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A generalization of Kruskal–Katona’s theorem

Luca Amata and Marilena Crupi

Abstract

Let K be a field, E the exterior algebra of a finite dimensional K-
vector space, and F a finitely generated graded free E-module with
homogeneous basis g1, . . . , gr such that deg g1 ≤ deg g2 ≤ · · · ≤ deg gr.
We characterize the Hilbert functions of graded E–modules of the type
F/M , with M graded submodule of F . The existence of a unique lexi-
cographic submodule of F with the same Hilbert function as M plays a
crucial role.

1 Introduction

The extremal properties of Hilbert functions have been studied in a lot of pa-
pers. Indeed, such a subject is related to combinatorics, commutative algebra
and algebraic geometry, and encodes important information. There are many
well–known results, that date back to Macaulay [20], on the classification of
Hilbert functions in various contexts. The Macaulay’s key idea about the ex-
istence of highly structured monomial ideals, the lexicographic ideals, which
attain all Hilbert functions of quotients of polynomial rings, revealed crucial.
The pivotal property is that a lexicographic ideal grows as slowly as possible.
Macaulay’s theorem has been the inspiration for many similar classifications.
Stanley wrote Macaulay’s theorem in its modern form in [21] (see also [6]).
Kruskal proved a theorem on bounding the f -vectors of simplicial complexes
in a way similar to Macaulay’s theorem [18]. Katona independently proved
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an equivalent result phrased in terms of Sperner families [19]. The Kruskal–
Katona theorem may be also interpreted as a theorem on Hilbert functions of
quotients of exterior algebras in [4]. Finally, Macaulay’s theorem has been ex-
tended to modules by many authors, in particular by Hulett [17] and Gasharov
in [11].

Let K be a field, V a K-vector space with basis e1, . . . , en, and E the
exterior algebra of V . Let F = ⊕ri=1Egi be a finitely generated graded free E-
module with homogeneous basis g1, . . . , gr such that deg g1 ≤ deg g2 ≤ · · · ≤
deg gr.

In this paper, we generalize the combinatorial Kruskal–Katona theorem
[4, Theorem 4.1] for finitely generated modules over exterior algebras. More
precisely, we describe the possible Hilbert functions of graded E–modules of
the form F/M , with M graded submodule of F . Our result bounds the growth
of Hilbert function of such a kind of modules. A key role in our context is
played by the class of lexicographic submodules.

If I is a graded ideal of E, the construction of the lexicographic ideal
I lex with the same Hilbert function of I proceeds as follows: for each graded
component Ij of I, let I lexj be the K–vector space spanned by the (unique)

lexicographic segment Lj with |Lj | = dimK Ij . Then one defines I lex = ⊕jI lexj .
Such a construction, with suitable modifications, can be applied if one wants
to get the unique lexicographic submodule attaining the Hilbert function of
the given graded submodule in F (Theorem 4.2).

The paper is organized as follows. Section 2 contains preliminary notions
and results. In Section 3, we discuss in details the Hilbert functions of quo-
tients of graded free E-modules. The study of the behavior of these functions
is crucial for the development of the paper. In Section 4, we state a new
expression for such Hilbert functions (Proposition 4.1) and we give their char-
acterization (Theorem 4.2) via the lexicographic submodules. Finally, Section
5 contains some examples illustrating our results.

All the examples are constructed by a Macaulay2 package created by the
authors of this article.

2 Preliminaries and notations

Let K be a field. We denote by E = K 〈e1, . . . , en〉 the exterior algebra of
a K-vector space V with basis e1, . . . , en. For any subset σ = {i1, . . . , id} of
{1, . . . , n} with i1 < i2 < · · · < id we write eσ = ei1 ∧ . . . ∧ eid , and call eσ a
monomial of degree d. We set eσ = 1, if σ = ∅. The set of monomials in E
forms a K-basis of E of cardinality 2n.

In order to simplify the notation, we put fg = f ∧ g for any two elements
f and g in E. An element f ∈ E is called homogeneous of degree j if f ∈ Ej ,
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where Ej =
∧j

V . An ideal I is called graded if I is generated by homogeneous
elements. If I is graded, then I = ⊕j≥0Ij , where Ij is the K-vector space of
all homogeneous elements f ∈ I of degree j. We denote by indeg(I) the initial
degree of I, that is, the minimum s such that Is 6= 0.

For any not empty subset S of E (respectively, of F ), we denote by Mon(S)
the set of all monomials in S (respectively, of F ), and we denote its cardinality
by |S|. Moreover, we denote by Mond(S) the set of all monomials of degree d
in S.

Let M be the category of finitely generated Z-graded left and right E-
modules M satisfying am = (−1)deg a degmma for all homogeneous elements
a ∈ E, m ∈M .

If M ∈M, the function HM : Z→ Z given by HM (d) = dimKMd is called
the Hilbert function of M ([6, Chapter 4], [7, Chapter 1, § 1.9]).

Let F ∈ M be a free module with homogeneous basis g1, . . . , gr, where
deg(gi) = fi for each i = 1, . . . , r, with f1 ≤ f2 ≤ · · · ≤ fr. We write
F = ⊕ri=1Egi. The elements of the form eσgi, where eσ ∈ Mon(E), are called
monomials of F , and deg(eσgi) = deg(eσ) + deg(gi).

When we write F = Er, we mean that F is the free E-module F = ⊕ri=1Egi
with homogeneous basis g1, . . . , gr, where gi (i = 1, . . . , r) is the r-tuple where
the unique non zero–entry is 1 in the i–th position, and such that deg(gi) = 0,
for all i.

Definition 2.1. A graded submodule M of F is a monomial submodule if M
is a submodule generated by monomials of F , i.e.,

M = I1g1 ⊕ · · · ⊕ Irgr,

with Ii a monomial ideal of E, for each i.

If we order the monomials of F with respect to the degree reverse lexico-
graphic order, >degrevlexF

([5, Section 5], [7, Chapter 15, § 15.7]) and M is a
graded submodule of F , denoting by in(M) the submodule of F generated by
the initial terms of elements of M , one has that HF/M = HF/ in(M). Hence,
since in(M) is a monomial submodule of F with the same Hilbert function as
M , one may assume M itself to be a monomial submodule without changing
the Hilbert function.

In the study of the behavior of the Hilbert function of a graded E-module,
the class of lexicographic modules plays a fundamental role.

Let Mond(E) be the set of all monomials of degree d ≥ 1 in E. Denote
by >lex the lexicographic order (lex order, for short) on Mond(E), i.e., if
eσ = ei1ei2 · · · eid and eτ = ej1ej2 · · · ejd are monomials belonging to Mond(E)
with 1 ≤ i1 < i2 < · · · < id ≤ n and 1 ≤ j1 < j2 < · · · < jd ≤ n, then
eσ >lex eτ if i1 = j1, . . ., is−1 = js−1 and is < js for some 1 ≤ s ≤ d.
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Definition 2.2. A nonempty subset M of Mond(E) is called a lexicographic
segment (lex segment, for short) of degree d if for all v ∈ M and all u ∈
Mond(E) such that u >lex v, we have that u ∈M .

Definition 2.3. A monomial ideal I of E is called a lexicographic ideal (lex
ideal, for short) if for all monomials v ∈ I and all monomials u ∈ E with
deg v = deg u and u >lex v, then u ∈ I, i.e., Mond(I) is a lex segment, for all
d.

Remark 2.4. The trivial ideals of E are monomial lex ideals.

It is well–known that if I is a graded ideal of E, then there exists a unique
lex segment ideal of E, usually denoted by I lex, such that HE/I = HE/Ilex [4,
Theorem 4.1] (see also [14, Theorem 6.3.1]).

Now, let Fd be the part of degree d of F = ⊕ri=1Egi, i.e., the K-vector
space of homogeneous elements of F of degree d, and let Mond(F ) be the set
of all monomials of degree d of F . We order such a set by the ordering >lexF

defined as follows:
if ugi and vgj are monomials of F such that deg(ugi) = deg(vgj), then
ugi >lexF

vgj if i < j or i = j and u >lex v.
For instance, if E = K〈e1, e2, e3〉 and F = Eg1⊕Eg2, with deg g1 = 2 and

deg g2 = 3, the monomials of F , with respect to >lexF
, are ordered as follows:

Mon2(F ) g1

Mon3(F ) e1g1 >lexF e2g1 >lexF e3g1 >lexF g2

Mon4(F ) e1e2g1 >lexF e1e3g1 >lexF e2e3g1 >lexF e1g2 >lexF e2g2 >lexF e3g2

Mon5(F ) e1e2e3g1 >lexF e1e2g2 >lexF e1e3g2 >lexF e2e3g2

Mon6(F ) e1e2e3g2

Definition 2.5. A nonempty subset N of Mond(F ) is called a lexicographic
segment of F (lexF segment, for short) of degree d if for all v ∈ N and all
u ∈ Mond(F ) such that u >lexF

v, then u ∈ N .

Definition 2.6. Let L be a monomial submodule of F . L is a lexicographic
submodule (lex submodule, for short) if for all u, v ∈ Mond(F ) with v ∈ L
and u >lexF

v, one has u ∈ L, for every d, i.e., Mond(L) is a lexF segment of
degree d, for each degree d.

Definition 2.6 is equivalent to the following one [2, Proposition 3.12] (see
also [9, Proposition 3.8]).
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Definition 2.7. Let L be a graded submodule of F . L is a lex submodule of F if
L = ⊕ri=1Iigi, with Ii lex ideals of E (i = 1, . . . , r), and (e1, . . . , en)ρi+fi−fi−1

⊆ Ii−1, for i = 2, . . . , r, with ρi = indegIi.

Example 2.8. Let E = K〈e1, e2, e3, e4〉 and F = Eg1⊕Eg2⊕Eg3, with deg g1 =
−2, deg g2 = −1 and deg g3 = 3. The submodule

L = (e1e2, e1e3, e2e3e4)g1 ⊕ (e1e2, e1e3, e1e4, e2e3)g2 ⊕ (e1e2e3, e1e2e4)g3

is a lex submodule of F .

3 The Hilbert function of graded E-modules

In this Section, we discuss the Hilbert functions of quotients of free E–modules.
We make the following conventions:(

m

k

)
= 0 if m < k or k < 0.

One can observe that if E = K〈e1, . . . , en〉, then HE(d) = Mon(Ed) =
(
n
d

)
,

where
(
n
d

)
is the number of monomials of degree d in E. Hence, if I is a graded

ideal of E, it follows that

HE/I(d) +HI(d) =

(
n

d

)
.

Furthermore, if F = ⊕ri=1Egi, we have that

HF (d) =

r∑
i=1

HEgi(d) =

r∑
i=1

(
n

d− fi

)
,

and consequently, if M is a graded submodule of F , one has

HF/M (d) +HM (d) =

r∑
i=1

(
n

d− fi

)
.

Let a and i be two positive integers. Then a has the unique i-th Macaulay
expansion [14, Lemma 6.3.4]

a =

(
ai
i

)
+

(
ai−1
i− 1

)
+ · · ·+

(
aj
j

)
with ai > ai−1 > · · · > aj ≥ j ≥ 1. We define
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a(i) =

(
ai
i+ 1

)
+

(
ai−1
i

)
+ · · ·+

(
aj
j + 1

)
.

We also set 0(i) = 0 for all i ≥ 1.
We quote next result from [4].

Theorem 3.1. ([4, Theorem 4.1]) Let (h1, . . . , hn) be a sequence of nonnega-
tive integers. Then the following conditions are equivalent:

(a) 1 +
∑n
i=1 hit

i is the Hilbert series of a graded K-algebra E/I;

(b) 0 < hi+1 ≤ h(i)i , 0 < i ≤ n− 1.

Theorem 3.1 is known as the Kruskal-Katona theorem.
From now on, if 1 +

∑n
i=1 hit

i is the Hilbert series of a graded K-algebra
E/I, I ( E, the sequence (1, h1, . . . , hn) is called the Hilbert sequence of E/I.
We will denote it by HsE/I .

From the Kruskal-Katona theorem, one can deduce that a sequence of
nonnegative integers (h0, h1, . . . , hn) is the Hilbert sequence of a graded K–
algebra E/I, with I ( E graded ideal of initial degree ≥ 1, if h0 = 1, h1 ≤ n
and condition (b) in Theorem 3.1 holds. Note that if I = 0, then HsE/I =

HsE = (1, n,
(
n
2

)
, · · · ,

(
n
n

)
).

Finally, we set HsE/I = (0, . . . , 0︸ ︷︷ ︸
n+1

), if I = E.

Let us consider the graded E-module F = ⊕ri=1Egi. One can quickly verify
that

HF (d) = dimK Fd = 0, for d < f1 and d > fr + n. (1)

Now, we discuss the Hilbert function of a graded E–algebra F/M , with M
submodule of F .

Discussion 3.2. Assume M is a monomial submodule of F . From (1), it follows
that

HF/M (t) =

fr+n∑
i=f1

HF/M (i)ti,

and we can associate to F/M the following sequence

(HF/M (f1), HF/M (f1 + 1), . . . ,HF/M (fr + n)) ∈ Nfr+n−f1+1
0 . (2)

Such a sequence is called the Hilbert sequence of F/M , and denoted by HsF/M .
The integers f1, f1 + 1, . . . , fr + n are called the HsF/M -degrees. It is clear
that HsF/M ≤ HsF component–wise.
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Moreover, we define

indegHsF/M = min{d : HF/M (d) 6= 0}, for d = f1, . . . , fr + n.

We use the standard notation [p] for the set {1, 2, . . . , p}.
Consider the sequence HsF/M defined in (2). The entries HF/M (fi) (i =

1, . . . , r) are called the critical values of HsF/M . Moreover, we define

µfi = |{s ∈ [r] : fs = fi}|, for i = 1, 2, . . . , r,

and we call µfi the multiplicity of HF/M (fi).
Now, let us consider the case HF/M (f1) = 0. In such a situation, one has:

M = Eg1 ⊕ T2,

where T2 is a submodule of Eg2 ⊕ · · · ⊕ Egr. Indeed, if HF/M (f1) = 0,
then Mf1 = Ff1 and so Mj = Fj , for j = f1, . . . , f2 − 1 (it is clear because
1Kg1 ∈M). Hence, HF/M (j) = 0, for j = f1, . . . , f2 − 1.

Now, let us consider the critical value HF/M (f2).
IfHF/M (f2) = 0, we can repeat the same reasoning done forHF/M (f1) = 0,

i.e., HF/M (j) = 0, for j = f2, . . . , f3 − 1, and M = Eg1 ⊕Eg2 ⊕ T3, where T3
is a submodule of Eg3 ⊕ · · · ⊕ Egr. And so on.

Now, let k be the minimum integer such that HF/M (fk) 6= 0, i.e.,
indegHsF/M = fk. Note that M = Eg1 ⊕ · · · ⊕ Egk−1 ⊕ Tk, where Tk is
a submodule of Egk ⊕ · · · ⊕ Egr.We have:

HF/M (fk) ≤ µfk ,

and
HF/M (fk + 1) ≤ nµfk + µfk+1.

The integer HF/M (fk) is called the initial critical value (of F/M) and fk
the initial critical degree (of F/M).

4 The main result

In this Section, we state a generalization of the Kruskal–Katona theorem.
We characterize the Hilbert functions of quotients of a fixed free E-module
F = ⊕ri=1Egi.

Our first result gives a new expression for the Hilbert functions of graded
E-modules.
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Proposition 4.1. Let M be a graded submodule of F = ⊕ri=1Egi and let
HF/M the Hilbert function of F/M . There exists an integer N ≤ r such that
we have the unique expression

HF/M (d) =

r∑
i=N+1

(
n

d− fi

)
+

(
a0

d− fN

)
+

(
a1

d− fN − 1

)
+· · ·+

(
as

d− fN − s

)
,

where (
a0

d− fN

)
+

(
a1

d− fN − 1

)
+ · · ·+

(
as

d− fN − s

)
<

(
n

d− fN

)
and a0 > a1 > · · · > as and ai ≥ d− fN − i, for all 0 ≤ i ≤ s.

Then,

HF/M (d+1) ≤
r∑

i=N+1

(
n

d− fi + 1

)
+

(
a0

d− fN + 1

)
+

(
a1

d− fN

)
+· · ·+

(
as

d− fN − s + 1

)
,

for d ≥ indegHsF/M + 1.

Proof. Since dimK Fd =
∑r
i=1

(
n

d−fi

)
, one has that

HF/M (d) ≤
r∑
i=1

(
n

d− fi

)
.

Let N be the greatest positive integer less than or equal to r such that

HF/M (d) =

r∑
i=N+1

(
n

d− fi

)
+ a =

r∑
i=N+1

HE(d− fi) + a, a <

(
n

d− fN

)
.

We may assume there exists a graded ideal I of E generated in degree d− fN
such that HE/I(d− fN ) = a. If

a =

(
a0

d− fN

)
+

(
a1

d− fN − 1

)
+ · · ·+

(
as

d− fN − s

)
is the (d− fN )–th Macaulay representation of a, one has:

HF/M (d) =

r∑
i=N+1

(
n

d− fi

)
+

(
a0

d− fN

)
+

(
a1

d− fN − 1

)
+· · ·+

(
as

d− fN − s

)
,
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for d ≥ indegHsF/M + 1. Therefore, from Theorem 3.1, it follows that:

HF/M (d+ 1) =

r∑
i=N+1

HE(d+ 1− fi) +HE/I(d+ 1− fN )

≤
r∑

i=N+1

(
n

d+ 1− fi

)
+HE/I(d− fN )(d−fN ) =

r∑
i=N+1

(
n

d+ 1− fi

)
+ a(d−fN )

=

r∑
i=N+1

(
n

d+ 1− fi

)
+

(
a0

d− fN + 1

)
+

(
a1

d− fN

)
+ · · ·+

(
as

d− fN − s+ 1

)
.

If T is a set of monomials of degree d < fr +n of F , we denote by Shad(T )
the following set of monomials of degree d+ 1 of F :

Shad(T ) = {(−1)α(σ,j)ejeσgi : eσgi ∈ T, j /∈ supp(eσ), j = 1, . . . , n, i = 1, . . . r},

α(σ, j) = |{r ∈ σ : r < j}|. Such a set is called the shadow of T (see [8],
for the r = 1 case). Moreover, let us define the i-th shadow recursively by
Shadi(T ) = Shad(Shadi−1(T )), Shad0(T ) = T .

Furthermore, if M is a monomial submodule of F , and Md (d ≥ f1) is the
K-vector space generated by all monomials of degree d belonging to M , we
set Shad(Md) = Shad(Mon(Md)) and by E1Md the K-vector space spanned
by Shad(Md).

For p, q ∈ Z with p < q, let us define the following set:

[p, q] = {j ∈ Z : p ≤ j ≤ q}.

Theorem 4.2. Let (f1, f2, . . . , fr) ∈ Zr be an r–tuple such that f1 ≤ f2 ≤
· · · ≤ fr and let (hf1 , hf1+1, . . . , hfr+n) be a sequence of nonnegative integers.
Set

s = min{k ∈ [f1, fr + n] : hk 6= 0},

and
r̃j = |{p ∈ [r] : fp = s+ j}|, for j = 0, 1.

Then the following conditions are equivalent:

(a)
∑fr+n
i=s hit

i is the Hilbert series of a graded E-module F/M , with F =
⊕ri=1Egi finitely generated graded free E-module with the basis elements
gi of degrees fi;
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(b) hs ≤ r̃0, hs+1 ≤ nr̃0 + r̃1, hi =
∑r
j=N+1

(
n

i−fj

)
+ a, where a is a positive

integer less than
(

n
i−fN

)
, 0 < N ≤ r, and hi+1 ≤

∑r
j=N+1

(
n

i−fj+1

)
+

a(i−fN ), i = s+ 1, . . . , fr + n;

(c) there exists a unique lexicographic submodule L of a finitely generated
graded free E-module F = ⊕ri=1Egi with the basis elements gi of degrees

fi and such that
∑fr+n
i=s hit

i is the Hilbert series of F/L.

Proof. (a)⇒ (b). It follows from Proposition 4.1 and Discussion 3.2. Note
that s is the initial critical degree, r̃0 = µs and r̃1 = µs+1.
(b)⇒ (c). We construct a lexicographic submodule L of F such that HF/L(t) =∑fr+n
i=s hit

i.
Setting Lp = 〈Mon(Fp)〉 (p = f1, . . . , s−1), let Ls+j be the K-vector space

generated by the lexF segment of length dimK Fs+j − hs+j , j = 0, 1, where
hs ≤ r̃0 and hs+1 ≤ nr̃0 + r̃1.

Now, suppose Lk, s ≤ k ≤ i, has already been constructed.
By hypothesis, dimK Fi/Li = hi =

∑r
j=N+1

(
n

i−fj

)
+a, where a is a positive

integer less than a <
(

n
i−fN

)
. Hence,

dimK Fi+1/E1Li =

r∑
j=N+1

(
n

i− fj + 1

)
+ a(i−fN )

and
hi+1 ≤ dimK Fi+1/E1Li. (3)

Let Li+1 be the K-vector space spanned by the lexF segment of length
dimK Fi+1 − hi+1. From (3), one has

dimF Li+1 = dimK Fi+1−hi+1 ≥ dimK Fi+1−dimK Fi+1/E1Li = dimK E1Li.

Hence E1Li ⊆ Li+1. It follows that L = ⊕dLd is a submodule of F . The
uniqueness of L is clear from the definition of lex submodules.
(c)⇒ (a). It follows immediately.

Remark 4.3. We have obtained a generalization of Kruskal-Katona’s theorem
(Theorem 4.2) via results on ideals in an exterior algebra (Proposition 4.1).
We believe that such a characterization could also be obtained using the same
techniques as in [4], i.e., extending [4, Theorem 4.2] to graded E–modules.

5 Examples

In this Section, we collect some examples in order to illustrate our results.
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Let p, q ∈ Z such that p < q. A finite sequence H of nonnegative integers
is called [p, q]–sequence if it is indexed by the set [p, q]:

H = (hi)i∈[p,q] = (hp, hp+1, . . . , hq).

We set
H(j) = hj , for j ∈ [p, q];

the integers j are called H–degrees.
One can observe that the sequence HsF/M is a [f1, fr + n]–sequence, and

the integers j ∈ [f1, fr + n] are the HsF/M–degrees.
Moreover, if p = 0, then H is the (q + 1)–tuple (h0, h1, . . . , hq).

Example 5.1. Let p = −2 and q = 1. Then [−2, 1] = {−2,−1, 0, 1}. If H =
(0, 2, 7, 3) is a [−2, 1]–sequence, one has H(−2) = 0, H(−1) = 2, H(0) = 7,
and H(1) = 3.

Example 5.2. Let E = K〈e1, e2, e3, e4〉, F = E3, and consider the [0, 4]–
sequence

H = (3, 11, 13, 3, 0) = (h0, h1, . . . , h4).

Using the procedure described in Theorem 4.2, we can guess if H is a Hilbert
sequence of a quotient F/M (M graded submodule of F ), and we can also
construct the lex submodule L of F such that HF/L = H.

With the same notations as in Theorem 4.2. We have s = f1 = 0, r̃0 = 3
and r̃1 = 0. In fact, the initial critical value is the first element of the sequence
and has multiplicity equal to 3, and there do not exist critical degrees different
from it. Therefore, the first two conditions in Theorem 4.2 (b) are realized:

h0 = 3 ≤ 3 = r̃0,

h1 = 11 ≤ 12 = nr̃0 + r̃1.

By Proposition 4.1, we have to verify the following inequalities

h1 = 11 =

(
4

1

)
+

(
4

1

)
+

(
3

1

)
a

⇒ h2 = 13 ≤ 15 =

(
4

2

)
+

(
4

2

)
+

(
3

2

)
a(1)

,

h2 = 13 =

(
4

2

)
+

(
4

2

)
+

(
2

2

)
a

⇒ h3 = 3 ≤ 8 =

(
4

3

)
+

(
4

3

)
+

(
2

3

)
a(2)

,

h3 = 3 =

(
3

3

)
+

(
2

2

)
+

(
1

1

)
a

⇒ h4 = 0 ≤ 0 =

(
3

4

)
+

(
2

3

)
+

(
1

2

)
a(3)

.
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a is the integer defined in Proposition 4.1 (see its proof). Hence H is the
Hilbert sequence of a quotient of F .

In order to assure this, we construct the lex submodule L = ⊕4
d=0Ld of F

such that HF/L = H; Ld is the K–vector space generated by a lex segment of
length dimK Fd − hd, for d = 0, . . . , 4.

Firstly, one can observe that dimK L0 = dimK F0−h0 = 0. Hence L0 = 0.
Furthermore, dimK L1 = dimK F1 − h1 = 12− 11 = 1, and so

L1 = 〈e1g1〉.

In degree 2, we have dimK L2 = dimK F2 − h2 = 3
(
4
2

)
− 13 = 5. Since,

Shad(L1) = {e1e2g1, e1e3g1, e1e4g1},

L2 = 〈u ∈ Shad(L1), e2e3g1, e2e4g1〉.

In degree 3, we have dimK L3 = dimK F3 − h3 = 3
(
4
3

)
− 3 = 9. Since

|Shad(L2)| = 4 (eσg1 ∈ Shad(L2), for all eσ ∈ E3), one has

L3 = 〈u ∈ Shad(L2), e1e2e3g2, e1e2e4g2, e1e3e4g2, e2e3e4g2, e1e2e3g3〉.

Finally, we have dimK L4 = dimK F4 − h4 = 3
(
4
4

)
= 3 and all the monomials

we need are in Shad(L3), i.e., L4 = 〈u ∈ Shad(L3)〉.

Hence, we have constructed the unique lex submodule L = ⊕ri=1Iigi with
HF/L = (3, 11, 13, 3, 0). More in details:

L = (e1, e2e3, e2e4)g1 ⊕ (e1e2e3, e1e2e4, e1e3e4, e2e3e4)g2 ⊕ (e1e2e3)g3.

A more general example can be given if one considers a free-module F with
a basis in different degrees.

Example 5.3. Let E = K〈e1, e2, e3, e4〉, F = ⊕3
i=1Egi with f1 = −2, f2 =

0, f3 = 3, and let us consider the [−2, 7]–sequence

H = (1, 4, 5, 4, 5, 2, 4, 3, 1, 0) = (h−2, h−1, . . . , h7).

As in Example 5.2, we will verify that H is a Hilbert sequence, and then we
will construct the lex submodule L of F such that HF/L = H.

Since s = f1 = −2, r̃−2 = 1 and r̃−1 = 0, we have:

h−2 = 1 ≤ 1 = r̃−2, h−1 = 4 ≤ 4 = nr̃−2 + r̃−1.
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Moreover, next inequalities hold (Proposition 4.1):

h−1 = 4 =

(
4

−4

)
+

(
4

−1

)
+

(
4

1

)
⇒ h0 = 5≤ 7 =

(
4

−3

)
+

(
4

0

)
+

(
4

2

)

h0 = 5 =

(
4

−3

)
+

(
4

0

)
+

(
3

2

)
+

(
1

1

)
a

⇒h1 = 4 ≤ 5 =

(
4

−2

)
+

(
4

1

)
+

(
3

3

)
+

(
1

2

)
a(2)

h1 = 4 =

(
4

−2

)
+

(
4

1

)
⇒ h2 = 5 ≤ 6 =

(
4

−1

)
+

(
4

2

)

h2 = 5 =

(
4

−1

)
+

(
3

2

)
+

(
2

1

)
a

⇒ h3 = 2 ≤ 3 =

(
4

0

)
+

(
3

3

)
+

(
2

2

)
a(2)

h3 = 2 =

(
4

0

)
+

(
3

3

)
a

⇒ h4 = 4 ≤ 4 =

(
4

1

)
+

(
3

4

)
a(3)

h4 = 4 =

(
4

1

)
⇒ h5 = 3 ≤ 6 =

(
4

2

)

h5 = 3 =

(
3

2

)
a

⇒ h6 = 1 ≤ 1 =

(
3

3

)
a(2)

h6 = 1 =

(
3

3

)
a

⇒ h7 = 0 ≤ 0 =

(
3

4

)
a(3)

It is worthy of being stressed that in order to get the right expression for the
hi’s (i = −1, . . . , 6), we firstly compute the binomial coefficient

(
4

i−f3

)
, then

the other admissible ones.
For instance, h−1 = 4 =

(
4

−1−3
)

+
(

4
−1−0

)
+
(

4
−1+2

)
.

Now, we can construct the lex submodule L = ⊕7
d=−2Ld of F such that

HF/L = H, where Ld (d = −2, . . . , 7) is the K–vector space generated by a
lex segment of length dimK Fd − hd, for d = −2, . . . , 7.

At first, we observe that dimK L−2 = dimK F−2 − h−2 = 0. Moreover,
dimK L−1 = dimK F−1 − h−1 = 0. Hence L−2 = L−1 = 0.
In degree 0, dimK L0 = dimK F0 − h0 =

(
4
−3
)

+
(
4
0

)
+
(
4
2

)
− 5 = 2 and so

L0 = 〈e1e2g1, e1e3g1〉.
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In degree 1, dimK L1 = dimK F1 − h1 =
(

4
−2
)

+
(
4
1

)
+
(
4
3

)
− 4 = 4. Since

Shad(L0) = {e1e2e3g1, e1e2e4g1, e1e3e4g1}, we choose

L1 = 〈u ∈ Shad(L0), e2e3e4g1〉.

In degree 2, dimK L2 = dimK F2 − h2 =
(

4
−1
)

+
(
4
2

)
+
(
4
4

)
− 5 = 2. Since

Shad(L1) = {e1e2e3e4g1}, we set

L2 = 〈u ∈ Shad(L1), e1e2g2〉.

In degree 3, dimK L3 = dimK F3 − h3 =
(
4
0

)
+
(
4
3

)
+
(
4
5

)
− 2 = 3. Since

Shad(L2) = Shad2(L1) ∪ {e1e2e3g2, e1e2e4g2} = {e1e2e3g2, e1e2e4g2}, we get

L3 = 〈u ∈ Shad(L2), e1e3e4g2〉.

In degree 4, dimK L4 = dimK F4 − h4 =
(
4
1

)
+
(
4
4

)
+
(
4
6

)
− 4 = 1. Since

Shad(L3) = {e1e2e3e4g2}, we have that L4 = 〈u ∈ Shad(L3)〉.
In degree 5, dimK L5 = dimK F5−h5 =

(
4
2

)
+
(
4
5

)
+
(
4
7

)
−3 = 3. Since Shad(L4)

is empty, we have
L5 = 〈e1e2g3, e1e3g3, e1e4g3〉.

In degree 6, dimK L6 = dimK F6 − h6 =
(
4
3

)
+
(
4
6

)
+
(
4
8

)
− 1 = 3. Since

Shad(L5) = {e1e2e3g3, e1e2e4g3, e1e3e4g3}, we set L6 = 〈u ∈ Shad(L5)〉.
Finally, in degree 7, dimK L7 = dimK F7−h7 =

(
4
4

)
+
(
4
7

)
+
(
4
9

)
− 0 = 1. Since

Shad(L6) = {e1e2e3e4g3}, we have L7 = 〈u ∈ Shad(L6)〉.
In so doing, we have determined the lex submodule L = ⊕ri Iigi with HF/L

= (1, 4, 5, 4, 5, 2, 4, 3, 1, 0). More in details:

L = (e1e2, e1e3, e2e3e4)g1 ⊕ (e1e2, e1e3e4)g2 ⊕ (e1e2, e1e3, e1e4)g3.

We close this Section with an example of a sequence of nonnegative integers
H that is not a Hilbert sequence of a quotient of a free E–module.

Example 5.4. Let E = K〈e1, e2, e3, e4〉, F = ⊕3
i=1Egi with f1 = −3, f2 =

−2, f3 = 1 and let us consider the [-2, 5]–sequence

H = (1, 3, 3, 4, 2, 4, 5, 1, 0) = (h−2, h−1, . . . , h5).

We proceed as in the previuos examples.

It is s = f1 = −3, r̃−3 = 1 and r̃−2 = 1, and consequently

h−3 = 1 ≤ 1 = r̃−3, h−2 = 3 ≤ 5 = nr̃−3 + r̃−2.
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By Proposition 4.1, we can test the required bounds:

h−2 = 3 =

(
4

−3

)
+

(
4

0

)
+

(
2

1

)
a

⇒ h−1 = 3 ≤ 5 =

(
4

−2

)
+

(
4

1

)
+

(
2

2

)
a(1)

,

h−1 = 3 =

(
4

−2

)
+

(
3

1

)
a

⇒ h0 = 4 6≤ 3 =

(
4

−1

)
+

(
3

2

)
a(1)

The integer h0 does not satisfy the required inequality. We will see that there
does not exist the lex submodule L = ⊕5

d=−2Ld of F such that HF/L = H.

Indeed, dimK L−3 = dimK F−3 − h−3 = 0. Hence, L−3 = 0.
Moreover, in degree −2, dimK L−2 = dimK F−2−h−2 =

(
4
−3
)
+
(
4
0

)
+
(

4
1

)
−3 =

2. Hence,
L−2 = 〈e1g1, e2g1〉.

In degree −1, we have dimK L−1 = dimK F−1−h−1 =
(

4
−2
)
+
(
4
1

)
+
(
4
2

)
−3 = 7.

On the other hand, Shad(L−2) = {e1e2g1, e1e3g1, e1e4g1, e2e3g1, e2e4g1}, then

L−1 = 〈u ∈ Shad(L−2), e3e4g1, e1g2〉.

In degree 0, we have dimK L0 = dimK F0−h0 =
(

4
−1
)
+
(
4
2

)
+
(
4
3

)
−4 = 6. Since,

Shad(L−1) = {e1e2e3g1, e1e2e4g1, e1e3e4g1, e2e3e4g1, e1e2g2, e1e3g2, e1e4g2},
then |Shad(L−1)| > 6. This situation implies that it is not possible the con-
struction of the lex submodule L with HF/L = (1, 3, 3, 4, 2, 4, 5, 1, 0).

On the contrary, one can verify that for h0 = 3, there exists the lex sub-
module L = ⊕ri Iigi of F with HF/L = (1, 3, 3, 3, 2, 4, 5, 1, 0).

Remark 5.5. The procedures described in this paper are part of two Macaulay2
packages “ExteriorIdeals.m2” [1], “ExteriorModules.m2”, and tested with
Macaulay 1.10.

All the examples in this paper have been constructed by such packages.
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