00 0.00% 100 1.00 0.00% 100
Scenario B1 0.91 3.04% 99 0.92 2.71% 100

obtained, despite of the considered sample size. Furthermore, the BIC regularly de-
tects the true number of groups in the data. In scenario B1, because of the presence
of overlap, the ARI assumes lower but in any case good values. Relatedly, the per-
centage of misclassified units stands at around the 3% for both sample sizes. About
the BIC, also in this case it correctly identifies the underlying group structure, with
only one exception when N = 200.

The last aspect evaluated in this study deals with the initialization strategy. In

detail, Table 6.5 shows the number of times each strategy for the
{

z
(1)
i

}N

i=1
produces

the highest log-likelihood at convergence, within each scenario and for both sample
sizes. If multiple strategies lead to the same optimal solution, they are all counted.

The initial K random matrices for Ψ
(1)
Xk

and Ψ
(1)
Yk

are assumed to be the same. The
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first result highlights the importance of considering multiple initialization strategies,
since none of them are preferred in all the generated data sets. However, the random
strategy is quite close to this target, since it only fails in 3 data sets under scenario
B1. Very similar performances are obtained when the mixture initialization is used.
Conversely, the k-means strategy has the worst performances, even if it produces the
best solution in approximately the 80% of the data sets.

TABLE 6.5: Number of times indicating which of the initializations

for the
{

z
(1)
i

}N

i=1
produced the highest log-likelihood at convergence,

over one hundred replications for each sample size N, under both
scenarios.

N = 200 N = 500

Random k-means Mixture Random k-means Mixture

Scenario A1 100 77 98 100 79 95
Scenario B1 97 74 87 100 83 100

6.4.2 Simulation 2: A comparison between the MVN-CWM and the MVN-
FMR

In this study, the MVN-CWM is compared to the MVN-FMR. In detail, three sce-
narios with N = 200, p = 2, q = 3 and r = 4 are considered, and in each of them
thirty data sets from a MVN-CWM with K = 2 are generated. The first scenario
(called “Scenario A2”) consists of two groups that differ only for the intercepts and
the covariance matrices. This means that they have totally overlapped mean matri-
ces, which should make the distribution of the covariates pk (X) not important for
clustering. The parameters used to generate the data sets are displayed in Table 6.6.

In the second scenario (called “Scenario B2”) the two groups have the same B∗
k

and πk. The parameters used to generate the data sets are the same of “Scenario A2”,
with the only difference that a value of 5 is added to each element of M2, and that
B∗

2 assumes the same values of B∗
1 . Finally, in the third scenario (called “Scenario

C2”), the two groups have only the same slopes and πk. Here, with respect to the
parameters used under Scenario B2, the only difference is in the intercepts vectors

which are (−3,−4)⊤ and (−7,−8)⊤, for the first and the second group, respectively.
The MVN-CWM and the MVN-FMR are then fitted to the data sets of each sce-

nario for K ∈ {1, 2, 3}, and the results in terms of model selection and clustering are
reported in Table 6.7. It is possible to see that in Scenario A2, the BIC properly select
two groups for both models and the classifications produced are on average perfect.
Therefore, even if the two groups have the same means and are strongly overlapped,
the MVN-CWM seems able to correctly identify the true underlying grouping struc-
ture. However, under such scenario the MVN-FMR should be preferred, since the
distribution of the covariates pk (X) is not useful for clustering, and it is more parsi-
monious than the MVN-CWM. Conversely, Scenarios B2 and C2 represent typical ex-
amples of the usefulness of pk (X). In detail, the BIC always identifies just one group
under both scenarios for the MVN-FMR, with clear consequences in terms of the
classification produced. Notice that, even if the MVN-FMR had been fitted directly
with K = 2, the resulting classifications would lead to almost identical ARI and ǫ for
Scenario B2, and slightly better performance for Scenario C2, since ARI = 0.15 and
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TABLE 6.6: Parameters used to generate the simulated data sets under
Scenario A2.

Parameter Group 1 Group 2

πg 0.50 0.50

Mk




1.00 2.00 2.00 0.00
−1.00 1.00 1.00 2.00

0.00 2.00 2.00 1.00







1.00 2.00 2.00 0.00
−1.00 1.00 1.00 2.00

0.00 2.00 2.00 1.00




ΣXk




1.00 0.50 0.25
0.50 1.00 0.50
0.25 0.50 1.00







2.00 0.40 0.08
0.40 0.20 0.40
0.08 0.40 2.00




ΨXk




1.70 0.85 0.42 0.21
0.85 1.70 0.85 0.42
0.42 0.85 1.70 0.85
0.21 0.42 0.85 1.70







1.00 0.50 0.25 0.12
0.50 1.00 0.50 0.25
0.25 0.50 1.00 0.50
0.12 0.25 0.50 1.00




B∗
k

(
2.00 1.00 1.00 −1.00
3.00 1.00 −1.00 1.00

) (−7.00 1.00 1.00 −1.00
−8.00 1.00 −1.00 1.00

)

ΣYk

(
1.00 0.50
0.50 1.00

) (
2.00 1.20
1.20 2.00

)

ΨYk




2.00 1.00 0.50 0.25
1.00 2.00 1.00 0.50
0.50 1.00 2.00 1.00
0.25 0.50 1.00 2.00







1.70 0.75 0.38 0.19
0.75 1.50 0.75 0.38
0.38 0.75 1.50 0.75
0.19 0.39 0.75 1.50




ǫ = 32.48%. This highlights that regardless of the BIC, the MVN-FMR is not able to
properly model such data structures.

TABLE 6.7: Average ARI and η, along with the number of times in
which the correct G is selected by the BIC, over thirty replications in

each scenario, for the MVN-CWM and MVN-FMR.

MVN-CWM MVN-FMR

ARI ǫ Correct K ARI ǫ Correct K

Scenario A2 1.00 0.00% 100 1.00 0.00% 100
Scenario B2 0.99 0.03% 100 0.00 47.22% 0
Scenario C2 1.00 0.01% 100 0.00 47.18% 0

6.5 Real data applications

6.5.1 Data description

The first data set (herein called “Education data”) contains career indicators from
the Italian National Agency for the Evaluation of Universities and Research Insti-
tutes. For this application, the following p = 2 responses, that measure the level of
completion of studies by students, are considered: (i) the percentage of students that
graduate within T + 1 years (Y1) and (ii) the percentage of students that drop after
T + 1 years (Y2), where T is the normal duration of the study program. Moreover,
the following q = 2 covariates, that may be helpful in explaining this progress, are
taken into account: (i) the percentage of course credits earned in the first year over
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the total to be achieved (X1) and (ii) the percentage of students that have earned at
least 40 course credits during the solar year (X2).

For sake of simplicity, hereafter these variables will be referred by using the cor-
responding name in brackets. All the measurements refer to N = 75 study programs
in the non-telematic Italian universities, over r = 3 years. Each study program is
measured at national level, i.e. it is the average value of all the study programs of
the same type across all the country, for the reference period. There are K = 2 groups
in the data, i.e. N1 = 33 bachelor’s degrees and N2 = 42 master’s degrees.

The second data set (herein called “Insurance data”) contains variables related
to the non-life insurance market in Italy. It is contained in the splm package (Millo
and Piras, 2012) under the name Insurance. This data set was introduced by Millo
and Carmeci (2011) and refers to N = 103 Italian provinces in the years 1998–2002
(r = 5). In this application, the following p = 2 responses, that are related to the
consumption and the presence of insurance products in the market, are considered:
(i) the real per-capita non-life premiums in 2000 euros (PPCD) and (ii) the density of
insurance agencies per 1000 inhabitants (AGEN). Then, the following q = 3 financial
covariates are selected: (i) the real per-capita GDP (RGDP), (ii) the real per-capita
bank deposits (BANK) and (iii) the real interest rate on lending to families and small
enterprises (RIRS). The focus is on this subset of covariates because: (1) they are
almost regularly used in the literature, and their relevant effects on the consumption
or development of insurance products has been widely discussed (see the references
in Millo and Carmeci, 2011, for further details). Indeed, they are commonly used as
proxies for income and general level of economic activity (RGDP), stock of wealth
(BANK) and opportunity cost of allocate funds in insurance policies (RIRS); (2) avoid
an excessive parametrization of the models.

Differently from the previous data set, there is not a classification of the data.
Hoverer, the findings of Millo and Carmeci (2011) seem to suggest the presence of
two groups in the data. Specifically, they underline the existence of two macro areas,
namely the Central-Northern Italy, characterized by an insurance penetration level
relatively close to the European averages, and the Southern-Insular Italy, where a
general economic underdevelopment has long been standing as a fundamental so-
cial and political problem. The presence of groups in the data can be confirmed by
looking at the sampling distribution of each covariate, since p (X) is used in (6.5).
In detail, they are reported in Figure 6.1, for the full 5-year data, as done by Mel-
nykov and Zhu (2019). The bimodality in all these histograms seems to confirm the
existence of two groups in the data, validating the conclusions of Millo and Carmeci
(2011).

6.5.2 Results

In both data sets, the MVN-CWM and the MVN-FMR are fitted to for K ∈ {1, 2, 3}.
When the Education data are considered, the results are reported in Table 6.8. The

TABLE 6.8: Education data: ARI and η for the MVN-CWM and MVN-
FMR selected by the BIC.

Model K ARI η

MVN-CWM 2 1.00 0.00%
MVN-FMR 3 0.88 6.67%

BIC selects a two-component MVN-CWM that yields a perfect classification of the
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FIGURE 6.1: Sampling distributions of the covariates.

data. On the contrary, a three-component MVN-FMR is chosen by the BIC, with a
6.67% of misclassified units. Note that, even if the MVN-FMR was directly fitted
with K = 2, this will produce a similar classification with an ARI of 0.89. Therefore,
this results highlight how the CWM is able to completely recognize the underlying
group structure, differently from the MVN-FMR.

When the Insurance data are analyzed, the BIC selects a two-component MVN-
CWM and a three-component MVN-FMR, respectively. Considering that we do not
have a classification of the data, we cannot compute the ARI or η. To give a represen-
tation of the classifications produced by the competing models, they are illustrated
in Figure 6.2 by using the Italian political map. Specifically, the Italian regions are
bordered in yellow (islands excluded), while the internal provinces are delimited
with the black lines and colored according to the estimated group memberships,
both for the MVN-CWM and the MVN-FMR.
Here, it is possible to see that the classification produced by the MVN-CWM appears
in line with the findings of Millo and Carmeci (2011), with a clear separation between
the Central-Northern Italy and the Southern-Insular Italy. Furthermore, with the
exclusion of three cases, all the provinces belonging to the same region are clustered
together. The only exceptions concern the province of Rome (in the Lazio region),
which due to its social-economic development is reasonably assigned to the Central-
Northern Italy group, the province of Ascoli-Piceno (in the Marche region) and the
province of Massa-Carrara (in the Toscana region). On the contrary, the three groups
detected by the MVN-FRM are not supported by the literature and are difficult to
interpret, even because they put together provinces spanning all over the country
without a straightforward and reasonable justification.

6.6 Conclusion

The first matrix-variate CWM has been introduced in this work. In the MVN-CWM
framework, the sets of responses and covariates may be simultaneously observed at
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(a) (b)

FIGURE 6.2: Partitions produced by the MVN-CWM (a) and MVN-
FMR (b).

different time points or locations. The matrix normal was used for both the cluster-
specific distributions of covariates and responses given covariates, and an ECM al-
gorithm for parameter estimation was presented. A simulation study analyzed pa-
rameter recovery, the classification performance and the initialization strategy for
the proposed model as well as the capability of the BIC to detect the underlying
group structure of the data. Furthermore, the scenarios illustrated in the simulated
analyses have highlighted how the covariates’ distribution can affect the clustering
structure and how important can be to take it into account when defining the model.
Similar conclusions are produced in the first real data application analyzed, where
the MVN-CWM produced a perfect classification, differently from the MVN-FMR
model. Lastly, in the second real data analysis, the MVN-CWM seemed to provide
a more reliable partition of the Italian provinces, according to the existing literature,
than the MVN-FMR model.
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Chapter 7

Conclusions and future
developments

In this thesis several new finite mixtures models have been proposed and applied to
economic, financial and education data sets. With the attempt of summarizing in a
nutshell the main results of each chapter, it is possible to say that:

• the thirteen zero-and-one inflated mixture models introduced in Chapter 3
have shown the importance of not using a single distribution (or not fixing
a priori the number of mixture components to 2) when modeling the loss given
default. Additionally, the use of logit-transformed distributions have provided
better performances with respect to the traditionally used beta distribution.
The family of models proposed have also produced better estimates of the
value at risk when compared to other well-established semiparametric and
nonparametric approaches.

• the two dichotomous unimodal compound models introduced in Chapter 4
have shown several characteristics that make them attractive for the modeliza-
tion of the insurance losses distribution. Indeed, they provide a robust alterna-
tive compared to the corresponding simple conditional distribution, allow the
detection of typical/atypical losses and the definition of the typical/atypical
regions. Furthermore, the proposed models have also displayed better fit-
ting and risk measures estimates when compared to other distributions and
approaches, among which there are the t-score estimator and the PORT-MOp

method.

• the two matrix-variate mixture models introduced in Chapter 5, based on the
two new distributions therein proposed, have provided an alternative to the
matrix-variate t mixture models, which can be considered the only matrix-
variate model, having elliptical and heavy-tailed mixture components, used
for clustering. Because of their heavier-than-normal tails, these models are
able to cope with clusters having potential mild outliers in a proper way and
may avoid the disruption of the true underlying grouping structure, as shown
both in the simulated and real data analyses.

• the matrix normal cluster-weighted model introduced in Chapter 6 has repre-
sented the first finite mixture of regression model with random covariates in
the matrix-variate literature. The results of the simulated and real data appli-
cations have highlighted how the covariates’ distribution can affect the clus-
tering structure and how important is to take it into account when defining
the model. This is of particular importance since the competing approach (the
finite mixture of regression model with fixed covariates) has performed poorly
when fitted to the considered data.
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All the models introduced in this thesis can be be extended in different ways.
Specifically, future works will concern:

• for the zero-and-one inflated mixture models of Chapter 3, it might be inter-
esting to consider them in a nonparametric context by using smoothers for the
LGD values on (0,1). Furthermore, covariates are often available along with
LGD in real data. Then, another extension would deal with the regression
framework, in which the response variable is conditionally distributed accord-
ing to one of the zero-and-one inflated mixture models. Relatedly, by following
the approach of Centoni et al. (2019), a concomitant-variable latent-class model
could also be implemented. In their work, the authors considered a latent class
of beta inflated distributions to assess students’ performance of a private Ital-
ian university. Therefore, it might be also interesting to apply in that context
the other distributions used in the chapter of this thesis.

• for the dichotomous unimodal compound models of Chapter 4, different uni-
modal hump-shaped distributions (defined on a positive support) could be
considered. Additionally, their extension to the multivariate context, where
the insurance losses are jointly modeled with the allocated loss adjustment ex-
penses (ALAE; see e.g. Abu Bakar et al., 2015) could be studied. Finally, also
in this case, an extension in a regression framework might be implemented,
in which the response variable is conditionally distributed according to one of
the two dichotomous unimodal compound models.

• for the matrix-variate mixture models of Chapter 5, it might be useful to con-
sider constrained parametrizations of the means and covariance matrices, in
order to reduce the number of parameters to be estimated, and introduce par-
simony in the models (Sarkar et al., 2020). Furthermore, to accommodate skew-
ness in the data, the two distributions herein defined could also be general-
ized in order to include of a skewness parameter (Gallaugher and McNicholas,
2018).

• for the CWM in Chapter 6, a first extension could consists in using such model
in further application areas. In this work, education and insurance frame-
works have been considered, but other possible applications might involve:
1) environmental data, where economic and political variables can be used as
regressors, whereas variables measuring the concept of “environmental con-
cern” can be considered as dependent variables. Each variable is measured
for a set of countries across several years (Dunlap and Michelson, 2002; Hao,
2016); 2) financial data, where firm related variables are used are regressors,
whereas performance measures such as the ROA, ROI and ROE can be used as
dependent variables. Also in this case, all the variables are measured over the
time for a set of firms (Bou and Satorra, 2018).

A second extension could concern the development of a procedure for vari-
able selection. Specifically, it would be interesting to evaluate which variables
contribute to the clustering and which are not required. This would lead to a
parsimonious model and might avoid that noisy variables are inserted in the
model. While variable selection procedures in model-based clustering have
been widely discussed (see, e.g. Fop et al., 2018), to my knowledge, such task
has not yet been treated for any of the cluster weighted model present in the
literature. Indeed, we should understand which responses, regressors or both
are not useful for clustering, and the approaches mentioned so far cannot be
straightforward applied.
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