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Introduction

Quantum mechanics has always provided a conceptual framework for the

description of microscopic phenomena and has been applied to explain prop-

erties and behaviour of a wide range of natural systems. In particular, the

main developments have been achieved through the first half of the twenti-

eth century thanks to the understanding of the interaction of matter with

electromagnetic fields. Several achievements in the understanding of these

properties have been obtained treating the electromagnetic field classically.

However, in order to fully understand the light-matter interactions a full

quantum theory is required. For example, quantum mechanics allowed to

understand the transport and optical properties of materials. Nowadays,

the field studying these light-matter interactions using a fully quantum de-

scription for both light and matter is the so called Quantum Optics. This

widespread field is attracting great growing interest and is driving the sec-

ond quantum revolution. Indeed, during the last several decades much efforts

have been directed at exploiting the most puzzling effects of quantum me-

chanics, like, for example, the quantum superpositions and the entanglement,

for the development of practical technologies. As part of this research direc-

tion, devices for high-precision sensing [1–4], secure communication [5,6] and

quantum information processing [7], have been implemented in several types

of systems. The driving force behind all these developments is the ability

to experimentally manipulate and control quantum dynamics in a large va-

riety of systems ranging from single photons [5, 8], atoms and ions [9, 10],

individual electron and nuclear spins [11–13], to mesoscopic superconducting

circuits [14, 15] and nanomechanical devices [16, 17]. In particular, each of

these systems possesses physical properties that make it better suited than

others for specific tasks; for example is well-known that, photons are best

suited for transmitting quantum information, weakly interacting spins may
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be used as long-lived quantum memories, while superconducting circuits can

rapidly process information encoded in their quantum states.

The main goal of the quantum technologies is the implementation of de-

vices that can simultaneously perform several of these tasks in the most effi-

cient way. This goal, can be achieved by combining different systems in order

to build a new ”hybrid” system able to hopefully inherit only the advantages

of each one of its components and to provide the required multitasking capa-

bilities [18–20]. Specifically, the fundamental property of a functional hybrid

quantum system (HQS) is the ability to communicate, with high fidelity,

quantum states and properties between its different components. Clearly,

even if the idea behind a hybrid quantum system is conceptually simple the

experimental realization of such a device requires careful planning and sev-

eral challenges may arise. For example, if the energy scales of the coupled

components are too different, even in the presence of a good interaction, the

swap processes between the subsystems may not take place. Another obsta-

cle arises when the effective coupling strength geff between the subsystems is

too weak. In this case, the fidelity of the communication between the com-

ponents results very low. Notice that the minimal coupling strength required

for a functional hybrid quantum system is determined by the coherence time,

that is the time over which quantum superposition states survive. It follows

that the effective coupling rate geff between the subsystems must be large

enough to allow quantum state transfer between them within the shortest

coherence time Tmin of the two, i.e., geff Tmin � 1.

The first ideas of hybrid quantum systems derive from quantum infor-

mation processing and were inspired by the progresses in circuit quantum

electrodynamics (circuit QED), where superconducting qubits are coupled to

high-quality microwave resonators [21–26]. Superconducting artificial atoms

based on Josephson junctions are well-controlled quantum systems but, dif-

ferently than natural atoms, they suffer from short coherence times since they

are very sensitive to environmental noise from extrinsic and intrinsic deco-

hering elements. A better design of the qubits [27–30] and the surrounding

circuitry could reduce decoherence caused by extrinsic elements such as the

local electromagnetic environment. On the other hand, coherence is limited
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by more intrinsic elements, like the low-frequency noise, that are very hard

to avoid. However, superconducting quantum circuits present different ad-

vantages. For example, as they can be designed with specific parameters,

the strong-coupling limit for one or more superconducting qubits in a copla-

nar waveguide resonator can be attained much more easily than for natural

atoms in an optical cavity (cavity QED system) [31]. Moreover, by taking

advantage of the large kinetic inductance of a Josephson junction in the cen-

ter conductor of a resonator, it has been possible to experimentally achieve

the so-called ultrastrong coupling regime [31–34], where the light-matter cou-

pling strength is comparable to the energy scales of the system components

(in this case, qubit and photon). For relatively large Josephson energies

(EJ > 1000 GHz), the coupling energy can easily reach values of ∼ 1000

MHz and beyond, corresponding to several tens of percent of the resonator

frequency [32]. As long as the Josephson inductance is small compared to

that of the qubit, this coupling can be increased further by lowering the

Josephson energy of the inserted junction.

The importance of the ultrastrong coupling regime in this specific type

of hybrid systems does not rely only in the possibility to get better perfor-

mances from new promising quantum computing technologies [35]. Indeed,

this light-matter regime presents a great variety of new exciting phenom-

ena that cannot be observed in the conventional weak and strong coupling

regimes [33, 34, 36–38]. Most of them derive from the fact that in this ul-

trastrong coupling regime, the rotating wave approximation of the Jaynes

Cummings model [39], well describing many cavity QED experiments in the

standard weak and strong coupling regimes, breaks down and the counter-

rotating terms in the interaction Hamiltonian lead to observable experimen-

tal consequences [33, 34]. In this situation, the total number of excitations

in the system is no more conserved, even if the parity is [40]. The most

important consequence of this fact is that the ground state of the system

is now a squeezed vacuum containing a finite number of virtual qubit(s)-

resonator excitations [36, 41] that cannot be experimentally detected unless

a time-dependent perturbation is applied to the system [36]. Other hybrid

systems with a great potential for the development of new quantum tech-
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nologies are the so-called optomechanical systems, in which a mechanical

resonator interacts with an optical cavity [42–45]. The typical experimental

setup is constituted by an optical cavity in which one of the mirrors can move

serving as mechanical harmonic oscillator. If the vibrational energy of the

movable mirror becomes larger than the thermal energy kBT , the mechanical

oscillation can behave quantum mechanically and the resulting quantized vi-

brations of the mirror can couple to the photons in the cavity due to radiation

pressure. This kind of setup has been realized in a large variety of systems

in recent years [46–50]. However, the experimental observation of this quan-

tum behavior is challenging since it requires the cooling of the mechanical

resonator to extremely low temperatures and the ability to generate nonclas-

sical states. It is possible to realize an analogue of a cavity optomechanical

system exploiting superconducting circuits without the necessity of using any

moving part [51]. In this case, the circuit consists of a coplanar transmission

line with an electrical length that can be changed at a few percent of the

speed of light by modulating the inductance of a superconducting quantum

interference device (SQUID) composed by two Josephson junctions which

form a loop [52]. The movement is then simulated by tuning the magnetic

field passing through the SQUID loop. Using this type of superconducting

systems, it has been possible to observe the creation of real photons out of

vacuum fluctuations [53] as in the dynamical Casimir effect (DCE), where

a mobile mirror undergoing relativistic motion convert virtual photons into

directly observable real photons [54]. In this case, however, the boundary

conditions of the system are modulated by an effective motion, producing a

parametric amplification of vacuum fluctuations (parametric-DCE [55–59]).

Thus, these optical experiment do not demonstrate the conversion of me-

chanical energy into photons as predicted by the dynamical Casimir effect.

Recently, much effort has been directed by many groups towards this type

of hybrid quantum system and various designs/applications have been ex-

plored. Among all these studies we could highlight the generation of quantum

entanglement [60], quantum measurement [61], high precision displacement

detection [62], and cooling [63–65]. Moreover, since quantum superpositions

are the main resources for quantum information processing, many theoretical



xi

proposals and experimental demonstrations have been presented in order to

generate arbitrary superpositions of different mechanical Fock states [66–69].



Overview and Results

The thesis is structured as follows. After an introductory part giving an

overview of the field and providing the general context in which my research

activity has taken place, a brief description of the theoretical tools is pre-

sented.

In Chapter 1, the quantum theory of light-matter interaction in cavity

QED is presented . After a brief review of the weak and strong coupling

regimes, the peculiarities of the ultrastrong coupling regime are shown. In

particular, it is pointed out that in this regime the rotating wave approxi-

mation cannot be safely made and counter-rotating terms in the interaction

Hamiltonian must be taken into account. This evidence has two important

consequences, namely that the total number of excitations in the system is no

more conserved and the dressed ground state now contains a finite number

of virtual excitations.

Chapter 2 is devoted to describe the theoretical model behind the interac-

tion between optical and mechanical resonators. The canonical quantization

of both the field and the motion of the mirror, in order to derive a nonrel-

ativistic Hamiltonian of a one-dimensional mirror-field coupled system in a

cavity configuration, is discussed. This approach leads to a more detailed

description of a typical cavity optomechanical setup in terms of an Hamilto-

nian known as ”Law Hamiltonian” [70]. This theoretical framework provides

a more fundamental explanation of the Casimir dynamic effect, and opens the

door to a possible experimental observation of light emission from mechanical

motion.

Chapter 3 is devoted to describe the standard formulation of dissipation

in the ultrastrong coupling regime. In particular, it has been demonstrated

that, while the standard quantum optical master equation can be safely used

to describe the dynamics of the system in the weak and strong coupling
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regimes, in the ultrastrong coupling regime this standard approach fails to

correctly describe the dissipation processes and leads to unphysical results

as well [71]. For example, an incautious application of the standard relations

for a system in its dressed ground state, which now contains a finite number

of photons due to the counter-rotating terms in the Rabi Hamiltonian, would

result in a prediction of an unphysical stream of output photons from the

vacuum even in the absence of any external driving. The dressed master

equation approach presented in this chapter has been used as starting point

to derive a generalized approach in Paper 5.1

Chapter 4 is devoted to introduce the Gauge Principle in quantum me-

chanics. In particular, after a brief general introduction, I provide a review of

the issues recently pointed out by several groups claiming that this fundamen-

tal principle is violated when the light-matter system enters the ultrastrong

or deepstrong coupling regime.

Chapter 5 and Chapter 6 provide an overview of my publications in chrono-

logical order.

In particular, Chapter 5 is mainly centered on papers studying the dy-

namics of open Hybrid Quantum Systems (HQSs). According to quantum

mechanics, a closed system always displays a reversible evolution. However,

no quantum system is completely isolated from its environment; for exam-

ple, control and readout of a quantum system requires a coupling to the

outside world, which leads to dissipation and decoherence. For this rea-

son, realistic quantum systems should be regarded as open. The standard

approaches to describe the HQSs dynamics neglect the interaction among

the system components when considering their coupling to the environment.

This approximation, as has been shown for cavity-QED [71] and optome-

chanical [72] systems, leads to unphysical predictions when the interaction

strength becomes large as in the ultrastrong-coupling regime. In Paper 5.1

we went beyond these previous derivations and presented a general master

equation approach for arbitrary hybrid quantum systems interacting with

thermal reservoirs. This approach has been used to study the influence of

temperature on multiphoton vacuum Rabi oscillations in circuit QED and

the conversion of mechanical energy into photon pairs in an optomechanical
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system.

In Paper 5.2 we studied the dynamical Casimir effect (DCE) in the ul-

trastrong cavity optomechanics. Specifically, by adopting a fully quantum-

mechanical approach for both the cavity field and the oscillating mirror [73],

and by using the generalized master equation (presented in Paper 5.1) we

found that the dynamical Casimir effect can be observed also when the mov-

able mirror is excited by and incoherent drive removing one of the major

obstacles for the experimental observation of this long-sought effect.

In Paper 5.3 we considered a generalized optomechanical system consist-

ing of two vibrating mirrors constituting an optical resonator. Specifically, we

found that motional forces can determine noticeable coupling rates between

the two spatially separated vibrating mirrors. It follows that, by tuning the

two mechanical oscillators into resonance, it is possible to observe an energy

exchange between them, enabled by virtual photon pairs (Casimir photon

pairs). Thus, the electromagnetic quantum vacuum is able to transfer me-

chanical energy, acting somewhat like an ordinary fluid.

Papers in Chapter 6 are, instead, mainly centered on the resolution of the

ambiguities recently arose on the validity of the Gauge invariance principle

in the USC regime. Gauge invariance is the cornerstone of modern quantum

field theory. When the light-matter interaction becomes very strong, different

gauges can lead to drastically different predictions, leading to several contro-

versies [74–78]. Recently, it has been claimed that the quantum Rabi model

(see Chapter 1), describing the dipolar coupling between a two-level atom

and a quantized electromagnetic field, violates this principle giving different

predictions depending on the chosen gauge [79]. This failure is attributed to

the finite-level truncation of the matter system. In Paper 6.1 we show that a

careful application of the gauge principle is able to restore gauge invariance of

the quantum Rabi model even for extreme light-matter interaction regimes.

The resulting Hamiltonian in the Coulomb gauge significantly differs from

the standard model and provides the same physical results obtained by using

the dipole gauge. It turns out that it contains field operators to all orders

that cannot be neglected when the coupling strength is high. These results

shed light on several subtleties of gauge invariance in nonperturbative and
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extreme interaction regimes, which are now experimentally accessible, and

solve all the long-lasting controversies arising from gauge ambiguities in the

quantum Rabi and Dicke models.

In Paper 6.2 we focused on the resolution of serveral fundamental issues

like the proper definition of subsystems and their quantum measurements,

the structure of light-matter ground states, or the analysis of time-dependent

interactions arising when considering high coupling strength regimes like the

ultrastrong and the deep strong.

In Paper 6.3 we studied the gauge invariance of the USC Dicke model,

which describes the dipolar coupling between N two-level atoms and a quan-

tized electromagnetic field. Specifically, we have shown that, while the two-

level approximation can work well in the dipole gauge, the Coulomb gauge

fails to provide the correct spectra in the ultrastrong coupling regime. How-

ever, taking into account the non-locality of the atomic potential induced

by the two-level approximation, gauge invariance is fully restored for arbi-

trary interaction strengths, even in the limit of N going to infinity. Finally,

we expressed the Hopfield model, a general description based on the quan-

tization of a linear dielectric medium, in a manifestly gauge-invariant form,

and showed that the Dicke model in the dilute regime can be regarded as a

particular case of the more general Hopfield model.

In conclusion, in Paper 6.4 we provided an alternative derivation of the

results obtained in Paper 6.1, based on the implementation of the gauge prin-

ciple in two-level systems. The adopted procedure can be regarded as the

two-site version of the general method used to implement the gauge princi-

ple in lattice gauge theories. Applying this method, we have also obtained

the gauge-invariant quantum Rabi model for asymmetric two-state systems,

and the multi-mode gauge-invariant quantum Rabi model beyond the dipole

approximation.





Chapter 1

Cavity QED

Quantum electrodynamics (QED) studies the interaction of atoms with the

quantum fluctuations of the electromagnetic field. The general description

of this kind of interactions is pretty complex and should involve both the

internal structure of the system (atom, molecule, solid, etc.) and the infinite

number of modes of the electromagnetic field, which can be easily described

as a collection of independent harmonic oscillators. However, in cavity QED

the atoms are placed inside a resonant cavity which supports only discrete

modes of the electromagnetic field whose resonance frequencies can be prop-

erly adjusted with respect to the transition frequency of the atoms. Thus,

the problem can be considerably simplified by considering one cavity mode

of frequency ωc and a two level atom |g〉 and |e〉 with energy separation

Ee − Eg = ~(ωe − ωg) ≡ ~ωq such that ωc ' ωq, while all the other cavity

modes can be disregarded since do not couple to the atom due to the large

frequency mismatch. Such an approach is still valid in many physical exper-

iments and allows one to describe the light-matter interaction in its simplest

form. Within this simplified model the system can be depicted as in Fig. 1.1.

In order to properly describe a QED system it is important to define

the atom-cavity field coupling rate g, resulting from the interaction between

the atom and the zero-point fluctuations of the electromagnetic field in the

cavity, which is given by [80]:

g =

√
d2
egωc

2~ε0V0

, (1.1)
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where ωc is the angular cavity frequency, ε0 is the electric permittivity, V0

is the cavity volume and deg is the dipole moment associated to the atomic

transition.

Figure 1.1: Two-level atom inside a single-mode resonant cavity. The light-
matter interaction is described by three parameters: the atom-field interac-
tion strength g, the cavity photon decay rate κ and the atomic decay rate
into non-cavity modes γ.

When the atom-cavity interaction rate is slower than all the loss rates

(g << κ, γ), the system is in the weak coupling regime and photons emitted

by the atom escape the cavity before being reabsorbed in a process analo-

gous to the spontaneous emission in the free-space. On the contrary, when

g >> κ, γ, the system enters the so-called strong coupling regime, in which

the periodic exchange of the excitation between the atom and the cavity is

faster than the irreversible processes given by the photon losses into non-

cavity modes. In this case, the photon emission is a reversible process

in which the photon is absorbed by the atom before it can leave the cav-

ity. In the strong coupling regime, the energy eigenstates of the system are

no longer the bare states of the atom and the cavity mode, but they are

instead coherent superpositions of atom and photon excitations (dressed en-

ergy eigenstates), also known as polaritons. Moreover, the atom and cavity

resonances exhibit an avoided crossing and the resulting splitting is referred

to as the ”vacuum-Rabi” splitting, as predicted by the well known Jaynes-

Cummings model [39, 81, 82]. When the qubit-cavity coupling strength be-

comes comparable to the transition frequency of the qubit or the resonance
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frequency of the cavity mode g/ωc,q ' 0.1, the system enters the ultrastrong

coupling regime (USC) which displays a great variety of new exciting ef-

fects that are not observed in the conventional weak and strong-coupling

regimes [36–38]. Recently, due to the experimental progress in the devel-

opment of circuit quantum electrodynamics (circuit QED) systems, where

superconducting artificial qubits are coupled to on-chip cavities, it has been

possible to experimentally achieve the USC regime [31–34]. This regime has

also been achieved with photochromic molecules [83], by using intersubband

transitions in semiconductor structures [84, 85] or by coupling the cyclotron

transition of a high-mobility two-dimensional electron gas to the photonic

modes of an array of electronic split-ring resonators [86]. When the coupling

rates exceed the transition frequencies of the bare components we reach the

so-called deep-strong-coupling (DSC) [40]. This extremely high interaction

regime have been recently obtained in both a circuit QED setup [87] and

with a two-dimensional electron gas [88].

1.0.1 Quantum Rabi Model

In order to describe the interaction of a qubit with the quantized field of a

cavity, let us introduce the Pauli spin operators σ̂z, σ̂y, σ̂x expressed in the

bare basis {|g〉 , |e〉}:

σ̂z = σ̂+σ̂− − σ̂−σ̂+ =

(
1 0

0 −1

)
= |e〉〈e| − |g〉〈g| (1.2)

σ̂x = σ̂− + σ̂+ =

(
0 1

1 0

)
= |g〉〈e|+ |e〉〈g| (1.3)

σ̂y = i(σ̂− − σ̂+) =

(
0 −i
i 0

)
= i(|g〉〈e| − |e〉〈g|) (1.4)
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and the raising and lowering operators σ̂+ and σ̂−,

σ̂+ =

(
0 1

0 0

)
= |e〉〈g| (1.5)

σ̂− =

(
0 0

1 0

)
= |g〉〈e| (1.6)

(1.7)

The raising operators σ̂+ produces a transition from the lower to the upper

state and the lowering operator σ̂− has the opposite effect. The σ̂z operator

coincides with the corresponding Pauli spin matrix, while the pseudo-spin

raising and lowering operators can be related to the Pauli matrices through

the relation σ̂± = 1
2

[σ̂x ± iσ̂y].
The total Hamiltonian for the system,

Ĥ = ĤQ + ĤC + V̂ (1.8)

contains three terms: ĤC and ĤQ, describing the cavity field and the qubit,

respectively, and the qubit-cavity interaction V̂ . In terms of the qubit oper-

ators, the qubit Hamiltonian is given by

ĤQ =
1

2
~ωqσ̂z =

1

2
~ωq |e〉〈e| −

1

2
~ωq |g〉〈g| (1.9)

In Eq. (1.9) the zero point of energy has been chosen half-way between levels

|e〉 and |g〉, so that the energy of the state |e〉 is Ee = 1
2
~ωq and that of |g〉

is Eg = −1
2
~ωq. The Hamiltonian for the cavity field is

ĤC = ~ωcâ
†â, (1.10)

where â† and â are, respectively, the bosonic creation and annihilation oper-

ators for the cavity mode. Finally, in the dipole approximation, the qubit-

cavity interaction has the standard form

V̂ = −d · E = −d · εE(r0)(â+ â†), (1.11)
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where E(r0) is the the electric field at the qubit position r0 and ε = (~ωc/ε0V0)
1
2

is the field per photon within the cavity volume V0. The dipole-moment op-

erator can be expressed as

d = |g〉〈g| d |e〉〈e|+ |e〉〈e| d |g〉〈g| = dgeσ̂− + degσ̂+ (1.12)

If we assume, without loss of generality, that the matrix elements of the

dipole-moment operator are real (〈g |d| e〉 = 〈e |d| g〉) and define the qubit-

cavity coupling strength as

~g ≡ −〈e |d · ε| g〉E(r0), (1.13)

we can write the the qubit-cavity interaction Hamiltonian as

V̂ = ~g(σ̂+ + σ̂−)(â+ â†) = ~gσ̂x(â+ â†). (1.14)

Thus, the total Hamiltonian for the system becomes:

H =
1

2
~ωqσ̂z + ~ωcâ

†â+ ~g(σ̂+ + σ̂−)(â+ â†) (1.15)

known as Quantum Rabi Hamiltonian. Eq. (1.15) describes the full qubit-

cavity interaction without any approximation. In the latter, the interaction

term â†σ̂− corresponds to the process in which the atom loses its excitation

creating one photon, while the term âσ̂+ describes the inverse process. Both

processes are near-resonant and oscillate at frequencies ±(ωc − ωq). On the

other hand, the terms âσ̂− and â†σ̂+ (counter-rotating terms), which in the

interaction picture oscillate with the sum frequencies ±(ωc + ωq), describe

the nonresonant processes in which the atom and the field are excited or

de-excited simultaneously. These terms do not conserve the total energy of

the system. Indeed, for Ee > Eg, the operator combination âσ̂− annihi-

lates a photon and induces a transition from the higher energy state |e〉 to

the lower energy state |g〉, while â†σ̂+, creates a photon during the transi-

tion |g〉 → |e〉. In analogy with the classical case, these nonresonant terms

are usually dropped performing the so-called rotating wave approximation
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(RWA). However, these terms can be neglected only in the case in which the

ratio g/ωc � 1, and this can be understood considering that the counter

rotating terms couples the states |g, n〉 and |e, n+ 1〉 that differ by two exci-

tations

〈e, n+ 1| ~g(âσ̂− + â†σ̂+) |g, n〉 = 〈g, n| ~g(âσ̂− + â†σ̂+) |e, n+ 1〉 ≈ ~g,
(1.16)

while the energy difference between the bare states (at resonance) is

〈e, n+ 1| Ĥ0 |e, n+ 1〉 − 〈g, n| Ĥ0 |g, n〉 ≈ 2~ωc, (1.17)

where Ĥ0 = 1
2
~ωqσ̂z + ~ωcâ

†â.

Comparing Eq. (1.16) and Eq. (1.17), it is easy to observe that the counter-

rotating terms become relevant only when the coupling strength g becomes

comparable to or much larger than the transition frequency of the atom or

the resonance frequency of the cavity mode.

In this situation, [ĤR, N̂exc] 6= 0, the total number of excitations is not con-

served, even though the parity is [40]. Indeed, under the unity parity oper-

ator P̂ = eiπN̂exc the field annihilation operator â and the atomic operator

σ̂x = σ̂+ + σ̂− transform, respectively, as P̂†âP̂ = −â and P̂†σ̂xP̂ = −σ̂x, so

that the commutation relation [P̂ , ĤR] = 0 immediately follows. An impor-

tant consequence of the non conservation of the total number of excitations

is that the ground state of the system is no longer the vacuum state |g, 0〉
of the JC model, but a new state |G〉 which now contains both atom and

resonator excitations:

|G〉 =
∞∑

k=0

(cGg,2k|g, 2k〉+ cGe,2k+1|e, 2k + 1〉). (1.18)

This excitations are regarded as virtual and can be experimentally detected

only by turning them into real by applying a time-dependent perturbation to

the light-matter coupling [36]. It follows that the number of virtual photons

bound in the dressed ground state is not independent of the coupling strength

but, actually, increases for increasing values of g. The other dressed states
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of the Rabi Hamiltonian can be expanded in terms of the bare states as

|j,+〉 =
∞∑

k=0

(cj
+

g,2k|g, 2k〉+ cj
+

e,2k+1|e, 2k + 1〉), (1.19)

|j,−〉 =
∞∑

k=0

(cj
−

g,2k+1|g, 2k + 1〉+ cj
−

e,2k|e, 2k〉), (1.20)

where |j,+〉 and |j,−〉 indicate, respectively, the even- and odd-parity eigen-

states. Although the analytical spectrum of ĤR has recently been found [89],

it is defined in terms of the power series of a transcendental function. An

approximate, but more simple form, can be found in the intermediate regime

(referred to as the Bloch-Siegert regime) where the coupling strength g is

small with respect to Σ ≡ ωc + ωq, with the system still being in the ultra-

strong coupling regime. This is done using the unitary transformation

Û = e[Λ(âσ̂−−â†σ̂+)+ξ(â2−â†2)σ̂z ], (1.21)

where Λ = g/Σ, and ξ = gΛ/2ωc. This yields the Bloch-Siegert Hamiltonian

Û †ĤRÛ ' ĤBS = (ωc + µσ̂z) â
†â+

ω̃q

2
σ̂z + gÎ+, (1.22)

where Î+ = âσ̂+ + â†σ̂−, ω̃q = ωq + µ, and µ = g2/Σ.

This Hamiltonian is similar to the Jaynes-Cummings Hamiltonian, but

contains Bloch-Siegert shifts µ on qubit and resonator frequencies. Since the

Bloch-Siegert Hamiltonian in Eq. (1.22) is block diagonal, its eigenstates can

be found exactly to be

|n,+〉 = − sin θn |e, n− 1〉+ cos θn |g, n〉 , (1.23)

|n,−〉 = cos θn |e, n− 1〉+ sin θn |g, n〉 , (1.24)

where θn is Bloch-Siegert mixing angle

θn = arctan

[
∆BS
n −

√
(∆BS

n )2 + 4g2n

2g
√
n

]
, (1.25)
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and ∆BS
n = ωq − ωc + 2µn. To second order in Λ, the excited eigenstates∣∣ñ,±
〉

of the Rabi Hamiltonian in the bare basis are then given by

∣∣ñ,±
〉

= U |n,±〉 , (1.26)

while the ground state takes the form

|G〉 = U |g, 0〉 '
(

1− Λ2

2

)
|g, 0〉 − Λ|e, 1〉+ ξ

√
2|g, 2〉. (1.27)

As mentioned before, the ground state |G〉 is different from the simple ground

state |g, 0〉 of the JC model, as it is a squeezed vacuum containing a finite

number of virtual photons. This is one of the most important feature of the

ultrastrong coupling regime as, for example, in the presence of nonadiabatic

modulations [36], induced Raman transitions [90], spontaneous decay mech-

anisms [37], or sudden on-off switches of the light-matter interaction [91],

these virtual photons can be converted to real ones, giving rise to a stream

of quantum vacuum radiation. Moreover, in the ultrastrong coupling regime

the resonator field X̂ = â + â† can display a non-zero vacuum first-order

coherence (| 〈G |â|G〉 |2/
〈
G
∣∣â†â

∣∣G
〉
6= 0), a situation that does not occur in

the JC model, where the vacuum first-order coherence is strictly zero (e.g.,

| 〈g, 0 |â| g, 0〉 |2 = 0). This property is very important in circuit QED sys-

tems constituted by a flux qubit coupled to an on-chip coplanar resonator,

as a non-zero expectation value of the resonator field in the system ground

state |G〉 can lead to a vacuum-induced parity-symmetry breaking on an

additional artificial atom [92].

The quantum Rabi model (QRM) here described is the fundamental the-

oretical model used to derive most of the original results presented in this

thesis. Specifically, in Paper 5.1, we used the QRM to test our generalized

master equation approach. In particular, we investigated the temperature

dependence of the two-photon Rabi oscillation process. This exotic effect,

peculiar to the USC regime, describes the simultaneous exchange of two ex-

citations between atom and cavity. In Paper 6.2 we presented the solution to

several fundamental ambiguities regarding this type of systems in the USC
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and DSC regimes. In particular, we shed light on the proper definition of sub-

system and its quantum measurement, the structure of light-matter ground

state and the analysis of time-dependent interactions. In Papers 6.1 and 6.3

we investigated, respectively, the validity of the gauge invariance principle

in the USC regime both for the quantum Rabi and Dicke model. The latter

is a generalization of the QRM which takes into account multiple emitters

coupled to the cavity.



Chapter 2

Cavity Optomechanics

Light carries momentum which gives rise to radiation pressure forces. The

research field which explores the interaction (via radiation pressure) between

the electromagnetic field in an optical resonator and a mechanical oscillator

at a fundamental level is called cavity optomechanics. During the ’90s, sev-

eral aspects of quantum cavity optomechanical systems such as the squeezing

of light [93,94] and quantum nondemolition (QND) detection of the light in-

tensity [95], which exploit the effective Kerr nonlinearity generated by the

optomechanical interaction, have been theoretically studied. Moreover, in

the last few years optomechanical systems have been implemented in several

designs by many groups [45, 96, 97] and, in particular, this type of HQSs

have been promising for the study of fundamental quantum effects on a

macroscopic or mesoscopic scale, such as the dynamical Casimir effect (DCE)

which [54, 73, 98–100] predicts the generation of photons from the quantum

vacuum due to rapid changes of the system geometry. In particular, it has

been shown that this fundamental physical process originates from avoided-

level crossings involving also states with different excitations number [73].

Furthermore, it has also been shown that radiation pressure can be used

to entangle macroscopic oscillators like movable mirrors and the achievable

entanglement is robust against thermal noise [101].

2.1 The optomechanical Hamiltonian

The system Hamiltonian derived by C.K. Law [70] is a non-relativistic Hamil-

tonian describing the interaction, due to the radiation pressure, between an
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oscillating mirror and the cavity field, derived directly from the canonical

quantization of both the cavity field and the oscillating mirror by using the

equation of motion of the mirror (regarded as a mechanical harmonic oscil-

lator) and the wave equation (with appropriate boundary conditions) of the

field.

Let us consider a one-dimensional cavity formed by two perfectly reflect-

ing mirrors one fixed at x = 0 and the other one able to move in a potential

well V(q) acting as an infinite wall which prevents the movable mirror from

penetrating through the fixed mirror. The cavity field vector potential A(x, t)

is then defined in the region 0 6 x 6 q(t) corresponding to the whole cavity

effective length and obeys the wave equation (c = 1),

∂2A(x, t)

∂x2
=
∂2A(x, t)

∂t2
. (2.1)

Notice that we labelled q(t) the position of the movable mirror. By applying

the time-dependent boundary conditions A(0, t) = A(q(t), t) = 0 ensuring

that the electric field is always zero in the rest frame of the mirror surface

the non-relativistic equation of motion of the mirror is given by

mq̈ = −∂V (q)

∂q
+

1

2

(
∂A(x, t)

∂x

)2

x=q(t)

, (2.2)

where m is the mirror mass. The second term on the right side of Eq. (2.2) is

the radiation pressure force that can be derived from the radiation pressure

force appearing in the rest frame of the movable mirror. We can now define

a set of generalized coordinates Qk:

Qk =

√
2

q(t)

∫ q(t)

0

dxA(x, t) sin

(
kπx

q(t)

)
k ε N . (2.3)

obtained by the modal decomposition of the field in the the basis determined

by the instantaneous position of the mirror. By using Eq. (2.3) and the

completeness relation of the mode functions, the vector potential can be
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written as:

A(x, t) =
∞∑

k=1

Qk(t)

√
2

q(t)
sin

(
kπx

q(t)

)
. (2.4)

Exploiting Eq. (2.4) and the orthogonality of the mode functions Qk(t),

Eq. (2.1) and Eq. (2.2) read:

Q̈k =− ω2
kQk + 2

q̇

q

∑

j

gkjQ̇j +
q̈q − q̇2

q2

∑

j

gkjQj +
q̇2

q2

∑

jl

gjkgjlQl ,

mq̈ =− ∂V (q)

∂q
+

1

q

∑

kj

(−1)k+jωkωjQkQj ,

(2.5)

where the position-dependent frequencies ωk and the dimensionless coeffi-

cients gkj are given by

ωk(q) =
kπ

q
,

gkj =

{
(−1)k+j 2kj

j2−k2 , k 6= j

0 , k = j

(2.6)

Starting from Eq. (2.5), we can construct the system Lagrangian L as

L(q, q̇, Qk, Q̇k) =
1

2

∑

k

[
Q̇2
k − ω2

k(q)Q
2
k

]
+

1

2
mq̇2 − v(q)

− q̇
q

∑

jk

gkjQ̇kQj +
q̇2

2q2

∑

jkl

gkjgklQlQj.
(2.7)

corresponding to the Hamiltonian:

H(Pk, Qj, p, q) =
1

2m

(
p+

1

q

∑

jk

gkjPkQj

)2

+ V (q) +
1

2

∑

k

[
P 2
k + ω2

kQ
2
k

]
,

(2.8)



2.1 The optomechanical Hamiltonian 13

where Pk and p are canonical momenta conjugate to Qk and q, defined as

Pk = Q̇k −
q̇

q

∑

jk

gkjPkQj ,

p = mq̇ − 1

q

∑

jk

gkjPkQj .
(2.9)

It is important to notice that, since the mirror is included as a dynamical

degree of freedom, the Hamiltonian in Eq. (2.8) allows us to consider the

effects of radiation pressure. Following the canonical quantization procedure,

we promote the canonical momenta (Pk, p) and their conjugate variables

(Qk, q) to operators, satisfying the commutation relations

[
q̂, Q̂j

]
=
[
q̂, P̂k

]
=
[
p̂, Q̂j

]
=
[
p̂, P̂k

]
= 0

[q̂, p̂] = i~
[
Q̂j, P̂k

]
= i~

(2.10)

and define the cavity-length-dependent creation and annihilation operators

for each cavity mode as

âk(q̂) =

√
1

2~ωk(q̂)

[
ωk(q̂)Q̂k + iP̂k

]
,

â†k(q̂) =

√
1

2~ωk(q̂)

[
ωk(q̂)Q̂k − iP̂k

]
,

(2.11)

where the dependence on the operator q̂ indicates that, for each position

of the mirror, there is a set of Fock states associated with that position.

However, these creation and annihilation operators are not defined when the

cavity has zero length (q = 0). This issue can be easily solved by imposing

the boundary condition implying the wave function to be identically zero at

q = 0. Using the operators in Eq. (2.11), the Hamiltonian can be written as:

Ĥ ′ =
(p̂+ Γ̂)2

2m
+ V (q̂) + ~

∑

k

ωk(q̂)

[
â†kâk +

1

2

]
, (2.12)
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where

Γ̂ =
i~
2q̂

∑

kj

gkj

[
k

j

] 1
2 [
â†kâ

†
j − âkâj + â†kâj − â†j âk

]
. (2.13)

As expected, the vacuum field energy appearing in Eq. (2.12) is divergent

and it is the origin of the Casimir force. However, following the usual proce-

dure [102], the Casimir energy results to be finite (~π/24q for one-dimensional

space) because of the cancellation of the divergent parts of the vacuum pres-

sure from both sides of the mirror [103]. However, this result is obtained

considering only the static part (the Casimir effect) of the interaction be-

tween the mirror and the outside field and neglecting the dynamical part

which describes the change of the field outside the cavity. Nevertheless, this

is a good approximation in most physical situations where the cavity field is

dominant. At this point we can consider the cavity optomechanical case, in

which the movable mirror motion corresponds to the motion of a mechanical

resonator (see Fig. 2.1).

Figure 2.1: Schematic of a generic optomechanical system: a mechanical oscillator with
frequency ωm is coupled via radiation pressure, with a single-mode cavity with frequency
ωc.

In this case, the mirror is bounded by a potential V (q̂) which keeps the

mirror’s range of motion around a certain equilibrium position l0, and the

radiation pressure force acts as a small perturbation. When the mobile mirror

displacement X̂ = q̂ − l0 is small compared with l0, one can write Γ̂ ≈
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Γ̂|q̂=l0 = Γ̂0, which is the operator Γ̂ evaluated at the equilibrium position.

Furthermore, for small values of X̂/l0 the annihilation operators and the

mirror oscillation frequency can be expanded as:

âk(q̂) ≈ âk0 −
X̂

2l0
â†k

ωk(q̂) ≈ ωk0

(
1− X̂

l0

)
.

(2.14)

By using the latter relations and performing the unitary transformation with

the operator Û = exp(iX̂Γ0/~), the Hamiltonian in Eq. (2.12) becomes:

Ĥ =
p̂2

2m
+ V (X̂) + ~

∑

k

ωk0â
†
k0âk0 − X̂F̂0 , (2.15)

where F̂0 is the normally ordered radiation pressure force

F̂0 =
~

2l0

∑

kj

(−1)k+j√ωk0ωj0

[
â†k0â

†
j0 + âk0âj0 + â†k0âj0 + â†j0âk0

]
. (2.16)

Considering only one cavity mode (k = j = 1) and expressing the mobile

mirror energy and displacement in terms of the creation and annihilation

phonon operator

b̂ =

√
1

2~ωm

[
ωmX̂ + ip̂

]
,

b̂† =

√
1

2~ωm

[
ωmX̂ − ip̂

]
,

(2.17)

Eq. (2.15) can be written as

Ĥ = ~ωcâ†â+ ~ωmb̂†b̂+ ~g(b̂† + b̂)(â† + â)2, (2.18)

where ωc(m) is the cavity (mechanical) frequency and g = Gxzpf is the op-

tomechanical coupling strength with xzpf the amplitude of the mirror zero-

point fluctuations and G a coupling parameter. When the mechanical fre-
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quency is much smaller than the cavity frequency (which is the most common

experimental situation) the quadratic term in Eq. (2.18) can be neglected,

because it connects bare states with an energy difference 2~ωR± ~ωm. With

this approximation, the resulting Hamiltonian is

Ĥ = ~ωcâ†â+ ~ωmb̂†b̂+ ~gâ†â(b̂† + b̂) . (2.19)

This Hamiltonian, which conserves the number of photons and can be analyt-

ically diagonalized, is referred to as standard optomechanical Hamiltonian.

Eq. (2.18) is employed in Papers 5.1 and 5.2 in order to describe, respec-

tively, the influence of temperature on the conversion of mechanical energy

into photon pairs and to show that the dynamical Casimir effect can be ob-

served even when the mean value of the mechanical displacement is zero.

Furthermore, a generalization of Eq. (2.18), describing a system in which

both the mirrors constituting the optical cavity are able to move, has been

used in Paper 5.3 to demonstrate that, the quantum vacuum allows the

transfer of mechanical excitations between two spatially separated mirrors.

In particular, it turns out that this transfer is possible thanks to virtual

photon pairs generated by the DCE
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Open Quantum system dynam-

ics

Like in classical physics, any realistic quantum system is subjected to a cou-

pling to an environment which influences it in a non-negligible way. It follows

that realistic quantum mechanical systems must always be regarded as open

systems. Moreover, a more fundamental reason for introducing the notion

of an open system in quantum theory is that quantum mechanics is essen-

tially a probabilistic theory and any test of the statistical predictions on a

quantum system requires to couple it to a measurement apparatus which,

usually, influences the quantum system being measured. In other words we

can say that quantum mechanics contains in itself the notion of an open

system through the action of the measurement process. In order to study

such a complex system, a fully microscopical description including all the

degrees of freedom would be highly desirable. However, a complete micro-

scopic description of a system interacting with an environment is often not

feasible and we are forced to seek for a simpler probabilistic description of an

open system dynamics. In particular, we need a theory that allows the treat-

ment of complex systems (which involve even an infinite number of degrees

of freedom) by restricting the mathematical formulation to a small number

of relevant variables. The theoretical tool able to achieve such a desired re-

sult is the so-called master-equation approach, in which the dynamics of an

open system is formulated by means of an appropriate equation of motion

for its density matrix operator. In the following section I will present the

dressed master equation approach [71] used as starting point to obtain the
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generalized master equation presented in Paper 5.1.

3.1 The dressed Master Equation

Let us consider a system S coupled to another system B usually called reser-

voir modelled as an infinite collection of harmonic oscillators (see Fig. 3.1).

Trivially, since both the systems are coupled together the evolution of S will

be influenced by B. This interaction leads to a certain system-environment

correlations such that the resulting changes in the state of S can no longer

be represented in terms of unitary Hamiltonian dynamics. The total Hamil-

Figure 3.1: Schematic picture of an open quantum system.

tonian of the system in Fig. 3.1 can be written as:

Ĥ = ĤS + ĤB + ĤSB, (3.1)

where ĤS and ĤB are, respectively, the free Hamiltonian of the system S and

of the reservoir B while ĤSB describes the interaction Hamiltonian between

the two components. If we denote by χ̂(t) the density operator of the total

system S +B the reduced density operator ρ̂(t) can be obtained through:

ρ̂(t) = trB[χ̂(t)], (3.2)
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where we have taken the partial trace over the reservoir degrees of freedom.

Once the density operator ρ̂(t) is known, if we consider a generic operator Ô

of the system S, its average can be calculated in the Schrödinger picture as:

〈Ô〉 = tr(S⊗B)[Ô χ̂(t)] = trS{Ô trB[χ̂(t)]} = trS[Ôρ̂(t)]. (3.3)

It follows that the fundamental task of the master-equation approach is to

isolate and determine the interesting physical properties of the system S by

obtaining an equation for ρ̂(t) containing the properties of the reservoir as

parameters. Let us start considering the Schrödinger equation for χ̂(t):

˙̂χ =
1

i~
[Ĥ, χ̂] , (3.4)

where Ĥ is given by Eq. (3.1). It is convenient to separate the rapid motion

generated by ĤS + ĤB from the slow motion generated by the interaction

ĤSB. This can be done by rewriting Eq. (3.4) in the interaction picture

(note that from now on we will use the tilde symbol to indicate operators in

this picture):

˙̃χ =
1

i~
[H̃SB(t), χ̃], (3.5)

where

χ̃(t) = e
i
~ (ĤS+ĤB)t χ̂ e−

i
~ (ĤS+ĤB)t, (3.6)

and H̃SB(t) is explicity time-dependent

H̃SB(t) = e
i
~ (ĤS+ĤB)t ĤSB e

− i
~ (ĤS+ĤB)t. (3.7)

By formally integrating Eq. (3.5) and substituting χ̃(t) in the commutator

we obtain:

˙̃χ(t) =
1

i~
[H̃SB(t), χ̃(0)]− 1

~2

∫ t

0

dt′ [H̃SB(t), [H̃SB(t′), χ̃(t′)]] . (3.8)

The latter is written in a convenient form in order to identify some reasonable

assumptions. The first one is that the interaction is turned on at t = 0, so
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that no correlations exist between the system and the reservoir before this

initial time. It follows that the total system density matrix χ(0) = χ̃(0) can

be factorized as

χ̃(0) = ρ̃(0)B0, (3.9)

where B0 is the initial reservoir density operator. After tracing over the

reservoir, Eq. (3.8) reads

˙̃ρ = − 1

~2

∫ t

0

dt′ trB{[H̃SB(t), [H̃SB(t′), χ̃(t′)]]}, (3.10)

where we assumed that trB[H̃SB(t)B0] = 0, a result that is guaranteed if

the reservoir operators coupled to S have zero mean in B0. It is important

to notice that, even if the system and the reservoir are not supposed to

interact at t = 0, at later times correlations may arise due to the system-

bath coupling through the interaction Hamiltonian H̃SB. However, if the

coupling is weak χ̃(t) will only show deviations of the order of H̃SB from an

uncorrelated state. The second assumption to be taken into account (Born

approximation) is that the state of B remains unaffected by the coupling

with S. The latter is a very reasonable assumption since the bath B is very

large, and allows us to write

χ̃(t) = ρ̃(t)B0 +O(H̃SB). (3.11)

where the higher order terms H̃SB can be neglected when considering a weak

system-reservoir interaction [104]. By using the results in Eq. (3.11) the

equation of motion of the reduced density operator can be re-written as:

˙̃ρ = − 1

~2

∫ t

0

dt′ trB{[H̃SB(t), [H̃SB(t′), ρ̃(t′)B0]]}. (3.12)

By carefully analyzing the latter result we can notice that the future evolution

of ρ̃(t) depends on its past history through the integration over ρ̃(t′) (not-

Markovian behaviour). However, if the reservoir is a large system maintained

at thermal equilibrium, it is not expected to preserve the minor changes

induced by its interaction with S for very long and for sure not for long
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enough to significantly affect the future evolution of S. On the basis of these

physical grounds, one can expect a Markovian behaviour and can perform

the so-called Markov approximation by substituting ρ̃(t′) to ρ̃(t) in Eq. (3.12)

to obtain the Born-Markov master equation

˙̃ρ = − 1

~2

∫ t

0

dt′ trB{[H̃SB(t), [H̃SB(t′), ρ̃(t)B0]]}. (3.13)

In order to derive the dressed master equation approach [71] let us con-

sider a more practical system, e.g., an arbitrary qubit-resonator system in the

ultrastrong coupling regime described by the Rabi Hamiltonian Eq. (1.15).

Figure 3.2: Schematic picture of an open QED system. Each component is individually
coupled to a reservoir and the coupling between the subsystems is directly taken into
account while deriving the dissipators.

In this case, let us consider the qubit and the resonator to be weakly cou-

pled to two independent baths of quantum harmonic oscillators (see Fig. 3.2),

each one described by the free Hamiltonian (~ = 1):

ĤB =
∑

l

νlb̂
†
l b̂l, (3.14)

where b̂†l , b̂l are ladder operators for the bath mode l with frequency νl. The
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system-bath interaction Hamiltonian is given by

ĤSB =
∑

l

αl(ĉ+ ĉ†)(b̂l + b̂†l ), (3.15)

where αl is the coupling strength to bath mode l, ĉ, ĉ† → σ̂−, σ̂+ for the

qubit and ĉ, ĉ† → â, â† for the resonator. The latter can be rewritten in the

interaction picture with respect to the free system and bath Hamiltonians by

using the transformation operator Û = eiĤSt as

H̃SB(t) =
∑

l

αle
iĤSt(ĉ+ ĉ†)e−iĤSt(b̂le

−iνlt + b̂†l e
iνlt). (3.16)

Developing the calculations considering that ĤS is the total system Hamil-

tonian which can be expressed in the dressed basis of its energy eigenstates

as

ĤS =
∑

j

Ej |j〉〈j| , (3.17)

we obtain:

H̃SB(t) =
∑

jkl

αlCjk |j〉〈k| (ĉ+ ĉ†)(b̂le
−iνlt + b̂†l e

iνlt)ei∆jkt, (3.18)

where Cjk =
〈
j
∣∣(ĉ+ ĉ†)

∣∣ k
〉

and ∆jk = Ej − Ek. The sum in Eq. (3.18) can

be split in three parts as

H̃SB(t) =
∑

l,j

αlCjj |j〉〈j| (b̂le−iνlt + b̂†l e
iνlt)

+

{∑

l

∑

j,k>j

+
∑

l

∑

j,k<j

}
αlCjk |j〉〈k|

(
b̂le
−i(νl−∆jk)t + b̂†l e

i(νl+∆jk)t
)
.

(3.19)

The latter equation seems to be very complicated since it involves several

terms. However, taking into account that Ckj = C∗jk and that Cjj = 0 due
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to the well-defined parity of the eigenstates |j〉, it can be simplified as

H̃SB(t) = s̃(t)B̃†(t) + s̃†(t)B̃(t), (3.20)

where we defined

s̃(t) =
∑

j,k>j

Cjk |j〉〈k| ei∆jkt, (3.21)

and

B̃(t) =
∑

l

αlb̂le
−iνlt. (3.22)

By substituting Eq. (3.20) in Eq. (3.13) we obtain

˙̃ρ(t) =

∫ t

0

dt′ [s̃(t′)ρ̃(t′)s̃(t)− s̃(t)s̃(t′)ρ̃(t′)]〈B̃†(t)B̃†(t′)〉

+

∫ t

0

dt′ [s̃†(t′)ρ̃(t′)s̃†(t)− s̃†(t)s̃†(t′)ρ̃(t′)]〈B̃(t)B̃(t′)〉

+

∫ t

0

dt′ [s̃†(t′)ρ̃(t′)s̃(t)− s̃(t)s̃†(t′)ρ̃(t′)]〈B̃†(t)B̃(t′)〉

+

∫ t

0

dt′ [s̃(t′)ρ̃(t′)s̃†(t)− s̃†(t)s̃(t′)ρ̃(t′)]〈B̃(t)B̃†(t′)〉+ H.c.

(3.23)

The reservoir correlation functions in Eq. (3.23) can be evaluated explicitly

as

〈B̃(t)B̃(t′)〉 = 〈B̃†(t)B̃†(t′)〉 = 0, (3.24)

〈B̃†(t)B̃(t′)〉 =

∫ ∞

0

dν g(ν)|α(ν)|2 n̄(ν, T )eiν(t−t′), (3.25)

〈B̃(t)B̃†(t′)〉 =

∫ ∞

0

dν g(ν)|α(ν)|2
[
n̄(ν, T ) + 1

]
e−iν(t−t′), (3.26)

where n̄(νl, T ) =
[
e(~νl/kBT )−1

]−1
is the mean photon number for an oscillator

with frequency νl in thermal equilibrium at temperature T . It is important

to note that the nonvanishing reservoir correlation functions should involve a

summation over the reservoir oscillators. However, this summation has been

turned to an integration by introducing the density of states g(ν), so that

g(ν)dν gives the number of oscillators with frequencies in the interval ν to
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ν+dν. Considering Eqs. (3.24)-(3.26), the only relevant terms in the master

equation are:

˙̃ρ(t) =

∫ t

0

dt′ [s̃†(t′)ρ̃(t′)s̃(t)− s̃(t)s̃†(t′)ρ̃(t′)]〈B̃†(t)B̃(t′)〉

+

∫ t

0

dt′ [s̃(t′)ρ̃(t′)s̃†(t)− s̃†(t)s̃(t′)ρ̃(t′)]〈B̃(t)B̃†(t′)〉

+

∫ t

0

dt′ [s̃†(t)ρ̃(t′)s̃(t′)− ρ̃(t′)s̃(t′)s̃†(t)]〈B̃†(t′)B̃(t)〉

+

∫ t

0

dt′ [s̃(t)ρ̃(t′)s̃†(t′)− ρ̃(t′)s̃†(t′)s̃(t)]〈B̃(t′)B̃†(t)〉.

(3.27)

By using Eqs. (3.21)-(3.22) and making the change of variable τ = t− t′, we

obtain:

˙̃ρ(t) =
∑

j,k>j

∑

j′,k′>j′

C∗j′k′Cjk

[
Aj,j′,k,k′(t) +Bj,j′,k,k′(t) +Cj,j′,k,k′(t) +Dj,j′,k,k′(t)

]
,

(3.28)

where

Aj,j′,k,k′(t) =

∫ t

0

dτ ei(∆jk−∆j′k′ )t ei∆j′k′τ
(
|k′〉〈j′| ρ̃(t) |j〉〈k| − |j〉〈k| k′〉〈j′|ρ̃(t)

)

×
∫ ∞

0

dν g(ν)|α(ν)|2 n̄(ν, T )eiντ ,

(3.29)

Bj,j′,k,k′(t) =

∫ t

0

dτ ei(∆jk−∆j′k′ )t e−i∆jkτ
(
|j〉〈k| ρ̃(t) |k′〉〈j′| − |k′〉〈j′| j〉〈k|ρ̃(t)

)

×
∫ ∞

0

dν g(ν)|α(ν)|2
[
n̄(ν, T ) + 1

]
e−iντ ,

(3.30)

Cj,j′,k,k′(t) =

∫ t

0

dτ ei(∆jk−∆j′k′ )t e−i∆jkτ
(
|k′〉〈j′| ρ̃(t) |j〉〈k| − ρ̃(t) |j〉〈k| k′〉〈j′|

)

×
∫ ∞

0

dν g(ν)|α(ν)|2 n̄(ν, T )e−iντ ,

(3.31)
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Dj,j′,k,k′(t) =

∫ t

0

dτ ei(∆jk−∆j′k′ )t ei∆j′k′τ
(
|j〉〈k| ρ̃(t) |k′〉〈j′| − ρ̃(t) |k′〉〈j′| j〉〈k|

)

×
∫ ∞

0

dν g(ν)|α(ν)|2
[
n̄(ν, T ) + 1

]
eiντ .

(3.32)

Note that in Eq. (3.28) the Markov approximation has been made by re-

placing ρ̃(t − τ) by ρ̃(t). In each term of the Born-Markov master equation

[Eq. (3.28)], we find oscillating exponentials of the form exp[i(∆jk −∆j′k′t)].

However, since k > j and k′ > j′, the arguments of these exponentials will

be zero for j = j′ and k = k′, and more in general for any pairs of different

transitions in the system occurring at the same frequency. In practice, we

are often interested only in a subset of the energy levels of the system for

which all transitions have different frequencies. For this reason we usually

perform the so-called secular approximation by setting j = j′ and k = k′

in Eq. (3.28). Within this approximation, by extending the τ integration

to infinity and evaluating the integrals neglecting the Lamb-Shift terms, we

obtain the dressed master equation in the interaction picture:

˙̃ρ(t) =
∑

j,k>j

Γjkn̄(∆kj, T )D[|k〉〈j|]ρ̃(t) +
∑

j,k>j

Γjk(1 + n̄(∆kj, T ))D[|j〉〈k|]ρ̃(t) ,

(3.33)

where

Γjk =2πg(∆kj)|α(∆kj)|2|Cjk|2, (3.34)

Γ(ν) = 2πg(ν)|α(ν)|2, (3.35)

are the relaxation rates and D[Ô]ρ̂ = 1
2
(2Ôρ̂ Ô† − ρ Ô†Ô − Ô†Ôρ̂) is the

Lindblad superoperator.

Eq. (3.33) has been obtained (within the usual Born-Markov approxima-

tion) considering the coupling between the subsystems while deriving the

dissipators. It turns out that this procedure allows to correctly describe the

systems dynamics in the USC regime [71]. However, due to the secular ap-

proximation performed in its derivation, it is not able to describe dissipation
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or decoherence in open quantum systems with mixed harmonic-anharmonic

or quasi-harmonic spectra (e.g, for cavity QED in the dispersive regime and

cavity optomechanics). In Chapter 5.1 we relaxed this approximation and

we developed a generalized master equation approach able to describe dissi-

pation in this two commonly studied systems and, more in general, able to

describe open system dynamics without any restriction on the energy level

spectrum, independently by the coupling strength.



Chapter 4

The Gauge principle

The gauge invariance principle plays a key role in the Standard Model which

describes electroweak and strong interactions of elementary particles. Its

origins can be traced to Vladimir Fock who extended the known freedom

of choosing the electromagnetic potentials in classical electrodynamics to

the quantum mechanics of charged particles interacting with electromag-

netic fields. This fundamental principle has been then generalized and re-

fined trough the years and, nowadays, it is considered to be a fundamental

principle of nature, stating that different forms of potentials yield the same

physical description. The gauge principle can be regarded as the cornerstone

of the standard model, and it is used to introduce all the fundamental in-

teractions in the model. Here we limit to discuss quantum electrodynamics,

and are interested to discuss the gauge principle in the framework of the

non-relativistic quantum theory. According to gauge invariance, different

potentials, as long as they are related to each other by gauge transforma-

tions, describe the same electromagnetic fields [105]. Gauge transformation

can be written in a general form as

A→ A′ = A+ ∆F (4.1)

U → U ′ = U − ∂F

∂t
(4.2)

where A and U are, respectively, the electromagnetic vector and scalar po-

tentials and F is an arbitrary function, which depends on space-time coor-

dinates. When considering quantum electrodynamics, the gauge invariance

is obtained by transforming the wave functions under local unitary trans-
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formations, resulting in different Hamiltonians in the corresponding time

dependent Schrödinger equations (TDSE). For example, the wave function

transforms as:

ψ(1)(x)→ ψ(2)(x) = eiqF (x)ψ(1)(x) (4.3)

where ψ(1,2) are the wavefunctions in two different gauges and q is the parti-

cle charge. However, it is important to notice that unitary transformations

can result also into “representations” which are not considered as “gauge”

transformations. In particular, the fundamental property for a unitary trans-

formation to be regarded as a gauge transformation is that the dynamics must

be invariant [105]. It follows that, according to the gauge principle, all the

physical observables are gauge invariant. In quantum mechanics, an observ-

able Ô is defined as an operator acting in the system’s Hilbert space (for

example, the momentum and spin operators). We can easily change the rep-

resentation in which the observable is defined performing the transformation

Ô(2) = eiqF (x)Ô(1)e−iqF (x) . (4.4)

If the latter is a gauge transformation the expectation value of the observable

will be also gauge invariant thus, will obey to the relation:

〈
ψ(1)

∣∣ Ô(1)
∣∣ψ(1)

〉
=
〈
ψ(2)

∣∣ Ô(2)
∣∣ψ(2)

〉
. (4.5)

However, one could argue that it is possible to construct Hermitian opera-

tors which transform differently from Eq. (4.4) under gauge transformations

still remaining quantum observables according to the interpretation laws of

quantum mechanics. The answer is that, according to the gauge principle,

they are not considered “true” quantum observables because they cannot be

phisically measured. Notice that a physical quantity cannot depend on the

gauge choice, otherwise, it could take any arbitrary value. Often, the eval-

uation of the physical (gauge invariant) observables involve the evaluation

of gauge dependent quantities, e. g., the expression of the electron wave

function depends on the chosen gauge. If the exact analytical solution of the

TDSE is known, it is possible to move from one gauge to the other without



29

any problem since all the gauges will yield the same physical results (in this

case, the gauge choice is simply a matter of convenience since it may be easier

to solve the problem in one specific gauge). On the contrary, when approxi-

mations are involved the gauge invariance of the physical observables may be

lost as the error induced by the approximation scheme may not transform in

the same way as the full solution. In order to make this fundamental concept

clear let us consider a single electron in interaction with an electromagnetic

field expressed in two different gauges such that our system can be described

equivalently by the following wave functions:

ψ(1) = ψ̃(1) +R(1) (4.6)

ψ(2) = ψ̃(2) +R(2) (4.7)

where ψ(1,2) are the exact wavefunctions in the two gauges, while ψ̃(1,2) and

R(1,2) are, respectively, the approximated wavefunctions and the errors. Typ-

ically, R(1,2) ' gn for perturbation theory (where g is a small parameter).

The two exact wave functions are as always related by a gauge transforma-

tion such that we can move from a gauge to the other by applying a unitary

operator and that Eq. (4.5) is verified. If the approximate wave functions

obey the same gauge transformation as the full solution the approximated

observable will also be gauge invariant. However, this is not the general

scenario since they usually transform differently yielding:

〈
ψ̃(1)

∣∣∣ Ô(1)
∣∣∣ψ̃(1)

〉
6=
〈
ψ̃(2)

∣∣∣ Ô(2)
∣∣∣ψ̃(2)

〉
(4.8)

Therefore, we have lost gauge invariance by approximating the wave func-

tion. As the approximate wave functions get closer to the exact solution, the

observables calculated in two different gauges converge towards each other

and gauge invariance is recovered in the limit of the exact solution when

R(1,2) → 0. In conclusion, it is clear that approximating a gauge indepen-

dent quantity (a physical observable) by implementing an approximation of

a gauge dependent quantity (the wave function) may destroy the gauge in-

dependence of the former however the breaking of the gauge invariance is
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an artifact of the approximation method. For this reason one should always

choose the gauge giving the best approximation of the physical quantity un-

der consideration. This issue has been extensively studied. For instance, it

was remarked by Lamb in his celebrated study of the Hydrogen atom fine

structure, that the theoretical results obtained in the so-called length and ve-

locity gauges differ in perturbation theory [106]. This ambiguity was resolved

when it was observed that the perturbation theory is not gauge invariant and

that special care is required to calculate observables in a gauge independent

way. Recently this kind of issues have been raised also in the field of quantum

optics. In particular, it has been shown by several authors [106–110] that

approximate models for light-matter interactions derived in different gauges

may lead to different predictions. Specifically, it has been argued that trun-

cations of the atomic Hilbert space, to obtain a two-level description of the

matter system, violate the gauge principle [78, 79] and that such violations

become particularly relevant in the USC and DSC regimes. Among all these

closely related works, De Bernardis et al. [78] have shown that, while in the

electric dipole gauge, the two-level approximation can be performed as long

as the Rabi frequency remains much smaller than the energies of all higher-

lying levels, it can drastically fail in the Coulomb gauge, even for systems with

an extremely anharmonic spectrum. This unexpected result is particularly

unsatisfactory, since the general procedure to derive the multipolar gauge

consists of using the minimal coupling replacement first, and then applying

the Coulomb gauge [111]. The impact of the truncation of the Hilbert space

of the matter system to only two states has been studied also by Stokes and

Nazir [79], by introducing a one-parameter (α) set of gauge transformations.

In particular, investigating a matter system with a lower anharmonicity (with

respect to that considered in [78]) and by using the gauge parameter α as a

sort of fit parameter they found the surprising result that, in several circum-

stances, the optimal gauge is the so-called Jaynes-Cummings (JC) gauge, a

gauge in which the counter-rotating terms giving raise to the exotic effect

typical of the USC and DSC regime (e.g., the virtual excitations in the sys-

tem ground state) are automatically absent. However, ambiguities are not

limited to those properties dependent on virtual excitations, but also affect
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physical detectable photons. This issue originates from the gauge dependence

of the field canonical momentum (see, e.g., Refs. [112–114]). According to

the Glauber’s photodetection theory [115], the detection rate for photons po-

larized along a direction i is proportional to 〈ψ|Ê(−)
i Ê

(+)
i |ψ〉, where Ê(±) are

the positive and negative frequency components of the electric-field operator.

In the Coulomb gauge, Ê is proportional to the field canonical momentum

and can be expanded in terms of photon operators. On the contrary, in the

multipolar gauge, the canonical momentum that can be expanded in terms of

photon operators is not Ê but the displacement operator D̂. This subtlety is

generally disregarded, and the usual procedure is to obtain the system states

in the dipole gauge (the multipolar gauge after the electric-dipole approxi-

mation) |ψD〉, and to calculate the photodetection rate ignoring that in this

gauge the electric field operator is not a canonical momentum. It follows

that this procedure, when applied to the quantum Rabi model, can lead to

strongly incorrect predictions.

In 1970, Ref. [108] pointed out that gauge ambiguities in the calcula-

tion of atomic oscillator strengths, originate from the occurrence of nonlocal

potentials determined by the approximation procedures. Since a nonlocal

potential in the coordinate representation is an integral operator, it does not

commute with the coordinate operator. Indeed, it is easy to show that it can

be expressed as a local momentum-dependent operator V (r̂, p̂). Specifically,

in order to introduce the coupling of the matter system with the electromag-

netic field, the minimal replacement rule p̂→ Π̂ = p̂−A(r̂, t) has to be applied

not only to the kinetic energy terms, but also to the potentials in the effective

Hamiltonian of the particles in the system. By applying such a procedure,

the ambiguities in the calculation of approximate matrix elements for electric

dipole transitions can be removed [108]. Moreover, it has been demonstrated

that taking into account the nonlocality of the approximate potential, two-

photon transition rates involving Wannier excitons in semiconductors become

gauge invariant [109]. Also the microscopic quantum theory of excitonic po-

laritons is affected by the presence of nonlocal potentials. Specifically, the

application of the standard minimal coupling replacement leads to a total

Hamiltonian which, besides the usual Â̂̇p term, displays an additional dia-
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magnetic term e 2e2Â2/2m, where e and m are the electron charge and mass

respectively. If a limited number of exciton levels are explicitly included in

the model, the long wavelength solution of the polariton dispersion cannot

be recovered without introducing ad-hoc the Thomas-Reiche-Kuhn sum rule

and truncating the summation consistently [116]. This procedure presents

some ambiguity and appears to be rather artificial. However, if the nonlo-

cality of the approximate potential is taken into account and the resulting

additional terms are included, up to second order in the vector potential, the

correct dispersion relation is automatically recovered [117,118]. In summary,

it seems that the concept of approximation-induced nonlocal potentials, to-

gether with an expansion of the interaction Hamiltonian up to second order

in the vector potential, is able to overcome gauge ambiguities.

In Paper 6.1 the source of gauge violation in the QRM has been identi-

fied, and a general method for the derivation of light-matter Hamiltonians in

truncated Hilbert spaces able to produce gauge-invariant physical results has

been developed. The gauge invariance has been restored by solving the non-

locality issues arising from the two-level truncation of the matter potential in

the effective Hamiltonian. The resulting quantum Rabi Hamiltonian in the

Coulomb gauge differs significantly from the standard one, but, as expected,

it provides exactly the same energy levels obtained by using the dipole gauge,

because physical observable quantities must be gauge-invariant. In Paper 6.4,

the same result has been obtained with an alternative derivation based on the

implementation of the gauge principle in two-level systems. This approach

allowed us to obtain the QRM beyond the dipole approximation. In Paper

6.3 we studied and solved the gauge ambiguities in the Dicke model with a

similar procedure. Specifically we demonstrated that, by employing the cor-

rect procedure shown in Papers 6.3 - 6.4, gauge invariance is fully restored

for arbitrary interaction strengths, even when the number of emitters tends

to infinity. Finally, in Paper 6.2 we focus on the resolution of ambiguities,

not necessarily related to approximations, which can arise while considering

USC and DSC cavity- and circuit-QED systems. For example, we discuss

the proper definition of subsystems and their quantum measurements, the

structure of light-matter ground states, and the analysis of time-dependent



33

interactions.



Chapter 5

Open Quantum Systems Dynam-

ics in the USC regime

5.1 Dissipation and thermal noise in hybrid

quantum systems in the ultrastrong-coupling

regime
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The interaction among the components of a hybrid quantum system is often neglected when considering
the coupling of these components to an environment. However, if the interaction strength is large, this
approximation leads to unphysical predictions, as has been shown for cavity-QED and optomechanical systems
in the ultrastrong-coupling regime. To deal with these cases, master equations with dissipators retaining the
interaction between these components have been derived for the quantum Rabi model and for the standard
optomechanical Hamiltonian. In this article, we go beyond these previous derivations and present a general
master equation approach for arbitrary hybrid quantum systems interacting with thermal reservoirs. Specifically,
our approach can be applied to describe the dynamics of open hybrid systems with harmonic, quasiharmonic,
and anharmonic transitions. We apply our approach to study the influence of temperature on multiphoton vacuum
Rabi oscillations in circuit QED. We also analyze the influence of temperature on the conversion of mechanical
energy into photon pairs in an optomechanical system, which has been recently described at zero temperature.
We compare our results with previous approaches, finding that these sometimes overestimate decoherence rates
and underestimate excited-state populations.
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I. INTRODUCTION

According to quantum mechanics, a closed system always
displays a reversible evolution. However, no quantum system
is completely isolated from its environment; for example,
control and readout of a quantum system requires some
coupling to the outside world, which leads to dissipation
and decoherence (see, e.g., Refs. [1–4]). Realistic quantum
systems should thus be regarded as open, taking into account
the coupling to their environments. However, using an
exact microscopic approach to include the environment (or
reservoir) with its many degrees of freedom is often not
feasible. Hence it is highly desirable to model open quantum
systems using a small number of variables. An adequate
description of the time evolution of an open quantum system
can be provided by the equation of motion for its density
matrix: a quantum master equation [5,6]. Another useful
approach is based on the Heisenberg Langevin equation (see,
e.g., Refs. [7–9]). Microscopic derivations of master equations
start from the Hamiltonian dynamics of the total density
matrix (for the system plus the environment). Then, tracing
out the reservoir degrees of freedom, and introducing some
approximations, a master equation can be derived describing
the time evolution of the reduced density matrix only for
the system [10]. It turns out that the resulting evolution, in
general, is no longer unitary, and the open quantum system
evolves into mixed states (see, e.g., Ref. [11]).

A hybrid quantum system combines two or more physical
components or subsystems [12–14], with the goal of exploit-
ing the advantages and strengths of the different systems

in order to explore new phenomena and potentially bring
about new quantum technologies. An important requirement
for the realization of a functional hybrid quantum system
is the ability to transfer, with high fidelity, quantum states
and properties between its different components. Specifically,
the effective coupling rate between the subsystems must be
large enough to allow quantum state transfers between them
within the shortest coherence time of the two subsystems [14].
This interaction regime is usually called the strong-coupling
regime [15]. Cavity quantum electrodynamics (QED) in the
strong-coupling regime has demonstrated great capability and
potential for the control and manipulation of quantum states
[3,13,15]. Further increasing the coupling strength, a hybrid
quantum system enters the ultrastrong-coupling (USC) regime
when the interaction rate becomes comparable to the transi-
tion frequency of at least one of the subsystems [3,16,17].

It has been shown that USC can give rise to several
interesting physical effects [18–34]. Ultrastrong coupling
has been achieved in a variety of cavity-QED and other
hybrid condensed-matter systems, including semiconductor
polaritons in quantum wells [35–39], superconducting quan-
tum circuits [40–53], a terahertz metamaterial coupled to
the cyclotron resonance of a two-dimensional electron gas
(2DEG) [54–58], organic molecules [59–64], and in an op-
tomechanical system, where a plasmonic picocavity was cou-
pled to vibrations in a molecule [65]. In particular, in the
case of superconducting quantum circuits, it is possible to
reach the USC regime with even just a single artificial atom
coupling to an electromagnetic resonator [40,41,52,53,66,67].
Recently, coupling rates exceeding the transition frequencies

2469-9926/2018/98(5)/053834(15) 053834-1 ©2018 American Physical Society



ALESSIO SETTINERI et al. PHYSICAL REVIEW A 98, 053834 (2018)

Photonic
Reservoir

Ma�er
Reservoir

Photonic
Reservoir

Ma�er
Reservoir

Light Ma�er Light-Ma�er system

Weak and strong coupling Arbitrary coupling strengths(a) (b)

FIG. 1. (a) Master-equation approach valid in the weak- and
strong-coupling regimes. The light-matter coupling is neglected
while deriving the dissipators. (b) The master-equation approach
considering the light-matter coupling. As the coupling strength be-
tween the two subsystems increases, it becomes necessary to treat
dissipation effects including the coupling between the subsystems.
This can be done by developing the system operators describing the
coupling to the reservoirs in the eigenbasis of the coupled light-
matter system.

of the components (deep-strong-coupling regime [20]) have
been obtained in both a circuit-QED setup [46,50] and with a
2DEG [58].

Although the Hamiltonian of a coupled light-matter system
contains the so-called counter-rotating terms, allowing the
simultaneous creation or annihilation of an excitation in both
the matter system and the cavity mode, these terms can
be safely neglected for small coupling rates, if the compo-
nents interact resonantly or almost resonantly. However, when
the coupling strength becomes a significant fraction of the
cavity frequency (or of the emitter’s transition frequency),
this often-invoked rotating-wave approximation (RWA) is no
longer applicable and the antiresonant terms in the interaction
Hamiltonian significantly change the standard cavity-QED
physics [35]. For example, the number of excitations in the
cavity-emitter system is no longer conserved [30], even in the
absence of drives and dissipation, and the system states be-
come dressed by the presence of virtual excitations [68]. It has
also been demonstrated [69] that counter-rotating terms can
induce anomalous qubit transitions (which do not conserve
the excitation number) in a superconducting qubit-resonator
system detuned from resonance.

When deriving the master equation for a hybrid quantum
system, the interaction between the subsystems is usually
neglected when considering their coupling to the environment
[see Fig. 1(a)]. This results in the standard quantum-optical
master equation [5,6] (see Sec. II A). This procedure works
well in the weak-coupling regime, and can also be safely ap-
plied in the strong-coupling regime, when the density of states
of the reservoirs and the system-bath interaction strengths are
approximately flat (frequency independent) on the scale of
the energy-level splittings induced by the interaction between
the subsystems. However, it has been shown that when the
light-matter interaction increases up to the breakdown of the
RWA, this approach leads to unphysical predictions, e.g.,
excitations in the system even at zero temperature [21]. A
closely related problem arising in the USC regime is the
failure of standard input-output theory [22,24,70–72], which
predicts an unphysical output of photons when the hybrid
quantum system is in its ground state.

In order to overcome the problems in the description of dis-
sipation of cavity-QED systems in the USC regime, a master

equation taking into account the non-Markovian nature of the
baths has been developed [73]. Furthermore, Ref. [21] showed
that a master equation working properly in the USC regime
of cavity QED can be obtained by including the light-matter
coupling in the derivation of dissipative terms of the master
equation [see Fig. 1(b)]. This approach does not require the
introduction of non-Markovian baths. The decoherence rates
entering the modified master equation instead depend on
the bath noise spectrum evaluated at the dressed transition
frequencies of the light-matter system. Since this modified
master equation is obtained after a post-trace RWA, it can
only be applied to nonlinear interacting quantum systems with
anharmonicity larger than the transition linewidths. This pre-
vents the application of this approach to cavity-QED systems
in the USC dispersive regime (see Sec. III A), and to other
hybrid quantum systems displaying a coexistence of harmonic
(or quasiharmonic) and anharmonic transitions, e.g., optome-
chanical systems. In order to describe the losses through the
mirror of a cavity embedding matters, a master equation of
a non-Lindblad form was also derived [74]. For optomechan-
ical systems in the USC regime, an analogous dressed-state
master-equation approach has been developed [75], but it also
has limitations (see Sec. III B). A zero-temperature master
equation able to describe systems with both anharmonic and
(quasi-) harmonic transitions has been introduced to study a
cavity-QED system in the USC and dispersive regimes [76].
However, a finite-temperature master equation is an essential
tool for a precise analysis of experimental results, which, to
some degree, are always affected by thermal noise. A master
equation without the post-trace RWA has been derived to
describe a general spin-boson problem mapped into a finite-
temperature Rabi model in ultrastrong coupling in Ref. [77].

The main purpose of this article is to provide a general
approach for the description of dissipation in arbitrary hybrid
quantum systems with arbitrary coupling strengths between
its components. We do this by presenting a generalized master
equation able to describe systems with both harmonic and
anharmonic transitions, also valid for non-zero-temperature
reservoirs. The only key assumption in our derivation is a
weak system-bath interaction, such that the usual second-
order Born approximation can be applied (recently, different
approaches where this assumption can be relaxed have been
developed in Refs. [78–81].

In particular, we decompose the system operators in terms
of the dressed states of the hybrid quantum system and derive
the master equation without performing the usual secular
approximation. Finally, we take care of possible numerical
instabilities due to the presence of fast oscillating terms.

The outline of this article is as follows. We begin in Sec. II
by briefly reviewing the standard quantum-optical master
equation (Sec. II A) and the dressed master equation for
anharmonic systems (Sec. II B). Section II C is devoted to the
presentation of a non-Lindblad generalized master equation,
able to overcome the limitations of the dressed approach
of Sec. II B and to take into account non-zero-temperature
reservoirs. We also give a suitable solution for some numer-
ical stability problems of our generalized master equation.
In Secs. III A and III B, we apply this generalized master
equation to calculate the dynamics of a circuit-QED sys-
tem and an optomechanical system, respectively, at nonzero

053834-2



DISSIPATION AND THERMAL NOISE IN HYBRID … PHYSICAL REVIEW A 98, 053834 (2018)

temperatures, comparing the obtained results with the stan-
dard approaches used previously. We conclude in Sec. IV. In
the Appendix A, we present more details for the derivation of
the generalized dressed master equation.

II. MASTER EQUATIONS

In this section, we introduce dissipation for hybrid quan-
tum systems following three different approaches. We start
with the standard master equation, generally used for the
description of open systems in quantum optics. Then we
introduce the dressed master equation [21]. Finally, we con-
sider a generalized dressed approach, able to describe the
dissipation of hybrid quantum systems with arbitrary coupling
strength, valid for systems displaying harmonic, quasihar-
monic, and anharmonic transitions, while also considering
non-zero-temperature reservoirs.

We begin by considering a generic system consisting of N

interacting components or subsystems. Each ith component
is weakly coupled to an independent bath, modeled as a
collection of quantum harmonic oscillators, described by the
free Hamiltonian (h̄ = 1 throughout this article)

Ĥ
(i)
B =

∑
l

νl b̂
†
i,l b̂i,l , (1)

where b̂i,l (b̂†
i,l) are bosonic annihilation (creation) operators

for the lth bath mode with frequency νl of the ith reservoir.
The system-bath (denoted by the subscript SB) interaction
Hamiltonian is given by

ĤSB =
∑
i,l

αi,l (ŝi + ŝ
†
i )(b̂i,l + b̂

†
i,l ), (2)

where ŝi (ŝ†
i ) are annihilation (creation) operators of the ith

subsystem, mediating the interaction with the reservoirs. We
denoted the coupling strength of the ith subsystem to the bath
mode l of the ith reservoir by αi,l . In the interaction picture,
the system-bath interaction Hamiltonian takes the form

ˆ̃HSB =
∑
i,l

αi,le
ıĤS t (ŝi + ŝ

†
i )e−ıĤS t (b̂i,le

−ıνi,l t + b̂
†
i,le

ıνi,l t ),

(3)

where ĤS is the system Hamiltonian and ı is the imaginary
unit.

A. Standard master equation

In the standard approach, the components or subsystems
are assumed to be independent while obtaining the dissi-
pation. The coupling between the components is afterwards
introduced in the system Hamiltonian. This leads to the
Schrödinger-picture standard master equation

˙̂ρ = −ı[ĤS, ρ̂] + Lbareρ̂, (4)

where ρ̂ is the density matrix of the system and

Lbareρ̂ =
∑

i

{γi[1 + n(ωi, Ti )]D[ŝi]ρ̂

+ γin(ωi, Ti )D[ŝ†
i ]ρ̂}, (5)

with the generic dissipator

D[Ô]ρ̂ = 1
2 (2Ôρ̂Ô† − ρ̂Ô†Ô − Ô†Ôρ̂ ). (6)

In Eq. (5), the γi’s describe the leakage rates and n(ωi, Ti )
is the average thermal population of the ith reservoir at
temperature Ti and the frequency ωi at which ŝi rotates in the
interaction picture. Pure dephasing effects can be included by
adding to Eq. (5) the additional term (γφi

/2)D[d̂i]ρ̂, where
d̂i are system operators that do not change the energy of the
system and γφi

are the pure dephasing rates.
The master equation provided in Eq. (4) can be used to

describe many cavity- and circuit-QED experiments in the
weak- and strong-coupling regimes [3,5,6]. However, it has
been shown that when the coupling between the components
or subsystems increases beyond the point where the RWA
is applicable, this approach leads to unphysical predictions,
e.g., production of excitations in the system even at zero
temperature [21].

B. Master equations in the dressed picture

Master equation for anharmonic systems

In order to overcome the limitations of the standard ap-
proach, Ref. [21] developed a dressed master equation, taking
into account the coupling between all the components of the
system. They also considered that transitions in the hybrid
system occur between dressed eigenstates, not between the
eigenstates of the free Hamiltonians of the components. In the
following, we briefly show some key points of the dressed
master equation derivation. We first express the system Hamil-
tonian in the dressed basis of its energy eigenstates. We then
switch to the interaction picture, writing the system operators
as

ˆ̃Si (t ) =
∑
j,k>j

Cjk|j 〉〈k|eı�jk t , (7)

with

Cjk = 〈j |(ŝi + ŝ
†
i )|k〉, (8)

�jk = Ej − Ek, (9)

and the reservoir operators as

ˆ̃B(t ) =
∑
i,l

αi,l b̂i,le
−ıνl t . (10)

In this way, the system operators ŝi are expressed as a sum
over transition operators |j 〉〈k|, which cause transitions (with
frequency �jk) between eigenstates of the hybrid quantum
system {|j 〉, |k〉}. Note that “˜ ” identifies the operators in the
interaction picture. With these new dressed operators, Eq. (3)
can be split into two parts, one each for the dressed system
operators with positive and negative frequencies:

ˆ̃HSB =
∑

i

{ ˆ̃Si (t ) ˆ̃B†
i (t ) + ˆ̃S†

i (t ) ˆ̃Bi (t )}. (11)

Note that, as shown in Ref. [21], the fast oscillating terms
Ŝ

†
i (t )B̂†

i (t ) and Ŝi (t )B̂i (t ) have been dropped by an ini-
tial RWA and the diagonal terms arising from degenerate
transitions with j = k are neglected considering a system
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displaying parity symmetry (in this case Cjj = 0). By follow-
ing the standard procedure [5] (second-order Born approxi-
mation, Markov approximation, assuming reservoirs with a
continuum of frequencies, and performing the secular approx-
imation), as shown in detail in Ref. [21], for this simplified
version of Eq. (3), we obtain a dressed master equation that in
the Schrödinger picture can be written as

˙̂ρ = −ı[ĤS, ρ̂] + Ldressedρ̂, (12)

with the Lindbladian superoperator

Ldressedρ̂ =
∑

i

∑
j,k<j

{
�

jk

i n(�jk, Ti )D[|j 〉〈k|]ρ̂

+�
jk

i [1 + n(�jk, Ti )]D[|k〉〈j |]ρ̂}
, (13)

where the thermal populations are (kB = 1 throughout this
article)

n(�jk, Ti ) = [exp {�jk/Ti} − 1]−1 (14)

and the damping rates are

�
jk

i = 2πgi (�jk )|αi (�jk )|2|Cjk|2, (15)

with g(�jk ) being the reservoir density of states and α(�jk )
the system-reservoir coupling strength.

As shown by several studies [21–24,29,71,82–85], the
Lindbladian in Eq. (13) can correctly describe the dynamics
of anharmonic cavity-QED systems in the USC regime. At
T = 0, rather than exciting the system, the dissipators give
relaxation to the true dressed ground state. At T �= 0, these
dissipators correctly describe the relaxation to the thermal-
equilibrium density matrix for the interacting system [71].
However, because of the secular approximation used in the
derivation of Eq. (13), this standard approach is not able to
describe dissipation or decoherence in open quantum systems
with mixed harmonic-anharmonic or quasiharmonic spec-
tra [21], e.g., for cavity QED in the dispersive regime and
cavity optomechanics.

C. Generalized master equation

1. Derivation

In this section, we extend the previous treatment in order
to derive a generalized dressed master equation able to de-
scribe both harmonic and mixed harmonic-anharmonic sys-

tems coupled to non-zero-temperature reservoirs. Moreover,
the present derivation is not limited to systems with parity
symmetry.

We start expressing the system Hamiltonian in the dressed
basis of its energy eigenstates. We then switch to the interac-
tion picture, writing the system operators as

ˆ̃Si (t ) =
∑

ε′−ε=ω

�̂(ε)(ŝi + ŝ
†
i )�̂(ε′)e−ıωt

=
∑

ε′−ε=ω

Ŝi (ω)e−ıωt , (16)

and the reservoir operators as in Eq. (10), labelling the
eigenvalues of ĤS by ε and denoting the projectors onto the
respective eigenspaces by �̂(ε) ≡ |ε〉〈ε|. Recall that the tilde
symbol identifies interaction-picture operators. In this way,
the system operators ŝi are expressed as a sum over transition
operators, which cause transitions (with transition frequency
ω) between energy eigenstates of the hybrid quantum sys-
tem. For ω > 0, Ŝi (ω) is a positive-frequency operator that
takes the system from an eigenstate with higher energy to
one with lower energy. Conversely, for ω < 0, Ŝi (ω) is a
negative-frequency operator which produces a transition to a
higher-energy eigenstate. In the following, to emphasize these
properties, we introduce the notation

Ŝ
(+)
i (ω) = Ŝi (ω) for ω > 0,

Ŝ
(−)
i (ω) = Ŝi (−ω) for ω > 0, (17)

Ŝ
(0)
i = Ŝi (ω) for ω = 0.

With these new dressed operators, Eq. (3) can be rewritten in
a way that makes it easy to derive the Born-Markov master
equation for the system:

ˆ̃HSB =
∑

i

ˆ̃Si (t )[ ˆ̃B†
i (t ) + ˆ̃Bi (t )]. (18)

Following the standard procedure (see the Appendix A)
the generalized dressed master equation can be obtained eval-
uating the double integrals in Eq. (A4) of the Appendix A
without assuming parity symmetry, and evaluating the two
integrals without introducing the secular approximation ω =
ω′. In this case, we obtain a Liouvillian superoperator L that,
considering all the different subsystems, in the Schrödinger
picture, can be written in the general form

Lgmeρ̂ = 1

2

∑
i

∑
ω,ω′

{�i (−ω′)n(−ω′, Ti )[Ŝi (ω
′)ρ̂(t )Ŝi (ω) − Ŝi (ω)Ŝi (ω

′)ρ̂(t )] + �i (ω)n(ω, Ti )[Ŝi (ω
′)ρ̂(t )Ŝi (ω)

− ρ̂(t )Ŝi (ω)Ŝi (ω
′)] + �i (ω)[n(ω, Ti ) + 1][Ŝi (ω)ρ̂(t )Ŝi (ω

′) − Ŝi (ω
′)Ŝi (ω)ρ̂(t )]

+�i (−ω′)[n(−ω′, Ti ) + 1][Ŝi (ω)ρ̂(t )Ŝi (ω
′) − ρ̂(t )Ŝi (ω

′)Ŝi (ω)]}, (19)

where

�i (ω) = 2πgi (ω)|αi (ω)|2, (20)

and “gme” refers to generalized master equation.
Equation (19) contains several terms since both the transi-

tion frequencies ω and ω′ can be positive, negative, and zero,

although both �i (ω) and n(ω, Ti ) are nonzero for positive
frequencies only. Moreover, only a few of these terms are
relevant in order to correctly describe the system dynamics.
Indeed, the terms with oscillation frequencies significantly
larger than the damping rates �i of the system provide neg-
ligible contributions when integrating the master equation.
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Equation (19) also contains terms with ω′ = ω = 0, origi-
nating from diagonal transition operators or, more generally,
operators describing zero-frequency transitions. These terms
give rise to additional pure dephasing contributions. Note
that these terms can be regarded as a generalization of those
appearing in the master equation for optomechanical systems
in the USC regime [75].

Expanding Eq. (19), we obtain terms oscillating at frequen-
cies ±(ω′ ± ω) arising from products of Ŝ

(−)
i and Ŝ

(+)
i . We

also obtain terms oscillating at frequencies −ω′, +ω arising
from products of Ŝ

(−)
i or Ŝ

(+)
i with Ŝ

(0)
i and nonoscillating

terms arising from products between zero-frequency operators
Ŝ

(0)
i . Moreover, considering a system with well separated

energy levels (ω � �i), the terms oscillating at ±(ω + ω′),
+ω, and −ω′ can be considered as rapidly oscillating and
can be neglected. Including only those terms providing non-
negligible contributions to the dynamics, the Liouvillian in
Eq. (19) can be written as

Lgmeρ̂ = 1

2

∑
i

∑
(ω,ω′ )>0

{
�i (ω

′)n(ω′, Ti )[Ŝ
(−)
i (ω′)ρ̂(t )Ŝ (+)

i (ω) − Ŝ
(+)
i (ω)Ŝ (−)

i (ω′)ρ̂(t )] + �i (ω)n(ω, Ti )[Ŝ
(−)
i (ω′)ρ̂(t )Ŝ (+)

i (ω)

− ρ̂(t )Ŝ (+)
i (ω)Ŝ (−)

i (ω′)] + �i (ω)[n(ω, Ti ) + 1][Ŝ (+)
i (ω)ρ̂(t )Ŝ (−)

i (ω′) − Ŝ
(−)
i (ω′)Ŝ (+)

i (ω)ρ̂(t )]

+�i (ω
′)[n(ω′, Ti ) + 1][Ŝ (+)

i (ω)ρ̂(t )Ŝ (−)
i (ω′) − ρ̂(t )Ŝ (−)

i (ω′)Ŝ (+)
i (ω)] + �+

i (Ti )
[
Ŝ

(0)
i ρ̂(t )Ŝ (0)

i − Ŝ
(0)
i Ŝ

(0)
i ρ̂(t )

]
+�

′+
i (Ti )

[
Ŝ

(0)
i ρ̂(t )Ŝ (0)

i − ρ̂(t )Ŝ (0)
i (ω′)Ŝ (0)

i

] + �−
i (Ti )

[
Ŝ

(0)
i ρ̂(t )Ŝ (0)

i − ρ̂(t )Ŝ (0)
i Ŝ

(0)
i

]
+�

′−
i (Ti )

[
Ŝ

(0)
i ρ̂(t )Ŝ (0)

i − Ŝ
(0)
i Ŝ

(0)
i ρ̂(t )

]}
, (21)

with

�
′±
i (Ti ) =

∫ t

0
dτ

∫ ∞

0
dν gi (ν)|αi (ν)|2[n(ν, Ti ) + 1]e±ıντ ,

(22)

�±
i (Ti ) =

∫ t

0
dτ

∫ ∞

0
dν gi (ν)|αi (ν)|2n(ν, Ti )e

±ıντ . (23)

We also observe that, for the particular case of an Ohmic
bath, where

gi (ν)|αi (ν)|2 = γiν

2πfi

, (24)

with γi and fi being, respectively, the damping and the
frequency of the considered subsystem, we obtain

�i (ω) = γiω

fi

, (25)

and all the pure dephasing rates give the same result:

�
′±
i (Ti ) = �±

i (Ti ) = �(Ti ), (26)

�(Ti ) = γi

4fi

Ti. (27)

In the next section, we apply this generalized dressed master
equation to two hybrid quantum systems, comparing the ob-
tained numerical results with previous approaches.

2. Stability problems

We observe that the dissipator in Eq. (21) is not in Lindblad
form and, consequently, properties like the positivity of the
density matrix and the conservation of the probability cannot
be guaranteed. Furthermore, in this framework, some useful
theorems [86] on the steady-state behavior have not been
proven yet.

Actually, a careful inspection of Eq. (21) shows that it can
be regarded as approximately Lindblad-like. Specifically, if

we consider the interaction picture, each term of Eq. (21) (ex-
cept the last) oscillates at frequencies ±(ω − ω′). If (ω − ω′)
is significantly larger than the damping rates �i of the system,
these terms provide negligible contributions when integrating
the master equation. Hence |ω − ω′| can be assumed to be of
the order of the system linewidths. It is thus reasonable to as-
sume for the thermal populations of the reservoirs n(ω, Ti ) 	
n(ω′, Ti ) and for the dampings �i (ω) 	 �i (ω′). This analysis
shows that, within a very good approximation, the dissipator
in Eq. (21) can be regarded to be in Lindblad form.

Although the fast oscillating terms arising in Eq. (21),
produced from transitions with high frequency differences
(not present after the post-trace RWA), should not provide a
significant contribution for |ω − ω′| > �i , they can strongly
increase the computation time and lead to computational
instabilities. In order to overcome these difficulties, we use
numerical filtering with a steplike function that sets to zero
all the dissipator terms involving frequency differences higher
than a certain value �. More specifically, the filtered Liouvil-
lian takes the form

Lfilt
gmeρ̂ = Lgmeρ̂ × F (ω,ω′), (28)

where the filter function F (ω,ω′) can be written in a general-
ized form as

F (ω,ω′) = �(|ω − ω′|) − �(|ω − ω′| − �), (29)

with � the Heaviside step function and � the bandwidth of
the filter.

III. DISSIPATION IN THE USC REGIME

In this section, we apply the generalized master equation
presented in the previous section to study the influence of
temperature on the dynamics of two open hybrid quantum
systems in the USC regime. Specifically, we reexamine the
dynamics of the two systems presented in Refs. [27] and [87].
The first example is a circuit-QED system in the dispersive
regime, displaying multiphoton quantum Rabi oscillations.
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For this setup, we also compare the results obtained with
the generalized master equation to those obtained using the
dressed approach for anharmonic systems [21].

The second example is an optomechanical system with
coexisting harmonic and anharmonic spectra. Specifically, we
consider an ultra-high-frequency mechanical oscillator ultra-
strongly coupled to a microwave resonator. Very recently, con-
sidering zero-temperature reservoirs, it has been shown [88]
that this system is promising for the observation of the dy-
namical Casimir effect (DCE), which converts mechanical
energy into photon pairs [89]. Here we analyze the influence
of temperature on this fundamental quantum effect. Moreover,
in order to understand the impact of the generalized master
equation on the dynamics of hybrid quantum systems, we
compare the obtained numerical results with those obtained
using a previously developed approach for USC optomechan-
ics [75]. Note that all the numerical results are displayed in
the laboratory frame.

A. Circuit QED beyond the RWA

In this circuit-QED example, we study a flux qubit coupled
to a single-mode resonator [27]. The bare qubit Hamiltonian
can be written as

Ĥq = ωqσ̂z/2, (30)

where the qubit resonance frequency is ωq =√
�2 + (2Ipδ�x )2, with � the qubit energy gap, Ip the

persistent current corresponding to the minima of the qubit
potential, and δ�x the flux offset. The bare resonator
Hamiltonian is

Ĥc = ωcâ
†â, (31)

where ωc is the frequency of the resonator mode and â (â†) is
the bosonic annihilation (creation) operator for that mode. The
total quantum system is described by the generalized quantum
Rabi Hamiltonian

ĤS = Ĥq + Ĥc + gX̂[cos(θ )σ̂x + sin(θ )σ̂z], (32)

where the flux dependence is encoded in cos(θ ) = �/ωq ,
X̂ = â + â†, and σ̂x , σ̂z are Pauli matrices.

As shown in Ref. [27], the lowest energy levels of this
system display a well-known avoided level crossing arising

for ωq 	 ωc (vacuum Rabi splitting). This avoided crossing
is due to the coherent coupling of the states |e, 0〉 and |g, 1〉,
where g (e) indicates the ground (excited) state of the qubit
and the second entry in the kets represents the photon number.
However, when the RWA breaks down, the counter-rotating
terms in Eq. (32) must be taken into account and the total
number of excitations in the system is no longer conserved
[41,69]. As a consequence, the coherent coupling between
states with different numbers of excitations, not allowed in the
standard Jaynes-Cummings model [90,91], becomes possible
through virtual transitions mediated by the counter-rotating
terms [31]. This generates several additional avoided level
crossings between states with different excitation numbers,
e.g., between |e, 0〉 and |g, 2〉 [27].

For our numerical calculations, we consider, as in
Ref. [27], ωc/2π = 4.0 GHz and a resonator-qubit coupling
strength g/ωc = 0.157. We focus on the avoided crossing
arising at ωq 	 2ωc between the states |ψ±〉 	 1√

2
(|e, 0〉 ±

|g, 2〉). We set ωq/2π = 7.97 GHz (obtained using the qubit
parameters �/h = 2.25 GHz, 2Ip = 1.97 nA, and δ�x =
3.88 �0); this is where the splitting reaches its minimum [27].
The minimum splitting 2�eff provides a direct measurement
of the effective resonant coupling �eff between the states
|e, 0〉 and |g, 2〉.

In order to probe this avoided crossing, we consider, as in
Ref. [27], the case where the qubit is directly excited by a
Gaussian π pulse,

Ĥp = E (t ) cos(ωt )σ̂x, (33)

where E (t ) = � exp[−(t − t0)2/2τ 2]/(τ
√

2π ). Here, τ is the
standard deviation and �/ωc = (π/3) × 10−1 the amplitude
of the pulse. The center frequency of the pulse corresponds
to the middle of the avoided crossing considered here. Specif-
ically, ω = (ω3,0 + ω2,0)/2, with ωi,j = ωi − ωj , where we
labeled the energy values and the eigenstates of the hybrid
system as ωl and |l〉, with l = 0, 1, . . . , such that ωk > ωj for
k > j .

The system dynamics is then evaluated using the general-
ized master equation (gme)

˙̂ρ = −ı[ĤS + Ĥp, ρ̂] + Lgmeρ̂, (34)

where, considering an Ohmic bath, the Liouvillian dissipator
can be written as

Lgmeρ̂ =
∑

(ω,ω′ )>0

1

2

{
γω′

ωq

n(ω′, Tγ )[P̂ (−)(ω′)ρ̂P̂ (+)(ω) − P̂ (+)(ω)P̂ (−)(ω′)ρ̂] + γω

ωq

[n(ω, Tγ ) + 1][P̂ (+)(ω)ρ̂P̂ (−)(ω′)

− P̂ (−)(ω′)P̂ (+)(ω)ρ̂] + γω

ωq

n(ω, Tγ )[P̂ (−)(ω′)ρ̂P̂ (+)(ω) − ρ̂P̂ (+)(ω)P̂ (−)(ω′)] + γω′

ωq

[n(ω′, Tγ ) + 1]

× [P̂ (+)(ω)ρ̂P̂ (−)(ω′) − ρ̂P̂ (−)(ω′)P̂ (+)(ω)] + κω′

ωc

n(ω′, Tκ )[Â(−)(ω′)ρ̂Â(+)(ω) − Â(+)(ω)Â(−)(ω′)ρ̂]

+ κω

ωc

[n(ω, Tκ ) + 1][Â(+)(ω)ρ̂Â(−)(ω′) − Â(−)(ω′)Â(+)(ω)ρ̂] + κω

ωc

n(ω, Tκ )[Â(−)(ω′)ρ̂Â(+)(ω)

− ρ̂Â(+)(ω)Â(−)(ω′)] + κω′

ωc

[n(ω′, Tκ ) + 1][Â(+)(ω)ρ̂Â(−)(ω′) − ρ̂Â(−)(ω′)Â(+)(ω)]

}
. (35)
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FIG. 2. Dynamics of anomalous two-photon vacuum Rabi os-
cillations. Results obtained using the generalized-master-equation
approach, varying the temperature of both subsystems. (a) Time evo-
lution of the mean cavity photon number 〈Â(−)Â(+)〉 after the arrival
of a Gaussian π pulse to the qubit. The system starts in the ground
state. (b) Two-photon correlation function for the cavity, obtained
with the same parameters and conditions. After the arrival of the
pulse, independent of the temperature of the reservoirs, the system
undergoes vacuum Rabi oscillations showing the reversible exchange
of photon pairs between the qubit and the resonator. However,
when raising the temperature, due to the increasing decoherence,
the oscillations become more damped and the correlation function
reaches higher stationary values due to larger incoherent, thermal
contributions. Note that the second and the fifth dips are shallower
because of some spurious effects generated by other transitions
excited by the coherent pulse. All parameters for the simulations are
given in the text. �eff on the x axis indicates the effective resonant
coupling.

Here κ and γ are the qubit and cavity damping rates, respec-
tively, Â(+) and Â(−) are the positive- and negative-frequency
dressed cavity operators (ŝi = â), and P̂ (+) and P̂ (−) are
the positive- and negative-frequency dressed qubit operators
(ŝi = σ̂−). We neglected the very small pure dephasing term in
the dissipator [see Eq. (21)]and we did not apply any filtering
procedure.

Figure 2 displays the dynamics of the mean cavity photon
number 〈Â(−)Â(+)〉 (a) and of the zero-delay two-photon cor-
relation function G

(2)
A (t, t ) = 〈Â(−)(t )Â(−)(t )Â(+)(t )Â(+)(t )〉

(b) after the arrival of a Gaussian π pulse, evaluated for dif-
ferent temperatures and starting the dynamics with the system
in its ground state. We used Tγ /ωc = Tκ/ωc and the decoher-
ence rates γ /ωc = κ/ωc = 3.75 × 10−4. Note that the output

FIG. 3. Comparison between the results obtained using the
generalized-master-equation approach (red solid curves) and the
standard dressed master equation (black dashed curves). (a) Time
evolution of the mean cavity photon number 〈Â(−)Â(+)〉 at temper-
ature T/ωc = 0.75 with all other parameters the same as in Fig. 2.
(b) Two-photon correlation functions, obtained with the same param-
eters and conditions. After the arrival of the pulse, both approaches
show the system undergoing two-photon Rabi oscillations and re-
laxing to thermal equilibrium. However, with the standard dressed
master equation, the coherence losses are slightly overestimated
(because of the post-trace RWA), so the oscillations are more damped
and the stationary value is reached sooner.

photon flux is proportional to 〈Â(−)Â(+)〉. At T = 0 our ap-
proach reproduces the two-photon vacuum Rabi oscillations
shown in Ref. [27]. Here we study the influence of nonzero
temperature on the this anomalous atom-cavity energy ex-
change. Increasing the temperature, the oscillations become
more damped and the energy exchange becomes less effective.
This effect is even more pronounced for the two-photon corre-
lation G

(2)
A (t, t ), which displays a stronger thermal sensitivity.

These results help to set a limit on the system temperature for
the observation of two-photon vacuum Rabi oscillations.

In order to further show the impact of the generalized
approach presented in this paper on the dissipative dynamics
of cavity-QED systems in the USC regime, we compare the
numerical results obtained with the generalized dressed mas-
ter equation with those obtained using the standard dressed
approach of Ref. [21].

Figure 3 shows the mean cavity photon number (a) and
the two-photon correlation function (b) evaluated using the
generalized dressed master equation (red solid curves) and the
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standard dressed master equation [21] (black dashed curves),
calculated with the atom and cavity reservoirs at temperature
T/ωc = 0.75. Both approaches show the system undergoing
multiphoton Rabi oscillations and the signals reaching the
same stationary values, corresponding to the equilibrium ther-
mal populations.

We observe that the standard approach overestimates de-
coherence effects. In the dispersive regime of cavity QED,
pairs of photonlike transitions partially overlap, reducing de-
coherence effects during the time evolution. This effect is
completely neglected in the standard dressed master equation.
Further calculations, not shown here, indicate that these dis-
crepancies increase with temperature. These effects lead to an
overestimation of the coherence losses of the system, which
also can be seen in the behavior of the two-photon correlation
function [Fig. 3(b)].

It is also important to note that the generalized master
equation is able to overcome another limit of validity of
the standard dressed approach. As reported in Ref. [21],
the standard dressed master equation breaks down in the
limit of high excitation numbers, where more transitions
might accidentally have the same frequency. The general-
ized master equation can handle such degenerate transitions
well.

B. Cavity optomechanics beyond the RWA

1. Full optomechanical Hamiltonian

In Sec. III A, we demonstrated that our generalized ap-
proach is able to correctly describe systems with quasihar-
monic spectra. In this section, we explore a mixed harmonic-
anharmonic behavior, considering a simple optomechanical
system [87], where a single cavity mode of frequency ωc is
coupled by radiation pressure to a single mechanical mode of
a mirror vibrating at frequency ωm.

Denoting the mechanical bosonic operators b̂, b̂† and the
cavity bosonic operators â, â†, the system Hamiltonian can be
written as [92]

ĤS = Ĥ0 + V̂om + V̂DCE, (36)

where

Ĥ0 = ωcâ
†â + ωmb̂†b̂ (37)

is the unperturbed Hamiltonian,

V̂om = gâ†â(b̂ + b̂†) (38)

is the standard optomechanical interaction Hamiltonian,
and

V̂DCE = g

2
(â2 + â†2)(b̂ + b̂†) (39)

describes the emission of photon pairs induced by the me-
chanical motion predicted by the DCE [89,93,94]. When
treating most optomechanics experiments until now, V̂DCE

has been neglected. This is a very good approximation
when the mechanical frequency is much smaller than the
cavity frequency (which is the most common experimental

situation), because V̂DCE connects bare states with an energy
difference 2ωc ± ωm which then is much larger than the
coupling strength g. With this approximation, the resulting
Hamiltonian, Ĥ0 + V̂om, conserves the number of photons and
can be analytically diagonalized. However, when considering
ultra-high-frequency mechanical oscillators, with resonance
frequencies in the GHz spectral range, coupled to a microwave
resonator, V̂DCE, which does not conserve the photon number,
cannot be neglected any more [87].

As shown in Ref. [87], such a system displays an energy-
level spectrum with a ladder of avoided level crossings arising
from the coherent coupling induced by V̂DCE between the
states |n, kn〉 and |n + 2, (k − q )n+2〉, occurring when the
energies of the initial and final states coincide (2ωc 	 qωm).
Here the first number in the ket denotes photon number and
the second denotes phonon number (with the photon number
as a subscript since the photons displace the mechanical
Fock state). For example, with q = 1, we have the standard
resonance condition for the DCE (2ωc 	 ωm [95]), in which
case V̂DCE gives rise to a resonant coupling between the states
|0, k〉 and |2, (k − 1)2〉 with k � 1, converting a phonon into
a photon pair.

When V̂DCE is taken into account, the system Hamiltonian
does not conserve the number of photons (the phonon number
is not conserved even in the standard optomechanical Hamil-
tonian). For example, the ground state of ĤS contains photons,
i.e., 〈E0|â†a|E0〉 �= 0. Therefore, in analogy to USC cavity
QED, a careful treatment of dissipation and input-output the-
ory is required. If the standard photon and phonon operators
were used to describe the interaction with the outside world,
unphysical effects would arise.

2. Impact of temperature on the dynamical Casimir effect

It has been shown [87] that this system can be used to
demonstrate the conversion of mechanical energy into photon
pairs (DCE). The calculations in Ref. [87] were performed us-
ing a dressed master equation without the post-trace RWA, de-
veloped only for the case of zero-temperature reservoirs. Here
we instead apply the generalized master equation presented in
Sec. II C, in order to study the influence of temperature on the
energy conversion from phonons to photons.

For our numerical calculation we consider a normalized
optomechanical coupling g/ωm = 0.1, a mechanical damping
rate γ /ωm = 0.05, and a cavity damping rate κ = γ /2. We
focus on the avoided level crossing between the states |0, 2〉
and |2, 02〉 at ωm 	 ωc. We consider the resonant condi-
tion, corresponding to the minimum level splitting: ωc/ωm =
1.016.

As in Ref. [87], we consider a continuous coherent drive of
the mechanical oscillator,

Ĥd = �(b̂ e−ıωmt + b̂†eıωmt ), (40)

with frequency resonant with the oscillating mirror and am-
plitude � = γ /2. The dynamics giving rise to the DCE is
then described by the filtered generalized master equation
(� = 10γ )

˙̂ρ = −i[ĤS + Ĥd, ρ̂] + Lfilt
gmeρ̂, (41)
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FIG. 4. Results for the DCE at different temperatures, obtained using the generalized-master-equation approach. (a), (b) System dynamics
for ωc 	 ωm, under coherent mechanical pumping, in perfect cooling conditions Tγ = Tκ = 0, starting the dynamics from the ground state.
(c), (d) The same, but with Tγ /ωm = Tκ/ωm = 0.5 and the initial state being the thermal state with T/ωm = 0.5. The blue dashed curves show
the mean phonon number 〈B̂ (−)B̂ (+)〉 in (a), (c) and the phonon-phonon correlation function g

(2)
B (t, t ) in (b), (d). The red solid curves describe

the mean cavity photon number 〈Â(−)Â(+)〉 in (a), (c) and the zero-delay normalized photon-photon correlation function g
(2)
A (t, t ) in (b), (d).

All parameters for the simulations are given in the text.

where the Liouvillian superoperator can be written as

Lfilter
gme ρ̂ =

∑
(ω,ω′ )>0

1

2
{γ n(ω′, Tγ )[B̂ (−)(ω′)ρ̂B̂ (+)(ω) − B̂ (+)(ω)B̂ (−)(ω′)ρ̂] + γ [n(ω, Tγ ) + 1][B̂ (+)(ω)ρ̂B̂ (−)(ω′)

− B̂ (−)(ω′)B̂ (+)(ω)ρ̂] + γ n(ω, Tγ )[B̂ (−)(ω′)ρ̂B̂ (+)(ω) − ρ̂B̂ (+)(ω)B̂ (−)(ω′)] + γ [n(ω′, Tγ ) + 1]

× [B̂ (+)(ω)ρ̂B̂ (−)(ω′) − ρ̂B̂ (−)(ω′)B̂ (+)(ω)] + κn(ω′, Tκ )[Â(−)(ω′)ρ̂Â(+)(ω) − Â(+)(ω)Â(−)(ω′)ρ̂]

+ κ[n(ω, Tκ ) + 1][Â(+)(ω)ρ̂Â(−)(ω′) − Â(−)(ω′)Â(+)(ω)ρ̂] + κn(ω, Tκ )[Â(−)(ω′)ρ̂Â(+)(ω)

− ρ̂Â(+)(ω)Â(−)(ω′)] + κ[n(ω′, Tκ ) + 1][Â(+)(ω)ρ̂Â(−)(ω′) − ρ̂Â(−)(ω′)Â(+)(ω)]}F (ω,ω′), (42)

where Â(+) and Â(−) are the positive- and negative-frequency
dressed cavity operators (ŝi = â), and B̂ (+) and B̂ (−) are the
positive- and negative-frequency dressed mechanical opera-
tors (ŝi = b̂).

In Fig. 4, we show the photonic and phononic populations,
〈Â(−)Â(+)〉 and 〈B̂ (−)B̂ (+)〉, and the relative two-photon and
two-phonon correlation functions,

g
(2)
A (t, t ) = 〈Â(−)(t )Â(−)(t )Â(+)(t )Â(+)(t )〉

〈Â(−)(t )Â(+)(t )〉2
, (43)

g
(2)
B (t, t ) = 〈B̂ (−)(t )B̂ (−)(t )B̂ (+)(t )B̂ (+)(t )〉

〈B̂ (−)(t )B̂ (+)(t )〉2
. (44)

Figures 4(a) and 4(b) display the results of calculations done
with zero-temperature reservoirs for both subsystems and
starting the dynamics from the ground state. Figures 4(c)
and 4(d) display the results of calculations for reservoirs
with Tγ /ωm = Tκ/ωm = 0.5 and with the system initially in
thermal equilibrium with those reservoirs.

At T = 0, with the system starting in its ground state, the
photonic and phononic populations start from zero and, due
to the coherent pumping, reach nonzero stationary values. The
photonic correlation function g

(2)
A (t, t ) is initially much higher

than two, suggesting photon-pair emission. As time goes on,
g

(2)
A (t, t ) decreases significantly due to losses which affect the

photon-photon correlations, and also due to the increase of
the mean photon number [note that g

(2)
A (t, t ), owing to the

squared denominator, is an intensity-dependent quantity]. The
mechanical correlation function g

(2)
B (t, t ), on the contrary, has

an almost constant value [g(2)
B (t, t ) ≈ 1], showing that the

mechanical system is mainly in the coherent state produced
by the pumping.

For reservoirs with nonzero temperature, the phonon and
photon populations, starting from their thermal-equilibrium
values, equilibrate to lower steady-state values. This reduction
of both populations originates from the increase of the decay
rate of the coherent contributions with increasing temperature.
We also note that the difference between the two steady-state
values is reduced at higher temperatures, due to the thermal
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contributions. At T �= 0, a fraction of the observed photons,
as expected, does not come from the mechanical-to-optical
energy conversion, but, trivially, from the photonic thermal
reservoir.

This picture is confirmed by comparing the dynamics of
the higher-order correlation functions [Figs. 4(c) and 4(d)].
Specifically, at higher temperature, we observe a strong de-
crease of g

(2)
A (t, t ), showing that a reduced fraction of pho-

tons is emitted in pairs. However, the photon-photon cor-
relation functions remains, even in the steady state, higher
than the thermal value g

(2)
A (t, t ) = 2. The phonon-phonon

correlation starts from a value 	2 corresponding to the initial
incoherent thermal state and, as time goes on, decays to a
stationary value higher than one due to the incoherent ther-
mal excitations provided by the interaction with the thermal
reservoirs.

Furthermore, in Fig. 4(d), the photon-photon and the
phonon-phonon correlation functions do not start from the
same initial value. This effect is due to the V̂DCE term which,
owing to its nonbilinear form, modifies the thermodynamic
equilibrium of the initial state of the system. The V̂DCE contri-
bution leads to a separation of the correlation-function values
with size proportional to the temperature. This separation thus
vanishes trivially for T = 0, when the V̂DCE term becomes
negligible.

The results obtained clearly show that the generalized
dressed master equation provided here is able to describe dis-
sipation in hybrid quantum systems with coexisting coherent
phases (provided, e.g., by means of a continuous drive) and
incoherent phases (provided, e.g., by thermal reservoirs or
thermal-like pumping). The behavior of the one- and two-
photon correlation functions show that signatures of the DCE
can be observed even in the presence of a non-negligible
amount of thermal noise. It thus demonstrates that this ef-
fect can be observed in a real experimental setup, where
perfect cooling conditions cannot be reached. Although the
number of Casimir photon pairs produced depends on the
thermal noise injected into the system, our results here show
that the DCE remains detectable even at relatively high
temperatures.

3. Comparison to other approaches

As already mentioned in the Introduction, and demon-
strated in Ref. [21], the use of a master equation with a dissi-
pator not taking into account the interaction between the sub-
systems can lead to unphysical results. Hu et al. derived [75]
a dressed master equation specifically developed to describe
dissipation in optomechanical systems characterized by the
standard optomechanical Hamiltonian, ĤS = Ĥ0 + V̂om, in
the USC regime. Here we show that this master equation fails
when considering the complete optomechanical Hamiltonian
ĤS = Ĥ0 + V̂om + V̂DCE.

In Fig. 5, we display results obtained describing the dy-
namics of our optomechanical system in perfect cooling con-
ditions, without any pumping, with the master equation pro-
vided in Ref. [75], including the V̂DCE term as a perturbation
in the dynamics. In these conditions, evaluating the dynamics
with the system initially in the ground state (an eigenstate
of the system), zero population is expected in the states

FIG. 5. State populations obtained using the master-equation
approach of Ref. [75]. The red (blue) solid curve shows the time
evolution of the population of the one-photon state |1, 0〉 (the one-
phonon state |0, 1〉) labeled ρ22(t ) [ρ11(t )] under perfect cooling
conditions Tγ = Tκ = 0 and without any pumping. The initial state
is the ground state |0, 0〉. All other parameters are the same as in
Fig. 4. In these conditions, without any external driving or thermal
excitations, the system is expected to remain in the ground state.
However, the plot clearly shows a nonzero population in both the
one-photon and one-phonon states. This indicates that this approach
is not able to correctly describe optomechanical systems when the
V̂DCE contribution no longer can be neglected.

with one photon, |1, 0〉, and one phonon, |0, 1〉. However,
Fig. 5 clearly shows nonzero populations. This anomalous
effect occurs because, due to the additional V̂DCE term, the
number of photons is no longer conserved and consequently
the eigenstates of the Hamiltonian changes. In this case,
the master equation provided in Ref. [75] does not describe
interactions between subsystems and reservoirs in terms of
the correct eigenstates, which leads to an unphysical evolution
of the initial ground state. This result shows once more the
importance of expressing the system operators in the basis
of the system eigenstates when describing interactions with
reservoirs to derive a correct master equation.

IV. CONCLUSIONS

We have presented a generalized dressed master equation,
valid for arbitrary open hybrid quantum system interacting
with thermal reservoirs and for arbitrary strength of the cou-
pling between the components of the hybrid system. Our
approach was derived within the Born-Markov approxima-
tion, including the pure dephasing terms and without per-
forming the usual post-trace RWA. Therefore, our approach
is able to handle dynamics in systems with both harmonic,
quasiharmonic, and anharmonic transitions. Moreover, this
approach is not limited to systems displaying parity symmetry.
Unfortunately the dissipator obtained includes rapidly oscil-
lating terms that can cause numerical instabilities. In order to
fix this problem, we introduced a filtering procedure which
eliminates the fast-oscillating terms which do not contribute
to the coarse-grained dynamics. This filtering has the added
benefit of reducing computation times.

We applied our generalized approach to study the influence
of temperature on multiphoton vacuum Rabi oscillation in a
circuit-QED system in the dispersive regime. We compared
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our results with those obtained using the dressed master
equation of Ref. [21]. We found that both approaches describe
multiphoton Rabi oscillations and reach the same stationary
state (the thermal equilibrium). However, the standard master
equation overestimates decoherence effects since it does not
take into account the partial overlap of photonlike transitions,
which reduces the decoherence during the time evolution.

We also studied the influence of temperature on the con-
version of mechanical energy into photon pairs (DCE) in an
optomechanical system, recently described in Ref. [87] for
zero-temperature reservoirs. In this case, we showed that the
DCE can be observed also in the presence of a significant
amount of thermal noise.

Finally, we demonstrated that the master-equation ap-
proach provided in Ref. [75] for optomechanical systems
with ultrastrong coupling fails when considering the full
optomechanical Hamiltonian including the V̂DCE term. Specif-
ically, under these conditions, the master equation provided in
Ref. [75] does not describe interactions between the compo-
nents and reservoirs correctly in terms of transitions between
eigenstates of the hybrid system. Because of this shortcoming,
that approach leads to an unphysical evolution of the initial
ground state to excited states even at zero temperature and
without any external pumping. This example clearly shows
that the general master-equation approach provided here is

necessary to describe dissipation of general open hybrid quan-
tum systems interacting with thermal reservoirs.
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APPENDIX: DERIVATION OF THE DRESSED
MASTER EQUATION

Starting from the system-bath Hamiltonian in Eq. (18),
and following the standard procedure [5], i.e., performing
the second-order Born approximation, the Markov approxi-
mation, and considering reservoirs with a continuum of fre-
quencies, we obtain

˙̃̂ρ(t ) =
∫ t

0
dt ′[ ˆ̃Si (t

′) ˆ̃ρ(t ′) ˆ̃Si (t ) − ˆ̃Si (t ) ˆ̃Si (t
′) ˆ̃ρ(t ′)]〈 ˆ̃B†

i (t ) ˆ̃Bi (t
′)〉 +

∫ t

0
dt ′[ ˆ̃Si (t ) ˆ̃ρ(t ) ˆ̃Si (t

′) − ˆ̃ρ(t ′) ˆ̃Si (t
′) ˆ̃Si (t )]〈 ˆ̃B†

i (t ′) ˆ̃Bi (t )〉

+
∫ t

0
dt ′[ ˆ̃Si (t

′) ˆ̃ρ(t ) ˆ̃Si (t ) − ˆ̃Si (t ) ˆ̃Si (t
′) ˆ̃ρ(t ′)]〈 ˆ̃Bi (t ) ˆ̃B†

i (t ′)〉 +
∫ t

0
dt ′[ ˆ̃Si (t ) ˆ̃ρ(t ′) ˆ̃Si (t

′) − ˆ̃ρ(t ′) ˆ̃Si (t
′) ˆ̃Si (t )]〈 ˆ̃Bi (t

′) ˆ̃B†
i (t )〉,

(A1)

where 〈 ˆ̃B†
i (t ) ˆ̃Bi (t ′)〉 and 〈 ˆ̃B†

i (t ′) ˆ̃Bi (t )〉 are the reservoir correlation functions

〈 ˆ̃B†
i (t ) ˆ̃Bi (t

′)〉 =
∫ ∞

0
dν gi (ν)|αi (ν)|2n(ν, Ti )e

ıν(t−t ′ ), (A2)

〈 ˆ̃Bi (t ) ˆ̃B†
i (t ′)〉 =

∫ ∞

0
dν gi (ν)|αi (ν)|2[n(ν, Ti ) + 1]e−ıν(t−t ′ ), (A3)

with g(ν) being the reservoir density of states and α(ν) the system-reservoir coupling strength. Substituting Eqs. (A2) and (A3)
into Eq. (A1), and performing the change of variable τ = t − t ′, we obtain

˙̃̂ρ(t ) =
∑

i

∑
ω,ω′

[
Âi

ω,ω′ (t ) + B̂i
ω,ω′ (t ) + Ĉi

ω,ω′ (t ) + D̂i
ω,ω′ (t )

]
, (A4)

where

Âi
ω,ω′ (t ) =

∫ t

0
dτ e−ı(ω+ω′ )t eıω′τ [Ŝi (ω

′) ˆ̃ρ(t )Ŝi (ω) − Ŝi (ω)Ŝi (ω
′) ˆ̃ρ(t )]

∫ ∞

0
dν gi (ν)|αi (ν)|2n(ν, Ti )e

ıντ ,

B̂i
ω,ω′ (t ) =

∫ t

0
dτ e−ı(ω+ω′ )t eıωτ [Ŝi (ω

′) ˆ̃ρ(t )Ŝi (ω) − ˆ̃ρ(t )Ŝi (ω)Ŝi (ω
′)]

∫ ∞

0
dν gi (ν)|αi (ν)|2n(ν, Ti )e

−ıντ ,

(A5)

Ĉi
ω,ω′ (t ) =

∫ t

0
dτ e−ı(ω+ω′ )t eıωτ [Ŝi (ω) ˆ̃ρ(t )Ŝi (ω

′) − Ŝi (ω
′)Ŝi (ω) ˆ̃ρ(t )]

∫ ∞

0
dν gi (ν)|αi (ν)|2[n(ν, Ti ) + 1]e−ıντ ,

D̂i
ω,ω′ (t ) =

∫ t

0
dτ e−ı(ω+ω′ )t eıω′τ [Ŝi (ω) ˆ̃ρ(t )Ŝi (ω

′) − ˆ̃ρ(t )Ŝi (ω
′)Ŝi (ω)]

∫ ∞

0
dν gi (ν)|αi (ν)|2[n(ν, Ti ) + 1]eıντ .

Assuming that the integrands decay on a much shorter time scale than that of the reservoir correlation functions, we can extend
the τ integration to infinity. Evaluating both the integrals without performing any approximation except for the Born-Markov
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approximation, the master equation in the Schrödinger picture can be written

˙̂ρ = −i[ĤS, ρ̂] + Lgmeρ̂, (A6)

with the Lindbladian superoperator that in the most general form can be written as

Lgmeρ̂ = 1

2

∑
i

∑
ω,ω′

{�i (−ω′)n(−ω′, Ti )[Ŝi (ω
′) ˆ̃ρ(t )Ŝi (ω) − Ŝi (ω)Ŝi (ω

′)ρ̂(t )] + �i (ω)n(ω, Ti )

× [Ŝi (ω
′)ρ̂(t )Ŝi (ω) − ρ̂(t )Ŝi (ω)Ŝi (ω

′)] + �i (ω)[n(ω, Ti ) + 1][Ŝi (ω)ρ̂(t )Ŝi (ω
′) − Ŝi (ω

′)Ŝi (ω)ρ̂(t )]

+�i (−ω′)[n(−ω′, Ti ) + 1][Ŝi (ω)ρ̂(t )Ŝi (ω
′) − ρ̂(t )Ŝi (ω

′)Ŝi (ω)]}. (A7)

Both �i (ω) and n(ω, Ti ) are nonzero only for ω > 0; thus, using the definitions in Eq. (17), Eq. (A7) can be written as

Lgmeρ̂ = 1

2

∑
i

∑
(ω,ω′ )>0

{
�i (ω

′)n(ω′, Ti )[Ŝ
(−)
i (ω′)ρ̂(t )Ŝ (+)

i (ω) − Ŝ
(+)
i (ω)Ŝ (−)

i (ω′)ρ̂(t )] + �i (ω)n(ω, Ti )[Ŝ
(−)
i (ω′)ρ̂(t )Ŝ (+)

i (ω)

− ρ̂(t )Ŝ (+)
i (ω)Ŝ (−)

i (ω′)] + �i (ω)[n(ω, Ti ) + 1][Ŝ (+)
i (ω)ρ̂(t )Ŝ (−)

i (ω′) − Ŝ
(−)
i (ω′)Ŝ (+)

i (ω)ρ̂(t )] + �i (ω
′)[n(ω′, Ti ) + 1]

× [Ŝ (+)
i (ω)ρ̂(t )Ŝ (−)

i (ω′) − ρ̂(t )Ŝ (−)
i (ω′)Ŝ (+)

i (ω)] + �i (ω
′)n(ω′, Ti )[Ŝ

(−)
i (ω′)ρ̂(t )Ŝ (−)

i (ω) − Ŝ
(−)
i (ω)Ŝ (−)

i (ω′)ρ̂(t )]

+�i (ω
′)[n(ω′, Ti ) + 1][Ŝ (−)

i (ω)ρ̂(t )Ŝ (−)
i (ω′) − ρ̂(t )Ŝ (−)

i (ω′)Ŝ (−)
i (ω)] + �i (ω)n(ω, Ti )[Ŝ

(+)
i (ω′)ρ̂(t )Ŝ (+)

i (ω)

− ρ̂(t )Ŝ (+)
i (ω)Ŝ (+)

i (ω′)] + �i (ω)[n(ω, Ti ) + 1][Ŝ (+)
i (ω)ρ̂(t )Ŝ (+)

i (ω′) − Ŝ
(+)
i (ω′)Ŝ (+)

i (ω)ρ̂(t )]

+�i (ω
′)n(ω′, Ti )

[
Ŝ

(−)
i (ω′)ρ̂(t )Ŝ (0)

i − Ŝ
(0)
i Ŝ

(−)
i (ω′)ρ̂(t )

] + �i (ω
′)[n(ω′, Ti ) + 1]

[
Ŝ

(0)
i ρ̂(t )Ŝ (−)

i (ω′) − ρ̂(t )Ŝ (−)
i (ω′)Ŝ (0)

i

]
+�i (ω)n(ω, Ti )

[
Ŝ

(0)
i ρ̂(t )Ŝ (+)

i (ω) − ρ̂(t )Ŝ (+)
i (ω)Ŝ (0)

i

] + �i (ω)[n(ω, Ti ) + 1]
[
Ŝ

(+)
i (ω)ρ̂(t )Ŝ (0)

i − Ŝ
(0)
i Ŝ

(+)
i (ω)ρ̂(t )

]
+�+

i (Ti )
[
Ŝ

(0)
i ρ̂(t )Ŝ (0)

i − Ŝ
(0)
i Ŝ

(0)
i ρ̂(t )

] + �
′+
i (Ti )

[
Ŝ

(0)
i ρ̂(t )Ŝ (0)

i − ρ̂(t )Ŝ (0)
i (ω′)Ŝ (0)

i

]
+�−

i (Ti )
[
Ŝ

(0)
i ρ̂(t )Ŝ (0)

i − ρ̂(t )Ŝ (0)
i Ŝ

(0)
i

] + �
′−
i (Ti )

[
Ŝ

(0)
i ρ̂(t )Ŝ (0)

i − Ŝ
(0)
i Ŝ

(0)
i ρ̂(t )

]}
, (A8)

with thermal populations

n(ω, Ti ) = [exp {ω/Ti} − 1]−1, (A9)

damping rates

�i (ω) = 2πgi (ω)|αi (ω)|2, (A10)

and pure dephasing damping rates

�
′±
i (Ti ) =

∫ t

0
dτ

∫ ∞

0
dν gi (ν)|αi (ν)|2[n(ν, Ti ) + 1]e±ıντ ,

(A11)

�±
i (Ti ) =

∫ t

0
dτ

∫ ∞

0
dν gi (ν)|αi (ν)|2n(ν, Ti )e

±ıντ . (A12)

Specifically, the terms in the first four lines of Eq. (A8)
oscillate at frequencies ±(ω − ω′). If (ω − ω′) is significantly
larger than the damping rates �i of the system, these terms

provide negligible contributions when integrating the master
equation. In the generalized approach, these terms are then
eliminated by the numerical filtering. The terms in the next
four lines of Eq. (A8) oscillate at ±(ω′ + ω). These terms are
clearly rapidly oscillating and thus provide negligible con-
tributions. The terms in the following four lines, oscillating
at +ω, −ω′, are fast oscillating when considering systems
displaying well-separated energy levels with ω � �i and,
in these cases, can be neglected. Finally, the terms in the
last four lines arise from degenerate transitions and describe
pure dephasing. The contribution of these terms becomes
negligible at very low temperatures in the particular case
of Ohmic baths. Furthermore, it is important to note that,
applying the post-trace RWA without considering any parity
symmetry of the system, Eq. (A7) can be rewritten in a form
equal to the standard dressed master equation as in Ref. [21],
with a few additional terms provided by the zero-frequency
operators Ŝ

(0)
i �= 0.
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We show that the dynamical Casimir effect in an optomechanical system can be achieved under incoherent
mechanical pumping. We adopt a fully quantum-mechanical approach for both the cavity field and the oscillating
mirror. The dynamics is then evaluated using a recently developed master-equation approach in the dressed
picture, including both zero- and finite-temperature photonic reservoirs. This analysis shows that the dynamical
Casimir effect can be observed even when the mean value of the mechanical displacement is zero. This opens
up possibilities for the experimental observation of this effect. We also calculate cavity emission spectra in both
the resonant and the dispersive regimes, providing useful information on the emission process.
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I. INTRODUCTION

One of the most surprising predictions of quantum field
theory is that the vacuum of space is not empty, but it has
plenty of short-lived virtual particles. Real observable parti-
cles can be produced out from the quantum vacuum providing
energy to its fluctuations [1–5]. Vacuum fluctuations have
measurable consequences, such as the Lamb shift of atomic
spectra [6] and the modification of the electron magnetic
moment [7], even when real particles are not generated. For
years, scientists and researchers wondered if it was possible to
achieve a direct observation of the virtual particles composing
the quantum vacuum or at least if their conversion into real
particles was achievable. The answer arrived when Moore
[2] suggested that a variable length cavity undergoing rela-
tivistic motion would be able to convert virtual photons into
real ones. This phenomenon was later called the dynamical
Casimir effect (DCE). Fulling and Davies [3] demonstrated
that photons can also be generated by a single mirror subjected
to a nonuniform acceleration. The DCE was first studied in the
context of electromagnetic resonators with oscillating walls or
containing a dielectric medium with time-modulated internal
properties [8–11].

This concept was later generalized for other bosonic fields,
e.g., cold atoms [12], phononic excitation of ion chains [13],
optomechanical systems [14], and Bose-Einstein condensates
[15,16]. Moreover, it has been shown that photon pairs can
be emitted from the vacuum by switching or modulating
the light-matter-coupling strength in cavity QED systems
[17–21]. It was shown [22] that a significant number of
photons can be produced also in realistic high-Q cavities
with moderate mirror speeds, taking advantage of resonance-
enhancement effects. Unfortunately, the resonance conditions
require the mechanical frequency ωm to be at least twice the
first cavity mode frequency ωc, i.e., ωm � 2nωc, where n ∈ N.
This is a significant obstacle for experimental observations.

Additional theoretical studies on the DCE have been pre-
sented in, e.g., [3,23–29]. Some of these proposals suggested

the use of alternative experimental setups where the boundary
conditions of the electromagnetic field are modulated by an
effective motion [17,30–35]. Specifically, the link between
the DCE and superconducting circuits was theoretically pro-
posed for the first time in Ref. [36] and elaborated later on
in Ref. [37]. In this context, it did not take long for the
experimental results to arrive. In fact, the emission of photon
pairs was observed in a coplanar transmission line terminated
by a superconducting quantum interference device whose
inductance was modulated at high frequency [38]. The exper-
imental realization of the DCE gives further evidence of the
quantum nature of the dynamical Casimir radiation, indicating
that the produced radiation can be strictly nonclassical with
a measurable amount of intermode entanglement [39]. Ref-
erence [40] reviews vacuum amplification phenomena with
superconducting circuits. Photon pairs were also produced
by rapidly modulating the refractive index of a Josephson
metamaterial embedded in a microwave cavity [41]. However,
these do not demonstrate the conversion of mechanical energy
into photon pairs, so these experiments can also be regarded as
quantum simulator. A new type of optomechanical dynamical
coupling based on the DCE has also been proposed in trapped
Rydberg atoms interacting with a dynamical mirror whose
refractive index can be periodically varied [42]. A significant
emission of photon pairs has also been predicted in Mott in-
sulators of coherently dressed three-level atoms by parametric
amplification of the polaritonic zero-point fluctuations in the
presence of a fast time modulation of the dressing amplitude
[43].

Most theoretical studies on the DCE are based on a
quantum-mechanical description of the electromagnetic field
and a classical description of the time-dependent boundary
conditions. Recently, the DCE in cavity optomechanical sys-
tems has been investigated without linearizing the dynamics
and describing quantum mechanically both the cavity field
and the vibrating mirror [44–46]. Within this full quantum
description, it turns out that the resonant generation of photons
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from the vacuum is determined by several ladders of mirror-
field vacuum Rabi-like splittings. The resulting general reso-
nance condition for the photon-pair production is kωm � 2nωc

(k, n ∈ N). This corresponds to processes where k phonons in
the mechanical oscillator are converted into n cavity photon
pairs. This generalized resonance condition enables a resonant
production of photons out from the vacuum even for mechan-
ical frequencies lower than the lowest cavity-mode frequency,
thus removing one of the major obstacles for the experimental
observation of this effect.

In addition, it has been shown that a vibrating mirror
prepared in an excited state (mechanical Fock state) can
spontaneously emit photons like a quantum emitter. In this
case, however, a photon pair is emitted instead of a single
photon.

Moreover, it has been recently demonstrated that virtual
Casimir photon pairs can be used to enable a coherent mo-
tional coupling between two spatially separated movable mir-
rors, allowing this kind of optomechanical system to also op-
erate as a mechanical parametric down-converter even at very
weak excitations [47]. Entangled photons from the vacuum
can also be generated by using microwave circuit-acoustic
resonators [48].

The approach considered in Ref. [46] also extends the
investigation of the DCE to the optomechanical ultrastrong-
coupling regime, where the optomechanical coupling rate
is comparable to the mechanical frequency [49–55]. This
regime, which attracted great interest also in cavity QED
giving rise to a great variety of novel quantum effects
[20,56–58], turned out to be an essential feature for
the realization of new interesting proposals in quantum
optomechanics [59–61].

Temperature effects also play an important role in the
generation of photons in a resonantly vibrating cavity [62–65].
Specifically, it turns out that the thermal contributions in
these systems under the influence of time-dependent bound-
ary conditions lead to a strong enhancement of photon-pair
production at finite temperatures.

Encouraged by the results obtained in Ref. [46], here we
investigate the dynamics of an optomechanical system in a
fully quantum-mechanical framework, under incoherent me-
chanical excitation, using a master-equation approach. This
allows us to demonstrate that a remarkable Casimir photon-
pair flux is produced even considering a thermal-like noise
source coupled only to the mechanical degree of freedom.
For ultrastrongly coupled hybrid quantum systems [66–70],
the standard quantum-optical master equation breaks down
and a dressed master-equation approach is needed [56,71,72].
Furthermore, if the energy-level spectrum displays a quasi-
harmonic behavior [51], like in optomechanical systems, a
new dressed master equation [73,74] not involving the usual
secular approximation is required.

The outline of this article is as follows. In Sec. II we
briefly introduce the theoretical model and the dressed master-
equation approach for quasiharmonic hybrid systems. Sec-
tion III is devoted to the presentation of the energy-level
structure, focusing the attention on the avoided level crossings
giving rise to the DCE. In Sec. IV we apply the generalized
master equation [74] to calculate the dynamics of the sys-
tem at finite temperatures and, using the quantum regression

FIG. 1. Schematic of a generic optomechanical system. One of
the mirrors of the optical cavity is coupled to a noise source with
effective temperature Tγ and can vibrate at frequency ωm. This
system can generate Casimir photon pairs.

theorem, we present the power spectra in the weak-
and strong-light-matter-coupling regimes. We summarize in
Sec. V.

II. MODEL

We study a standard optomechanical system composed of
an optical cavity with a movable end mirror (see Fig. 1).
Moreover, we consider a radiation pressure coupling between
the first cavity mode and a single mechanical mode.

The system Hamiltonian can be written as

ĤS = Ĥ0 + V̂om + V̂DCE, (1)

where (h̄ = 1 throughout the paper)

Ĥ0 = ωcâ†â + ωmb̂†b̂ (2)

is the uncoupled Hamiltonian and

V̂om = gâ†â(b̂ + b̂†) (3)

is the standard optomechanical interaction Hamiltonian. Here
ωc is the resonator frequency, ωm is the mechanical frequency,
g is the optomechanical coupling strength, and â (b̂) and
â† (b̂†) are, respectively, the bosonic creation (annihilation)
operators for the cavity and mechanical modes. Finally, the
perturbation term determining the DCE is

V̂DCE = g

2
(â2 + â†2)(b̂ + b̂†). (4)

Since in this case the V̂DCE term only couples bare states
having energy differences 2ωc ± ωm much larger than the cou-
pling strength g, it can be neglected. Also, this interaction term
is often neglected when describing most of the experimental
optomechanical systems, where the mechanical frequency is
much smaller than the cavity frequency.

The resulting total Hamiltonian conserves the photon num-
ber and can be diagonalized separately in each n-photon
subspace. The general quantum state of such a system is

|n, kn〉 = |n〉 ⊗ D̂(nη)|k〉, (5)

where the integer kn represents the vibrational excitations
of the mechanical resonator in the corresponding n-photon
subspace and

|kn〉 = D̂(nη)|k〉 (6)

represents the displaced mechanical Fock state determined by
the displacement operator D̂(nη), where

η ≡ g/ωm (7)
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is the normalized coupling strength. In the manifold with n =
0, the states |0, k0〉, simply labeled |0, k〉, are the eigenstates
of the harmonic oscillator decoupled from the cavity. When
considering ultrahigh-frequency mechanical oscillators with
resonance frequencies

ωm � ωc, (8)

the V̂DCE term cannot be neglected. In this case, the photon
number is no longer conserved and there is no analytical
solution for the system eigenstates. Moreover, it turns out
that the introduction of the V̂DCE term increases the degree
of anharmonicity, slightly modifying the levels structure but
still preserving the quasiharmonic behavior. Consequently,
the system dynamics has to be described using a general-
ized master equation developed without performing the usual
secular approximation. A suitable approach, able to describe
the time evolution of the density matrix operator ρ̂ for any
hybrid quantum system in the presence of dissipations and
thermal-like noise, has been presented in Ref. [74].

In the interaction picture, this master equation can be
written as

˙̂ρ = κL[Â]ρ̂ + γL[B̂]ρ̂, (9)

with κ and γ the cavity and mirror damping rates, respec-
tively. The dressed photon and phonon lowering operators
Ô = Â, B̂ are defined in terms of their corresponding bare
operators ô = â, b̂ by the relation [20,56]

Ô(ω) =
∑

ε−ε′=ω

�̂(ε)(ô + ô†)�̂(ε′)e−iωt , (10)

where ε are the eigenvalues of ĤS and �̂(ε) ≡ |ε〉〈ε| indicate
the projectors onto the respective eigenspaces. Furthermore,
the Liouvillian superoperator L[Ô]ρ̂ can be expressed in the
general form

L[Ô]ρ̂ =
∑

(ω,ω′ )>0

1

2
{n(ω′, T )[Ô†(ω′)ρ̂Ô(ω) − Ô(ω)Ô†(ω′)ρ̂]

+ [n(ω, T ) + 1][Ô(ω)ρ̂Ô†(ω′) − Ô†(ω′)Ô(ω)ρ̂]

+ n(ω, T )[Ô†(ω′)ρ̂Ô(ω) − ρ̂Ô(ω)Ô†(ω′)]

+ [n(ω′, T ) + 1][Ô(ω)ρ̂Ô†(ω′) − ρ̂Ô†(ω′)Ô(ω)]},
(11)

where (kB = 1)

n(ω, T ) = [exp(ω/T ) − 1]−1 (12)

is the thermal noise occupation number of the system reser-
voir, at real or effective temperature T .

When counterrotating terms are taken into account in the
interaction Hamiltonian, the introduction of master equations
in the dressed basis is not sufficient. Indeed, a modification of
input-output relationships, relating the intracavity field with
the external fields [46,56,74–76], is also required. According
to these modified relationships, the output fields are no longer
determined by expectation values of the bare photon operators
(see, e.g., [77–79]), but by the expectation values of the
dressed operators in Eq. (10).

1.0 1.05
1.9

2.0

2.1
E
ig
en
va
lu
es

E
ig
en
va
lu
es

0.9 0.95 1.0 1.05 1.1

1.0

1.5

2.0

(a)

(b)

FIG. 2. (a) Lowest energy eigenvalues of the system as a function
of ωc/ωm for a normalized optomechanical coupling strength η =
g/ωm = 0.1. The ground state is not displayed. (b) Enlarged view
of the avoided level crossing arising from the coherent coupling
between the states |0, 2〉 and |2, 02〉. The energy splitting reaches its
minimum at the resonant frequency ωc � ωm.

III. VACUUM CASIMIR-RABI SPLITTINGS

In order to fully characterize our system, we numerically
diagonalize the Hamiltonian ĤS in Eq. (1). Figure 2(a) shows
the lowest energy levels as a function of the cavity frequency
ωc/ωm considering a normalized optomechanical coupling
strength η = 0.1.

As reported in Ref. [46], when the resonant conditions

qωm = 2ωc (13)

are satisfied, the V̂DCE term induces a coherent resonant cou-
pling between the bare states |0, k〉 (i.e., zero photons and
k phonons) and |2, (k − q)2〉 (i.e., two photons and k − 1
phonons), with q ∈ N∗, having a different number of excita-
tions. Figure 2(b) shows an enlarged view of the avoided level
crossing arising for ωm � ωc, involving the states |0, 2〉 and
|2, 02〉. When the splitting is at its minimum, the two system
eigenstates are essentially a symmetric and an antisymmetric
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linear superposition of these bare states |ψ±〉 � 1√
2
(|0, 2〉 ±

|2, 02〉). The size of this avoided level crossing (Casimir-Rabi
splitting), analytically calculated using first-order perturbation
theory, is given by

2
2,0
0,2 = 2〈0, 2|V̂DCE|2, 02〉

=
√

2g[
√

3D3,0(2η) +
√

2D1,0(2η)], (14)

where

Dk′,k (2η) =
√

k!/k′!(2η)k′−ke−|2η|2/2Lk′−k
k (|2η|2) (15)

represents the overlap between different displaced mechanical
Fock states and Lk′−k

k is an associated Laguerre polynomial.
It is important to note that the quantity 2
2,0

0,2 plays a funda-
mental role in the DCE, since it determines the rate at which
a mechanical two-phonon state is able to generate photon
pairs. Specifically, for a normalized optomechanical coupling
η = 0.1 we obtain a matrix element 2
2,0

0,2 � 0.05 that ensures
that this avoided level crossing is able to produce a detectable
rate of Casimir photon pairs.

IV. RESULTS

Here we present the system dynamics numerically evalu-
ated taking into account a thermal-like pumping of the me-
chanical components and considering the photonic reservoir
both at Tκ = 0 and at finite temperature. Specifically, we study
the time evolution of the mean phonon (photon) number 〈B̂†B̂〉
(〈Â†Â〉) and the zero-delay phononic (photonic) normalized
second-order correlation function, defined as

g(2)
O (t, t ) = 〈Ô†(t )Ô†(t )Ô(t )Ô(t )〉

〈Ô†(t )Ô(t )〉2
, (16)

with Ô ∈ [Â, B̂].

A. System dynamics in the weak-coupling regime

We start by considering the system initially prepared in its
ground state and in the weak-coupling regime, which corre-
sponds to the case where the Casimir-Rabi splitting 2


2,k−q
0,k

is smaller than the total decoherence rate of the system
�tot = γ + κ . Specifically, we assume γ /ωm = 0.05 and κ =
γ /2 with an optomechanical coupling η = 0.1, considering
the resonant case ωm � ωc corresponding to the minimum
splitting of the avoided level crossing arising between the
states |0, 2〉 and |2, 02〉 [see Fig. 2(b)]. Figures 3(a) and 3(b)
display the time evolution of the photonic 〈Â†Â〉 (red solid
curve) and phononic 〈B̂†B̂〉 (blue dashed curve) populations,
together with the time evolution of the respective two-photon
and two-phonon correlation functions g(2)

B(A)(t, t ). All these
quantities have been evaluated taking into account the inter-
action with a zero-temperature (Tκ = 0) photonic reservoir
and providing an incoherent thermal-like pumping of the
mechanical component by means of a phononic reservoir with
an effective temperature Tγ /ωm = 0.9. As shown in Fig. 3(a),
the photonic and phononic populations start from zero and,
due to the incoherent thermal-like pumping of the mechanical
modes, reach a considerable stationary value. In particular, a
steady-state intracavity mean photon number 〈Â†Â〉ss � 0.15
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FIG. 3. System dynamics for the resonant case ωc � ωm consid-
ering a Tκ = 0 cavity reservoir and the mechanical oscillator coupled
to a thermal-like noise source with an effective temperature Tγ /ωm =
0.9. (a) Time evolution of the mean phonon number 〈B̂†B̂〉 (blue
dashed curve) and of the mean intracavity photon number 〈Â†Â〉 (red
solid curve). Due to the thermal-like pumping, the populations reach
stationary values. (b) Time evolution of the zero-delay normalized
photon-photon g(2)

A (t, t ) and phonon-phonon g(2)
B (t, t ) correlation

functions. At t = 0, the two-photon correlation function g(2)
A (t, t )

displays values much higher than 2, showing that a considerable
number of photon pairs are emitted. As the time goes on, this value
decreases significantly due to the cavity losses and the corresponding
increase of the mean photon number. In contrast, the mechanical
correlation function sets on a constant value g(2)

B (t, t ) ≈ 2, showing
that the mechanical system is in an incoherent state produced by the
thermal-like noise.

is obtained. For a cavity mode of frequency ωc/2π � 6 GHz,
this value corresponds to a steady-state output photon flux

 = κ〈Â†Â〉ss ∼ 1.4 × 108 photons per second. This output
photon flux is remarkable since it is much higher than the
detection threshold of the state-of-the-art detectors, despite
the quite-low-quality factor Qc = ωc/κ = 40 of the cavity
considered in the numerical calculations. Furthermore, also
the mechanical loss rate γ corresponds to a quality factor
Qm one order of magnitude lower than the values which are
experimentally measured in ultrahigh-frequency mechanical
resonators [80,81]. Moreover, in Fig. 3(b) we observe that
the photonic correlation function starts from a value much
higher than 2, suggesting that a high number of photon pairs is
produced. As time goes on, this value decreases significantly
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FIG. 4. Time evolution of the mean phonon number 〈B̂†B̂〉 (blue
dashed curve) and of the mean intracavity photon number 〈Â†Â〉
(red solid curve) for (a) η = 0.075 and (b) η = 0.05, in the resonant
case ωc � ωm. We consider a Tκ = 0 cavity reservoir, while the
mechanical oscillator is coupled to a thermal-like noise source with
an effective temperature Tγ /ωm = 0.9. Since the coupling rate 
2,0

0,2

between the states |0, 2〉 and |2, 02〉 becomes less effective for
decreasing values of η, in both cases we observe a smaller production
of Casimir photon pairs with respect to the case η = 0.1 displayed in
Fig. 3.

due to the system losses and the corresponding increase of the
mean photon number [note that g(2)

A (t, t ) is inversely propor-
tional to the square of the mean photon number]. In contrast,
the mechanical correlation function is set to a constant value
g(2)

B (t, t ) ≈ 2, showing that the mechanical component is in an
incoherent state produced by the thermal-like pumping. Note
that the production of Casimir photon pairs is sensitive to
the optomechanical coupling strength. Figure 4 displays the
temporal evolution of the photonic 〈Â†Â〉 (red solid curve)
and phononic 〈B̂†B̂〉 (blue dashed curve) populations for
η = 0.075 [Fig. 4(a)] and η = 0.05 [Fig. 4(b)] using the
same values for the reservoir temperatures Tκ (γ )/ωm as in
Fig. 3. We observe that the intracavity mean photon number
〈Â†Â〉 decreases for decreasing values of η, suggesting that
a sufficiently high optomechanical coupling strength is re-
quired in order to obtain a detectable output flux of Casimir
photon pairs. This effect can be explained by considering
that lower values of η lead to smaller values of the two-
phonon–two-photon effective coupling rate 
2,0

0,2 and conse-
quently to a lower conversion rate of phonons into Casimir
photon pairs. These results are particularly interesting since

they demonstrate that the DCE can also be experimentally
observed exciting a movable mirror with an incoherent
thermal-like pump such as, a white-noise generator (made
by an ultrahigh-frequency resonator interacting with a mi-
crowave cavity). In real optomechanical systems ground-state
cooling is never complete and the interaction with a finite-
temperature reservoir has to be taken into account. The time
evolution of the photonic and phononic populations together
with the respective two-photon and two-phonon zero-delay
correlation functions are displayed in Fig. 5. These functions
are evaluated in more realistic conditions, taking into account
a nonzero-temperature reservoir for both subsystems. In these
conditions, both populations start from a nonzero value cor-
responding to the initial thermal equilibrium density matrix.
As expected, a fraction of the observed photons are thermal
and do not originate from the mechanical-to-optical energy
conversion mechanism. This picture is confirmed by compar-
ing the dynamics of the two correlation functions shown in
Figs. 5(b) and 5(d). Specifically, when the cavity temperature
increases, we observe a strong decrease of the g(2)

A (t, t ) peak
value, indicating that fewer photons are emitted in pairs. How-
ever, as expected, the phonon-phonon correlation functions
remain constant at the thermal value g(2)

B (t, t ) � 2. These
results demonstrate that when the presence of a cavity thermal
noise is taken into account, the number of Casimir photon
pairs produced decreases. However, the output photon flux is
still above the detection threshold of the photodetector and
the peak value of the g(2)

A (t, t ) indicates that photon pairs are
produced.

B. Emission spectra in the weak- and strong-coupling regimes

In order to obtain more information on the ongoing
physics, here we present the cavity emission spectra derived
via a quantum regression approach. Considering a normalized
optomechanical coupling η = 0.1, we present results for the
system both in the weak- and in the strong-light-matter-
coupling regimes for different values of ωc/ωm. We consider
the cavity at Tκ = 0, while the mechanical oscillator is cou-
pled to a reservoir with effective temperature Tγ /ωm = 0.9.
For the sake of simplicity, we indicate the energy eigenvalues
and eigenstates as ωl and |l〉 (l = 0, 1, . . .) and the transition
frequencies as ω jk ≡ ω j − ωk , choosing the labeling of the
states such that ω j > ωk for j > k [see Fig. 6(a)]. If the
effective temperature of the mechanical reservoir is high
enough to populate the state |5〉, the system decays toward
the ground state via two different one-photon decay channels:
|5〉 → |2〉 → |0〉 and |3〉 → |2〉 → |0〉. Since the states |5〉
and |3〉 do not couple with the state |4〉, the other possible
one-photon transition |4〉 → |0〉 can occur only by decays
from higher energy levels.

We start by considering the zero-detuning case � ≡ (ωc −
ωr )/ωm = 0, where ωr � 1.017ωm is the frequency corre-
sponding to the minimum value of the splitting in Fig. 2(b). In
this case the states |3〉 and |5〉 are well approximated, respec-
tively, by the superpositions |ψ±〉 = (|0, 2〉 ± |2, 02〉)/

√
2.

Figure 6(b) displays the emission spectra for the system in
the weak-coupling regime, e.g., 2
2,0

0,2 < �tot. Due to the high
value of �tot, we observe a low-resolution emission spectrum
that displays only a wide band composed of a single peak at
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FIG. 5. System dynamics evaluated considering finite-temperature reservoirs and the system initially prepared in a thermal state at the
same temperature Tκ of the photonic reservoir. Time evolutions of the cavity mean photon number 〈Â†Â〉 (red solid curves) and the mean
phonon number 〈B̂†B̂〉 (blue dashed curves) are shown for Tγ /ωm = 0.9 and (a) Tκ/ωm = 0.2 and (c) Tκ/ωm = 0.4. Also shown are the time
evolutions of the zero-delay two-photon (red solid curves) and two-phonon (blue dashed curves) correlation functions g(2)

A (t, t ) and g(2)
B (t, t ),

respectively, for Tγ /ωm = 0.9 and (b) Tκ/ωm = 0.2 and (d) Tκ/ωm = 0.4.

frequency ω/ωm � 0.98. In contrast, when the system is in the
strong-coupling regime (2
2,0

0,2 > �tot), the spectrum becomes

well resolved. As shown in Fig. 6(b), for 2
2,0
0,2/�tot � 6.7

the cavity emission spectrum displays two main peaks. In-
deed, in the resonant case the accidentally quasidegenerate
transitions |5〉 → |2〉 and |2〉 → |0〉 give rise to a single high-
frequency peak at ω � ωm, whereas the lower-frequency peak
at ω/ωm � 0.98 corresponds to the transition |3〉 → |2〉. It
is important to note that, in the presence of a Tκ = 0 cavity
reservoir, these peaks are observable only if the VDCE term
is included in the Hamiltonian. Indeed, without this term the
states |2, 02〉 and |0, 2〉 are not coupled anymore and since
the mechanical incoherent pumping only populates phononic
states, the one-phonon decay peaks cannot be observed in
the cavity emission spectra. We now turn to the numerical
analysis of the detuning effects on the cavity emission spectra.
Figure 7(a) displays the emission spectrum calculated for
� = 0.028. As the transitions |5〉 → |2〉 and |2〉 → |0〉 are no
longer quasidegenerate, the peaks at frequencies ω52 and ω20

become well resolved, while the peak corresponding to |3〉 →
|2〉 shifts towards a slightly lower frequency. As expected, if
we reduce the detuning and approach the resonance point � =
0, the spectrum essentially presents the same main features of
Fig. 6(c). Specifically, Fig. 7(b) shows that for � = 0.014 the
two peaks at ω52 and ω20 merge and the emission spectrum
presents only a main contribution at ω/ωm � 1.015, while
the transition frequency ω32 does not change significantly.
Finally, in Fig. 7(c) we study the emission spectrum in the
presence of a negative detuning � = −0.028. Also in this
case, the spectrum displays three distinct peaks placed at

lower frequencies with respect to Fig. 7(a). This shift arises
from the energy-level crossing between the states |1〉 and |2〉
shown in Fig. 2(a). Although the highest peak still corre-
sponds to the one-photon decay toward the ground state, the
emission spectrum is not symmetric with respect to the one
in Fig. 7(a). In particular, we observe that the intensity of
the peak associated with the transition |3〉 → |1〉 increases,
whereas the |5〉 → |1〉 transition peak displays a much lower
intensity. This effect can be explained by considering that,
differently from the positive-detuning cases studied above,
for � < 0 the state |3〉 � |2, 02〉 has more photonic character
than |5〉 � |0, 2〉, which has more phononic character. Thus,
while the photonic character of the polaron state |3〉 leads
to an enhancement of the peak intensity at ω31 in the cavity
emission spectrum, on the other hand, the phononic character
of the state |5〉 is responsible for the intensity decrease of the
peak at ω51. This study provides useful information on the
emission process. Moreover, the presence of these features in
the experimental spectra would represent a signature of the
production of DCE photons. A very promising experimental
platform for the observation of the proposed effect is pro-
vided by circuit-optomechanical systems utilizing ultrahigh-
frequency (∼4–6 GHz) dilatational resonators [80]. In these
systems, it should be possible to easily achieve an optome-
chanical coupling strength η = 0.02, which is rather close to
the lower value considered here [see Fig. 4(b)]. Finally, we
notice that a higher-excitation noise would allow the observa-
tion of the DCE induced by an incoherent mechanical pump-
ing, even for lower values of the optomechanical coupling
strength.

022501-6



CONVERSION OF MECHANICAL NOISE INTO … PHYSICAL REVIEW A 100, 022501 (2019)

FIG. 6. (a) Schematics of the first energy levels of the optome-
chanical system. Solid arrows represent the possible one-photon
decay channels when the effective temperature of the mechanical
reservoir is high enough to populate the state |5〉. Also shown are the
cavity emission spectra for the system in the (b) weak- and (c) strong-
light-matter-coupling regime and at zero detuning. In both cases,
the cavity reservoir is at Tκ = 0, while the mechanical oscillator is
coupled to a reservoir with effective temperature Tγ /ωm = 0.9. The
parameters are ωm = 1 and η = 0.1. The total loss rate �tot = κ + γ

of the system is (b) 7.5 × 10−2ωm and (c) 7.5 × 10−3ωm.
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FIG. 7. Cavity emission spectra for the system in the strong-
coupling regime for different values of the detuning � ≡ (ωc −
ωr )/ωm, where ωr � 1.017 ωm is the frequency corresponding to
the minimum value of the splitting in Fig. 2(b). Specifically, we
considered the cases (a) � = 0.028, (b) � = 0.01, and (c) � =
−0.028. The main contributions are indicated by dashed lines. The
parameters are the same as in Fig. 6(c).

V. CONCLUSION

We have studied the dynamical Casimir effect in cavity
optomechanics achieved only under incoherent mechanical
excitation. We employed a fully quantum-mechanical descrip-
tion of both the cavity field and the oscillating mirror. The
system dynamics was evaluated under incoherent pumping
of the mechanical component, provided by a thermal-like
excitation. Using a master-equation approach [74] in order
to take into account losses, thermal effects, and decoherence
in the presence of a quasiharmonic spectrum, we showed
that a measurable flux of Casimir photons can be obtained
also without a coherent pumping, suggesting another way for
experimental observation of the DCE. This master-equation
approach could also be used to describe this effect in the pres-
ence of arbitrary colored-noise sources. The incoherent me-
chanical excitation mechanism described here is also expected
to work in parametrically amplified optomechanical systems
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in order to induce two-photon hyper-Raman scattering pro-
cesses, where squeezed photons already present in an opti-
cal resonator are scattered into resonant cavity-photon pairs
[82]. This method would allow the parametric conversion of
mechanical energy into electromagnetic energy in optome-
chanical systems where the mechanical frequency is usually
much lower than the cavity frequency, thus eliminating the
need for extremely high mechanical oscillation frequencies
and ultrastrong single-photon optomechanical coupling. In
Ref. [46] it has been shown that a vibrating mirror is affected
by spontaneous emission, in analogy with ordinary atoms.
However, it decays emitting photon pairs. Here we showed
that an incoherently excited vibrating mirror can emit light,
in analogy to atomic fluorescence or electroluminescence in
semiconductor devices.

By applying the quantum regression theorem, we have
calculated numerically the steady-state cavity emission spec-
tra under incoherent mechanical excitation, for different
detunings and loss rates. When the loss rates were lower than

the effective coupling rate, the emission spectra allowed us to
identify the different emission channels.
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Two close parallel mirrors attract due to a small force (Casimir effect) originating from the quantum
vacuum fluctuations of the electromagnetic field. These vacuum fluctuations can also induce motional
forces exerted upon one mirror when the other one moves. Here, we consider an optomechanical system
consisting of two vibrating mirrors constituting an optical resonator. We find that motional forces can
determine noticeable coupling rates between the two spatially separated vibrating mirrors. We show that,
by tuning the two mechanical oscillators into resonance, energy is exchanged between them at the quantum
level. This coherent motional coupling is enabled by the exchange of virtual photon pairs, originating from
the dynamical Casimir effect. The process proposed here shows that the electromagnetic quantum vacuum
is able to transfer mechanical energy somewhat like an ordinary fluid. We show that this system can also
operate as a mechanical parametric down-converter even at very weak excitations. These results
demonstrate that vacuum-induced motional forces open up new possibilities for the development of
optomechanical quantum technologies.

DOI: 10.1103/PhysRevLett.122.030402

Effective interactions able to coherently couple spatially
separated qubits [1] are highly desirable for any quantum
computer architecture. Efficient cavity-QED schemes,
where the effective long-range interaction is mediated by
the vacuum field, have been proposed [2–4] and realized
[1,5,6]. In these schemes, the cavity is only virtually
excited and thus the requirement on its quality factor is
greatly loosened. Based on these interactions mediated by
vacuum fluctuations, a two-qubit gate has been realized [7]
and two-qubit entanglement has been demonstrated [1].
Creation of multiqubit entanglement [8] has also been
demonstrated in circuit-QED systems. Very recently, it has
been shown that the exchange of virtual photons between
artificial atoms can give rise to effective interactions of
multiple spatially separated atoms [9,10], opening the way
to vacuum nonlinear optics. Moreover, it has been shown
that systems where virtual photons can be created and
annihilated can be used to realize many nonlinear optical
processes with qubits [11,12]. Multiparticle entanglement
and quantum logic gates, via virtual vibrational excitations
in an ion trap, have also been implemented [13,14].
A recent proposal [15] suggests that classical driving fields
can transfer quantum fluctuations between two suspended
membranes in an optomechanical cavity system.

Given these results, one may wonder whether it is
possible for spatially separated mesoscopic or macroscopic
bodies to interact at a quantum level by means of the
vacuum fluctuations of the electromagnetic field. It is
known that, owing to quantum fluctuations, the electro-
magnetic vacuum is able, in principle, to affect the motion
of objects through it, like a complex fluid [16]. For
example, it can induce dissipation and decoherence effects
on the motion of moving objects [17–19]. By using linear
dispersion theory, it has also been shown that vacuum
fluctuations can induce motional forces exerted upon one
mirror when the other one moves [20]. Here, we show that
two spatially separated moveable mirrors, constituting
a cavity-optomechanical system, can exchange energy
coherently and reversibly, by exchanging virtual photon
pairs. The effects described here can be experimentally
demonstrated with circuit-optomechanical systems,
using ultra-high-frequency mechanical microresonators
or nanoresonators in the GHz spectral range [21,22].
Coupling such a mechanical oscillator to a superconducting
qubit, quantum control over a macroscopic mechanical
system has been demonstrated [21]. Our results show
that the electromagnetic quantum vacuum is able to transfer
mechanical energy somewhat like an ordinary fluid. It
would be as if the vibration of a string (mechanical
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oscillator 1) could be transferred to the membrane of a
microphone (mechanical oscillator 2) in the absence of air
(or any excited medium filling the gap).
We consider a system constituted by two vibrating

mirrors interacting via radiation pressure [see Fig. 1(a)].
Very recently, entanglement between two mechanical
oscillators has been demonstrated in a similar system,
where, however, the two entangled mechanical oscillators
have much lower resonance frequencies and the system is
optically pumped [23]. This system can be described by a
Hamiltonian that is a direct generalization to two mirrors of
the Law Hamiltonian, describing the coupled mirror-field
system [24–28]. It provides a unified description of cavity-
optomechanics experiments [29] and of the dynamical
Casimir effect (DCE) [30–34] in a cavity with a vibrating
mirror [26]. It has been shown [32–38] that the photon pairs

generated by the DCE can be used to produce entangle-
ment. However, in the present case, the interaction and the
entanglement between two mechanical oscillators is deter-
mined by virtual photon pairs. Both the cavity field and the
position of the mirror are treated as dynamical variables and
a canonical quantization procedure is adopted [24]. By
considering only one mechanical mode for each mirror,
with resonance frequency ωi (i ¼ 1, 2) and bosonic
operators b̂i and b̂†i , the displacement operators can be

expressed as x̂i ¼ XðiÞ
zpfðb̂†i þ b̂iÞ, where XðiÞ

zpf is the zero-
point-fluctuation amplitude of the ith mirror. The mirrors
form a single-mode optical resonator with frequency ωc

and bosonic photon operators â and â†. The system
Hamiltonian can be written as Ĥs ¼ Ĥ0 þ ĤI, where
(ℏ ¼ 1) Ĥ0 ¼ ωcâ†âþP

i ωib̂
†
i b̂i is the unperturbed

Hamiltonian. The mirror-field interaction Hamiltonian
can be written as ĤI ¼ V̂om þ V̂DCE, where V̂om ¼
â†â

P
i giðb̂i þ b̂†i Þ is the standard optomechanical inter-

action conserving the number of photons, V̂DCE ¼
ð1=2Þðâ2 þ â†2ÞPi giðb̂i þ b̂†i Þ describes the creation
and annihilation of photon pairs, and gi is the optomechan-
ical coupling rate for mirror i. The linear dependence of the
interaction Hamiltonian on the mirror operators is a
consequence of the usual small-displacement assumption
[24]. This Hamiltonian can be directly generalized to
include additional cavity modes. However, in most cir-
cuit-optomechanics experiments, the electromagnetic res-
onator is provided by a superconducting LC circuit, which
only supports a single mode.
When describing most of the optomechanics experi-

ments to date [29], V̂DCE is neglected. This is a very
good approximation when ωi ≪ ωc (which is the most
common experimental situation). However, when ωi are of
the order of ωc, V̂DCE cannot be neglected. We are
interested in studying this regime, which can be achieved
using microwave resonators and ultra-high-frequency
mechanical microresonators or nanoresonators [21,22].
The Hamiltonian Ĥs describes the interaction between
two vibrating mirrors and the radiation pressure of a cavity
field. However, the same radiation-pressure-type coupling
is obtained for microwave optomechanical circuits (see,
e.g., Ref. [39]).
In order to properly describe the system dynamics,

including external driving and dissipation, the coupling
to external degrees of freedom needs to be considered.
A coherent external drive of the vibrating mirror i can be
described by including the time-dependent Hamiltonian

V̂iðtÞ ¼ F iðtÞðb̂i þ b̂†i Þ; ð1Þ

where F iðtÞ is equal to the external force applied to the
mirror times the mechanical zero-point-fluctuation ampli-
tude. Dissipation and decoherence effects are taken into
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FIG. 1. (a) Schematic of an optomechanical system constituted
by two vibrating mirrors. If one of the two vibrating mirrors is
excited by an external drive F 1ðtÞ, its excitation can be trans-
ferred coherently and reversibly to the other mirror. The inter-
action is mediated by the exchange of virtual photon pairs.
(b) Relevant energy levels of the system Hamiltonian Ĥs as a
function of the ratio between the mechanical frequency of mirror
2 and that of mirror 1. An optomechanical coupling g=ω1 ¼ 0.03
has been used; the cavity-mode resonance frequency is
ωc ¼ 0.495ω1. The lowest-energy anticrossing corresponds to
the resonance condition for the DCE [26]. The higher energy one
is the signature of the mirror-mirror interaction mediated by the
virtual DCE photons.
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account by adopting a master-equation approach. For
strongly coupled hybrid quantum systems, the description
offered by the standard quantum-optical master equation
breaks down [40,41]. Following Refs. [41–43], we express
the system-bath interaction Hamiltonian in the basis formed
by the energy eigenstates of Ĥs [26].
We begin our analysis by numerically diagonalizing the

Hamiltonian Ĥs in a truncated finite-dimensional Hilbert
space. The truncation is realized by only including eight
Fock states for each of the three harmonic oscillators. The
blue solid curves in Fig. 1(b) describe the eigenvalue
differences Ej − E0 (E0 is the ground-state energy) of
the total Hamiltonian Ĥs (including V̂DCE) as a function
of ω2=ω1. For the optomechanical couplings, we use
g1 ¼ g2 ¼ g ¼ 0.03ω1. Such a coupling strength is quite
high, but nevertheless below the onset of the so-called
ultrastrong optomechanical coupling regime [41,44–46].
The cavity-mode resonance frequency is fixed at
ωc ¼ 0.495ω1. This value is chosen close to the resonance
condition for the DCE [26] in order to increase the effective
coupling between the mirrors. For comparison, we also
show in Fig. 1(b) (dashed gray lines) the lowest-
energy levels En;k1;k2 ¼ωcn−

P
i g

2
i n

2=ωiþ
P

iωiki of
the standard optomechanics Hamiltonian Ĥ0 þ V̂om.
This Hamiltonian has the eigenstates jk1; k2; ni≡
D1ðnβ1Þjki1 ⊗ D2ðnβ2Þjki2 ⊗ jnic, where jnic are the
cavity Fock states and jkii are the bare mechanical states
for the ith mirror.
The bare mechanical states jkii are displaced by the

optomechanical interaction, D̂iðnβiÞ ¼ exp½nβiðb̂†i − b̂iÞ�,
with βi ¼ gi=ωi (see Sec. I of Supplemental Material [47]).
The main differences between the blue solid and the gray
dashed curves are the appearance of small energy shifts,
and of level anticrossings in the region ω2=ω1 ∼ 1. We
indicate by jψni (n ¼ 0; 1; 2…) the eigenvectors of Ĥs and
by En the corresponding eigenvalues, choosing the labeling
of the states such that Ej > Ek for j > k. The lowest-energy
anticrossing corresponds to the resonance condition for the
DCE [26]. The higher-energy splitting in Fig. 1(b) orig-
inates from the coherent coupling of the zero-photon states
j1; 0; 0i and j0; 1; 0i. At the minimum energy splitting
2λ0110 ≃ 2.11 × 10−2ω1, the resulting states are well approxi-
mated by jψ3;4i ≃ ð1= ffiffiffi

2
p Þðj1; 0; 0i � j0; 1; 0iÞ. As we will

show explicitly below by using perturbation theory, this
mirror-mirror interaction is a result of virtual exchange of
cavity photon pairs. When the mirrors have the same
resonance frequency, an excitation in one mirror can be
transferred to the other by virtually becoming a photon pair
in the cavity, thanks to the DCE. The resulting minimum
energy splitting provides a measure of the effective
coupling strength between the two mirrors. At higher
energy for ω2 ≃ ω1 a ladder of increasing level splittings,
involving higher number phonon states, is present (see
Sec. III in [47]).

The origin of the higher-energy avoided-level crossing
shown in Fig. 1(b) can be understood by deriving an
effective Hamiltonian, using second-order perturbation
theory or, equivalently, the James’ method [52,53] (see
Sec. II in [47]). The resulting effective Hamiltonian,
describing the coherent coupling of states j1; 0; 0i and
j0; 1; 0i, is

Ĥeff ¼ Ω1j1; 0; 0ih1; 0; 0j þΩ2j0; 1; 0ih0; 1; 0j
þ ðλ0110j1; 0; 0ih0; 1; 0j þ H:c:Þ; ð2Þ

where Ω1 ¼ ω1 þ Δ10 and Ω2 ¼ ω2 þ Δ01 denote the
Lamb-shifted levels [47]. The effective coupling strength is

λ0110 ¼
X

k;q

h0; 1; 0jV̂DCEjk; q; 2ihk; q; 2jV̂DCEj1; 0; 0i
E0;1;0 − Ek;q;2

: ð3Þ

Equations (2) and (3) clearly show that the one-phonon
state of mirror 1 can be transferred to mirror 2 through a
virtual transition via the two-photon intermediate states
jk; q; 2i. We notice that the largest contribution is provided
by the zero-phonon intermediate state (k ¼ q ¼ 0). This
perturbative calculation gives rise to an effective coupling
strength λ and energy shifts Δ in good agreement with the
numerical calculation shown in Fig. 1(b) (see Sec. II of
[47]). Analogous effective Hamiltonians can be derived for
the avoided-level crossings at higher energy (see Sec. II
of [47]).
If the optomechanical couplings gi are strong enough to

ensure that the DCE-induced effective coupling (3)
becomes larger than the relevant decoherence rates in
the system, the transfer of one-phonon excitations between
the two mirrors can be deterministic and reversible.
Neglecting decoherence (calculations including losses
can be found in Secs. V and VI of [47]), if the system is
initially prepared in the state j1; 0; 0i, it will evolve as

jψðtÞi ¼ cosðλ0110tÞj1; 0; 0i − i sinðλ0110tÞj0; 1; 0i: ð4Þ

After a time t ¼ π=ð2λ0110Þ, the excitation will be completely
transferred to mirror 1. After a time t ¼ π=ð4λ0110Þ, the two
mirrors will be in a maximally entangled motional state.
We now investigate the system dynamics starting from a

low-temperature thermal state and introducing the excitation
of mirror 1 by a single-tone continuous-wave mechanical
driveF 1ðtÞ ¼ A cos ðωdtÞ. We numerically solve the master
equation for hybrid quantum systems in a truncated Hilbert
space [54]. Figure 2 shows the time evolution of the mean
phononnumbersof the twomirrors hB̂†

i B̂ii and the intracavity
mean photon number hÂ†Âi. Here, Â, B̂i are the physical
photon and phonon operators. Such operators Ô ¼ Â, B̂i can
be defined in terms of their bare counterparts ô ¼ â, b̂i
as [55–58] Ô ¼ P

En>Em
hψmjðôþ ô†Þjψnijψmihψnj. We
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consider the system initially in a thermal state with a
normalized thermal energy kBT=ω1 ¼ 0.208, corresponding
to a temperatureT ¼ 60 mK forω1=2π ¼ 6 GHz.During its
time evolution, the system interactswith thermal reservoirs all
with the same temperatureT.We use γ1 ¼ γ2 ¼ γ ¼ ω1=260
and κ ¼ γ for the mechanical and photonic loss rates. We
consider aweak (A=γ ¼ 0.95) resonant excitation ofmirror 1
(ωd ¼ ω1). We present results for two normalized coupling
strengths (g=ω1 ¼ 0.01, 0.03), and set ω2 ¼ ω1. The results
shown in Fig. 2(a) demonstrate that the excitation transfer
mechanism via virtual DCE photon pairs, proposed here,
works very well for g=ω1 ¼ 0.03. In steady state, mirror 2
reaches almost the same excitation intensity as the driven
mirror 1. The photon population differs only slightly from the
thermal one at t ¼ 0, showing that a negligible amount of
DCE photon pairs are generated. We also observe that the
influence of temperature on the mechanical expectation
values is almost negligible (see Supplemental Material
[47]). On the contrary, the cavity mode at lower frequency
ismuchmore affected by the temperature.We observe that for
g=ω1 ¼ 0.01, although the transfer is reduced, the effect is
still measurable. Themean photon number obtained at T ¼ 0
is also shown for comparison (dash-dotted curves) in both the
panels. The mirror-mirror excitation transfer at g=ω1 ¼ 0.01
can be significantly improved [47] by taking advantage of the
DCE resonance conditionωc ¼ 2ω1. However, in this case, a
significant amount of real photon pairs are generated. This
configuration can be used to probe the DCE effect in the
presence of thermal photons.

In order to put forward the potentialities and the
flexibility of this vacuum-field-mediated interaction
between mechanical oscillators, we now show that this
system also can operate as a mechanical parametric down-
converter. For mechanical frequencies such that ω1 ≃ 2ω2,
a ladder of avoided-level crossings manifests. Two of them
are shown in Fig. 3(a). Also in this case, the avoided-level
crossings originate from the exchange of virtual photon
pairs, as can be understood by using second-order pertur-
bation theory. For example, the dominant path for the
lowest-energy level anticrossing goes through the inter-
mediate state j0; 0; 2i: j1; 0; 0i ↔ j0; 0; 2i ↔ j0; 2; 0i [47].
We note that these avoided-level crossings, in contrast to
those shown in Fig. 1(b), do not conserve the excitation
number. Analogous coherent coupling effects can be
observed in the ultrastrong-coupling regime of cavity
QED [9,11,43,59,60]. Using ωc¼1.2ω1 and g=ω1¼0.12,
we obtain a minimum energy splitting λ0210=ω1 ≃ 4 × 10−3.
We fix the resonance frequency of mirror 2 at the value
providing the minimum level splitting, and calculate the
system dynamics considering a weak resonant excitation of
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FIG. 2. System dynamics forωc ≃ 1.5ω1 under continuous-wave
drive of mirror 1. The blue solid and red dashed curves describe the
mean phonon numbers hB̂†

1B̂1i and hB̂†
2B̂2i, respectively, while the

black dotted curve describes the mean intracavity photon number
hÂ†Âi and the gray dash-dotted curve shows the same photon
number hÂ†Âi0, calculated assuming zero temperature.
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FIG. 3. Mechanical parametric down-conversion. (a) Lowest-
energy levels of the system Hamiltonian as a function of the ratio
between the mechanical frequency of mirror 2 and that of mirror
1. An optomechanical coupling g=ω1 ¼ 0.12 has been used and
the cavity-mode resonance frequency is ωc ¼ 1.2ω1. Two
avoided-level crossings are clearly visible. The one at lower
energy corresponds to the resonant coupling of the one-phonon
state of mirror 1 with the two-phonon state of mirror 2, whose
resonance frequency is half that of mirror 1. The higher-energy
anticrossing corresponds to the resonant coupling of the states
j1; 1; 0i and j0; 3; 0i. (b) Time evolution of the mean phonon and
photon numbers. (c) Time evolution of the population of the first
three energy states. (d) Equal-time phonon-phonon normalized

correlation functions gð2Þi ðt; tÞ for the two mirrors.
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mirror 1, F 1ðtÞ¼AcosðωdtÞ, with ωd¼ðE3þE2−2E0Þ=2,
and A=γ ¼ 0.7. We also used γ ¼ 2 × 10−3ω1 and
κ ¼ γ=2. The results shown in Fig. 3(b) demonstrate a
very efficient excitation transfer between the two mechani-
cal oscillators of different frequency. We also observe that
the transfer occurs even in the presence of a very weak
excitation of mirror 1 (peak mean phonon number of mirror
1: hB̂†

1B̂1i ≃ 0.2). It may appear surprising that the steady-
state mean phonon number of mirror 2 is significantly
larger than that of mirror 1, even though it receives all the
energy from the latter. This phenomenon can be partly
understood by observing that a phonon of mirror 1 converts
into two phonons (each at half energy) of mirror 2.
In addition, once the system decays to the state
jψ1i ≃ j0; 1; 0i, the remaining excitation in mirror 2 will
not be exchanged back and forth with mirror 1, since the
corresponding energy level is not resonantly coupled to
other energy levels [see Fig. 3(a)]. Figure 3(c) displays the
populations of the three lowest-energy levels, which are the
levels that are most populated at this input power. This
panel confirms that jψ1i has the higher population in
steady state.
We also calculated the equal-time phonon-phonon nor-

malized correlation functions

gð2Þi ðt; tÞ ¼ hB̂†
i ðtÞB̂†

i ðtÞB̂iðtÞB̂iðtÞi
hB̂†

i ðtÞB̂iðtÞi2
: ð5Þ

The high value at early times obtained for mirror 2
[see Fig. 3(d)] confirms the simultaneous excitation of
phonon pairs.
In conclusion, we demonstrated that mechanical

quantum excitations can be coherently transferred among
spatially separated mechanical oscillators, through a dis-
sipationless quantum bus, due to the exchange of virtual
photon pairs. The experimental demonstration of these
processes would show that the electromagnetic quantum
vacuum is able to transfer mechanical energy somewhat
like an ordinary fluid [16]. The results presented here open
up exciting possibilities of applying ideas from fluid
dynamics in the study of the electromagnetic quantum
vacuum. Furthermore, these results show that the DCE in
high-frequency optomechanical systems can be a versatile
and powerful new resource for the development of quan-
tum-optomechanical technologies. If, in the future, it will
be possible to control the interaction time (as currently
realized in superconducting artificial atoms), e.g., changing
rapidly the resonance frequencies of mechanical oscillators
(see Sec. VI of [47]), the interaction scheme proposed here
would represent an attractive architecture for quantum
information processing with optomechanical systems
[61]. The best platform to experimentally demonstrate
these results is circuit optomechanics using ultra-high-
frequency (ω1 at 5–6 GHz) mechanical oscillators.
Their quantum interaction with superconducting artificial

atoms has been experimentally demonstrated [21,22].
Considering instead their interaction with a superconduct-
ing microwave resonator should allow the observation of
the effects predicted here. Specifically, combining circuit-
optomechanics schemes able to increase the coupling
[39,62] with already demonstrated ultra-high-frequency
mechanical resonators [21,22] represents a very promising
setup for entangling spatially separated vibrations via
virtual photon pairs (see Sec. VII of [47]).
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Supplemental Material for

Interaction of Mechanical Oscillators

Mediated by the Exchange of Virtual Photon Pairs

I. DIAGONALIZATION OF THE STANDARD OPTOMECHANICS HAMILTO-

NIAN

We consider a system constituted by two vibrating mirrors interacting via radiation pres-

sure [see Fig. 1(a) in the main paper]. Both the cavity field and the displacements of the

mirrors are treated as dynamical variables and a canonical quantization procedure is adopted

[1, 2].

By considering only one mechanical mode for each mirror, with resonance frequency ωi

(i = 1, 2) and bosonic operators b̂i and b̂†i , the displacement operators can be expressed

as x̂i = X
(i)
zpf(b̂

†
i + b̂i), where X

(i)
zpf is the zero-point-fluctuation amplitude of the ith mirror.

We also consider a single-mode optical resonator with frequency ωc and bosonic photon

operators â and â†. The system Hamiltonian can be written as Ĥs = Ĥ0 + ĤI , where

Ĥ0 = ωcâ
†â+ ω1b̂

†
1b̂1 + ω2b̂

†
2b̂2 , (S1)

is the unperturbed Hamiltonian. The Hamiltonian describing the mirror-field interaction is

ĤI = (â+ â†)2 ∑

i=1,2

gi
2 (b̂i + b̂†i ) , (S2)

where gi are the coupling rates. Eq. (S2) is a direct generalization of the Law optomechan-

ical Hamiltonian [1]. The linear dependence of the interaction Hamiltonian on the mirror

operators is a consequence of the usual small-displacement assumption [1]. Once such linear

dependence is assumed, the generalization (S2) to two mirrors, coupled to the same optical

resonator, is straightforward. Equation (S2) has a clear physical meaning: the radiation

pressure force acting on the mechanical resonators is proportional to the square modulus of

the electric field.

By developing the photonic operators in normal order, and by defining new bosonic

phonon and photon operators and a renormalized photon frequency, Ĥs can be written as

Ĥs = Ĥom + V̂DCE , (S3)

1



where V̂DCE is the DCE interaction term:

V̂DCE = (â2 + â†2)
∑

i=1,2

gi
2 (b̂i + b̂†i ) , (S4)

and Ĥom is the standard optomechanics Hamiltonian:

Ĥom = Ĥ0 + V̂om (S5)

with

V̂om = â†â
∑

i=1,2
gi(b̂i + b̂†i ) . (S6)

Ĥom can be easily diagonalized defining the displacement operators for the two mirrors. In

particular, defining (i = 1, 2)

B̂i = b̂i + βiâ
†â (S7)

with βi = gi/ωi, we obtain

Ĥom = ωc

[
1−

(
β2

1ω1

ωc
+ β2

2ω2

ωc

)
â†â

]
â†â+ ω1B̂

†
1B̂1 + ω2B̂

†
2B̂2 . (S8)

It is possible to separate the Hilbert space spanned by the Hamiltonian eigenvectors into

subspaces with a definite number of photons n. The eigenstates of Ĥom can be labelled by

three indexes: the first two labelling the mechanical occupation numbers (phonons) of the

two mirrors, dressed by the presence of n cavity photons while the third label describes the

number n of cavity photons. We use the following notation

|ψk,q,n〉 = |kn〉 ⊗ |qn〉 ⊗ |n〉c ≡ |k, q, n〉 . (S9)

In particular, the photon occupation number n determines the nth cavity-photon subspace,

while the first two kets (|kn〉 and |qn〉) are the displaced mechanical Fock states, respectively,

for the first and second mirror. The action of the dressed phonon operators on the eigenstates

satisfy the relations

B̂1 |kn, qn, n〉 =
√
k |(k − 1)n, qn, n〉 , B̂2 |kn, qn, n〉 = √q |kn, (q − 1)n, n〉 ,

B̂†1 |kn, qn, n〉 =
√

(k + 1) |(k + 1)n, qn, n〉, B̂†2 |kn, qn, n〉 =
√

(q + 1) |kn, (q + 1)n, n〉.
(S10)
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The explicit expression of the single displaced Fock state |kn〉i for the ith mirror is (note

that from Eq. (S7) and in the subspace with n cavity photons we have B̂†i = b̂†i + nβiÎi)

|kn〉i = 1√
k!
B̂†ki |0n〉i = 1√

k!
(b̂†i + nβiÎi)k|0n〉i , (S11)

where n-photons manifold and |0n〉i is the coherent ground state for mirror i with n cavity

photons, as is shown by the relation

b̂i|0n〉i = −nβi|0n〉i , (S12)

obtained using Eq. (S7) in B̂i|0n〉i = 0. Using the displacement operator D̂(nβi) =
exp[nβi(b̂i − b̂†i )], we have

|0n〉i = D̂(nβi)|0〉i =
∑

j

e−|nβi|2/2 (−nβi)j√
j! |j〉i . (S13)

In addition, from the relation D̂(nβ)b̂†D̂†(nβ) = b†+ nβ [3], using Eqs. (S11) and (S13), we

obtain

|kn〉i = 1√
k!

(b̂†i +nβiÎi)k|0n〉i = 1√
k!

(b̂†i +nβiÎi)kD̂(nβi)|0〉 = D̂(nβi)
1√
k!
b̂†ki |0〉 = D̂(nβi)|k0〉

(S14)

Finally, after a little bit of algebra, we have

i〈k′0|kn〉i = i〈k′0|[D̂(nβi)]|k0〉i = Dk′,k(nβi) =
√
k!/k′!(nβi)k

′−ke−|nβi|2/2Lk
′−k
k (|nβi|2) , (S15)

where Lpk(x) are the associated Laguerre polynomials.

In conclusion, the standard optomecanical Hamiltonian can be diagonalized as shown

above and we obtain

Ĥ|k, q, n〉 = Ek,q,n|k, q, n〉 , (S16)

where

Ek,q,n = ωcn

[
1−

(
β2

1ω1

ωc
+ β2

2ω2

ωc

)
n

]
+ ω1k + ω2q , (S17)

or, in more compact form [replacing for clarity the phonon labels as (k, q)→ (k1, k2)]

Ek1,k2,n = ωcn−
∑

i

g2
i n

2/ωi +
∑

i

ωiki. (S18)
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II. THE DCE INTERACTION HAMILTONIAN AS A PERTURBATION

In this section, we introduce the DCE interaction term. We consider this additional

contribution as a perturbation to the optomechanical Hamiltonian Ĥom. This additional

term creates and destroys photon pairs. Here we consider processes at the lowest nonzero

perturbation order. Thus we limit our calculations to the subspace containing zero and

two cavity photons. The DCE interaction Hamiltonian V̂DCE is calculated using second-

order perturbation theory. These perturbative calculations are carried out using the James’

method [4]:

Ĥ
(2)
eff = 1

i
V̂
I(0,2)

DCE (t)
∫ t

0
V̂
I(0,2)

DCE (t′)dt′ , (S19)

where

V̂
I(0,2)

DCE (t) = eiĤtV̂
(0,2)

DCE e
−iĤt

is the projection operator V̂DCE acting in the subspace containing 0 and 2 photons expressed

in the interaction picture. After some algebra, we obtain (we assume g1 = g2 ≡ g):

V̂
I(0,2)

DCE (t) = g

2
∑

k q
k′ q′

Ak
′ q′
k q |k2, q2, 2〉〈k′0, q′0, 0| e

iωk′ q′
k q

t + (Ak
′ q′
k q )† |k′0, q′0, 0〉〈k2, q2, 2| e−iω

k′ q′
k q

t
(S20)

where

ωk
′ q′
k q = 2Ωc + (k′ − k)ω1 + (q′ − q)ω2; (S21)

with Ωc = 1 + β̃1 + β̃2, β̃i = g2/(ωiωc) . We also have:

Ak
′ q′
k q =

〈
k2, q2, 2

∣∣∣V̂DCE
∣∣∣ k′0, q

′
0, 0

〉
;

that can be expressed in more explicit form as

Ak
′ q′
k q =

√
2
{
[
√
k′〈k2|(k′ − 1)0〉+

√
k′ + 1〈k2|(k′ + 1)0〉]〈q2|q′0〉+

[
√
q′〈q2|(q′ − 1)0〉+

√
q′ + 1〈q2|(q′ + 1)0〉]〈k2|k′0〉

}
. (S22)

Note that Ak
′ q′
k q = A†k q

k′ q′ . Using Dk′,k(2βi) = 〈k′2|k0〉, we have:

Ak
′ q′
k q =

√
2[
√
k′Dk,k′−1(2β1) +

√
k′ + 1Dk,k′+1(2β1)]Dq,q′(2β2)+

√
2[
√
q′Dq,q′−1(2β2) +

√
q′ + 1Dq,q′+1(2β2)]Dk,k′(2β1) , (S23)

where the matrix elements of the displacement operators can be expressed in terms of asso-

ciated Laguerre polynomials: Dk′,k(α) =
√
k!/k′!αk′−ke−|α|

2/2Lk
′−k
k (|α|2).
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A. One phonon – zero photons subspace

The (1 + 0) subspace containing zero photons and one phonon excitation is spanned by

the eigenvectors |1, 0, 0〉 and |0, 1, 0〉. At ω2 ∼ ω1, these states are degenerate in absence of

the V̂DCE interaction. In presence of such interaction, degeneracy is removed and an avoided

level crossing can be observed. This effect can be described by introducing an effective

Hamiltonian. Specifically: a) we introduce Eq. (S20) into Eq. (S19); b) we perform the

integration; c) we limit the calculations to matrix elements containing zero photons; d) we

transform back to the Schrödinger picture; e) finally, we project the result into the (1 + 0)
subspace spanned by the vectors |1, 0, 0〉, |0, 1, 0〉. We obtain

Ĥeff = Ĥ0
eff + [λ10

01 |0, 1, 0〉〈1, 0, 0|+ H.c.], (S24)

where

Ĥ0
eff = Ω1 |1, 0, 0〉〈1, 0, 0|+Ω2 |0, 1, 0〉〈0, 1, 0| , (S25)

with Ω1 = ω1 +∆10 and Ω2 = ω2 +∆01, and with

∆10 = −g
2

4
∑

k q

A1 0†
k q A

1 0
k q

2Ωc + (k − 1)ω1 + qω2
; (S26)

∆01 = −g
2

4
∑

k q

A0 1†
k q A

0 1
k q

2Ωc + kω1 + (q − 1)ω2
; (S27)

λ10
01 = −g

2

4
∑

k q

A0 1†
k q A

1 0
k q

2Ωc + (k − 1)ω1 + qω2
. (S28)

In Fig. S1, we show a comparison between the numerically calculated normalized Rabi

splitting (2λ10
01ω1) between the two one-phonon states |1, 0, 0〉 and |0, 1, 0〉 and the corre-

sponding theoretical value calculated using second-order perturbation theory as a function

of the normalized optomechanical coupling g/ω1. The agreement is very good for g/ω1 below

0.1.
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Figure S1. Comparison between the numerically calculated normalized Rabi splitting (red points)

(corresponding to twice the effective coupling between the two one-phonon states |1, 0, 0〉 and

|0, 1, 0〉) and the corresponding calculation using second-order perturbation theory (solid blue

curve).

B. Two phonons – zero photons subspace

The (2 + 0) subspace with zero photons in the cavity and containing two phonon ex-

citations is spanned by the eigenvectors: |2, 0, 0〉, |0, 2, 0〉 and |1, 1, 0〉. Also in this case,

at ω2 ∼ ω1, these states are degenerate in the absence of the V̂DCE interaction. With the

introduction of V̂DCE, degeneracy is removed, and an avoided level crossing can be observed.

Following the same procedure described in the previous subsection, this effect can be de-

scribed by introducing an effective Hamiltonian acting on the (2 + 0) subspace. We obtain:

Ĥeff = Ĥ0
eff + [λ02

20 |2, 0, 0〉〈0, 2, 0|+ λ11
20 |2, 0, 0〉〈1, 1, 0|+ +λ11

02 |0, 2, 0〉〈1, 1, 0|+ H.c.]; (S29)

where

Ĥ0
eff = Ω20 |0, 2, 0〉〈0, 2, 0|+Ω02 |2, 0, 0〉〈2, 0, 0|+Ω11 |1, 1, 0〉〈1, 1, 0| ; (S30)

with Ω20 = 2ω1 +∆20, Ω11 = ω1 + ω2 +∆11 and Ω02 = 2ω2 +∆02, and

λ02
20 = −g

2

4
∑

k q

A0 2†
k q A

2 0
k q

2Ωc + (k − 2)ω1 + qω2
, (S31)
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λ11
20 = −g

2

4
∑

k q

A1 1†
k q A

2 0
k q

2Ωc + (k − 2)ω1 + qω2
, (S32)

λ11
02 = −g

2

4
∑

k q

A1 1†
k q A

0 2
k q

2Ωc + kω1 + (q − 2)ω2
, (S33)

∆20 = −g
2

4
∑

k q

A2 0†
k q A

2 0
k q

2Ωc + (k − 2)ω1 + qω2
, (S34)

∆02 = −g
2

4
∑

k q

A0 2†
k q A

0 2
k q

2Ωc + kω1 + (q − 2)ω2
, (S35)

∆11 = −g
2

4
∑

k q

A1 1†
k q A

1 1
k q

2Ωc + (k − 1)ω1 + (q − 1)ω2
. (S36)

A comparison of these perturbative analytical results with the numerical result is provided

in the Tables I and II. The discrepancies can be ascribed to higher-order terms that at a

coupling strength g/ω1 = 0.1 provide non-negligible contributions.

2λ10
01 2λ11

20 2λ02
20 2λ11

02

Numerical ' 0.0217 0.0217 0.0384 0.0167

Theoretical ' 0.0170 0.0171 0.0348 0.0177

Table I. Comparison between the effective splittings calculated both numerically (as difference be-

tween the eigenvalues) and analytically using the James’ method [4]. In particular, the theoretical

values corresponding to 2λ11
20, 2λ02

20 and 2λ11
02 are obtained by the diagonalization of a 3 × 3 ma-

trix representing the effective Hamiltonian in the subspace with two phonon excitations and zero

photons. The cavity-mode resonance frequency is ωc = 0.85ω1 and ω2 = ω1.
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∆10 ∆01 ∆11 ∆02 ∆20

Numerical ' −0.0131 −0.0159 −0.0221 −0.0239 −0.0217

Theoretical ' −0.0120 −0.0121 −0.0207 −0.0199 −0.0207

Table II. Comparison between the numerically calculated energy shifts and the analytical calcula-

tions obtained using the James’ method. The mechanical frequency of mirror 2 is ω2 = 0.94ω1. For

this value the energy levels investigated do not interact significantly, and hence the energy shifts

are not affected by the level-repulsion effect that occurs when the mirrors are on resonance with

each other. The cavity-mode resonance frequency is ωc = 0.85ω1.

III. ENERGY LEVELS AND SPLITTINGS FOR DIFFERENT OPTOMECHAN-

ICAL COUPLINGS.

(Debug) Out[70]=

10.8 1.2

2

0.8

1.2

1.6

Figure S2. Lowest energy levels of the system Hamiltonian as a function of ω2/ω1. We used

g/ω1 = 0.1 and ωc/ω1 = 0.8.
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Figure S3. Relevant lowest energy levels of the system Hamiltonian as a function of ω2/ω1. Panel

(a) has been obtained using g/ω1 = 0.01 and ωc/ω1 = 0.475. Panel (b) has been obtained with the

same parameters of Fig. S2.

Figure S2 displays the lowest energy levels Ej−E0 of the system Hamiltonian as a function

of the ratio between the mechanical frequency of mirror 2 and that of mirror 1. An optome-

chanical coupling g/ω1 = 0.1 has been used, the cavity-mode resonance frequency is ωc =
0.8ω1. Starting from the lowest energy levels, we first avoided level crossing originates from

the coherent coupling of the zero-photon states |1, 0, 0〉 and |0, 1, 0〉. At the minimum energy

splitting, the resulting states are well approximated by |ψ2,3〉 ' (1/
√

2)(|1, 0, 0〉 ± |0, 1, 0〉).
As shown in the main paper and in the previous section, this mirror-mirror interaction is a

result of virtual exchange of cavity photon pairs. This coherent coupling is greatly enhanced

by the presence of a cavity photon, resulting in the larger splitting (E6−E5), corresponding

to the states |ψ5,6〉 ' (1/
√

2)(|1, 0, 1〉 ± |0, 1, 1〉). At higher energy, at ω2/ω1 ∼ 1, V̂DCE

removes the degeneracy between the three states |2, 0, 0〉, |0, 2, 0〉, and |1, 1, 0〉, determining

a two-phonon coupling between the two mirrors.

Figure S3 shows the relevant energy levels of the system Hamiltonian Ĥs as a function of

the ratio ω2/ω1. For the panel (a) an optomechanical coupling g/ω1 = 0.01 has been used

and the cavity-mode resonance frequency is ωc = 0.475ω1. The lowest energy anticrossing

corresponds to the resonance condition for the DCE. The higher energy one is the signature
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of the mirror-mirror interaction mediated by the virtual DCE photons. At the minimum

energy splitting 2λ01
10 ' 1, 85×10−2ω1, the resulting states are well approximated by |ψ3,4〉 '

(1/
√

2)(|1, 0, 0〉 ± |0, 1, 0〉). In panel (b) we use g/ω1 = 0.1. In this case the cavity-mode

resonance frequency is ωc = 0.8ω1. Also in this case, the anticrossing is the signature

of the mirror-mirror interaction mediated by the virtual DCE photons. At the minimum

energy splitting 2λ01
10 ' 2, 56×10−2ω1, the resulting states are well approximated by |ψ2,3〉 '

(1/
√

2)(|1, 0, 0〉 ± |0, 1, 0〉).

IV. SYSTEM DYNAMICS UNDER A SINGLE-TONE CONTINUOUS-WAVE

MECHANICAL DRIVE: ADDITIONAL RESULTS

We start investigating the system dynamics at T = 0, with the system starting from its

ground state, and introducing the excitation of mirror 1 by a single-tone continuous-wave

mechanical drive F1(t) = A cos (ωdt), with ωd = ω1. Figure S4 shows the time evolution of

the mean phonon numbers of the two mirrors 〈B̂†i B̂i〉 and of the intracavity mean photon

number 〈Â†Â〉. Here Â, B̂i are the physical photon and phonon operators (see main paper).

We assume a zero-temperature reservoir and use γ1 = γ2 = γ = ω1/260 and κ = γ for the

mechanical and photonic loss rates. We consider a weak (A/γ = 0.95) resonant excitation

of mirror 1. Panel (a) has been obtained using g/ω1 = 0.1 and ωc/ω1 = 0.8. Panel (b) using

g/ω1 = 0.03 and ωc/ω1 = 0.495. Panel (c) using g/ω1 = 0.01 and ωc/ω1 = 0.475. We set

ω2 = ω1. The results shown in Fig. S4 demonstrate that the excitation transfer mechanism

via virtual DCE photon pairs, proposed here, works properly. In steady state, mirror 2

reaches almost the same excitation intensity as the driven mirror 1 at normalized couplings

g = 0.1 and g = 0.03. The photon population remains very low throughout the considered

time window. In Fig. S5, in order to obtain the maximum excitation transfer between the

two mirrors (despite the small coupling strength g/ω1 = 0.01), we investigate the system

dynamics using ωc = 0.5ω1. We also consider the system initially in a thermal state with

a normalized thermal energy kT/ω1 = 0.208, corresponding to a temperature T = 60 mK

for ω1/2π = 6 GHz. During, its time evolution, the system interacts with thermal baths

with the same temperature T . The obtained results show that a good mechanical transfer

is achieved. However, in this case, a significant amount of real photon pairs are generated.

This configuration can be used to probe the DCE effect in the presence of thermal photons.
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Figure S4. System dynamics under continuous-wave drive of mirror 1 for different optomechanical

coupling strengths. The blue solid and red dashed curves describe the mean phonon numbers

〈B̂†1B̂1〉 and 〈B̂†2B̂2〉, respectively, while the black dotted curve describes the mean intracavity

photon number 〈Â†Â〉. Parameters are given in the text.

V. MECHANICAL EXCITATION TRANSFER: PULSED EXCITATION

We now investigate the transfer of mechanical excitations mediated by virtual photon

pairs by exciting mirror 1 with a resonant Gaussian pulse:

F1(t) = AG(t− t0) cos (ωd t),

where ωd = ω1, and G(t) is a normalized Gaussian function with standard deviation σ =
1/(10λ01

10). We consider the case of the strong coupling regime, when the mirror-mirror
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Figure S5. System dynamics for ωc = 0.5ω1 under continuous-wave drive of mirror 1, normalized

coupling g/ω1 = 0.01 and T= 60 mK. The blue solid and red dashed curves describe the mean

phonon numbers 〈B̂†1B̂1〉 and 〈B̂†2B̂2〉, respectively, while the black dotted curve describes the mean

intracavity photon number 〈Â†Â〉 arising due to the DCE.

Figure S6. Time evolution of the mean phonon numbers of the two mirrors after the arrival of

the pulse. We consider two different amplitudes which increase from top to bottom: A = 0.25π

(a), 0.45π (b). Specifically, panels (a-b) display the mean phonon numbers 〈B̂†i B̂i〉. Panels (α-β)

display the Fourier transform of the mean phonon number shown in the corresponding panel on

the left. Other parameters are given in the text.
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coupling strength λ01
10 is larger than the total decoherence rate γ1 +γ2. We set the resonance

frequency of mirror 2 to ω2 ' ω1 providing the minimum level splitting 2λ01
10. The system

starts in its ground state. Figure S6 displays the system dynamics after the pulse arrival

and the Fourier transform of the mean phonon number of mirror 1 (no relevant changes

occur for mirror 2), obtained for pulses with amplitudes increasing from top to bottom: A =
0.25π, 0.45π. Panels S6(a) and S6(α) have been obtained using the loss rates γ = 3.5×10−3ω1

and κ = 0.5γ. Figure S6(a) displays coherent and reversible sinusoidal oscillations (with

peak amplitudes decaying exponentially), showing that the mechanical state of the spatially

separated mirrors is transferred from one to the other at a rate ω3,2 ≡ E3 − E2 = λ01
10, as

confirmed by the peak in the Fourier transform in Fig. S6(α). We notice that the position

and broadening of the peak at ω3,2 in Fig. S6(α) is influenced by the initial dynamics of

〈B̂†1B̂1〉, which in turn is affected by the pulse shape (Fig. S7 displays the corresponding

spectrum for mirror 2). The higher peak at ω = 0 originates from the exponential decay of

the signal. These results clearly show that, for the weaker excitation amplitude (A = 0.25π),

only the one-phonon states |1, 0, 0〉 and |0, 1, 0〉 are excited significantly and contribute to

the dynamics.

Figure S7. Fourier transform of the mean phonon number of mirror 2 obtained for a pulse with

amplitude A = 0.25π.

By increasing the pulse amplitude [Fig. S6(b)], the mean phonon numbers grow sig-

nificantly and the signals are no more sinusoidal, owing to the additional excitation of the

states |2, 0, 0〉, |1, 1, 0〉, and |0, 2, 0〉, whose DCE-induced coupling gives rise to the hybridized
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energy eigenstates |ψ7〉, |ψ8〉, and |ψ9〉. In order to better distinguish the nonsinusoidal be-

haviour, we used much lower loss rates: γ = 8 × 10−5ω and κ = 0.5γ. Figure S6(β) shows

the appearence of an additional peak at ω = ω8,7, confirming that higher-energy mechanical

states get excited. We observe that the frequency splitting ω9,8 is very close to ω3,2, hence, it

does not give rise to a new peak in Fig. S6(β). Moreover, the frequency splitting at ω9,7 does

not contribute significantly to the dynamics as confirmed by the spectrum in Fig. S6(β). An

analytic calculation based on three coupled levels confirms that the used parameters give

rise to a negligible contribution at ω9,7.

VI. MECHANICAL EXCITATION TRANSFER: NONADIABATIC EFFECTIVE

SWITCHING OF THE INTERACTION

As pointed out in the last paragraph of the main paper, if it is possible to control the

interaction time (as currently realized in superconducting artificial atoms), e.g., by rapidly

changing the resonance frequencies of the mechanical oscillators, the interaction scheme

proposed here would represent an attractive architecture for quantum information processing

with optomechanical systems. Here we provide some examples of quantum state transfer. In

Fig. S8, we show the phonon population dynamics obtained preparing the system in three

different initial states (a) |1, 0, 0〉, (b) 1√
2(|0, 0, 0〉+ |1, 0, 0〉), (c) |2, 0, 0〉. Mirror 2 is initially

set at a mechanical frequency ωin
2 . This value must be chosen sufficiently far from the value

ωmin
2 ' 0.99ω1 corresponding to the minimum splitting between states |1, 0, 0〉 and |0, 1, 0〉.

In particular, we have fixed ωin
2 = ωmin

2 −δ with δ = 0.069ω1. This value is also sufficiently far

from the region where the avoided three-level crossing between the states |ψi〉 with i = 7, 8, 9
appears. Subsequently, a time-dependent perturbation Hna = f(t)B̂†2B̂2 [with f(t) ≈ θ(t −
t0)] is introduced in order to modify the resonance frequency of mirror 2 (θ is the Heaviside

step function). More specifically f(t) = δ [sin2[Ω(t− t0)θ(t− t0) + sin2[Ω(t− tf )θ(t− tf )]]
is a smoothed step function, where δ fixes the change in mechanical frequency of mirror 2,

t0 is the time when the frequency starts to change, tf = t0 +π/(2A), and Ω is the frequency

setting the smoothness.

This enables a non-adiabatic transition from the frequency region with ω2 = ωin
2 , where

the states |2, 0, 0〉, |1, 0, 0〉 and |0, 1, 0〉 are eigenstates of the system, to the frequency region

ω2 = ωmin
2 where the former states are no longer eigenstates of the system. As a consequence,
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Figure S8. Time evolution of the mean phonon numbers of the two mirrors obtained preparing the

system in an initial state (a) |1, 0, 0〉, (b) 1√
2(|1, 0, 0〉+ |0, 0, 1〉), (c) |2, 0, 0〉. Mirror 2 is initially set

at a mechanical frequency ωin
2 (details are given in the text). We note that the dynamics display

oscillations, (a) and (b), due to the avoided level crossing between the states |ψ3〉 and |ψ2〉 with

frequency equal to ω3,2; (c) due to the splittings between the states |ψ9〉, |ψ8〉 and |ψ7〉, whose

transitions from higher to lower levels give rise to beats (the details are given in the text).

the dynamics of the phonon populations of the two mirrors display quantum Rabi-like os-

cillations [see Fig. S8(a) and (b)] due to the avoided level crossing between the states |ψ3〉
and |ψ2〉 (the eigenstates of the systems are, in this frequency region, the symmetric and
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Figure S9. Time evolution of the mean phonon numbers of the two mirrors calculated after a

non-adiabatic switching of the interaction, as explained in Fig. S8, but in the presence of losses

both in mirrors and cavity. The parameters are the same as in Fig. S8; in addition we have

γ = γ1 = γ2 = ω1/650 and κ = 0.5 γ. The system is initially preparated in the states (a)

|1, 0, 0〉, (b) 1√
2(|1, 0, 0〉+ |0, 0, 1〉), (c) |2, 0, 0〉. As we can observe, the oscillations are damped and

disappear after a few periods. In (c) the losses do not allow for observations of beats oscillations

having a longer time period. The dotted gray lines show how the frequency of mirror 2 is tuned

into resonance with mirror 1 (details are given in the text).
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antisymmetric superpositions of |1, 0, 0〉 and |0, 1, 0〉; see Fig. 1b in the main paper). In

Fig. S8(c), the avoided level crossing between the states |ψ9〉, |ψ8〉, and |ψ7〉 gives rise to

transitions from higher to lower levels. As a consequence, we observe beats between the two

transition frequencies ω8,9 and ω8,7 (with the chosen parameters the other frequency transi-

tion ω9,7 does not contribute to the beats). Finally, in Fig. S9, we show the time evolution

of the mean phonon numbers for the same cases discussed above, but in the presence of

losses both in mirrors and cavity. We observe the damping of the population dynamics as

expected in presence of losses.

VII. EXPERIMENTAL PLATFORM FOR THE OBSERVATION OF THE PRO-

POSED EFFECT

A platform to experimentally demonstrate these results is circuit optomechanics using

ultra-high-frequency (ω1 at 4-6 GHz) dilatational resonators [5]. These mechanical oscil-

lators have a resonance frequency fm = v/2d, where v is the average speed of sound and

d is the resonator thickness. Their resonant quantum interaction with a superconducting

phase qubit, described by the quantum Rabi (or also the Jaynes-Cummings) Hamiltonian,

has been experimentally demonstrated [5, 6]. In the present case, we want to estimate the

radiation-pressure interaction strength between the high-frequency mechanical resonator and

an electromagnetic resonator. In order to estimate the achievable coupling strength, we be-

gin by analyzing the coupling between a mechanical resonator and a flux qubit, experimen-

tally realized in Ref. [5]. Then we use the experimentally achieved qubit-oscillator coupling

strength to derive an accurate estimate of the presently achievable radiation-pressure cou-

pling strength between this mechanical resonator and an electromagnetic resonator. Note

that the mechanical oscillator considered in Ref. [5] has a quality factor equal to that used

in our calculations: Q = 260. Moreover, it has been shown that lowering fm can strongly

increase the quality factor [7].

The mechanical resonator is coupled to a superconducting artificial atom through a ca-

pacitor [5]. An elastic strain in the vibrational resonator produces, through the piezoelectric

effect, a charge on the capacitor enclosing it, which results in a charge Q on the coupling

capacitor giving a current Q̇. The coupling energy is V̂ ′ = (~/2e) ϕ̂ ˙̂
Q, where ϕ̂ is the phase-

difference operator of the Josephson junction. Considering only the two lowest energy levels
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(qubit) of the artificial atom, the phase operator can be expanded as φ̂ = (2E ′C/E ′J)1/4 σ̂x,

resulting in the Rabi-like interaction Hamiltonian

V̂ ′qm = ~ (2E ′C/E ′J)1/4 σ̂x ( ˙̂
Q/2e) , (S37)

where E ′C and E ′J are the charging energy and the Josephson energy, respectively, of the

phase qubit (with E ′C � E ′J), and
˙̂
Q is proportional to the vibrational strain velocity ˙̂x =

iω1Xzpf (b̂†1− b̂1) (Xzpf is the zero-point fluctuation amplitude of the mechanical coordinate).

Finally, this interaction Hamiltonian can also be expressed in the standard Rabi interaction

form:

V̂ ′qm = −ig′m(b̂− b̂†)σ̂x , (S38)

where g′m is the resulting coupling strength and b̂ and b̂† are, respectively, the annihilation

and creation operators for a generic mechanical oscillator.

For the observation of the effects described in this paper, optomechanical systems dis-

playing a radiation-pressure interaction Hamiltonian are required. Moreover a strong op-

tomechanical coupling (at least g/ω1 ∼ 0.01) is needed. This kind of interaction with a

reasonable coupling strength can be obtained by considering a tripartite system consisting

of an electromagnetic resonator, an ultra-high-frequency mechanical resonator, and a su-

perconducting charge qubit mediating the interaction between the former two parts [8, 9].

It has been shown that the presence of the qubit can strongly enhance the optomechanical

coupling.

Without presenting a detailed circuit-optomechanical setup, which goes beyond the scope

of the present work, we can provide an estimate of the resulting coupling strength which

can be achieved within state-of-the-art technology. Specifically, considering one generic

mechanical oscillator, coupled through a capacitor to a charge qubit, the qubit-mechanical

oscillator interaction Hamiltonian can be written as V̂qm = 8EC n̂ (Q̂/2e), where n̂ is the

number operator for the Cooper pairs transferred across the junction. In the full charge qubit

limit, EJ � EC , the bare qubit transition energy is ωq ≈ 4EC , and the mechanical coupling

is longitudinal, i.e., in the two-state representation n̂ → σ̂z/2. The resulting interaction

Hamiltonian is

V̂qm = ~ωq σ̂z(Q/2e) , (S39)

which can also be expressed as

V̂qm = gm(b̂+ b̂†)σ̂z . (S40)
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Assuming that the same mechanical oscillator is coupled through the same capacitor to

the two different kinds of superconducting qubits, it is possible to compare the two qubit-

mechanical oscillator coupling strengths. From Eqs (S37) and (S39), disregarding the phase

difference, we obtain

gm
g′m

=
(
E ′J

2E ′C

) 1
4 ωq
ω1
. (S41)

Below we will consider the case 2ωq ∼ ω1. Assuming the energies E ′J and E ′C for a typical

phase qubit (see, e.g. Ref. [7]), we obtain gm/g
′
m & 12.

Now, following Refs. [8] and [9], we consider the additional interaction of the charge qubit

with an electromagnetic resonator, described by the Hamiltonian

V̂qc = gc(â+ â†)σ̂x , (S42)

where â is the destruction operator of the cavity mode. In the dispersive regime, the qubit-

cavity interaction can be well approximated by [10]

V̂qc = (g2
c/2∆)σ̂z(â+ â†)2 , (S43)

where ∆ = ωq − ωc. Corrections of the qubit energy not depending on photon operators

have been disregarded. Equation (S40) shows that the coupling of the charge qubit with the

mechanical oscillator induces a qubit energy shift depending on the mechanical displacement,

so that ωq → ωq + 2gm(b̂+ b̂†). Replacing ∆ with ∆(x̂) = ωq + 2gm(b̂+ b̂†)−ωc in Eq. (S43),

assuming small displacements, and considering the qubit in its ground state, from Eq. (S43)

we obtain the following optomechanical interaction,

ĤI = g

2(â+ â†)2(b̂+ b̂†) , (S44)

with

g = 2gmg2
c

∆2 . (S45)

Using gm = 0.02ω1, corresponding to the value of the electromechanical system em-

ployed for the demonstration of single-phonon control of a mechanical resonator [5], assum-

ing gm/g
′
m = 12, and considering a detuning ∆ = 5gc, we obtain g ' 0.02ω1. The achievable

value could be even higher, noting that the electromechanical system used in Ref. [5] was

designed to limit gm in order to optimize the transfer process [7].

Beyond the direct observation of the energy transfer between the mechanical oscillators

(see Fig. 1 in the main text), the effective coherent coupling between the two mirrors can also
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be demonstrated by looking at the system response (e.g., 〈B̂†1B̂1〉 ) under continuous-wave

weak excitation as a function of the excitation frequency. For ω1 = ω2, if λ > γ, two peaks

should be observed, corresponding, e.g., to the avoided level crossing at higher energy in

Fig. 2(b) in the main text or to that in Fig. S3(a). In order to confirm that the two observed

peaks originate from virtual DCE photons, it would be useful to perform measurements

changing the optomechanical coupling. This coupling can be tuned by modifying the gate

charge of the qubit mediating the interaction [9]. If the energy splitting originates from

virtual DCE photons, as predicted by Eq. (3) in the main text, it should grow quadratically

with the optomechanical coupling g (see Fig. S1). The anticrossing behaviour could also be

probed, changing d of one of the two dilatational resonators and detecting, e.g., 〈B̂†1B̂1〉 at

steady state as a function of the thickness d (note that ω2 = v/d). Two peaks with a splitting

determined by the thickness, following the avoided level crossing should be observed (see,

e.g., Fig. S3). The detection of the mechanical excitations can be performed following the

procedures used in Refs. [7, 11].
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Chapter 6

Resolution of Gauge ambiguities

in the USC regime

6.1 Resolution of gauge ambiguities in ultrastrong-

coupling cavity quantum electrodynam-

ics
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The ultrastrong coupling (USC) between an effective two-level 
system (TLS) and the electromagnetic field has been realized 
in several solid-state systems1,2. In this regime of quantum 

light–matter interaction, going beyond weak and strong coupling, 
the coupling strength becomes comparable to the transition fre-
quencies of the system. Recently, light–matter coupling strengths 
larger than the system transition frequencies have been achieved 
in circuit quantum electrodynamics (QED) experiments involving 
a single LC-oscillator mode coupled to a flux qubit superconduct-
ing quantum circuit3,4. This extreme interaction regime has been 
denoted as deep strong coupling (DSC). In these regimes1,2, sev-
eral properties of coupled light–matter systems change drastically, 
opening the way to a wealth of new intriguing physical effects (see, 
for example, refs. 5–18), which offer opportunities for the develop-
ment of new quantum technologies19–26.

The form of the electron–photon interaction is gauge dependent 
(see, for example, ref. 27). However, all physical results must be inde-
pendent of this choice. Gauge invariance is a general guiding prin-
ciple in building the theory of fundamental interactions (see, for 
example, ref. 28). Let us consider, for example, a particle field whose 
action is invariant under a global phase change [U(1) invariance]. 
If this phase is allowed to depend on the space–time coordinate x, 
its action is not invariant. The symmetry can be restored, replacing 
the four-momentum derivatives in the action with covariant deriva-
tives: Dμ = (∂μ + iqAμ), where q is the charge parameter and Aμ is the 
gauge potential.

It has been shown29–33 that approximate models for light–matter 
interactions derived in different gauges may lead to different pre-
dictions, or can display different convergence properties34. When 
the light–matter interaction becomes very strong, different gauges 
can lead to drastically different predictions, giving rise to contro-
versies35–43. For example, in the case of several TLSs interacting 

with a single mode of an optical resonator44, different gauges may 
even lead to very conflicting predictions, such as the presence or 
the absence of a quantum phase transition. One important conclu-
sion that can be drawn from these controversies is that, once the 
light–matter coupling becomes non-perturbative, the validity of the 
two-level approximation for the atomic dipoles depends explicitly 
on the choice of gauge45,46.

In all of these previous studies35–43,45,46, it is clear that approxima-
tions in the description of the matter system (for example, a finite-
level truncation) seem to ruin the gauge invariance of the theory. In 
1971, it was pointed out31 that gauge ambiguities in the calculation 
of atomic oscillator strengths can originate from the occurrence of 
non-local potentials determined by the approximation procedures. 
Because a non-local potential in the position representation is an 
integral operator, it does not commute with the position operator. 
Indeed, it is easy to show that it can be expressed as a local momen-
tum-dependent operator ̂V r p( , ). This affects the interaction of light 
with quantum systems described by approximate Hamiltonians. 
Specifically, to introduce the coupling of the matter system with the 
electromagnetic field, the minimal replacement rule ̂ → ̂− ̂ tp p A r( , ) 
(Â is the vector potential) has to be applied not only to the kinetic 
energy terms, but also to the non-local potentials in the effective 
Hamiltonian of the particles in the system. By applying such a 
procedure, approximate matrix elements for electric dipole transi-
tions31 and two-photon transition rates, involving Wannier excitons 
in semiconductors32, become gauge invariant. Also the microscopic 
quantum theory of excitonic polaritons is affected by the presence 
of non-local potentials47,48.

Here we investigate whether this strategy can work in the maxi-
mally truncated Hilbert space provided by a TLS, and in the non-
perturbative regimes of cavity QED. This investigation is relevant 
not only to remove gauge ambiguities in quantum optical systems, 
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In quantum electrodynamics, the choice of gauge influences the form of light–matter interactions. However, gauge invariance 
implies that all physical results should be independent of this formal choice. The Rabi model, a widespread description for the 
dipolar coupling between a two-level atom and a quantized electromagnetic field, seemingly violates this principle in the pres-
ence of ultrastrong light–matter coupling, a regime that is now experimentally accessible in many physical systems. This failure 
is attributed to the finite-level truncation of the matter system, an approximation that enters the derivation of the Rabi model. 
Here, we identify the source of gauge violation and provide a general method for the derivation of light–matter Hamiltonians 
in truncated Hilbert spaces that produces gauge-invariant physical results, even for extreme light–matter interaction regimes. 
This is achieved by compensating the non-localities introduced in the construction of the effective Hamiltonians. The resulting 
quantum Rabi Hamiltonian in the Coulomb gauge differs significantly in form from the standard one, but provides the same 
physical results obtained by using the dipole gauge. These results shed light on gauge invariance in the non-perturbative and 
extreme-interaction regimes, and solve long-lasting controversies arising from gauge ambiguities in the quantum Rabi and 
Dicke models.
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which are attracting great interest, but also to provide a general 
insight into gauge invariance in extreme interaction regimes. We 
find that the usual strategy, which consists of taking into account 
the non-locality of the atomic potential, performing the minimal 
coupling replacement and developing the resulting interaction 
Hamiltonian up to second order in the vector potential, fails when 
the coupling strength reaches a significant fraction of the resonance 
frequencies of the system. We demonstrate that these gauge ambi-
guities can be eliminated for arbitrary coupling strengths only by 
taking into account the approximation-induced non-locality and 
keeping the resulting interaction Hamiltonian to all orders in the 
vector potential Â. The results presented here solve all the long-last-
ing controversies arising from gauge ambiguities in the quantum 
Rabi and Dicke models.

The minimal coupling replacement
We consider a non-relativistic quantum particle of mass m with 
Hamiltonian Ĥ = ̂ ∕ +m V xp (2 ) ( )0

2 , where V(x) is a local potential. 
According to the gauge principle, the corresponding gauge-invari-
ant Hamiltonian Ĥ0 can be expressed as

Ĥ ϕ= + ̂− +q
m

q V xp A1
2

( ) ( ) (1)0
2

where q is the charge, and ϕ(x) and A(x) are the scalar and vector 
potentials of the electromagnetic field. Of course, the total energy 
also has to include the energy of the free field. We observe that, if the 
particle potential V is non-local, that is, momentum-dependent, the 
gauge principle, implying the replacement ̂ → ̂−qp p A, should also 
be applied to it. In most cases, when dealing with the quantization 
of the electromagnetic field, it is useful to adopt the Coulomb gauge, 
where the particle momentum is coupled only to the transverse part 
of the vector potential. For an effective quantum particle, focusing 
on a single-cavity mode and considering the electric-dipole approx-
imation, the Hamiltonian in the Coulomb gauge27 is

Ĥ Ĥ= ̂− + +
m

p qÂ V x1
2

( ) ( ) (2)C
2

ph

where = + †Â A â â( )0  is the vector potential calculated at the par-
ticle position with a zero-point-fluctuation amplitude A0, and 
Ĥ ω= ℏ †â âph c  is the cavity-field Hamiltonian. For a multimode reso-
nator: = + †Â A â â( )n n n  and Ĥ ω= ∑ ℏ †â ân n n nph .

If the two lowest energy levels of the effective quantum particle 
are well separated from the higher energy levels, as in the case of flux 
qubits3, and if the detuning Δ ≡ ωc − ω10 (where ω10 is the transition 
frequency of the two lowest energy levels) is much smaller than the 
detunings of other transitions, the truncation of the Hilbert space 
to the two lowest energy levels is expected to be a good approxima-
tion. Projecting ĤC in a two-level space, the standard quantum Rabi 
Hamiltonian in the Coulomb gauge is obtained

H Ĥ
ω

σ σ̂ = +
ℏ

̂ + ℏ ̂ + + +′ † †g â â D â â
2

( ) ( ) (3)z yC ph
10

C
2

where ω= ∕ℏg A dC 10 0 10 , = ∕D q A m(2 )2
0
2 , and ≡ ∣ ∣̂d q x1 010  is the 

dipole matrix element. Throughout this Article we will use calli-
graphic symbols as, for example, Ĥ′

C, to indicate quantum opera-
tors in truncated Hilbert spaces. The diamagnetic term ∕q Â m(2 )2 2  
can be absorbed by using a Bogoliubov transformation involving 
only the photon operators3,45. In contrast to the interaction term of 
first order in the charge, the Â2 term is not affected by the trun-
cation of the particle Hilbert space. Hence, considering a few-level 
description of the matter part can result in an over-estimation of 
the diamagnetic term. Using the Thomas–Reiche–Kuhn sum rule, 

ω∑ ℏ ∣ ∣ = ℏ ∕d q m( ) (2 )k kj jk
2 2 , the coefficient of the diamagnetic 

term can be written as ω= ∑ ∣ ∣ ∕ℏD A dk kj jk0
2 2 . When a single tran-

sition is considered, this expression can be used to establish a lower  
bound: ω≥ ℏ ∕D gC

2
10.

We observe that, in contrast to the Hamiltonian in equation (2), 
equation (3) violates the gauge principle, because its derivation does 
not take into account that, in the presence of a truncated Hilbert 
space, the particle potential loses its locality: → ̂′V x V x p( ) ( , ). We 
will discuss this problem below, showing the correct procedure for 
solving it.

The dipole gauge
The Hamiltonian in the dipole gauge, ĤD, corresponds to the 
Power–Zienau–Woolley Hamiltonian after the dipole approxi-
mation27. It can be obtained directly from the Hamiltonian 
in the Coulomb gauge with the electric dipole approximation 
(2) by means of a gauge transformation, which is also a uni-
tary trasformation: Ĥ Ĥ= †Û ÛD 1 C 1 , where the unitary operator is 

= − ∕ℏÛ iqxÂexp[ ]1 .
The resulting Hamiltonian in the dipole gauge is

Ĥ Ĥ Ĥ
ω

ω= + +
ℏ

+ −†q A
x iq xA â â( ) (4)c

D ph 0

2
0
2

2
c 0

Projecting ĤD to a two-level space, the quantum Rabi Hamiltonian 
in the dipole gauge is obtained:

H Ĥ
ω

σ σ̂ = +
ℏ

̂ + ℏ − ̂†i g â â
2

( ) (5)z xD ph
10

D

where ω ω ω= ∕ℏ = ∕g A d gD c 0 10 C c 10, and ≡ ∣ ∣d q x1 010  is the 
dipole matrix element. In equation (5) we neglected the term 
Ĉ ω= ∕ℏ ̂A d P( )0

2
10
2

c , where ̂= ∣ ∣ + ∣ ∣P 0 0 1 1  is the TLS identity 
operator. This term is obtained by projecting x2 in the two-dimen-
sional Hilbert space, ̂ ̂= ̂ ̂ ̂Px P PxPxP2 , and using parity symmetry, 
which implies 〈n|x|n〉 = 0. A more accurate derivation can be car-
ried out including this term in the particle potential before the diag-
onalization45 or using perturbation theory. However, we made the 
choice of considering the interaction terms only after the Hilbert 
space truncation. In ref. 45 it is shown that, if the two lowest energy 
levels are well separated from the higher ones ω ≫ g( )21 D

, the two-
level approximation provides accurate results even for extreme cou-
pling strengths ω≫g( )D 10 .

Revisiting the quantum Rabi model in the Coulomb gauge
As observed above, the derivation of equation (3) does not take 
into account that, in the presence of a truncated Hilbert space, 
the particle potential can lose its locality: → ̂′V x V x p( ) ( , ). Thus, 
to preserve gauge invariance, one has to also apply the substi-
tution ̂ → ̂−p p qÂ to the potential. In principle, this procedure 
can give rise to additional terms in the interaction Hamiltonian 
to all orders in the vector potential. Although these higher-
order terms are expected to be negligible for small normalized  
couplings η ≡ gC/ωc, they can become important at higher cou-
pling strengths.

As shown in detail in the Methods, by using some general opera-
tor theorems it is possible to apply the minimal coupling replace-
ment to both the kinetic energy and the non-local potential of the 
effective Hamiltonian of a quantum particle by employing a uni-
tary transformation47. In particular, applying equation (20) (see 
Methods), we obtain

Ĥ Ĥ Ĥ= +†Û Û (6)C 0 ph
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where the unitary operator is = †Û Û1 , with Û1 as defined above.
This alternative, although equivalent, minimal-coupling method 

allows us to understand precisely why the standard quantum Rabi 
Hamiltonian in the Coulomb gauge Ĥ′

C violates the gauge principle. 
Ĥ′

C can be obtained by applying the minimal coupling replacement 
to the full matter Hamiltonian, Ĥ Ĥ→ †Û Û0 0 , and then projecting in 
the truncated Hilbert space. Therefore

H










Ĥ Ĥ Ĥ̂ = ̂ ̂+ = ̂ ̂

+ ̂ ̂+′ † †PÛ Û P P Û
p
m

Û V P
2

(7)C 0 ph

2

ph

where ̂P is the projection operator for the truncated Hilbert space, 
and we used the relation ̂ = ̂†ÛVÛ V , valid when the potential V̂  is 
local. Using Supplementary equation (6), it can easily be shown that 
equation (7) gives equation (3). Notice that equation (7) contains 
the non-local potential ̂ ̂ ̂PVP to which the gauge principle has not 
been applied. Hence, we can conclude that Ĥ′

C violates the gauge 
principle. This problem arises whenever the matter system is 
described within a truncated Hilbert space, and can be solved by 
first applying to the matter system Hamiltonian (in the absence of 
interaction) the projection operator, and then the unitary operator, 

Ĥ Ĥ̂ ̂→ ̂ ̂ †P P ÛP PÛ0 0 . Finally, if one desires the resulting Hamiltonian 
to be within the truncated Hilbert space, it can be done by  
projecting it at the end. Applying the projection operator and using 

̂ = ̂P P
2 , we obtain

H UH U Ĥ̂ = ̂ ̂ ̂ +′ † (8)C 0 ph

where the projected unitary operator is Û = ̂ ̂PÛP and H Ĥ̂ = ̂ ̂P P0 0 .  
Equation (8) describes the total light–matter interaction Hamiltonian 
in the Coulomb gauge and in the electric dipole approximation, sat-
isfying the gauge principle despite the, often unavoidable, trunca-
tion of the Hilbert space. We note that Û is a unitary operator, in 
contrast to the operator ̂PÛ used in equation (7). This feature is very 
important because, as we will discuss below, it ensures gauge invari-
ance in truncated Hilbert spaces.

When the matter system is described by a single transition (TLS), 
we have H ω σ̂ = ℏ ̂ ∕2z0 10  and

U ησ̂ = ̂ + †i â âexp[ ( )] (9)x

where η = gD/ωc is the normalized coupling strength. Therefore, in 
the Coulomb gauge

H ω
ω

σ η σ η̂ = ℏ +
ℏ

̂ + + ̂ +† † †â â â â â â
2

{ cos[2 ( )] sin[2 ( )]} (10)z yC c
10

is the correct quantum Rabi Hamiltonian. The price one has to  
pay for preserving the gauge principle in such a truncated space  
is that the resulting Hamiltonian will contain field operators at all 
orders. This result shows that the occurrence of a non-local poten-
tial, arising from the truncation of the matter system Hilbert space, 
does not simply modify the dipole moment31, but profoundly changes  
the structure of the interaction Hamiltonian. In Supplementary 
Section I, we show (for the case of TLSs) that, in contrast to equa-
tion (3), UH Û ̂ ̂ †

0  is able to restore the U(1) symmetry that is  
broken by coordinate-dependent phase transformations of the matter 
system wavefunctions.

In addition to the two-level approximation for the matter  
system, the quantum Rabi model also relies on the single-mode 

approximation. This further assumption does not result in a  
breakdown of gauge invariance and it is also largely satisfied for  
very strong coupling strengths when the electromagnetic resona-
tor is an LC circuit3. It may fail for other kinds of resonator display-
ing propagation effects49–53. Multimode calculations accounting 
for the infinite set of cavity modes can lead to divergences unless a 
cutoff is imposed (see, for example, refs. 50,51). Recently, it has been 
shown50 that finite expressions can be obtained when gauge invari-
ance is respected. The generalization of equation (10) to multimode 
fields is straightforward. It can be directly obtained from equation 
(10) by replacing the normalized coupling η + †â â( ) with ∕ℏd Â10 , 
where = ∑ + †Â A â â( )n n n n  is the total vector potential operator at the  
atom position. Replacing the discrete index n with a proper continu-
ous parameter, this generalization can also be applied to a matter 
quantum system strongly interacting with a continuum of electro-
magnetic modes1,2.

The fulfilment of the gauge principle when considering a TLS 
interacting with a strong laser (classical) field54–56 in the Coulomb 
gauge also requires us to take into account the effect of non-local 
potentials. In this case, the correct semiclassical Hamiltonian in the 
Coulomb gauge ĤC

sc
 is

H


































ω
σ σ̂ =

ℏ
̂

ℏ
+ ̂

ℏ
d

A t
d

A t
2

cos 2 ( ) sin 2 ( ) (11)z yC
sc 10 10 10

where A(t) is the classical time-dependent vector potential describ-
ing the applied field.

In Fig. 1, we plot the energy differences ((E − E0)/ℏωc) for the 
lowest eigenstates of HD (equation (5)), Ĥ′

C (equation (3)) and ĤC 
(equation (10)), as a function of the normalized coupling η = gD/ωc. 
For Ĥ′

C we used ω= ∕D gC
2

10; however, the qualitative results do not 
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Fig. 1 | Numerical comparisons between different gauges. a,b, Comparison 
of the energy spectra as a function of the normalized coupling η = gD/ωc, 
obtained from the quantum Rabi Hamiltonians in the dipole gauge Ĥ( )D , in 
the standard Coulomb gauge H′̂( )D  and in the Coulomb gauge taking into 
account the presence of non-local potentials Ĥ( )C : plots for zero detuning 
(Δ = 0) (a) and Δ = 2ωc/3 (b).
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change for higher values of D. The comparison in Fig. 1 shows that, 
for very small values of the coupling, the eigenvalues of the dif-
ferent Hamiltonians reproduce the expected behaviour. However, 
already at moderate coupling strengths, η ~ .0 1, there are significant 
deviations in the predicted energies. For η ≳ .0 5, these differences 
become drastic. In particular, while the eigenvalues of ĤD and 
ĤC do coincide for all the coupling strengths, Ĥ′

C provides very  
different results. This anomalous behaviour of Ĥ′

C is a direct  
consequence of its violation of the gauge principle, demonstrated 
here. If a Lagrangian or a Hamiltonian does not satisfy the gauge 
principle, a gauge transformation will produce different physi-
cal results. Recently, values of η > 0.1 have been obtained by  
several groups1,2. In 2017, the record value η = 1.34 was achieved3. 
The plots in Fig. 1 also enforce the validity of the quantum  
Rabi Hamiltonian in the dipole gauge (equation (5)), as they 
show that it provides the same energy levels as the correspond-
ing Hamiltonian in the Coulomb gauge, obtained according to the 
gauge principle.

The strong differences between the energy levels of Ĥ′
C and ĤD 

agree with the results in ref. 45 They also show that, when the matter 
system displays a strong anharmonicity, the energy levels of ĤD (in 
contrast to those of Ĥ′

C) agree very well with those obtained from 
the numerically calculated energy levels of the full light–matter 
Hamiltonian ĤD for a large range of coupling strengths. Indeed, the 
two-level approximation is expected to be robust for μ η≫ , where 
μ ≡ (ω21 − ω10)/ω10 is the anharmonicity. The results of ref. 45 con-
firm this robustness only for the dipole gauge. Surprisingly, this 
conclusion seems to be in contrast with the results of ref. 46, where 
they concluded that the flux gauge (analogous to the dipole gauge 
for a superconducting artificial atom) provides completely incorrect 
predictions in most cases. These contradictory results are discussed 
in Supplementary Section V. Here, we only observe that the degree 
of anharmonicity of the matter system considered in ref. 46 μ η~( ) is 
not enough to ensure the validity of the two-level approximation. 
However, a common feature of refs. 45,46 is that the energy levels of 
the quantum Rabi model are strongly gauge dependent. In contrast, 
our derivation of the Rabi Hamiltonian in the Coulomb gauge and 
the results in Fig. 1 clearly show that, as highly desired, the predic-
tions of the quantum Rabi model are gauge invariant if the gauge 
principle is correctly applied.

To understand how many powers of the photon operators 
have to be included in ĤC to obtain the correct spectra, in Fig. 2  
we compare the approximate spectra, calculated from different 
n-order Taylor expansions Ĥ

n
C
( ) of ĤC, with the exact ones (the 

eigenvalues of ĤC). The results are interesting. For n = 3 there is 
already a significant improvement (with respect to n = 2), up to 
η ≲ .0 25. However, the spectra become completely wrong at η ≲ .0 3. 
Accuracy improves for n = 10, but only up to η ≲ .0 25. For n = 200, 
there is an excellent agreement, but only for η ≲ .1 3. These results 
show that for values of η larger than 1 (DSC), a very large n is 
needed to obtain the correct spectra. However, further increas-
ing η requires the inclusion of more and more terms in the expan-
sion. This shows that the procedure of taking into account the 
non-locality of the atomic potential and modifying the interaction 
Hamiltonian only up to second order in the vector potential31,32,47,48 
completely fails in the USC regime. Figure 2 clearly displays that, 
for arbitrary coupling strengths, the breakdown of gauge invari-
ance can be avoided only by taking into account the approxima-
tion-induced non-locality and keeping the resulting interaction 
Hamiltonian to all orders in the vector potential. This confirms 
the non-perturbative spatial non-locality that occurs when heavily 
truncating the particle’s Hilbert space. The results obtained here for 
a single two-level dipole (Rabi) can be extended to the multi-dipole 
case (Dicke) 35,43. Supplementary Section III shows how to obtain 
the correct Dicke model in the Coulomb gauge. As addressed in 
ref. 46, gauge ambiguities also arise in circuit-QED systems. For 
example, the full Hamiltonian of a fluxonium capacitively coupled 
to an LC oscillator circuit57 (corresponding to the charge gauge) 
can be obtained through an analogous minimal coupling replace-
ment. As shown in Supplementary Section IV, the resulting correct 
total Hamiltonian for the two-level model in the charge gauge is 
very similar to equation (10).

Resolution of gauge ambiguities
Note that ĤD and ĤC are related by a gauge transformation27,45, which 
can be expressed by Ĥ Ĥ= †Û ÛD 1 C 1 . As discussed above, Ĥ′

C (the 
standard two-level approximation of ĤC) gives rise to wrong spec-
tra, thus ruining gauge invariance. Instead, we have demonstrated 
that ĤC in equation (10) is the correct quantum Rabi Hamiltonian 
in the Coulomb gauge. The numerical results in Fig. 1 show that ĤC 
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gives the same spectra as ĤD, thus providing clear evidence that the 
procedure developed here restores gauge invariance in TLSs.

We now present an analytical demonstration of the gauge invari-
ance of a TLS coupled to the electromagnetic field. We start from 
ĤD, which, according to ref. 45, provides a very good approximation 
of the full Hamiltonian ĤD, and apply the gauge transformation pro-
jecting =†Û Û1  in the two-level space, U H Û ̂ ̂†

,1 D 1  where U Û = ̂†
1 . The 

result of this unitary transformation should be H Ĥ → ̂
D C. Noticing 

that Û corresponds to a spin rotation along the x axis, and using the 
Baker–Campbell–Hausdorff lemma, it is easy to obtain

U H U

H

ω
ω

σ η

σ η

̂ ̂ ̂ = ℏ +
ℏ

̂ +

+ ̂ + = ̂

† † †

†

â â â â

â â
2

{ cos[2 ( )]

sin[2 ( )]}
(12)z

y

1 D 1 c
0

C

This result demonstrates that, if we use ĤC instead of Ĥ′
C and 

apply the gauge transformation consistently, gauge invariance is 
preserved in a two-level truncated space.

Following ref. 46, it is possible to employ a formulation in which 
the gauge freedom is contained within a single real continuous 
parameter α, which determines the gauge through a function oper-
ator ̂

αX . The general gauge transformation in the dipole approxi-
mation is generated by a unitary transformation determined by 

= − ̂
α αÛ iXexp[ ] , where α̂ = ∕ℏαX qxÂ . The values α = {0, 1} specify 

the Coulomb and the dipole gauge, respectively. According to the 
standard procedure (violating the gauge principle), the α-gauge 
quantum Rabi Hamiltonians can be expressed as46 H Ĥ̂ = ̂ ̂′ α

α α
†PÛ Û P

( )
C .  

Indeed, following the procedure described above, one finds that 
the corresponding correct two-level projected unitary operator  
is U χ̂ = − ̂α αiexp[ ] , where χ αη σ̂ = + ̂α

†â â( ) x and the correct α-gauge 
Hamiltonian for a TLS is thus

H U H Û = ̂ ̂ ̂α
α α

† (13)( )
C

We obtain

H ω α σ
ω

σ η α

σ η α

̂ = ℏ − − ̂

+
ℏ

̂ − +

+ ̂ − +

α † †

†

†

â â i g â â

â â

â â

( )

2
{ cos[2 (1 )( )]

sin[2 (1 )( )]}

(14)

x

z

y

( )
c D

0

Because Ûα is unitary, the Hamiltonians (14) will have the same 
energy spectra of H Ĥ = ̂ α=

C
( 0)

 and of H Ĥ = ̂ α=
D

( 1)
 for any value of α. 

This eliminates the gauge ambiguities of the quantum Rabi model.
We conclude this subsection with two remarks. First, when 

calculating expectation values in the various gauges, the uni-
tary transformation in equation (13) also applies to the opera-
tors. For example, the photon destruction operator transforms 
as U U αησ= ̂ ̂ = + ̂α α α

†
â â â i x0 0 , where â0 is the photon operator in 

the Coulomb gauge. Second, different gauges give rise to differ-
ent eigenstates (all related by unitary transformations), even when 
using the correct gauge transformations. This feature can lead to 
some apparent gauge ambiguities when considering time-depen-
dent coupling strengths. In USC systems, the virtual photons 
in the ground state can be released if the interaction is suddenly 
switched off 16,53. Because the different gauges give rise to different 
eigenstates, the number of emitted photons (proportional to the 
virtual photon population in the ground state) seems to be gauge 
dependent. We observe that, during and after the switch off of the 
interaction, only the α = 0 (Coulomb) gauge is well defined. Indeed, 

in the α ≠ 0 gauges the field momenta depend on the interaction 
strength. According to this reasoning, the vacuum emission after 
the switch-off can be safely described only in the Coulomb gauge. 
This points out the relevance of obtaining the correct quantum Rabi 
Hamiltonian in the Coulomb gauge (14) for the design and analysis 
of these experiments.

Discussion
The method developed here is not limited to TLSs but can be applied 
to derive gauge-invariant Hamiltonians in arbitrary light–matter 
quantum systems. These results are also relevant for the study of 
systems with non-adiabatic time-dependent coupling strength1,2, as 
the Coulomb gauge (α = 0) is the only one where the field canonical 
operators are independent of the interaction.

Our results are also relevant for the study of open quantum sys-
tems. For example, it turns out that when the interaction of the 
light and matter components of a quantum system is very strong 
(USC), the correct gauge dependence of the subsystem operators 
appearing in the master equation cannot be neglected as usual. 
Moreover, if the coupling between a subsystem (for example, the 
matter system) and the environment is described by a gauge inter-
action and the system–bath coupling strength is not weak, the 
preservation of the gauge principle should be ensured despite any 
truncation procedure.

Finally, our investigation also applies to quantum matter systems 
under the effect of strong laser fields56 and can be extended to study 
ultrastrong and deep strong light–matter interactions beyond the 
dipole approximation33, where the multipolar gauge27 is also affected 
by the presence of non-local potentials.
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Methods
Non-local potentials. To understand why local potentials become non-local when 
the Hilbert space is truncated, let us consider a 1D potential ̂V . In the coordinate 
basis, it can be written as

∬̂ = ′⟨ ∣ ̂∣ ′⟩∣ ⟩⟨ ′∣
−∞

V x x x V x x xd d (15)

If the potential is local, its matrix elements can be written 
as δ∣ ̂∣ ′ ≡ ′ = − ′x V x V x x W x x x( , ) ( ) ( ). Considering a complete 
orthonormal basis {|n〉}, these matrix elements can be expressed as 

δ ψ ψ′ = − ′ = ∑ ′′ ′ ′V x x W x x x W x x( , ) ( ) ( ) *( ) ( )n n n n n n, , , where we define ψn(x) ≡ 〈x|n〉. 
Notice that the Dirac delta function can be reconstructed only by keeping all 
the infinite vectors of the basis. Hence, any truncation of the complete basis can 
transform a local potential into a non-local one. If only two states are included, for 
example, the two lowest energy levels, we obtain

ψ ψ ψ ψ′ = ′ + ′V x x W x x x x( , ) [ *( ) ( ) *( ) ( )] (16)1,0 0 1 1 0

where, for simplicity, we assume parity symmetry (which implies that the  
diagonal matrix elements Wn,n are zero) and real matrix elements. It is  
evident that the sum of the two terms in equation (16), which are products  
of two smooth wavefunctions, cannot reproduce the Dirac-delta function,  
and this will result in a potential with a high degree of spatial non-locality.  
It has been shown by several authors31–33 that a non-local potential can be  
expressed as a momentum-dependent operator ̂V r p( , ). Indeed, by using the 
translation operator ψ ψ′ = ′− ̂x i x x p x( ) exp[ ( ) ] ( ), where ̂p is the momentum 
operator, we obtain

∫ ψ ψ= ^′ ′ ′V x x x x V x p x( , ) ( )d ( , ) ( ) (17)

Generalized minimal coupling replacement. In this section, using some general 
operator theorems58, we show how to implement the minimal coupling replacement 
on a generic operator ̂O x p( , ) by performing a unitary transformation47. Given 
two non-commuting operators α ̂and β  ̂and a parameter μ we want to calculate 

α ̂μβ μβ̂ − ̂
Oe ( )e . The function α ̂O( ) can be expanded in a power series:

∑α α̂ = ̂O c( ) (18)
n

n
n

Using equation (18), we have

∑α α̂ = ̂μβ μβ μβ μβ̂ − ̂ ̂ − ̂
O ce ( )e e e (19)

n
n

n

Observing that

α α α α α̂ = ̂ ̂ ⋯ ̂ = ̂μβ μβ μβ μβ μβ μβ μβ μβ μβ μβ̂ − ̂ ̂ − ̂ ̂ − ̂ ̂ − ̂ ̂ − ̂
e e e e e e e e (e e )n

n

we have

∑α α α̂ = ̂ = ̂μβ μβ μβ μβ μβ μβ̂ − ̂ ̂ − ̂ ̂ − ̂
O c Oe ( )e (e e ) (e e ) (20)

n
n

n

We now apply equation (20) to ̂χ χ̂ ∕ℏ − ̂ ∕ℏO x pe ( , )ei x i x( ) ( ) . For the sake of simplicity, 
here we consider the 1D case. The generalization to 3D is straightforward. We obtain

̂ = ̂χ χ χ χ̂ ∕ℏ − ̂ ∕ℏ ̂ ∕ℏ − ̂ ∕ℏO x p O x pe ( , )e ( , e e ) (21)i x i x i x i x( ) ( ) ( ) ( )

Then, by using the Baker–Campbell–Hausdorff formula, we obtain






χ χ χ χ̂ = ̂ +

ℏ
̂ ̂ +

ℏ
̂ ̂ ̂ + ⋯ = ̂−∂ ̂χ χ̂ ∕ℏ − ̂ ∕ℏp p i x p i x x p p xe e [ ( ), ] 1

2
[ ( ), [ ( ), ]] ( ) (22)i x i x

x
( ) ( )

2

where we used the result χ χ̂ ̂ = ℏ∂ ̂x p i x[ ( ), ] ( )x . In conclusion, using equations (21) 
and (22), this becomes

χ̂ = ̂−∂ ̂χ χ̂ ∕ℏ − ̂ ∕ℏO x p O x p xe ( , )e [ , ( )] (23)i x i x
x

( ) ( )

Considering now the special function

χ ̂ =x q xÂ( ) (24)0

with ≡Â Â x( )0 0  being the field potential calculated at atom position x0, we obtain

χ∂ ̂ =x qÂ( ) (25)x 0

If we plug this result into equation (23), we obtain

̂ = ̂−χ χ̂ ∕ℏ − ̂ ∕ℏO x p O x p qÂe ( , )e ( , ) (26)i x i x( ) ( )
0

demonstrating that the unitary transformation in equation (23) corresponds to the 
application of the minimal coupling replacement in the dipole approximation.

Data availability
The data that support the plots within this paper and other findings of this study 
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Supplementary Information for

Resolution of Gauge Ambiguities in

Ultrastrong-Coupling Cavity QED

S-I. LOCAL U(1) INVARIANCE IN TWO-LEVEL HILBERT SPACES.

We consider a local (position dependent) phase transformation [U(1)] of the wavefunc-

tions:

ψ(x)→ exp[iq θ(x)]ψ(x) ≡ ψ′(x) . (S1)

We perform a Taylor expansion of the function θ(x) and project the resulting terms in a

2D Hilbert space, considering as basis, e.g., the two lowest-energy eigenstates of the system.

We assume parity symmetry, so the system eigenfunctions have definite parity. Recalling

that P̂ xP̂ = x10σx ≡ x̂p (here x10 is the matrix element of the position operator between

the two-level system (TLS) orthonormal states) and (σ̂x)2n = 1, we obtain

qθ̂p ≡ P̂ θ(x)P̂ = β0Î + Λd10σ̂x , (S2)

where β0 and Λ are constants which depend on the coefficients of the Taylor expansion.

Therefore, besides the trivial constant phase factor exp[iβ0], the local U(1) transformation,

after the two-level projection, can be implemented as

|ψ〉 → exp[iΛd10σ̂x]|ψ〉 . (S3)

We now observe that the system energy is not invariant under this local phase transfor-

mation:

〈ψ′|Ĥ0|ψ′〉 6= 〈ψ|Ĥ0|ψ〉 . (S4)

On the other hand, it is well known that the action of the free electromagnetic field is

invariant under the transformation

A→ A+ ∂xθ(x) ≡ A′ . (S5)

We try to exploit gauge invariance in order to search for a covariant Hamiltonian Ĥ(c),

depending on the field A, such that

〈ψ′|Ĥ′(c)0 |ψ′〉 = 〈ψ|Ĥ(c)
0 |ψ〉 . (S6)

1



Note that, if the field transforms as

A′ = A+ Λ , (S7)

we can define the Hamiltonian

Ĥ(c)
0 = eidAσ̂xĤ0e

−idAσ̂x = ÛĤ0 Û † , (S8)

which satisfies Eq. (S6). We observe that, consistently, Eq. (S7) corresponds to a gauge

transformation of the field with the coordinate projected in a TLS:

A→ A+ ∂x̂p θ̂p = A+ Λ = A′ . (S9)

We can conclude that the Hamiltonian given by Ĥ(c)
0 = eidÂσ̂xĤ0e

−idÂσ̂x = ÛĤ0Û † ensures

the invariance of the expectation values for a local position-dependent phase transformation

implemented in TLSs. However, it is now evident that the Hamiltonian in Eq. (3) of the

main text is not able to ensure the invariance of the mean value of the Hamiltonian under

the gauge transformation (S3).

S-II. SECOND-ORDER EXPANSION OF THE QUANTUM RABI HAMILTO-

NIAN IN THE COULOMB GAUGE

Using the generalized minimal coupling replacement, in the main text we derived the

correct Coulomb gauge Hamiltonian of the quantum Rabi model [Eq. (18) in the main text]

ĤC = ~ωcâ†â+ ~ω10

2 ×
{
σ̂z cos

[
2η(â+ â†)

]
+ σ̂y sin

[
2η(â+ â†)

]}
. (S10)

When the normalized interaction strength η ≡ gD/ωc is sufficiently weak, it is possible

to expand the trigonometric functions in Eq. (S10) up to the linear or quadratic terms.

However, when gD becomes comparable with ωc (i.e., the USC regime), such expansion is

not sufficient. When approaching, or reaching, the deep strong coupling regime (η & 1),

the field terms have to be included to all orders (see Fig. 2 in the main text). Expanding

Eq. (S10) up to second order in the potential, we obtain

Ĥ(2)
C = ~ωcâ†â+ ~ω10

2 σ̂z + ~gC σ̂y(â+ â†)− ~g2
C

ω10
σ̂z(â+ â†)2 . (S11)

This equation differs from the standard quantum Rabi Hamiltonian in the Coulomb gauge

Ĥ′C for the diamagnetic term, which now displays a different coefficient and depends on

2
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Figure S1. Comparison of the energy spectra as a function of the normalized coupling η = gD/ωc,

obtained from the quantum Rabi Hamiltonians: in the dipole gauge (ĤD), in the standard Coulomb

gauge; (Ĥ′C), and in the Coulomb gauge; taking into account the presence of nonlocal potentials

up to second order (Ĥ(2)
C ). The plots in (a) have been obtained at zero detuning (∆ = 0); the plots

in (b) using ∆/ωc = 2/3.

σ̂z. By introducing the Thomas-Reiche-Kuhn sum rule in the diamagnetic term of Ĥ′C and

applying the two-level truncation [S1], Ĥ′C turns into Ĥ(2)
C . However, in contrast to the

derivation of Eq. (S11), this procedure is quite arbitrary. Figure S1 compares the energy

spectra of Ĥ′C , Ĥ(2)
C , and ĤC . In particular, we observe that for η < 0.1 the spectra of

both Ĥ(2)
C (red curves) and Ĥ′C (blue dashed curves) are in quite good agreement with the

exact results (expecially those of Ĥ(2)
C ) given by ĤC (black dotted curves). Increasing the

coupling, Ĥ′C gives spectra which rapidly become very different from the exact energy levels.

The spectra of Ĥ(2)
C provide an improved approximation which, for the lowest few levels, is

3



acceptable for η . 0.2. The range of values of η where the approximate models provide

acceptable spectra reduces when detuning is nonzero [Fig. S1(b)]. A critical behaviour,

where all the plotted energy levels of Ĥ(2)
C tend to collapse towards the ground state energy,

can be observed at η ' 0.42 . However, as shown in Fig. 2 of the main text, this effect is

removed by increasing the order n of the Taylor expansion.

S-III. DERIVATION OF THE DICKE MODEL IN THE COULOMB GAUGE

We now extend the results obtained in the subsection Resolution of gauge ambiguities of

the main text for a single two-level dipole (Rabi) to the multi-dipole case (Dicke) [S2–S4].

The standard Dicke Hamiltonian in the Coulomb gauge can be written as

Ĥ′NC = ~ωcâ†â+ ~ω10Ĵz

+ 2~gC
(
â† + â

)
Ĵy + j

q2A2
0

m

(
â† + â

)2
,

(S12)

where the number N of dipoles determines the effective main angular momentum quantum

number j = N/2, and 2Ĵi = ∑N
k=1 σ̂

(k)
i .

Similarly to the quantum Rabi Hamiltonian, it is possible to introduce the coupling

between the matter Hamiltonian (in this case ĤN
0 = ~ω10Ĵz) and the electromagnetic field,

by using the minimal coupling replacement. In the presence of nonlocal potentials, this can

be done by applying the unitary transformation

ĤN
C = ÛNĤN

0 Û †N + Ĥph , (S13)

where

ÛN = exp
[
i2η(â† + â)Ĵx

]
(S14)

is the projection of ÛN = exp
[
iq
∑
k x̂kÂ/~

]
in a reduced Hilbert space, which is the tensor

product of N two-dimensional Hilbert spaces. We, then, obtain

ĤN
C = ~ωcâ†â+ ~ω10

{
Ĵz cos

[
2η(â† + â)

]
+ Ĵy sin

[
2η(â† + â)

]}
. (S15)

This is the correct Hamiltonian in the Coulomb gauge for the Dicke model. Its gauge invari-

ance can be easily proved following the same procedure shown in the subsection Resolution

of gauge ambiguities of the main text. For example, applying the proper unitary gauge

4



transformation, we obtain from Eq. (S13) the dipole-gauge Dicke Hamiltonian [S4]:

ĤN
D = U †NĤN

C ÛN = ĤN
0 + U †NĤph ÛN = ~ωc U †N â†â ÛN + ~ω10Ĵz

= ~ωcâ†â+ ~ω10Ĵz + 2i~ωcη(â† − â)Ĵx + 4~ωcη2Ĵ2
x . (S16)

This result eliminates any gauge ambiguity [S4–S6] of the Dicke model.

The Hamiltonian in Eq. (S15) is equivalent to the one in Eq. 45 of Ref. [S4] (if direct

dipole-dipole interactions are not included). The latter has been obtained applying a polaron

transformation to the Dicke Hamiltonian in the dipole gauge. As observed in [S4], this

unitary transformation is equivalent to a gauge transformation and hence gives rise to the

Dicke Hamiltonian in the Coulomb gauge. However, as pointed out in [S4], it does not

solve the gauge ambiguities of the Rabi and Dicke models (see also Ref. [S7]). Indeed, their

direct derivation of the Dicke Hamiltonian in the Coulomb gauge was obtained employing

the standard minimal coupling substitution, instead of the correct generalized one proposed

here [Eq. (S13)].

S-IV. FLUXONIUM QUBIT-LC OSCILLATOR HAMILTONIAN IN THE CHARGE

GAUGE

Here we derive the total Hamiltonian describing a fluxonium qubit (TLS) interacting with

a superconducting LC oscillator [S1, S8]. Considering for simplicity the case of a zero-flux

offset, the fluxonium Hamiltonian is:

Ĥflux = 4ẼCN̂2 + ẼL
2 φ̂2 − EJ cos φ̂ . (S17)

where φ̂ = Φ̂f/Φ0, with Φ0 = h/2e the flux quantum, is the reduced flux operator with

conjugate momentum N̂ = Q̂f/2e (the reduced charge) such that [φ̂, N̂ ] = i. In Eq. (S17),

ẼC , ẼL, and EJ are, respectively, the capacitive, inductive, and Josephson energies.

The LC oscillator is characterized by a capacitance C and an inductance L. Its resonance

frequency is Ω = 1/
√
LC and its characteristic impedance is Z =

√
L/C. The Hamiltonian

of the LC oscillator is

Ĥosc = Q̂2

2C + Φ̂2

2L , (S18)

where Q̂ and Φ̂ are the charge and the flux operator, respectively.
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We now introduce the reduced flux operator ϕ̂ = 2π Φ̂/Φ0 and the reduced charge operator

χ̂ = Q̂/(2e), whose commutator is [ϕ̂, χ̂] = i. These can be expanded in terms of the creation

and annihilation operators:

ϕ̂ = ϕ0(â+ â†) ,

χ̂ = −iχ0(â− â†) ,

where ϕ0 =
√

2e2L~Ω =
√

2~e2Z, and χ0 =
√
C~Ω/(8e2) =

√
~/8e2Z.

The Hamiltonian of the LC oscillator can be expressed as

Ĥosc = 4EC χ̂2 + EL
2 ϕ̂2 , (S19)

where EC = e2/(2C) and EL = (Φ0/2π)2/L.

The capacitive coupling (charge gauge) between the fluxonium and the LC oscillator

can be described by making the substitution N̂ → N̂ + χ̂ in the fluxonium Hamiltonian in

Eq. (S17). The total Hamiltonian then becomes:

Ĥcharge = 4ẼC(N̂ + χ̂)2 − EJ cos(φ̂) + ẼL
2 φ̂2 + 4ECχ̂2 + EL

ϕ̂2

2 . (S20)

This replacement is different from the standard minimal coupling replacement, since it in-

volves two conjugate momenta instead of a conjugate momentum and a field coordinate. This

minimal coupling replacement can also be obtained by applying a unitary transformation to

the fluxonium Hamiltonian Ĥflux:

Ĥcharge = Ĥosc + R̂ ĤfluxR̂
† , (S21)

where R̂ = exp[iφ̂χ̂]. This can be proved by following the procedure described in the next

section.

Diagonalizing Ĥflux and then projecting Eq. (S20) in a two-level space spanned by the

eigenstates |0〉 (ground state) and |1〉 (excited state), we obtain

Ĥ′charge = Ĥflux + ~ωcâ†â+ i~gC σ̂y(â− â†)− 4ẼCχ2
0(â− â†)2 , (S22)

where the reduced flux operator in the two-level approximation becomes φ̂ = Φ10σ̂x (Φ10 ≡
〈e|φ̂|g〉 is assumed to be real), and gC = ω10φ10χ0. We also have:

Ĥflux = ~ω10

2 σ̂z , (S23)
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with σ̂z = |1〉〈1| − |0〉〈0|.
It can be shown that the total Hamiltonian in Eq. (S22) is not gauge invariant because

its derivation does not take into account the presence of an effective nonlocal potential

which originates from the two-level truncation. In analogy with the procedure employed in

the main text, the correct gauge invariant total Hamiltonian can be obtained applying the

following unitary transformation to Ĥflux:

Ĥcharge = ~ωc â†â+ R̂ ĤfluxR̂† , (S24)

where

R̂ = exp
[
gC
ω10

σ̂x(â− â†)
]

(S25)

is the unitary operator resulting from the truncation in the two-level space of the unitary

operator R̂. The minimal coupling replacement in the truncated space Eq. (S24) gives

Ĥcharge = ~ωcâ†â+ ~ω10

2

{
cosh

[2gC
ω10

(â− â†)
]
σ̂z + i sinh

[2gC
ω10

(â− â†)σ̂y
]}

.

This equation describes the correct (gauge invariant) total Hamiltonian for a fluxonium qubit

interacting with an LC circuit in the charge gauge.

S-V. COMPARISON WITH RECENT RESULTS ON GAUGE AMBIGUITIES

IN CAVITY QED AND COMPARISON BETWEEN TWO-LEVEL MODELS AND

THE FULL MODEL

As pointed out in the main text, the results in [S1] are in conflict with those in [S7] and

with our gauge-preserving formulation of the quantum Rabi model. Indeed, [S1] claims that

the flux-gauge (the analog of the dipole gauge for a superconducting artificial atom) provides

in most cases very inaccurate predictions in the USC regime.

Here we analyse the main findings of these papers, discussing them in view of our results.

Reference [S7] numerically shows that the energy levels of Ĥ′C become very different from

those of ĤD in the USC regime. It also shows that the energy levels of ĤD (in contrast

to those of Ĥ′C) agree very well with those of ĤD for a large range of coupling strengths.

These numerical calculations [S7] were performed at zero detuning and considering an atomic

7



potential providing a strong anharmonicity (µ ≈ 100), corresponding to the condition where

the two-level approximation is expected to be very robust.

Our results demonstrate that: (i) the breakdown of gauge invariance is a direct conse-

quence of the fact that Ĥ′C violates the gauge principle; (ii) if one derives a quantum Rabi

Hamiltonian in the Coulomb gauge (ĤC) fully obeying the gauge principle, then its energy

levels do coincide with those of ĤD independently from the detuning. We also demonstrate

that, if the gauge principle is applied correctly, the whole class of quantum Rabi Hamilto-

nians Ĥα all provide the same energy spectrum. Hence, contrary to the claims of [S1, S7],

we have demonstrated that it is possible to develop a gauge theory in the presence of a

finite-level truncation of the matter system.

One question, however, remains open: is such a gauge theory for TLSs a good approxima-

tion of the corresponding exact theory for high values of the light-matter coupling strength?

Since we have demonstrated that ĤD is related by unitary transformations to all the α-gauge

Hamiltonians satisfying the gauge principle, and since De Bernardis et al. [S7] have shown

that the energy levels of ĤD agree very well with those of the full light-matter Hamiltonian

ĤD for a large range of coupling strengths, the answer is affirmative: if the gauge principle is

obeyed, light-matter theories for TLSs provide a very good approximation of the exact corre-

sponding theory, at least when the two-level approximation is expected to work. Specifically,

this occurs when the anharmonicity of the effective quantum particle is high compared to

the coupling strength.

All this coherent and consistent picture, however, conflicts with [S1], which seems to

contradict the results in [S7]. Indeed, [S1] claims that the flux-gauge (the analog of the

dipole gauge for a superconducting artificial atom) provides in most cases very inaccurate

predictions in the USC regime. Ref. [S1] presents a formulation in which the gauge freedom

is contained within a single real continuous parameter α, which leads to α-dependent pre-

dictions. Ref. [S1] claims that the specific value of α = αJC, determining a model without

rotating-wave terms (named JC-gauge), provides the most accurate results. However, in

contrast to the results of [S7], no α-gauge in [S1] is able to produce overall accurate re-

sults, not even for all the three lowest-energy states. In summary, the numerical results of

[S1], more than the validity of the JC-gauge, would suggest that the quantum Rabi model

provides inaccurate overall results in the USC regime.

A first observation about the results in [S1] is that αJC does not represent a fixed op-
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timal parameter, since its value depends on both the coupling strength and the resonance

frequency ωc of the cavity mode. Hence, every change of the detuning would require a gauge

adjustment in order to obtain the more accurate quantum Rabi model. Moreover, looking

at the numerical results [S1], the agreement between the JC-gauge and the exact model

strongly depends on the detuning as well as on the specific energy level of the total system.

For example, at zero detuning (δ ≡ ωc/ω10 = 1), they find that the flux gauge accurately

predicts the third energy level (also the levels n = 5 and 8), in contrast to the JC-gauge

which provides completely wrong results for the same levels [S1]. In addition, while the

ground state fidelity in the JC-gauge is the closest to 1, the fidelity of the first excited state

in the flux-gauge outperforms the one in the JC-gauge, despite its energy level being less

accurate. Even more contradictory results [S1] are obtained for δ = 1/5. In this case, the

flux-gauge produces a ladder of energy levels in good agreement with the exact calculation,

while the JC-gauge at most works only for the first two energy levels. For large detuning

(δ = 5), except for the first two energy levels, all the gauges provide very inaccurate energy

levels [S1].

These results show that the JC-gauge works quite well only for the description of the

ground state and sometimes of the first excited state. In contrast to the results of Ref. [S7],

in most cases no gauge is able to produce overall accurate results [S1]. Finally, we observe

that it is generally possible to find a specific value of α 6= αJC where the ground state energy

coincides with the exact value. In summary, the numerical results of Ref. [S1] would suggest

that the quantum Rabi model provides inaccurate overall results in the USC regime.

We find that this breakdown of the quantum Rabi model originates from the degree

of anharmonicity of the matter system studied in Ref. [S1], which is comparable to the

considered light-matter coupling strengths. Using the parameters of the artificial atom

(fluxonium) considered in [S1], and numerically solving the corresponding time-independent

Schrödinger equation, an energy spectrum of the matter system with a quite low degree of

anharmonicity is produced. Specifically, using ẼC = EJ = 10ẼL, where ẼC , ẼL, and EJ are,

respectively, the capacitive, inductive and Josephson energies of the fluxonium, we obtain

an anharmonicity µ ' 2.2.

In view of the above described gauge ambiguities [S1, S7], and as a further check, we have

performed additional numerical calculations considering our matter system constituted by

an effective quantum particle in a double-well potential. In particular, we consider a dipole
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Figure S2. Comparison between exact and approximate energy spectra. (a) Energy differences

(E − E0)/~ωc versus the normalized coupling η, obtained diagonalizing numerically the exact

Hamiltonian ĤD (solid grey curves) and the quantum Rabi Hamiltonian ĤD at zero detuning

(dashed red curves). (b) As in (a), but with a detuning δ = 3. (c) Normalized energy differences

versus α for the three lowest excited levels calculated at η = 1, obtained by diagonalizing the

standard α-gauge quantum Rabi Hamiltonians Ĥ′(α) (violating the gauge principle except for α =

1). Dashed straight lines describe the corresponding energy levels obtained diagonalizing the exact

Hamiltonian ĤD. (d) As in (c), but with a detuning δ = 3.

represented by a charged particle of mass m moving in the potential

V (x) = −κ2x
2 + λ

4x
4 , (S26)

where the two parameters κ, λ> 0 specify the shape of the double well. The Hamiltonian

for the effective particle is given by

Ĥ0 = − ~2

2m
∂2

∂x2 + V (x) . (S27)
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Analogously to Ref. [S4], we introduce the energy scale Ed = ~2/(mx2
0) and the rescaled

variable ξ = x/x0, where x0 = [γ~2/(mλ)]1/6 with γ > 0. In terms of these quantities,

Eq. (S27) can be written as

Ĥ0 = Ed

[
p2
ξ

2 + β

2 ξ
2 + γ

4 ξ
4
]
, (S28)

where β = mκx4
0/(~2) and pξ = −i∂/(∂ξ).

We now start considering a system with a high degree of anharmonicity. Specifically, we

used the parameters β = 2.27 and γ = 0.5. Within this model, the degree of anharmonicity

can be controlled by changing the value of γ. The value of Ed is fixed by the choice of

the detuning δ ≡ ωc/ω10. Notice that these parameters determine an anharmonicity: µ ≡
(ω21 − ω10)/ω10 ≈ 70.

Figure S2(a) shows a comparison between the energy spectra (for δ = 1) versus the

normalized coupling strength η of ĤD (red-dashed curves) and those of ĤD (black continuous

curves). We verified that the energy eigenvalues of the full Hamiltonian ĤD are gauge

invariant. The agreement is excellent. Figure S2(b) shows that a very good agreement is

also obtained in the presence of some detuning (δ = 3), although some small discrepancy for

the highest energy levels arises at the highest coupling strengths. Panels S2(c)-(d) display

the energy differences versus the gauge parameter α for the three lowest excited levels of

Ĥ′(α) calculated at η = 1. The dashed straight lines describe the corresponding energy levels

obtained diagonalizing ĤD. The exact energy levels are all very well approximated only

for α = 1, although some accidental agreements can occur for some level at some values of

α 6= 1. Of course, the energy levels of ĤD all coincide with those of ĤD = Ĥ′(1) = Ĥ(1).

In order to test how well the approximated quantum Rabi models reproduce the exact

results, it is useful to also consider the energy eigenstates in addition to energy-level cal-

culations. The accuracy of the approximated eigenstates can be tested by calculating the

fidelities. It turns out that, in contrast to the energy levels, the eigenstates change according

to the gauge (even in the absence of approximations). Hence, we compare the exact numer-

ically calculated eigenstates |Ψα
i 〉 of the full α-gauge Hamiltonian Ĥ(α) with the eigenstates

|ψ′αi 〉 of the α-gauge quantum Rabi Hamiltonian Ĥ′(α) (the one which violates the gauge

principle [S1]), and also with the eigenstates |ψαi 〉 of the Hamiltonian Ĥ(α) (preserving the

gauge principle). Here the subscript i = 0, 1, 2, . . . labels the energy eigenstates. For this
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Figure S3. Fidelity for the three lowest energy levels at η = 1. The matter system is a charged

particle in a double well potential (and the parameters are given in the text). The anharmonicity

for this system is µ ≈ 70.

purpose, we define two fidelities:

F ′αEi
= |〈ψ′αi |Ψα

i 〉|2 , (S29)

and

Fα
Ei

= |〈ψαi |Ψα
i 〉|2 . (S30)

Figure S3 displays the fidelities F ′αEi
and Fα

Ei
calculated for the three lowest energy levels for

a normalized light-matter coupling strength η = 1. We used the same parameters specified

above, and considered two cases: δ = 1 (resonant case), and δ = 3 (detuned case). In partic-

ular, we observe that Fα
Ei

are very close to 1 for any α and for all the three states considered

(horizontal lines). This behaviour is the one expected for quantum Rabi Hamiltonians Ĥ(α)
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Figure S4. Energy levels of Ĥ(α=1) (red-dashed curves) and Ĥ(α=1) (grey continuous curves) as

a function of the normalized light-matter coupling η. The anharmonicity of the matter system is

µ ≈ 8.

well approximating the full Hamiltonians Ĥ(α). On the contrary, moving away from α = 1
(notice that Ĥ′(α=1) = Ĥ(α=1)), the fidelities F ′αEi

, obtained using the eigenstates |ψ′αi 〉 of

Ĥ′(α), are significantly lower. We notice that, lowering α, in panel S3(b) the fidelity F ′αE2

suddenly drops to zero at α ≈ 0.7. This is due to a degeneracy point in the energy levels

of Ĥ′(α), so that the state |ψ′α3 〉 becomes, for α . 0.7, a better approximation of the state

|Ψα
2 〉. We can conclude that quantum Rabi Hamiltonians based on the standard minimal

coupling replacement and violating the gauge principle provide worse approximations of the

full model with respect to the gauge-preserving ones Ĥ(α).

Finally, we compare the energy levels of Ĥ(α=1) (red-dashed curves) and Ĥ(α=1) (grey

continuous curves) considering a matter system with a lower degree of anharmonicity. We

used β = 1.7 and γ = 0.5. These values determine a lower anharmonicity µ ≈ 8. Figure S4

displays the energy spectra at zero detuning as a function of the normalized coupling η. The

agreement is very good for all the displayed energy levels when η . 0.7 (η is one order of

magnitude lower than µ). For the two lowest energy excited levels, the agreement remains

good for the whole range displayed. For η & 1, the agreement becomes less accurate, as

13



expected when the coupling strength becomes comparable to the anharmonicity. We have

also calculated the fidelities for the three lowest energy levels. They remain very high

(Fα
Ei
> 0.989), although they are slightly lower than those obtained for the system with a

higher degree of anharmonicity.

In summary, if the anharmonicity µ is much higher than the normalized coupling

strength η, the gauge quantum Rabi model developed in this work provides accurate,

gauge-independent results. The breakdown of the quantum Rabi model shown in Ref [S1]

can be attributed to the inadequate degree of anharmonicity of the considered matter sys-

tem. Indeed, a well-known result for light-matter systems is that the influence of an atomic

transition with frequency ωjk can be neglected only if gjk/|ωjk − ωc| � 1, where gjk is the

transition coupling strength [S9]. Hence, if we desire to include only the two lowest energy

states (|0〉 and |1〉) of the matter system, neglecting the influence of the higher state |2〉,
the following inequality has to be satisfied: |ω21 − ωc| � g21. Assuming g21 ∼ g10 ≡ g and

dividing by ω10, the above inequality can be rewritten as

|µ− δ + 1| � ηδ , (S31)

where δ ≡ ωc/ω10. For the resonant case (δ = 1), we have µ � η. Using the parameters of

the artificial atom (fluxonium) in [S1], we obtain an anharmonicity µ ' 2.2 for which the

condition of Eq. (S31) is not adequately satisfied. It is worth noticing that, when δ � 1,

the inequality is easier to satisfy for a given value of µ. This could explain the improved

accuracy of the flux-gauge energy levels obtained for δ = 1/5 in Ref. [S1].

In conclusion, we can state that the degree of anharmonicity of the matter system con-

sidered in [S1] is not enough to guarantee the validity of the two-level approximation. Of

course, depending on the degree of anharmonicity of each matter system, there will always

be a light-matter coupling strength beyond which the two-level approximation fails. In these

cases, if additional levels of the matter system are included, the gauge theory in truncated

Hilbert spaces presented here is still expected to work.
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Abstract

The interaction between the electromagnetic field inside a cavity and natural or artificial atoms

has played a crucial role in developing our understanding of light-matter interaction, and is central

to various quantum technologies. Recently, new regimes beyond the weak and strong light-matter

coupling have been explored in several settings. These regimes, where the interaction strength

is comparable (ultrastrong) or even higher (deep-strong) than the transition frequencies in the

system, can give rise to new physical effects and applications. At the same time, they challenge our

understanding of cavity QED. When the interaction strength is so high, fundamental issues like the

proper definition of subsystems and of their quantum measurements, the structure of light-matter

ground states, or the analysis of time-dependent interactions are subject to ambiguities leading

to even qualitatively distinct predictions. The resolution of these ambiguities is also important

for understanding and designing next-generation quantum devices that will exploit the ultrastrong

coupling regime. Here we discuss and provide solutions to these issues.

∗ corresponding author: ssavasta@unime.it
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I. INTRODUCTION

Light-matter ultrastrong coupling (USC) [1, 2] can be achieved by coupling many dipoles

(collectively) to light, or by using matter systems like superconducting artificial atoms whose

coupling is not bound by the small size of the fine-structure constant. The largest light-

matter coupling strengths have been measured in experiments with Landau polaritons in

semiconductor systems [3] and in setups with superconducting quantum circuits [4]. An-

other potentially promising route to realize USC with natural atoms and molecules is using

metal resonators, since the coupling rates are not bound by diffraction. Single molecules

in plasmonic cavities are starting to enter the USC regime [5], and two-dimensional tran-

sition metal dichalcogenides (TMDs) coupled to metal particles have already reached the

USC regime [6], even at room temperature. Ultrastrong plasmon exciton interactions has

also been reported with crystallized films of carbon nanotubes [7]. The physics of the USC

regime can also be accessed by using quantum simulation approaches (see, e.g., [8]).

These very strong interaction regimes also turned out to be a test bed for gauge invariance

[9–11]. The issue of gauge invariance, first pointed out by Lamb in 1952 [12], has constantly

affected the theoretical predictions in atomic physics and in non-relativistic quantum electro-

dynamics (QED) (see, e.g., [13–16]). Recently, it has been shown that the standard quantum

Rabi model, describing the coupling between a two-level system (TLS) and a single-mode

quantized electromagnetic field, heavily violates this principle in the presence of ultrastrong

light-matter coupling [9, 10]. This issue has been recently solved by introducing a generalized

minimal-coupling replacement [11].

A distinguishing feature of USC systems is the presence of entangled light and matter

excitations in the ground state, determined by the counter-rotating terms in the interaction

Hamiltonian [17–19]. Actually, all excited states are also dressed by multiple virtual exci-

tations [20]. Much research on these systems has dealt with understanding whether these

dressing excitations are real or virtual and how they can be probed or extracted [1, 2]. These

vacuum excitations can be converted into real detectable ones (see, e.g., [20–26]). However,

the analysis of these effects is affected by possible ambiguities arising from the gauge depen-

dence of the system eigenstates [10, 11, 27]. Specifically, the unitary gauge transformation

does not conserve virtual excitations, nor light-matter entanglement [27]. Hence, the defini-

tion of these key features of the USC regime is subject to ambiguities, so that, as we show

3



here, a maximally entangled ground state can become separable in a different gauge.

c

C

Flux Qubit

Trasmission LineB

L
L

input

output

Figure 1. Cavity and circuit QED setups. (a) Schematic view of a typical cavity QED system

constituted by an atom (depicted as an effective spin) embedded in an optical cavity. (b) Circuit

QED: schematic view of a superconducting flux qubit and a superconducting LC oscillator induc-

tively coupled to each other. The LC oscillator is also inductively coupled to a transmission line.

Ambiguities are not limited to those properties dependent on virtual excitations, but

also affect physical detectable photons. This issue originates from the gauge dependence

of the field canonical momentum (see, e.g., Refs. [13, 14, 16]). According to the Glauber’s

photodetection theory [28], the detection rate for photons polarized along a direction i is

proportional to 〈ψ|Ê(−)
i Ê

(+)
i |ψ〉, where Ê(±)

are the positive and negative frequency com-

ponents of the electric-field operator. In the Coulomb gauge, Ê is proportional to the field

canonical momentum and can be expanded in terms of photon operators. On the contrary,

in the multipolar gauge, the canonical momentum that can be expanded in terms of photon

operators is not Ê but the displacement operator D̂. This subtlety is generally disregarded,

and the usual procedure is to obtain the system states in the dipole gauge (the multipolar

gauge after the electric-dipole approximation) |ψD〉, and to calculate the photodetection rate

ignoring that in this gauge the electric field operator is not a canonical momentum. As we

show here, this procedure, when applied to the quantum Rabi model, can lead to strongly

incorrect predictions. In this article, we face and solve all these issues by adopting an ap-
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proach based on operational procedures involving measurements on the individual light and

matter components of the interacting system.

The exploration of fundamental quantum physics in the strong coupling [29] and USC

regimes [1, 2] has greatly evolved thanks to circuit QED systems based on superconducting

artificial atoms coupled to on-chip cavities [30]. We show that these systems are not free

from gauge ambiguities and, despite displaying energy spectra very similar to traditional

cavity QED systems, have drastically distinct measurable ground-state properties, like the

photon number and the entanglement.

II. QUANTUM RABI HAMILTONIANS

Let us consider a simple cavity QED system represented by a single atom (dipole) coupled

to an optical resonator. We start adopting the Coulomb gauge, where the particle momentum

is coupled only to the transverse part of the vector potential Â. It represents the field

coordinate, while its conjugate momentum is proportional to the transverse electric field

operator. The latter (as well as the vector potential) can be expanded in terms of photon

creation and destruction operators: ÊC(r, t) = ∑
k Ek(r)âke

−iωkt + h.c., where Ek(r) =
√
~ωk/2ε0 fk(r) are the effective mode amplitudes, and h.c. represents hermitian conjugate.

Here, fk(r) are any general “normal modes” with real eigenfrequencies, ωk, obtained from

Maxwell’s equations for a particular medium. They are normalized and complete (including

also the longitudinal modes, ωk = 0), so that
∑

k εb(r′)f∗k (r)fk(r′) = 1δ(r−r′), where εb is the

relative dielectric function of a background dielectric medium. The system Hamiltonian is

ĤC = 1
2m [p̂C − qÂ(r)]2 + V (r) +

∑

k

~ωkâ
†
kâk , (1)

where p̂C and V (r) are the particle’s canonical momentum and potential.

The quantum Rabi Hamiltonian, can be obtained considering a single two-level system

(TLS) at position r0, with (real) dipole moment µ = q〈e|x|g〉, interacting with a single

cavity mode [(âk, fk, ωk) → (â, fc, ωc)]. The correct (namely, satisfying the gauge principle)

quantum Rabi Hamiltonian [11], strongly differs from the standard quantum Rabi model:

ĤC = ~ωcâ
†â+ ~ω0

2
{
σ̂z cos

[
2η(â+ â†)

]
+ σ̂y sin

[
2η(â+ â†)

]}
, (2)

where ωcη ≡ g =
√
ωc/2~ε0µ · fc(r0), and σ̂j are the usual Pauli operators.
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In cavity QED, the multipolar gauge after the dipole approximation (dipole gauge) rep-

resents a convenient and widely used choice. A generic system operator in the multipolar

gauge ÔM is related to the corresponding operator in the Coulomb gauge ÔC by a suitable

unitary Power-Zienau-Woolley (PZW) transformation [16, 31] ÔM = T̂ ÔCT̂
† (see Appendix

A). It turns out that in the multipolar gauge, while the field coordinate remains unchanged,

its conjugate momentum is Π̂M = −ε0εb(r)ÊM − P̂ = −D̂M , where P̂ is the electric po-

larization and D̂M is the displacement field [13, 32, 33], which can be directly expanded in

terms of photon operators:

F̂M(r, t) ≡ D̂M(r, t)
ε0εb(r) = i

∑

k

√
~ωk

2ε0
fk(r)âk(t) + h.c., (3)

where F̂M is the effective electric field that atomic dipoles couple to [33]. For a single dipole

at position r0, the interaction Hamiltonian is HI = −qx · F̂(r0)+(qx)2/ε0εb(r0). Considering

a single TLS, we obtain

F̂D(r) = ÊD(r) + µ

ε0εb(r0)δ(r− r0) σ̂x, (4)

where ÊD(r) is the electric field operator in the dipole gauge. We note that for spatial

locations away from the dipole (r 6= r0), then F̂D and ÊD are equivalent. Next, we rewrite

ÊD(r) in a way that makes each mode contribution clear:

ÊD(r, t) = i
∑

k

√
~ωk

2ε0
fk(r)âk(t) + h.c.− 1

2ε0

[∑

k

f∗k (r)fk(r0) + f∗k (r0)fk(r)
]
· µ σ̂x. (5)

We now consider the single-mode limit, which is typically assumed in models such as the

quantum Rabi model, where a single-mode cavity is the dominant mode of interest (see

Appendix A):

ÊD(r, t) = i

√
~ωc

2ε0
fc(r)â′(t) + h.c., (6)

where â′(t) = â(t) + iησ̂x(t). We observe that the operators â
′

and â
′† obey the same

commutation relations of the bosonic operators â and â†. The total Hamiltonian (throughout

the article we use the calligraphic font for operators projected in a two level space) in the

dipole gauge is

ĤD = Ĥfree + V̂D , (7)
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where Ĥfree = ~ωcâ
†â+ ~ω0

2 σ̂z, ω0 is the transition frequency of the TLS, and the interaction

Hamiltonian is

V̂D = iη~ωc(â† − â)σ̂x . (8)

The two gauges are related by the transformation ĤD = T̂ ĤC T̂ †, where T̂ = exp(iF̂) with

F̂ = −ησ̂x(â+ â†) (see Appendix A).

III. PHOTODETECTION

The photon rate that can be measured placing a point-like detector in the resonator at

the position r and at a given time t is proportional to [28]

〈Ê(−)(r, t) · Ê(+)(r, t)〉 , (9)

where Ê(+) and Ê(−) are the positive and negative frequency components of the electric-field

operator, with Ê(−) = [Ê(+)]† (see Appendix B). Note that, in the absence of the interactions,

or when the rotating-wave approximation can be applied to the interaction Hamiltonian, the

positive-frequency operator only contains destruction photon operators. However, when the

rotating-wave approximation cannot be applied, this direct correspondence does not hold

[34]. By using the input-output theory (see Appendix J), analogous results for the rate of

emitted photons can be obtained for a detector placed outside the cavity [35].

Considering a single-mode resonator coupled to a TLS (quantum Rabi model), assuming

that the system is prepared initially in a specific energy eigenstate |jC〉, and using Eq. (9),

then the resulting detection rate in the Coulomb gauge is proportional to

W =
∑

k<j

|〈kC |P̂|jC〉|2 , (10)

where

P̂ = i(â− â†) , (11)

and we ordered the eigenstates so that j > k for eigenfrequencies ωj > ωk. If a tunable

narrow-band detector is employed, a single transition can be selected, so that the detection

rate for a frequency ω = ωj,k ≡ ωj − ωk is proportional to

Wj,k = |〈kC |P̂|jC〉|2 . (12)
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Figure 2. Quantum Rabi model. (a) Normalized energy levels differences between the lowest

excited levels and the ground energy level of the quantum Rabi Hamiltonian ĤC for the case of

zero detuning (ωc = ω0) as a function of the normalized coupling strength η; (b) Square moduli of

the transition matrix elements of the electric-field operator, W1̃±,0̃, accounting for the transitions

between the two lowest excited levels and the ground state of the quantum Rabi Hamiltonian,

versus η. For comparison, the panel also reports the wrong matrix elements W ′1̃±,0̃ (see text).

In the dipole gauge, we obtain

Wj,k = |〈kD|i(â− â†)− 2ησ̂x|jD〉|2 . (13)

The gauge principle, as well as the theory of unitary transformations, ensure that Eqs. (12)

and (13) provide the same result [11]. On the contrary, the usual procedure, consisting

in using the dipole gauge without changing accordingly the field operator (see, e.g., [1,
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2]): W ′
j,k = |〈kD|i(â − â†)|jD〉|2 , provides wrong results. When the normalized coupling

strength η � 1, the error can be small. However, when η is non-negliglible, W and W ′

can provide very different predictions, as shown in Fig. 2. Panel 2(a) displays the energy

differences between the lowest excited levels and the ground energy level of the quantum

Rabi Hamiltonian ĤC (or ĤD) for the case of zero cavity-atom detuning (ωc = ω0). Here we

indicate the dressed ground state as |0̃〉, and the excited states as |ñ±〉 on the basis of the

usual notation for the Jaynes-Cummings (JC) eigenstates |n±〉 (see, e.g., [36]). Panel 2(b)

shows that, except for negligible couplings (where W1̃±,0̃ = W ′
1̃±,0̃ = 0.5), W1̃±,0̃ and W ′

1̃±,0̃

display different results. The differences are evident already for η ∼ 0.1.

It is interesting to point out some noteworthy features of this comparison. First, we

observe that W1̃+,0̃ > W1̃−,0̃ for all the values of η, and finally, increasing η, W1̃−,0̃ → 0.

These results originate from the dependence on η of the corresponding transition frequencies

ω1̃±,0̃. Specifically, photodetection is an energy absorbing process, whose rate is proportional

to the intensity, which in turn is proportional to the energy of the absorbed photons. Hence,

ω1̃+,0̃ > ω1̃−,0̃ implies W1̃+,0̃ > W1̃−,0̃. For the same reason, when ω1̃−,0̃ → 0, there is

no energy to be absorbed, and W1̃−,0̃ → 0. On the contrary, W ′
1̃±,0̃ displays the opposite

(unphysical) behaviour.

IV. READOUT OF A STRONGLY COUPLED QUBIT

While in the Coulomb gauge, the atom momentum is affected by the coupling with the

field [16] [mẋ = p̂C − qÂ(x)], in the dipole gauge it is interaction-independent: mẋ = p̂D.

This feature can give rise to ambiguities in the definition of the physical properties of an

atom interacting with a field [15]. Moreover, an unambiguous separation between light and

matter systems becomes problematic with increasing coupling strength. Again, we face

this problem by adopting an operational approach based on what is actually measured.

In cavity and circuit QED quantum-non-demolition measurements are widely used [37–42].

Specifically, a quantum-non-demolition-like readout of the qubit can be realized by coupling

it, with a moderate coupling strength, to a resonator mode b with resonance frequency ωb.

The readout can be accomplished by detecting the dispersive qubit state-dependent shift of

the resonator frequency: ωb → ωb + χ〈σ̂z〉, where χ = ω2
bη

2
b/(ω0 − ω) [29, 40, 43, 44]. If the

qubit is coupled very strongly to a second field-mode a, this readout scheme can provide
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interesting information on how the qubit state is affected by the USC regime. However,

the expectation value 〈σ̂z〉 for a qubit in the USC regime is ambiguous when the coupling

becomes strong. Specifically, since 〈ψC |σ̂z|ψC〉 6= 〈ψD|σ̂z|ψD〉, the question arises which of

these two quantities is actually detected?

We start from the Hamiltonian in the Coulomb gauge Eq. (1), limited to include only

two quantized normal modes (a and b). We then project the atomic system in order to

consider two levels only, and assume for the resulting coupling strengths that ηb � ηa.

If the USC system is in the state |ψC〉, applying the standard procedure for obtaining

dispersive shifts [44], we find for the readout mode b: χ〈ψC |T̂ †a σ̂z T̂a|ψC〉 = χ〈ψD|σ̂z|ψD〉,
where T̂ †a σ̂z T̂a = σ̂z cos [2η(â+ â†)] − σ̂y sin [2η(â+ â†)] (see Appendix C). Hence, we can

conclude that the readout shift provides a measurement of the expectation value of the bare

qubit population difference, as defined in the dipole gauge. Interestingly, this measurement

is able to provide direct information on the ground state qubit excitations induced by the

interaction with resonator a.

The dot-dashed curves in Fig. 3 display the qubit excitation probabilities that can be mea-

sured by dispersive readout: 〈iC |T̂ †a σ̂+σ̂−T̂a|iC〉 = 〈iD|σ̂+σ̂−|iD〉, together with 〈iC |σ̂+σ̂−|iC〉,
for the two lowest energy levels of the quantum Rabi model (notice that 2σ̂+σ̂− = σ̂z + Î
where Î, is the identity operator in the TLS space) . As shown in Fig. 3, 〈iD|σ̂+σ̂−|iD〉
strongly differs from 〈iC |σ̂+σ̂−|iC〉. An analytical description of these results in the large-

coupling limit is provided in Appendix D.

V. LIGHT-MATTER ENTANGLEMENT AND NON-ADIABATIC TUNABLE

COUPLING

One of the most interesting features of USC systems is the presence of entangled ground

states with virtual excitations [1, 2]. However, since the ground state of a cavity QED

system is gauge dependent (e.g., |ψD〉 = T̂ |ψC〉), the mean numbers of excitations in the

ground state are gauge dependent. Moreover, the unitary operator T̂ does not preserve the

atom-field entanglement. Since physical observable quantities cannot be gauge dependent,

the question arises if these ground state properties have any physical meaning. Actually, it

is known that these excitations, e.g., the photons in the ground state, are unable to leave the

cavity and can be regarded as virtual (see, e.g., Refs. [20, 45]). However, if the interaction
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Figure 3. Readout of a strongly coupled qubit. Qubit’s excitation probabilities for the system

in its ground states (black curves) and in the first excited state (red curves) calculated in both

the Coulomb (solid curves) and the dipole (dotted-dashed) gauges as a function of the normalized

coupling strength η. Note that 〈σ̂+σ̂−〉D corresponds to what is measured via dispersive readout of

the qubit (see text). On the contrary, the photon rate released by the qubit after a sudden switch

off of the light-matter interaction is proportional to 〈σ̂+σ̂−〉C (see Sect. V).

is suddenly switched off (with switching time T going to zero), the system quantum state

remains unchanged for regular Hamiltonians [46], and the excitations in the ground state,

can then evolve according to the free Hamiltonian and can thus be released and detected

(see, e.g., [23]). Of course detectable subsystem excitations and correlations have to be gauge

invariant, since the results of experiments cannot depend on the gauge. On this basis we

can define gauge invariant excitations and qubit-field entanglement.

It is instructive to analyse these quantities by using both the Coulomb gauge and the

dipole gauge. We start with the Coulomb gauge. We consider the system initially prepared

in its ground state |ψC(t0)〉 = |0̃C〉. At t = t0, the interaction is abruptly switched off within

a time T → 0. This non-adiabatic switch does not alter the quantum state [46], which at

t ≥ t1 = t0 + T evolves as |ψC(t)〉 = exp [−iĤfree(t− t0)]|ψC(t0)〉. We can use this state

to calculate, e.g., the observable mean photon number: 〈ψC(t)|â†â|ψC(t)〉, which can be
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Figure 4. Vacuum emission. (a) Mean photon number calculated in the Coulomb (solid curve) and

in the wrong dipole (dot-dashed curve) gauges as a function of η for the system prepared in the

ground state of the quantum Rabi model. (inset) Vacuum emission (mean photon number) after

the switch off evaluated for η = 0.8. (b) Qubit’s entropies (which quantifies the qubit-oscillator

entanglement) for the ground states (black curves) calculated in both the Coulomb (solid curves)

and the wrong dipole (dotted-dashed) gauges as a function of the normalized coupling strength η.

measured by detecting the output photon flux from the resonator. It is worth noting that

this expectation value can also be calculated by using the dipole gauge, by applying the

unitary transformation to both the operator and the quantum states: 〈ψC(t)|â†â|ψC(t)〉 =
〈ψD(t)|â′†â′|ψD(t)〉.

The Hamiltonian in the dipole gauge can be obtained from that in the Coulomb gauge via
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a unitary transformation which, in this case becomes time-dependent. It can also be obtained

by considering the corresponding gauge transformation of the fields potentials, taking into

account that, during the switch, the transformation depends explicitly on time. Carrying

out the calculations in the dipole gauge (see also Appendix F), it can be shown that, even in

the presence of a non-adiabatic switch off of the interaction, there are no gauge ambiguities

if the explicit time-dependence of the transformation (or of the generating function for the

gauge transformation) is properly taken into account.

In order to test explicitly gauge invariance in the presence of ultrastrong interactions and

non-adiabatic tunable couplings, we calculate the quantum state after a sudden switch off

of the interaction, by using the dipole gauge. During the switch, the transformation is time-

dependent and can be expressed as T̂ (t) = exp [iλ(t)F̂ ], where λ(t) is the switching function

[with λ(t) = 1 for t ≤ t0, and λ(t) = 0 for t ≥ t1]. The resulting correct Hamiltonian in the

dipole gauge is

ĤD(t) = Ĥfree + V̂D(t)− λ̇F̂ . (14)

For very fast switches, the last term in ĤD(t) dominates during the switching and goes to

infinity for switching times T → 0. Hence its contribution to the time evolution during the

switching time cannot be neglected. Let us consider the system at t = t0 (before the switch

off) to be in the state |ψD(t0)〉. Assuming T → 0, just after the switch off (t1 = t0 + T ), the

resulting state is

|ψD(t1)〉 = exp
(
iF̂
∫ t1

t0
dtλ̇

)
|ψD(t0)〉. (15)

Since the integral is equal to −1, and |ψD〉 = T̂ |ψC〉, we obtain

|ψD(t1)〉 = T̂ †|ψD(t0)〉 = |ψC(t0)〉 . (16)

This result shows that, even in the presence of a non-adiabatic switch off of the interaction,

there are no gauge ambiguities, since the final state (after the interaction has been switched

off) does coincide with the corresponding state in the Coulomb gauge. The case where

the system is prepared in the absence of interaction, which is then switched on and finally

switched off before measurements, is analyzed in Appendix F.

In Ref. [27], it has been shown that the standard practice of promoting the coupling to a

time-dependent function gives rise, for sufficiently strong and non-adiabatic time-dependent

interactions, to gauge-dependent predictions on final subsystem properties, such as the qubit-

field entanglement or the number of emitted photons. This problem persists also when the
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system is prepared in the absence of interaction, and measurements are carried out after

switching off the coupling. Our analysis of gauge transformations in the presence of time-

dependent interactions eliminates these ambiguities (see Appendix E).

Figure 4(a) displays the mean photon numbers 〈0̃C |â†â|0̃C〉 and 〈0̃D|â†â|0̃D〉. The first

quantity is the correct one, calculated using the time evolution induced by ĤC(t). The

latter is the wrong one, obtained considering the wrong dipole-gauge Hamiltonian ĤD(t) =
T̂ (t)ĤC(t)T̂ †(t) (see Appendix F). As shown in Fig. 4(b), the two mean values provide

very different predictions for the observable mean photon number after the switch off. Very

different predictions are also obtained for the qubit excitation probabilities (see Fig. 3).

Figure 4(c) displays the Von Neumann entropy Sq (which quantifies the qubit-oscillator

entanglement for the system ground state (black curves) of the quantum Rabi model. This

quantity [17] is obtained by calculating the ground state of the combined system |0̃〉, using

it to obtain the qubit’s reduced density matrix in the ground state ρq = Trosc{|0̃〉〈0̃|},
and then evaluating the entropy of that state Sq = −Trosc{ρq log2 ρq}. The continuous

curves have been obtained using the Coulomb gauge, while the dotted-dashed ones, within

the wrong dipole gauge (using ĤD(t)). It is interesting to observe that, for η & 0.2, the

degree of entanglement strongly differs in the two cases. In particular, while in the wrong

dipole gauge both states become entangled cat states [47] displaying maximum entanglement

above η = 2, Sq goes to zero in the Coulomb gauge, after reaching a maximum at η ' 0.6.

These significant differences for large values of η can be understood by using an analytical

approximation which works well for η � 1 (see Appendix D).

In summary, the main result of this section consists of an operational definition of ground

state entanglement in cavity-QED systems which is independent on gauge transformation

VI. CIRCUIT QED

An ideal platform for exploring atomic physics and quantum optics [48] is circuit QED

(see Fig. 1(b)). The main reasons for that are, their flexibility in design, the possibility of

parameter tunability in situ [49] and their capability to reach the USC and even the so-called

deep strong coupling (DSC) (when η > 1) regimes at the single photon – single atom level

[1, 2, 4, 50, 51].

Here, we start considering a well known architecture constituted by a superconducting
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flux qubit and a LC oscillator inductively coupled to each other by sharing an inductance

[4] (Galvanic coupling). An important feature of the flux qubit is its strong anharmonicity,

so that the two lowest energy levels are well isolated from the higher levels [4]. The system

Hamiltonian can be written in the flux gauge as (see Appendix G)

Ĥfg = ~ω0

2 σ̂z + ~ωcâ
†â+ ~ωcη(â+ â†)(cos θ σ̂x − sin θ σ̂z) , (17)

where ~ωcη = LcIpIzpf . Here, Lc is the qubit-oscillator coupling inductance, Ip is the per-

sistent current in the qubit loop, and Izpf is the zero-point-fluctuation amplitude of the LC

resonator. The flux dependence in encoded in θ = arcsin(ε/ω0), where ε is the flux bias.

Here ω0 =
√

∆2 + ε2, where ~∆ is the tunnel energy splitting. For θ = 0, the qubit parity is

conserved, and the Hamiltonian in Eq. (17) resembles the quantum Rabi Hamiltonian in the

dipole gauge for natural atoms ĤD. However, it is worth noticing that, while the interaction

term in ĤD is of the coordinate-momentum kind, in Ĥfg it is coordinate-coordinate. As we

will show, this difference, despite not affecting the energy levels of the total system, affects

eigenstates and physical observables, and hence quantum measurements.

The LC oscillator can be probed by measuring the voltage at the end of a coplanar

transmission line that is inductively coupled to the inductor L of the LC oscillator (see

Fig. 1(b) and Appendix J). Such voltage is proportional to the voltage across L. In the flux

gauge, the canonical coordinate for the resonator corresponds to the flux across the capacitor

[Φ̂C = (Izpf/Z)(â+ â†)] (Z =
√
L/C is the oscillator characteristic impedance), and not that

across the inductor. As a result, in analogy with the electric field in the dipole gauge, the

voltage across the inductor also contains qubit operators: V̂ fg
L = L0Izpf [iωc(â− â†) + 2ηω0σ̂y]

(see Appendix J). If the system is prepared (e.g., by a pulse with central frequency ω ' ω1̃±,0̃)

in one of the two lowest excited states |1̃±〉, the output signal emitted into the transmission

line is proportional to VL
1̃±,0̃ = |〈1̃±|V̂L|0̃〉|2/(ωcL0Izpf)2. This quantity differs from what can

be obtained measuring the voltage across the capacitor, VC
1̃±,0̃ = |〈1̃±|â− â†|0̃〉|2. Figure 5(a)

displays VL
1̃±,0̃ and VC

1̃±,0̃ as a function of the normalized coupling η. The significant differences

between these two quantities indicate that, in the USC and DSC regimes, similar observables

can lead to very different results, as recently observed in the context of quantum phase

transitions [52]. Comparing these results with the corresponding ones (W1̃±,0̃) obtained in

Fig. 2 for the cavity QED system, significant differences can be found, although the results

share some qualitative features.
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Figure 5. Circuit QED. (a) Emitted signal VL
1̃±,0̃ as a function of the normalized coupling η. This

quantity is proportional to the power emitted from the system prepared in the initial states |1̃±〉

into a transmission line inductively (and weakly) coupled to the inductor of the LC oscillator. For

comparison, the panel also displays VC
1̃±,0̃. (b) Mean photon number (blue solid curve), flux-qubit

excitation probability (black solid curve), and Von Neumann entropy (red dashed curve) (quan-

tifying the qubit-field entanglement) in the system ground state as a function of the normalized

coupling η. All the displayed curves have been calculated using θ = 0, which corresponds to a flux

offset ε = 0.
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The Hamiltonian in Eq. (17) can also be obtained (in full analogy with the dipole and

Coulomb gauges), in the so-called charge-gauge, performing a unitary transformation [10, 11,

53] (see Appendix G). After such transformation, the voltage across the oscillator inductor

corresponds to the oscillator canonical momentum: V̂ cg
L = L0Izpf [iωc(â − â†)]. However, its

matrix elements are gauge invariant (of course using the system states in the charge gauge).

Interestingly this gauge transformation corresponds to a different choice of the grounded

node in the circuit (see Appendix G).

The switch off of the interaction in Galvanically coupled systems also quenches the qubit

coordinate. Hence, these systems are not suitable to study qubit properties after the sudden

switch off. We consider instead a mutual-inductance coupling [see Fig. 1(b)]. The system

Hamiltonian is still described by Eq. (17); however in this case, after the switch off, the

qubit and oscillator signals can be independently measured (see Appendix H), as in cavity

QED systems (see Sect. V).

Results on measurable vacuum expectation values are shown in Fig. 5(b). Specifically, it

displays the mean photon number, the qubit excitation probability, and the Von Neumann

entropy (quantifying the qubit-field entanglement) in the system ground state. It is interest-

ing to observe that these results strongly differ from the corresponding ones in Figs. 2 and

3. In particular, in the circuit QED system, the mean photon number strongly increases for

increasing coupling strengths. In addition, in the limit of very strong coupling strengths,

the qubit-field entanglement reaches its maximum in contrast to the correct calculation in

Fig. 3(a). It is very surprising that two platforms (cavity and circuit QED) displaying the

same energy spectra give rise to very different ground state properties. This behaviour arises

from the different fundamental origin of the coupling in the two systems, namely coordinate-

momentum versus coordinate-coordinate interaction forms (see last paragraph in Appendix

H).

Also for the case of mutual inductance coupling, it is possible to apply a unitary (gauge)

transformation giving rise to a momentum-momentum coupling (charge gauge, see Ap-

pendix H). Such transformation is time-dependent if the mutual inductance is tuned, like

the unitary transformation T̂ introduced to obtain the dipole gauge. Analogously, it can be

shown that after the switch off |ψcg〉 = |ψfg〉 and no gauge ambiguity arises. Hence, also in

circuit QED, it is possible to define gauge-invariant ground state properties.
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VII. DISCUSSION

By adopting an approach based on operational procedures involving measurements, we

have highlighted and solved a number of qualitative ambiguities in the theoretical descrip-

tion of cavity and circuit QED systems. Broadly, these results deepen our understanding

of subtle, although highly relevant, quantum aspects of the interaction between light and

matter, and are also relevant for the design and development of new technological photonic

applications exploiting the unprecedented possibilities offered by the USC and DSC regimes

(see, e.g., [54]).

Here, we focused on the quantum Rabi model. However, our results can be extended to

matter systems including a collection of quantum emitters, or collective excitations (see, e.g.,

[52, 55]). The conceptual issues discussed and solved here also apply to light-matter systems

involving multi-mode resonators [45, 56–58], or to atoms (natural or artificial) coupled to a

continuum of light modes [59], or even in cavity quantum optomechanics [60, 61].
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Appendix A: Derivation of the photon operators in the dipole gauge

We start by considering the simplest case of a two-level system coupled to a single-mode

resonator, where â is the photon destruction operator in the Coulomb gauge. Following

Ref. [11] (see also Sect. II), the corresponding operator in the dipole gauge is â′ = T̂ âT̂ †,
where T̂ = exp(iF̂) with F̂ = −ησ̂x(â+ â†). We obtain â′ = â+ iησ̂x, where η = g/ωc (g is

assumed real).

We now check the consistency of this result by deriving the general case using an al-

ternative approach not based on unitary transformations. Specifically, we consider a single

two-level system interacting with a collection of complete electromagnetic modes, and then

generalize the result to a strict single-mode coupling regime.

It is well known [13, 32, 62] that the dipole interaction Hamiltonian between an atom

and the radiation field, should involve the transverse displacement field, D̂, rather than the

electric field, Ê, so that (we neglect a µ2 term that is trivially proportional to the identity

operator in a two-level approximation):

ĤI = −µ · D̂(r)
ε0εb(r) , (A1)

where εb(r) is the background dielectric constant of the medium where the two-level system is

embedded. The point is that in the dipole gauge the electric field operator is not a canonical

operator and thus the energy has to be expressed in terms of D̂(r) (which is a canonical

operator), in order to obtain the interaction Hamiltonian. Given the displacement field’s

fundamental importance [33], we introduce a new field operator through

F̂(r) = D̂(r)
ε0εb(r) , (A2)

and carry out field quantization with respect to this quantum field operator. Thus, for a

single dipole at position r0,

ĤI = −µ · F̂(r0), (A3)

and below we assume µ is real (though this is not necessary). This procedure can be gener-

alized for multiple dipoles, however, in this case the field-induced dipole-dipole interaction

terms have to be also included (see Appendix B). In this Section, we only consider a single

dipole (two-level system) at r0. The field operator, obtained from the Power-Zienau-Woolley

19



(PZW) transformation, can be expanded in terms of photon field operators (that also couple

to matter degrees of freedom), âk, so that

F̂(r, t) = F̂+(r, t) + F̂−(r, t) = i
∑

k

√
~ωk

2ε0
fk(r)âk(t) + h.c., (A4)

where fk(r) are “normal modes” with real eigenfrequencies, ωk, obtained from Maxwell’s

equations for a particular medium. The normalization of these normal modes is obtained

from
∫
drεb(r)f∗k (r) · fk′(r) = δkk′ . These modes are complete, so that

∑
k εb(r)f∗k (r)fk(r′) =

1δ(r−r′), and note that the sum includes both quasi-transverse and quasi-longitudinal modes

(ωk = 0). For convenience, one can also write this as

1δ(r− r0) = 1
2εb(r)

[∑

k

fk(r)f∗k (r0) + f∗k (r0)fk(r)
]
. (A5)

We can also introduce the usual TLS-mode coupling rate from

gk ≡
√

ωk

2~ε0
µ · fk(r0), (A6)

which is only finite for transverse modes (which is due to the choice of gauge).

Next, it is useful to recall the relation between Ê and F̂:

F̂(r) = Ê(r) + δ(r− r0)
ε0εb(r) P̂d(r0), (A7)

where we consider a single dipole. Treating the dipole as a quantized TLS, then

F̂(r) = Ê(r) + µ

ε0εb(r)δ(r− r0)(σ̂+ + σ̂−), (A8)

where σ̂+ + σ̂− = σ̂x are the usual Pauli operators. Thus, defining ÊD(r) as the electric field

operator in the dipole gauge, we have

ÊD(r, t) = i
∑

k

√
~ωk

2ε0
fk(r)âk(t) + h.c.

− 1
2ε0

[∑

k

fk(r)f∗k (r0) + f∗k (r0)fk(r)
]
· µ(σ̂+ + σ̂−), (A9)

with the understanding that the last term is formally zero for r 6= r0. For positions away

from the dipole location, then

ÊD(r 6= r0, t) = i
∑

k

√
~ωk

2ε0
fk(r)âk(t) + h.c., (A10)
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while for positions at the dipole location,

ÊD(r0, t) = i
∑

k

√
~ωk

2ε0
fk(r0)âk(t) + h.c.− 1

ε0

[∑

k

f∗k (r0)fk(r0)
]
· µ(σ̂+ + σ̂−). (A11)

Also note, that since ÊD(r 6= r0, t) = F̂(r, t), then one can use either operator for field

detection analysis (away from the two-level system), which is a result of including a sum

over all modes. It is also important to note that the general solution of âk(t) also includes

coupling to the two-level system, which can be obtained, e.g., from the appropriate Heisen-

berg equations of motion. It is worth noticing that Eq. (A9) can be rewritten in a way that

makes each mode contribution more clear:

ÊD(r, t) = i
∑

k

√
~ωk

2ε0
fk(r)â′k(t) + h.c. , (A12)

where

â′k(t) = âk(t) + iηkσ̂x , (A13)

with ωkηk =
√
ωk/2~ε0µ · fk(r0). Comparing Eq. (A12) and Eq. (A4), it is clear that,

although ÊD(r 6= r0, t) = F̂(r, t), the electric field operator ÊD(r, t) and the field F̂D(r, t)
correspond to two different modal expansions.

Single-mode limit

Next, we focus on a single-mode solution (k = c, â ≡ âc, η ≡ ηc) as this is typically

the most interesting case for cavity QED regimes, and is one of the key models considered

in the main text (the quantum Rabi model). Of course, treating a single-field mode as

a normal mode is not a rigorous model for open cavities, as we cannot include the cavity

mode loss rigorously, but similar result can be obtained using a quantized quasinormal mode

approach [63] (which are the correct resonant modes in the presence of dissipative output

losses). Nevertheless, for high-Q resonators, it is an excellent approximation. Exploiting

Eq. (A12), we obtain:

ÊD(r, t) ≈ i

√
~ωc

2ε0
fc(r)â′(t) + h.c. , (A14)

where

â′(t) = â(t) + iησ̂x , (A15)
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with ωcη =
√
ωc/2~ε0µ · fc(r0). Again assuming that g is real, then g = ωcη, and ĤI =

i~g(â† − â)σ̂x ≡ V̂D, as used in the main text.

It is worth highlighting a rather striking difference between the single-mode model and

the multi-mode model. The latter case causes the two field operators F̂D(r) and ÊD(r) to

be identical, unless r at the dipole location (r0). This multi-mode result also enforces some

fundamental results in electromagnetism, e.g., it recovers well known limits such as the local

field problem (requiring the self-consistent polarization), and ensures causality. The need

to enforce causality in quantum optics has been pointed out in other contexts [45]. We also

observe that, as shown explicitly by the unitary transformation â′ = T̂ âT̂ † at the beginning

of this section (see also [11]), by only using the primed operators in the dipole gauge, gauge

invariance of the expectation values is ensured. Generalizing this approach to the multimode-

interaction case, it can also be shown that â′k = T̂ âkT̂
†, where T̂ is the appropriate unitary

gauge operator [16]. Consequently, 〈ψD|â
′†
k â
′
k|ψD〉 = 〈ψC |â†k âk|ψC〉, where |ψD〉 = T̂ |ψC〉.

Appendix B: Two-level sensors

It has been shown that normal-order correlation functions, which describe the detection

of photons according to Glauber’s theory, can be calculated considering frequency-tunable

two-level sensors in the limit of their vanishing coupling with the field [64]. The rate at which

the sensor population growth corresponds to the photodetection rate. If two or more sensors

are included, their joint excitation rates provides information on normal-order multi-photon

correlations.

This procedure can also be applied when the electromagnetic field interacts strongly with

a matter system so that the counter-rotating terms in the interaction Hamiltonians cannot

be neglected. Let us consider a simple USC system constituted by an electromagnetic

single-mode resonator strongly interacting with a two-level system with normalized coupling

strength η. Then we also consider a two-level sensor interacting with the resonator with

vanishing coupling ηs � η. The standard cavity-sensor interaction Hamiltonian in the

dipole gauge is written as [64]

V̂ ′dg = −i~ωcηs(â− â†)σ̂s
x . (B1)

If the USC system is prepared in a state |j〉 and the sensor has a resonance frequency
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ωs = ωjl (l < j), by applying the Fermi golden rule, it results that the excitation rate of the

sensor is proportional to

|〈lD|P̂|jD〉|2 , (B2)

where |jD〉 is a system eigenstate in the dipole gauge and P̂ = i(â− â†). This result, however

is different from what can be obtained within the Coulomb gauge: Wlj = |〈lC |P̂|jC〉|2.

It is instructive to find the origin of such gauge ambiguity and to solve it. Actually, in

the dipole gauge, the interaction energy between the field and the sensor is − ∫ d3r Ê · P̂s,

where P̂s = µσ̂s
x is the sensor polarization. Using the relation Ê = (D̂ − P̂)/ε0 (we here

assume εb(r) = 1), the total Hamiltonian in the dipole gauge can be written as

Ĥdg = ĤUSC
dg + Ĥs + V̂s

dg , (B3)

where ĤUSC
dg is the system Hamiltonian in the absence of the sensor, Ĥs = (~ωs/2)σ̂s

z, and

V̂s
dg = − 1

ε0

∫
d3rD̂ · µ σ̂s

x + 1
ε0

∫
d3rP̂ 2 , (B4)

where

P̂ = µσ̂x + µsσ̂
s
x , (B5)

is the total polarization. By expanding D̂ in terms of the photon operators, and using the

relationship
1
2
∑

k

[f∗k (r)fk(r′) + f∗k (r′)fk(r)] = 1δ(r−r′) , (B6)

and after neglecting the terms proportional to the qubits identities, we obtain

V̂s
dg =

∑

k

~ωkη
s
k

[
i(â†k − âk) + 2ηkσ̂x

]
σ̂s

x . (B7)

In the single-mode limit, this simplifies to

V̂s
dg = ~ωcη

s
[
i(â† − â) + 2ησ̂x

]
σ̂s

x . (B8)

Equation (B8) differs from Eq. (B1) only for the field-induced qubit-sensor interaction

term, arising from the self-polarization terms in the dipole-gauge light-matter interaction

Hamiltonian [65]. However, it is precisely this term that ensures gauge invariance: applying

the Fermi golden rule, by using Eq. (B8), instead of Eq. (B1), we obtain the gauge invariant

result

|〈lD|P̂ − 2ησ̂x|jD〉|2 = |〈lC |P̂|jC〉|2 ≡ Wlj . (B9)
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Appendix C: Dispersive readout of a qubit strongly coupled to a cavity mode

Let us consider a two-level system ultrastrongly coupled to a cavity mode of frequency

ωa and weakly coupled to a second mode (e.g., a readout cavity) of frequency ωb acting as

a sensor for the matter system. The resulting Hamiltonian in the Coulomb gauge can be

written as [11]

ĤC = ~ωaâ
†â+ ~ωbb̂

†b̂

+ ~ω0

2
{
σ̂zcos

[
2ηa(â† + â) + 2ηb(b̂† + b̂)

]
+ σ̂ysin

[
2ηa(â† + â) + 2ηb(b̂† + b̂)

]}
,

(C1)

with ηa = ga/ω0 and ηb = gb/ω0. By using the angle transformation formulae, Eq. (C1)

becomes

ĤC = ~ωaâ
†â+ ~ωbb̂

†b̂

+ ~ω0

2 σ̂z

{
cos

[
2ηa(â† + â)

]
cos

[
2ηb(b̂† + b̂)

]
− sin

[
2ηa(â† + â)

]
sin

[
2ηb(b̂† + b̂)

]}

+ ~ω0

2 σ̂y

{
sin

[
2ηa(â† + â)

]
cos

[
2ηb(b̂† + b̂)

]
+ cos

[
2ηa(â† + â)

]
sin

[
2ηb(b̂† + b̂)

]}
.

(C2)

Furthermore, since 2ηb(b̂† + b̂) is small, we can also apply the small-angle approximation

cos(x) ' 1, sin(x) ' x, thus obtaining

ĤC ' ~ωaâ
†â+ ~ωbb̂

†b̂+ ~ω0

2
{
σ̂zcos

[
2ηa(â† + â)

]
+ σ̂ysin

[
2ηa(â† + â)

]}

+~ω0ηb(b̂† + b̂)
{
σ̂ycos

[
2ηa(â† + â)

]
− σ̂zsin

[
2ηa(â† + â)

]}
.

(C3)

Introducing the Pauli operators in the Coulomb gauge:

σ̂′y = T̂ †a σ̂yT̂a = σ̂ycos
[
2ηa(â† + â)

]
− σ̂zsin

[
2ηa(â† + â)

]
,

σ̂′z = T̂ †a σ̂zT̂a = σ̂zcos
[
2ηa(â† + â)

]
+ σ̂ysin

[
2ηa(â† + â)

]
, (C4)

σ̂′x = T̂ †a σ̂xT̂a = σ̂x,

with T̂a = exp[−iηaσ̂x(â+ â†)], Eq. (C3) can be written in a more compact form as

ĤC = ~ωaâ
†â+ ~ωbb̂

†b̂+ ~ω0

2 σ̂′z + ηb~ω0(b̂† + b̂)σ̂′y . (C5)

It is important to note that, despite the σ̂′i operators also containing photon operators, their

commutation rules remain unchanged: [σ̂′i, σ̂′j] = 2iεijkσ̂
′
k. Moreover, we define

X̂ ′± = (b̂†σ̂′− ± b̂σ̂′+) ,
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Ŷ ′± = (b̂σ̂′− ± b̂†σ̂′+) . (C6)

Subsequently, Eq. (C5) can be rewritten in a more convenient form as

ĤC = ~ωaâ
†â+ ~ωbb̂

†b̂+ ~ω0

2 σ̂′z + iηb~ω0(X̂ ′− + Ŷ ′−) . (C7)

In order to investigate the effect of the readout cavity on the TLS, we can always perform

a canonical (unitary) transformation (see, e.g., [44]):

ĤC → H̃C ≡ e−ŜĤCe
Ŝ = ĤC + [ĤC , Ŝ] + 1

2! [Ŝ, [Ŝ, ĤC ]] + . . . ., (C8)

where we defined H̃C to indicate the corresponding dispersive Hamiltonian in the Coulomb

gauge. In the usual way, we search for an anti-Hermitian operator Ŝ which satisfies the

relation

ĤI + [Ĥ0, Ŝ] = 0 , (C9)

where

ĤI = iηb~ω0(X̂ ′− + Ŷ ′−), (C10)

and

Ĥ0 = ~ωbb̂
†b̂+ ~ω0

2 σ̂′z . (C11)

Equation (C9) is satisfied using

Ŝ = λX̂ ′+ + λ̄Ŷ ′+ , (C12)

with

λ = −igb

∆ , (C13)

and

λ̄ = −igb

Σ , (C14)

where ∆ = ω0 − ωb and Σ = ω0 + ωb. With such a choice, we obtain

H̃C = ~ωaâ
†â+ Ĥ0 + [ĤI , Ŝ] + 1

2! [Ŝ, [Ŝ, ĤC ]] + . . . (C15)

Developing the calculations up to the second order in gb, we obtain

H̃C = ĤC
0 + ~χ

2 (b̂† + b̂)2 σ̂′z , (C16)

where

χ = g2
b

∆ + g2
b

Σ , (C17)
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and

ĤC
0 = ~ωaâ

†â+ ~ωbb̂
†b̂+ ~ω0

2 σ̂′z . (C18)

Neglecting the counter-rotating terms proportional to b̂†2 and b̂2, Eq. (C16) becomes

H̃C = ~ωaâ
†â+

(
~ω0

2 − ~χ
2

)
σ̂′z + ~ (ωb + χσ̂′z) b̂†b̂ . (C19)

As it is clear from this expression, the last term in Eq. (C19) can be interpreted as a

dispersive shift of the cavity transition by χσ̂′z, depending on the state of the qubit [66].

Sending a frequency-tunable probe signal into the resonator b, transmission spectroscopy

can provide direct information on the expectation value 〈σ̂′z〉C which coincides with 〈σ̂z〉D.

Hence, we can conclude that this kind of readout spectroscopy provides direct information

on the expectation value of the qubit population difference, as defined in the dipole gauge.

Appendix D: Large-coupling limit

Here we discuss the large-coupling limit (η � 1) by using an analytical perturbative

method. Notice that for η � 1 the system enters in the so-called deep strong coupling

regime (DSC). We start from the quantum Rabi Hamiltonian in the dipole gauge:

ĤD = Ĥfree + V̂D , (D1)

where

Ĥfree = ~ωcâ
†â+ ~ω0

2 σ̂z, (D2)

and the interaction Hamiltonian is

V̂D = iη~ωc(â† − â)σ̂x . (D3)

When ηωc � ω0, the last term in Eq. (D1) can be regarded as a perturbation. Equa-

tion (D2) can be rewritten as ĤD = Ĥ′0 + V̂ ′D, where

Ĥ′0 = ~ωcâ
†â+ iη~ωc(â† − â)σ̂x , (D4)

and

V̂ ′D = ~ω0

2 σ̂z . (D5)

In the limit η � 1, V̂ ′D can be regarded as a small perturbation; neglecting it, the resulting

Hamiltonian can be analytically diagonalized. The two resulting lowest-energy degenerate
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eigenstates can be written as | ∓ iη〉|±x〉, where the first ket indicates photonic coherent

states with amplitude ∓iη, such that: â| ∓ iη〉 = ∓iη| ∓ iη〉; while the second ket indicates

the two-qubit eigenstates of σ̂x. The perturbation (~ω0/2)σ̂z removes the degeneracy and

mixes the two states, so that the two eigenstates become entangled:

|ψ±D〉 = 1√
2

[
| − iη〉|+x〉 ± |+ iη〉|−x〉

]
. (D6)

The corresponding eigenstates in the Coulomb gauge are |ψ±C 〉 = T̂ †|ψ±D〉, where

T̂ = exp
[
−iη

(
â+ â†

)
σ̂x

]
, (D7)

is the unitary operator determining the gauge transformation of the qubit-oscillator system:

ĤD = T̂ ĤC T̂ †. By applying the operator T̂ † to both members of Eq. (D6), and using the

properties of the displacement operator, we obtain the separable states

|ψ±C 〉 = |0〉|±z〉 . (D8)

Equations (D6) and (D8), describing the lowest two energy states in the dipole and

Coulomb gauge respectively (for η � 1), explain the results in Figs 3 and 4 for very large

values of η. In particular, it is easy to obtain: 〈ψ−C |σ̂+σ̂−|ψ−C 〉 = 0, 〈ψ+
C |σ̂+σ̂−|ψ+

C 〉 = 1,

〈ψ±D|σ̂+σ̂−|ψ±D〉 = 0.5, 〈ψ−C |â†â|ψ−C 〉 = 0, 〈ψ+
C |â†â|ψ+

C 〉 = η2. Moreover, Eq. (D6) describes

two light-matter maximally entangled cat sates providing a qubit entropy Sq
D = 1, while

Eq. (D8) describes two separable states (Sq
C = 0), see Fig. 4. This analysis can be easily

extended to understand the results in Fig. 5 obtained for a circuit QED system for η � 1.

Applying the same procedure used to derive Eq. (D6), starting from the Hamiltonian in

Eq. (17), we obtain

|ψ±D〉 = 1√
2

[
| − η〉|+x〉 ± |+ η〉|−x〉

]
. (D9)

Appendix E: Gauge transformations in the presence of time-dependent coupling

We start by summarizing some well-known results on equivalent descriptions of the dy-

namics of a physical system (see, e.g., Ref. [16]). We consider a simple 1D dynamical system

described by the Lagrangian L(x, ẋ), where x is the coordinate and ẋ the velocity. The

momentum conjugate with x is p = ∂L/∂x. By adding to the lagrangiaan L(x, ẋ) the total

time derivative of a function F (x, t), one obtains a new Lagrangian

L′(x, ẋ) = L(x, ẋ) + d

dt
F (x, t) = L(x, ẋ) + ẋ

∂F

∂x
+ ∂F

∂t
, (E1)
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which is equivalent to L in the sense that it gives the same equation of motion for the

coordinate x . Considering the new Lagrangian, the momentum conjugate with x becomes

p′ = ∂L′

∂ẋ
= p+ ∂F

∂x
. (E2)

When one applies the standard canonical quantization procedure, starting with L on

the one hand and L′ on the other, one derives two equivalent quantum descriptions for the

system, related by a unitary transformation, described by the operator (we use ~ = 1)

T̂ = exp[iF̂ (t)] , (E3)

where F̂ (t) ≡ F (x̂, t) is the quantum operator corresponding to the classical function F (x, t),
with the hat “ ˆ ” indicating the promotion of classical variables to quantum operators.

Considering a generic operator Ô = O(x̂, p̂), it transforms as Ô′ = T̂ ÔT̂ †, while the state

vectors transform as |ψ′〉 = T̂ |ψ〉, so that the generic matrix elements of the operators remain

unchanged. If the function F (x, t) depends explicitly on time, the system Hamiltonain

transforms differently:

Ĥ ′ = T̂ ĤT̂ † + i
˙̂
T T̂ † = T̂ ĤT̂ † − ∂F̂

∂t
. (E4)

The function F introduced by PZW [31, 62] is

F = −
∫
d3rP(r) ·A⊥(r) , (E5)

where, considering a single charge centered on a single reference point R, the polarization

operator can be expressed as

P(r) = q
∫ 1

0
du(r−R)δ[(1− u)(r−R)] . (E6)

Hence, the PZW Lagrangian can be derived by that in the Coulomb gauge by the transfor-

mation

L′ = L+ d

dt
F (E7)

where F is given by Eq. (E5).

In a gauge transformation, defined by a function χ(r, t), the potentials become

A′(r, t) = A(r, t) + ∇χ(r, t) (E8a)

U ′(r, t) = U(r, t)− ∂

∂t
χ(r, t) . (E8b)
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Introducing Eqs. (E8a) and (E8b) in the Lagrangian L in the Coulomb gauge, the following

relationship between the two Lagrangians holds (see, e.g., p. 267 of Ref. [16]):

L′ = L+ d

dt
χ(r, t) . (E9)

If the function χ(r, t) is chosen equal to the function F (r, t), then:

χ(r, t) =
∫
d3rP(r) ·A⊥(r) . (E10)

Equations (E7) and (E9) shows that the PZW transformation and the multipolar gauge

transformation are equivalent.

This equivalence still holds in the presence of a time-dependent interaction strength. As

discussed in the main text, a time-dependent coupling can be properly described assuming

an atom moving in and out a Fabry-Pérot Gaussian cavity mode, like in experiments with

Rydberg atoms [67], so that the coupling strength becomes time dependent. In this case, the

charge is localized around a time-dependent position R(t). This will give rise to additional

terms when taking the time derivative of F . However, Eq. (E7) and Eq. (E9) do still coincide,

as well as the conjugate momenta. Both approaches give rise to the same Hamiltonian in

Eq. (E4). Notice that the resulting Hamiltonian after the gauge transformation is different

from

ĤD(t) = T̂ (t)ĤC(t)T̂ †(t) . (E11)

This explains precisely why the Hamiltonian in Eq. (E11) does not describe a dynamics which

is equivalent to that of the Hamiltonian in the Coulomb gauge [27]. In short, Eq. (E11) is not

a correct Hamiltonian to describe the correct light-matter interaction dynamics. Specifically,

considering the time dependent unitary transformation, Eq. (E11) is not correct because it

misses the explicit time dependence on the transformation, see last term in Eq. (E4). Con-

sidering the gauge transformation, Eq. (E11) is not correct because it is obtained neglecting

the explicit time dependence of χ(r, t) in Eq. (E8b), arising from the time dependence of R
in Eq. (E6). The correct Hamiltonian in the dipole gauge, in the presence of time-dependent

interactions, is Ĥ ′D = T̂ (t)ĤC(t)T̂ †(t) + i
˙̂
T T̂ †.

In summary, in the absence of time-dependent interactions, the Coulomb gauge Hamil-

tonian ĤC and the standard multipolar gauge Hamiltonain ĤD = Ĥ ′D provide equivalent

dynamics. In the presence of time-dependent interactions, only Ĥ ′D provides a dynamics
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which is equivalent to the one determined by ĤC , and the standard multipolar Hamilto-

nian ĤD has to be disregarded. Consequently, we can consider ĤC more fundamental than

ĤD. The first (ĤC) originates directly from the minimal coupling replacement enforcing the

gauge principle, while the latter (ĤD) results from the first, after a transformation which

can be time-dependent. A different point of view could be to consider, independently on the

historical derivation, ĤD as the fundamental Hamiltonian and deriving ĤC from it after a

unitary transformation. In this case the correct Hamiltonian in the Coulomb gauge, provid-

ing a dynamics equivalent to that of ĤD(t), would be Ĥ ′C(t) = T̂ †(t)ĤD(t)T̂ (t) + i
˙̂
T (t)†T̂ (t).

This Hamiltonain, owing to the second term on the right-hand side of the above equation,

does not correspond to a minimal coupling replacement as prescribed by the gauge principle.

On the contrary, ĤC is directly obtained by the minimal coupling replacement (which im-

plements the gauge principle) after setting to zero the longitudinal component of the vector

potential (which has no dynamical relevance) [16].

Analogous considerations apply to the case of switchable circuit QED systems (see Ap-

pendix H). In this case the more fundamental gauge is the so-called flux gauge, which is

somewhat analogous to the dipole gauge. Also in this case, it is possible to apply a unitary

transformation, in order to obtain an equivalent representation, called the charge gauge.

Appendix F: Non-adiabatic tunable coupling: Switch-on and switch-off dynamics

Following Ref. [27], we consider the treatment of tuneable light-matter interactions

through the promotion of the coupling to a time-dependent function. In Ref. [27] it is

shown that applying the standard widespread procedure, for sufficiently strong light-matter

interactions, the final subsystem properties, such as entanglement and subsystem energies,

depend significantly on the definitions (gauges) of light and matter adopted during their

interaction. This occurs even if the interaction is not present at the initial and final stages

of the protocol, at which times the subsystems are uniquely defined and can be individually

addressed. Such an ambiguity is surprising and poses serious doubts on the predictability of

the system dynamics in the presence of ultrastrong time-dependent light-matter interactions.

Here we address this apparent problem by considering a light-atom system initially in

the absence of interaction and starting, e.g., in its ground state |ψ(tin)〉 = |g, 0〉. A different

choice of the initial state does not change the conclusions. This situation can be visualized
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considering a system constituted by an optical cavity (initially prepared in the zero-photon

state) and an atom initially external to the cavity and in its ground state. At t = t1,

the atom enters the cavity and flies out of it at t = t2. We consider the case of a TLS

(the generalization to multilevel systems is straightforward). In addition, for the sake of

simplicity, we assume that for t1 < t < t2 the normalized interaction strength η is constant.

We demonstrate that, after the switch off of the interaction, the same quantum state is

obtained independently of the adopted gauge.

We start our analysis considering the Coulomb gauge. The initial state (actually inde-

pendent on the gauge) is |ψC(tin)〉 = |g, 0〉C . At t = t1, the interaction is non-adiabatically

switched on within a time T → 0. This sudden switch has no effect on the quantum state

[46], hence, at t = t+1 = t1 + T , |ψC(t+1 )〉 = |g, 0〉. For t > t+1 , the quantum state evolves

as |ψC(t)〉 = exp [−iĤC(t− t1)]|g, 0〉C . Then, at t = t2, the interaction is suddenly switched

off. At t = t+2 = t2 + T , the system state is |ψC(t+2 )〉 = exp [−iĤC(t2 − t1)]|g, 0〉C . For

t > t2, the quantum state evolves according to the Hamiltonian for the noninteracting sys-

tem (η = 0): |ψC(t)〉 = exp [−iĤfree(t− t2)]|ψC(t+2 )〉, where Hfree is the system Hamiltonian

in the absence of interaction. We can use these quantum states to calculate any system

expectation value at any time. For example, the mean photon number can be calculated as

〈ψC(t)|Ŷ (−) Ŷ (+)|ψC(t)〉 , (F1)

where Ŷ (+) and Ŷ (−) are the positive and negative-frequency components of the operator

Ŷ = i(â− â†) [with Ŷ (−) = (Ŷ (+))†]. Notice that, for t < t1 and t > t2, Ŷ (+) = iâ.

Now we describe the same dynamics in the dipole gauge. Before switching on the interac-

tion, the state is simply |ψD(t−1 )〉 = |g, 0〉. As shown in Appendix E, the system Hamiltonian

in the dipole gauge is

ĤD(t) = T̂ (t)ĤC T̂ †(t) + i
˙̂T (t)T̂ †(t)

= Ĥfree + V̂D(t)− λ̇F̂ , (F2)

where λ(t) is the switching function (see Fig. 6). Notice that, when the interaction strength

is time independent, the last term in Eq. (F2) goes to zero. On the contrary, during non-

adiabatic switches or modulations, this term can become the dominant one. Owing to the

presence of the last term in Eq. (F2), the state after the switch-on of the interaction becomes

|ψD(t+1 )〉 = exp
(
iF̂
∫ t+

1

t−1
dtλ̇

)
|ψD(t−1 )〉 = T̂ |g, 0〉 . (F3)
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For t > t+1 , the quantum state evolves as |ψD(t)〉 = exp (−iĤD(t− t1)T̂ |g, 0〉. Then, at

t = t2, the interaction is suddenly switched off. At t = t+2 = t2 +T the system state becomes

|ψD(t+2 )〉 = T̂ † exp [−iĤD(t2 − t1)]T̂ |g, 0〉. Since ĤC = T̂ †ĤDT̂ , it implies that

|ψD(t+2 )〉 = |ψC(t+2 )〉 . (F4)

As an example, we reported in Fig. (6) the gauge-invariant emission,

〈ψC(t)|Ŷ (−) Ŷ (+)|ψC(t)〉 ,

from a two-level system coupled to a single-mode resonator (quantum Rabi Hamiltonian)

induced by sudden switches of the light-matter interaction, calculated for three normalized

coupling strengths.

As a final remark, we observe that the procedure described here can be directly extended

to show that gauge invariance is also preserved for intermediate gauge transformations de-

pendent on a continuous parameter α [10]. Indeed, it is sufficient to replace F̂ with αF̂ in

the demonstration.

Appendix G: Circuit QED: Galvanic Coupling

A qubit-resonator system is said to be Galvanically coupled when the two components

share a portion of their respective circuits [2]. With circuits, this strategy has been used

to reach both the USC and the deep strong coupling regimes. Besides, the generic lumped

circuit analysis is formally equivalent to the description of the fluxonium-resonator system.

Moreover, these architectures seem to be optimal test-beds for performing experiments on

the gauge issues discussed in this work.

To analyse the different architectures in a unified way, we consider the qubit as a ”black-

box”, while the coupler is the part shared with the resonator. The lumped circuit is drawn

in Fig. 7. The coupler can be an effective inductance and the dashed region can describe,

e.g., the three junctions forming the flux qubit as in the experiments [4, 50] or one of the

qubit-junctions as in this other experiment [59].
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Figure 6. Gauge-invariant emission of a two-level atom coupled to a single-mode resonator (quan-

tum Rabi Hamiltonian) induced by sudden switches of the light-matter interaction, calculated for

three normalized coupling strengths. (a) Displays the switching function λ(t). The system is ini-

tially prepared in its ground state: |ψC(tin)〉 = |g, 0〉. At t = t1 the interaction is suddenly switched

on, and it is finally switched off at t = t2.

1. Flux gauge

In the flux gauge, the Lagrangian can be written as [68],

Lfg = L0
qubit + 1

2CΦ̇2 − 1
2L(Φ− Φq)2 . (G1)

Here, L0
qubit describes the qubit part, which depends on the specific artificial atom considered

and 1
2L

(Φ − Φq)2 provides the coupling term. Recall that here Φ is the flux through the
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Figure 7. Circuit QED systems with Galvanic coupling. (a) In the flux gauge the chosen coordinates

correspond to the flux across the qubit Φq and the flux across the ocillator capacitor Φ. (b) In the

charge gauge the chosen coordinates correspond to the flux across the qubit Φq and the flux across

the oscillator inductor Φ.

resonator capactitor and Φq is the flux through the coupler, as specified in figure Fig. 7(a).

It is convenient to rewrite Eq. (G1) as a sum of three contributions: the qubit, the LC-

resonator, and their interaction:

Lfg = LLC + Lqubit + 1
L

Φ Φq , (G2)

where LLC = 1
2CΦ̇2−Φ2/(2L), and Lqubit = L0

qubit−Φ2
q/(2L). Notice that LLC describes an

oscillator with resonant frequency ωc = 1/
√
LC.

In order to deal with an explicit qubit Lagrangian, we consider a fluxonium-type qubit,

such that:

Lqubit = 1
2CqΦ̇2

q − Φ2
q/(2L‖) + Ejcos

(
2πΦq − Φext

Φ0

)
, (G3)

where Cq is the qubit capacitance, L‖ ' LcL/(Lc + L), Φ0 = h/2e is the flux quantum, and

Φext is the external flux. The superconducting loop is maximally frustrated at a specific

value of the external flux Φext = Φ0/2. In this case [53], the atom’s effective potential has

a symmetric double-well shape consisting of two lowest degenerate local minima separated

by approximately the flux quantum Φ0. This configuration can give rise to artificial atoms

with a high degree of anharmonicity, with the two lowest energy levels well separated by the

higher energy ones. An analogous energy spectrum can also be obtained considering a flux
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qubit [4].

The momenta conjugate to Φ and Φq can be easily obtained starting from Eq. (G2) by

using the canonical relations

Q = ∂L
∂Φ̇

= CΦ̇ , (G4a)

Qq = ∂L
∂Φ̇q

= CqΦ̇q . (G4b)

In this case, Q and Qq represent the charge across the capacitor C of the oscillator, and the

charge across the coupler, respectively.

By performing the Legendre transformation Hfg = QΦ̇ + QqΦ̇q − Lfg, the flux gauge

Hamiltonian can be written as

Hfg = H0
qubit + Q2

2C + (Φq − Φ)2

2L , (G5)

where

H0
qubit =

Q2
q

2Cq

+
Φ2

q

2Lc

− Ejcos
(

2πΦq − Φext

Φ0

)
. (G6)

The system Hamiltonian can also be written as

Hfg = HLC +Hqubit −
ΦqΦ
L

, (G7)

where

HLC = Q2

2C + Φ2

2L , (G8)

and

Hqubit =
Q2

q

2Cq

+
Φ2

q

2L‖
− Ejcos

(
2πΦq − Φext

Φ0

)
. (G9)

The quantization procedure of Eq. (G7) is straightforward. In our case, the resonator

operators can be expressed in terms of the creation and annihilation operators as

Φ̂ = Φzpf(â+ â†) ,

Q̂ = −iQzpf(â− â†) ,

where Φzpf =
√
L~ωc/2, and Qzpf =

√
C~ωc/2 with ωc = 1/

√
LC.

It is important to note that in Eq. (G9) we implicitly considered all the fluxonium levels.

However, when the energy-level spectrum of the system displays a high degree of anhar-

monicity, such that the higher energy levels are well spaced with respect to the first two,
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Eq. (G9) can be projected in a two-level space spanned by the flux-qubit eigenstates |g〉
(ground state) and |e〉 (excited state) using the operator P̂ = |e〉〈e|+ |g〉〈g|.

The flux across the coupling inductor can be treated as a constant operator with off-

diagonal matrix elements which are directly calculated in the qubit energy eigenbasis as

〈g|Φq|e〉 ' LcIp, where Ip is the persistent current in the qubit loop. Performing this

projection, the two-level flux gauge Hamiltonian becomes

Ĥfg = ~ωcâ
†â+ ~ω0

2 σ̂z + ~ωcη(â† + â)σ̂x , (G10)

where ~ω0 is the qubit transition energy and ~ωcη = LcIpIzpf , where Izpf = Φzpf/L is the

zero-point current fluctuation of the oscillator.

In the flux gauge, the flux across the oscillator inductor is Φ̂L = Φ̂− Φ̂q. Projecting the

artificial-atom flux Φ̂q in the two-level space, we obtain Φ̂L = Φzpf(â + â† − 2ησ̂x). The

voltage across the oscillator inductor is

V̂ = ˙̂Φ = [Φ̂L, Ĥfg]/(i~) = ωcΦzpf
[
i(â† − â) + 2ηω0σ̂y

]
. (G11)

2. Charge gauge

In order to derive the charge gauge Hamiltonian of the system ( see Fig. 7(b), we consider

as canonical coordinates the node flux Φq and the flux Φ across the resonator inductance

L. Following the same procedure of the previous subsection, the system Lagrangian can be

written as

Lcg = 1
2CqΦ̇2

q + 1
2C

(
Φ̇q − Φ̇

)2 − 1
2Lc

Φ2
q −

1
2LΦ2 + EJ cos [2π(Φq − Φext)/Φ0)] , (G12)

with the canonical momenta defined as

Qq = (Cq + C)Φ̇q + CΦ̇ , (G13a)

Q = C(Φ̇− Φ̇q) . (G13b)

Performing the Legendre transformation (see Subsection G 1), and promoting the canonical

variables to operators, the system Hamiltonian in the charge gauge results in

Ĥcg = 1
2Cq

(Q̂q + Q̂)2 + 1
2C Q̂

2 + 1
2Lc

Φ̂2
q + 1

2LΦ̂2 − EJ cos
[
2π(Φ̂q − Φext)/Φ0)

]
. (G14)
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Also in this case, if the system displays a high degree of anharmonicity, we can project the

system Hamiltonian in the two-level subspace {|g〉, |e〉}. However, it has been shown that this

truncation ruins gauge invariance [11]. The coupling described in Eq. (G14) is analogous to

the minimal coupling replacement used to introduce the particle-field interaction in quantum

field theory and atomic physics. According to this procedure, the particle momentum is

replaced by the sum of the particle momentum and the product of the charge and the field

coordinate. In the present case, the coupling is introduced by replacing the momentum of

the artificial atom: Q̂q → Q̂q + Q̂. It has been shown that, when the atom Hilbert space

is truncated, unavoidably some degree of spatial nonlocality is introduced in the atomic

potential [11]. As a consequence, the truncated potential will depend also on the momentum

Q̂ and gauge invariance is preserved only by also applying the minimal coupling replacement

to it. To solve this problem, we introduce the minimal coupling replacement by applying a

unitary transformation to the atomic Hamiltonian:

Ĥcg = ĤLC + R̂†ĤqubitR̂ , (G15)

where R̂ = exp(iΦ̂q Q̂/~). It is worth noticing that Eq. (G15) is equivalent to Eq. (G14).

After truncating the atomic space to only two states, the bare qubit Hamiltonian reduces to

Ĥqubit = ~(ω0/2)σ̂z, The resulting unitary operator in the reduced space is

R̂ = exp
[
ησ̂x(â− â†)

]
, (G16)

and Eq. (G15) becomes

Ĥcg = ĤLC + R̂†ĤqubitR̂ . (G17)

We finally obtain

Ĥcg = ~ωcâ
†â+ ~ωeg

2
{
σ̂z cosh

[
2η(â− â†)

]
+ iσ̂y sinh

[
2η(â− â†)

]}

= ~ωcâ
†â+ ~ωeg

2 σ̂′z , (G18)

where, in the last line, we indicated with the primed symbol the transformed Pauli operator:

σ̂′z = R̂†σ̂zR̂ . (G19)

3. Gauge invariance

The Hamiltonians derived in the previous sections are connected (in full analogy with

the dipole to Coulomb transformation), by a unitary transformation. It results that such
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unitary operator coincides with R̂ that we used in the previous subsection to implement the

minimal coupling replacement (charge gauge). For example, the flux gauge Hamiltonian can

be obtained starting from Ĥcg by performing the unitary transformation [11]

Ĥfg = R̂ĤcgR̂
† = Ĥqubit + R̂ĤLCR̂

† . (G20)

By using the generalized minimal coupling replacement, described in the previous sub-

section, gauge invariance holds even after the reduction of the atomic degrees of freedom to

only two levels. Specifically, it results [11]

Ĥfg = R̂ĤcgR̂† = Ĥqubit + R̂ĤLCR̂† . (G21)

The inverse transformation from the charge to the flux gauge is straightforward. The

unitary transformation procedure also allows to derive the relationship between the operators

in the different gauges. For example, we can derive the charge gauge operators (labelled with

the ‘prime’ superscript):

σ̂′x = R̂†σ̂xR̂ = σ̂x (G22a)

σ̂′z = cosh
[
2η(â− â†)

]
σ̂z + i sinh

[
2η(â− â†)

]
σ̂y (G22b)

σ̂′y = cosh
[
2η(â− â†)

]
σ̂y − i sinh

[
2η(â− â†)

]
σ̂z (G22c)

â′ = â− ησ̂x . (G22d)

It turns out that, in the above equations, the only gauge invariant qubit operator is σ̂x

while the others have to be transformed accordingly to the considered gauge. Finally, we

notice that the oscillator momentum Q̂ = iQzpf(â† − â) is also invariant under the unitary

transformation.

Appendix H: Qubit-oscillator coupling by mutual inductance

We now discuss the qubit-resonator system which is inductively coupled to a LC resonator

via mutual inductance (see Figure 8). In the flux gauge, the Kirchoff equations yield the

Hamiltonian:

Ĥfg = Ĥqubit + ĤLC −
1
M̃

Φ̂ Φ̂q , (H1)
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where the qubit Hamiltonian is

Ĥqubit = 1
2Cq

Q̂2
q + 1

2L̃q

Φ̂2
q − EJ cos

[
2π(Φ̂q − Φext)/Φ0)

]
,

and the oscillator Hamiltonian is

ĤLC = 1
2C Q̂

2 + 1
2L̃

Φ̂2 .

Assuming for symplicity L� M , we obtain for the renormalized inductances: L̃ = (LqL−
M2)/Lq ≈ L ; L̃q = (LqL −M2)/L ≈ Lq where Lq is the qubit inductance. The relevant

dynamical variables are the flux Φ at the node between the inductor and the capacitor of the

oscillator (see Figure 8), Q the corresponding charge (the canonical momentum conjugate to

Φ), Φq corresponding to the flux through the qubit and the qubit charge Qq (the canonical

momentum conjugate to Φq). The last term in the right-hand side of Eq. (H1) describes

the coupling of the LC-resonator with the superconducting artificial atom via the effective

mutual inductance M̃ = (LLq −M2)/M ≈ LLq/M (see also Appendix I). Hence, Eq. (H1)

can be written as

Figure 8. The fluxonium-LC circuit inductively coupled to a LC resonator.

Ĥfg = Q̂2

2C + Φ̂2

2L +
Q̂2

q

2Cq

+
Φ̂2

q

2Lq

− EJ cos
[
2π(Φ̂q − Φext)/Φ0)

]
− M

LLq

Φ̂Φ̂q . (H2)

The coupling strength in Eq. (H2) is proportional to the mutual inductance M . When

the energy level spectrum of the superconducting artificial atom displays a high degree of

anharmonicity, such that the higher-energy levels are well spaced with respect to the first two,
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as in Appendix G10, Eq. (H2) can be projected in a two-level space spanned by the flux-qubit

eigenstates |g〉 (ground state) and |e〉 (excited state) using the operator P̂ = |e〉〈e|+ |g〉〈g|.
The resulting qubit-oscillator Hamiltonian coincides with Eq. (G10).

It is possible to define a unitary operator in order to perform a transformation from flux

to charge gauge:

Ĥcg = R̂ĤfgR̂
† with R̂ = exp

[
i
M

Lq

Q̂ Φ̂q

]
. (H3)

We obtain

Ĥcg = Q̂2

2C + Φ̂2

2L + 1
2Cq

[
Q̂q −

M

Lq

Q̂

]2

+
Φ̂2

q

2Lq

− EJ cos [2π̂(Φq − Φext)/Φ0)] . (H4)

In this case we observe that the interaction term is transformed and, instead of involving the

product of the two coordinates, it involves the product of the two momenta. The charge gauge

interaction closely resembles the minimal coupling replacement for natural atoms. However,

it is worth pointing out that in the case of time-dependent interactions [M → M(t)], also

R̂(t) becomes time dependent. As a result, the correct Hamiltonian in the charge gauge is

no more Ĥcg = R̂ĤfgR̂
†, but it becomes:

Ĥcg(t) = R̂(t)Ĥfg(t)R̂†(t) + i
˙̂
RR̂† , (H5)

which contains additiona terms with respect to Eq. (H4).

It is interesting to compare this result with the corresponding one for natural atoms in

Appendix E (see in particular the discussion in the last paragraph). For natural atoms,

the Hamiltonian resulting from the minimal coupling replacement is the fundamental one

(especially in the presence of time-dependent interactions). However, in the present case,

Ĥcg (which describes the minimal coupling replacement for superconducting circuits) is not

the fundamental Hamiltonian. Here we can adopt an operative definition: the fundamen-

tal gauge is the one where the Hamiltonian does not change its structure in the presence

of time-dependent interactions, which actually is Ĥfg (the analogous of the dipole gauge

Hamiltonian).

This difference between circuit QED and cavity QED systems arises from the different

origin of interactions. For natural atoms, the specific form of the interaction is given by

the minimal coupling replacement (the interaction Hamiltonian can be obtained from the

gauge principle applied to the Dirac equation and then taking the nonrelativistic limit).
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On the other hand, in circuit QED we do not have such a fundamental theory, it is an

effective one which can be derived from the Kirchoff equations. We also notice that these

differences result into a coordinate-momentum interaction Hamiltonian for natural atoms

and into a coordinate-coordinate interaction (which becomes momentum-momentum in the

charge gauge) for superconducting artificial atoms inductively coupled to an oscillator. The

different kind of behaviour of cavity and circuit QED systems after switching off the inter-

action, shown in the main text [cf. Fig. 4 and Fig. 5], originates from these differences.

Appendix I: Coupling to a transmission line

We now discuss the qubit-resonator system that it is inductively coupled to a transmission

line [cf. Fig. 1(b) in main text]. After discretization, the equivalent circuit for the transmis-

sion line (TL) is a set of coupled resonators, each of size ∆x. The properties of the line are

given by the effective impedance. Here, we assume it homogeneous, thus LT = lT ∆x and

CT = cT ∆x are the inductance and capacitance at each site, while lT and cT are those per

unit of length. The mutual inductance is M . See Fig. 9 for a representation of the circuit.

Figure 9. The fluxonium-LC circuit coupled to a transmission line (TL) in the flux gauge.
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Figure 10. The fluxonium-LC circuit coupled to a transmission line (TL) in the charge gauge.

In the flux gauge, the Kirchoff equations yield the Hamiltonian:

Hfg = Hqubit + 1
2CQ

2 + 1
2L̃

Φ2 + 1
2L(Φ− Φq)2 (I1)

+ 1
CT

∑

j=1
Q2

j + 1
2L̃T

(Φn+1 − Φn)2 + 1
2LT

∑

j 6=n

(Φj+1 − Φj)2

+ 1
2M̃

(Φ− Φq)(Φn+1 − Φn) .

The terms in the first line include the qubit and the resonator Hamiltonians and the

resonantor-qubit coupling with a renormalized inductance L̃ = (LTL−M2)/LT . The second

line includes the Hamiltonian of the linear chain, i.e., the transmission line. Notice that in the

inductor coupled to the oscillator the inductance is also renormalized: L̃T = (LTL−M2)/L.

The term in the last line describes the coupling of the LC-resonator with the transmission line

via the effective mutual inductance M̃ = (LLT −M2)/M . We are interested in the situation

where the TL is used for readout, thus the circuit is designed to have M � L. Consequently,

we can safely approximate the renormalized terms by its bare values L̃T = LT +O(M2) ∼= LT

and L̃ = L+O(M2) ∼= L. Notice that, in Eq. (I1) the dynamical variables are Φj, the node

fluxes in each capacitor (Qj their canonical charges). Φ is the flux through the capacitor

of the oscillator, and Q the conjugate canonical charge. Finally, Φq is the flux through the

qubit. Notice that this Hamiltonian is written in the flux gauge.
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Finally, introducing the position-dependent flux φ(x) for the open transmission line, and

the charge density ρ̂(x) = Q̂j/∆x, the Hamiltonian in the continuum (∆x→ 0) reads

Hfg = HLC +Hqubit −
ΦqΦ

2 (I2)

+
∫
dx
{ 1

2cT

ρ2(x) + 1
2lT

[∂xφ(x)]2
}

+ M

2LlT
(Φ− Φq)

∫
dx ∂xφ(x) .

This Hamiltonian can be quantized promoting the canonical coordinates to operator and

introducing the commutation relations [Φ̂q, Q̂q] = i~, and [Φ̂, Q̂] = i~, and [φ̂, ρ̂] = i~δ(x−x′).
Performing then the projection on the two-level subspace for the qubit, we end up with

Ĥtot
fg = Ĥfg + Ĥtl + V̂fg , (I3)

where

Ĥtl =
∫
dx
{ 1

2cT

ρ2(x) + 1
2lT

[∂xφ(x)]2
}
, (I4)

and

V̂fg = αΦzpf(â+ â† − 2ησ̂x)
∫
dx ∂xφ̂(x) , (I5)

with α = M/(LlT ). It is important to notice that the coupling operator to the two-level

system is (â+ â†− 2ησ̂x). We emphasize that this is a consequence of the chosen dynamical

variables, which define the gauge, in this case the flux one.

We can also work in the charge gauge (See fig. 10):

Ĥtot
cg = R†Ĥtot

fg R = Ĥcg + Ĥtl + V̂cg , (I6)

where

V̂cg = αΦzpf(â+ â†)
∫
dx ∂xφ̂(x) . (I7)

In this case, the coupling to the transmission depends only on the oscillator operators.

The position-dependent flux of the transmission line can be expanded in terms of photon

operators as

φ̂(x) = Λ
∫ dω√

ω

(
b̂ωe

ikωx + h.c.
)
, (I8)

where Λ =
√
~Z0/4π, with Z0 the impedance of the transmission line, kω = ω/v is the

wavenumber (v = 1/
√
lT cT is the phase velocity of the transmission line), and the photon
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operators obey the commutation rules
[
b̂ω, b̂

†
ω′

]
= δ(ω − ω′). By using this expansion, the

oscillator-line interaction Hamiltonian can be written as

V = i~
Φ̂L

Φzpf

∫
dωg(ω)(b̂ω − b̂†ω) , (I9)

where Φ̂L is the flux across the oscillator inductor, and ~g(ω) = αΦzpfΛ
√
ω/v . Note that

this expression describes the interaction potential in both the flux and charge gauges. In

the first case Φ̂fg
L = Φzpf(â + â†), in the latter Φ̂cg

L = Φzpf(â + â† − 2ησ̂x). Equation (I9) is

the starting point for the derivation of the input-output relationship for an LC oscillator

inductively (weakly) coupled to an open transmission line. An analogous interaction term

can be derived for an optical cavity [69].

Appendix J: Input-output theory in the USC regime: LC oscillator coupled to a

transmission line

In the following we assume that g(ω) (with g(ω) = 0 for ω < 0) is a slowly varying

function of frequency, as compared to the line-widths of the system resonances. We also

define ϕ̂ = Φ̂L/Φzpf . Using Eq. (I9), the Heisenberg equation of motion for b̂ω becomes

˙̂
bω = −iωb̂ω − g(ω) ϕ̂ . (J1)

By expanding the operator ϕ̂, using the eigenstates of the interacting system {|i〉} and

defining P̂ij = |i〉〈j|, we obtain:

ϕ̂ =
∑

i,j

ϕijP̂ij(t) .

The solution of Eq. (J1) can be expressed in two different ways; depending if we choose to

integrate using the input initial conditions at t = t0 or the input initial conditions at t = t1,

with t0 � t1, and t0 < t < t1. By integrating Eq. (J1), the two solutions are, respectively,

b̂ω(t) = e−iω(t−t0)b̂ω(t0)−
∑

i,j

g(ωji)ϕij

∫ t

t0
dt′e−iω(t−t′)P̂ij(t′) , (J2a)

b̂ω(t) = e−iω(t−t1)b̂ω(t1) +
∑

i,j

g(ωji)ϕij

∫ t1

t
dt′e−iω(t−t′)P̂ij(t′) . (J2b)

Subtracting the solution given by Eq. (J2b) from that given by Eq. (J2a), after some algebra

we obtain

b̂out
ω (t) = b̂in

ω (t)−
∑

i,j

g(ωji)ϕij

∫ t1

t0
dt′e−iω(t−t′)P̂ij(t′) . (J3)
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In Eq. (J3) we defined the output operator as b̂out
ω (t) = exp [−iω(t− t1)]b̂ω(t1) and the input

operator as b̂in
ω (t) = exp [−iω(t− t0)]b̂ω(t0). The positive frequency component of the output

(input) vector potential operator is defined as

φ̂+
out(in)(t) = Λ

∫ ∞

0

dω√
ω
b̂out(in)

ω (t) , (J4)

where, for the sake of simplicity, we disregarded the spatial dependence. From Eq. (J3) we

obtain

φ̂+
out(t) = φ̂+

in(t)− Λ
∑

i,j

ϕij

∫ ∞

0
dω

g(ω)√
ω

∫ t1

t0
dt′e−iω(t−t′)P̂ij(t′) . (J5)

Let us assume that P̂ij(t) ≈ exp [−iωjit]P̂ij(0), perform the limits t0 → −∞ and t1 →∞,

consider g(ω) and A(ω) slowly varying functions of ω around the value ωji (i.e., approxi-

mately constant respect to the linewidth), and use the relation

∫ ∞

−∞
dt′e−i(ωji−ω)t′ = 2πδ(ω − ωji) .

Observing that only those terms oscillating with frequency ωji > 0 can give a nonzero

contribution (owing to the factor δ(ω − ωji) with ω > 0) and extending the integration in

ω, we have for i < j:

∫ ∞

0
dω
g(ω)√
ω

∫ t1

t0
dt′e−iω(t−t′)P̂ij(t′)→

g(ωji)√
ωji

∫ ∞

−∞
dt′P̂ij(t′)

∫ ∞

−∞
dωe−iω(t−t′)

= 2πg(ωji)√
ωji

P̂ij(t) . (J6)

Using Eq. (J6) and inserting the result in Eq. (J5), we obtain

φ̂+
out(t) = φ̂+

in(t)− 2πΛ
∑

i<j

g(ωji)√
ωji

ϕijP̂ij(t) . (J7)

Note that g(ωji) is different from zero only for ωji > 0 (hence for i < j). We now also

calculate the output voltage operator using the relation V̂ +
out(t) = ˙̂

φ+
out(t). From Eq. (J7),

V̂ +
out(t) = V̂ +

in (t)− 2πΛ
∑

i<j

g(ωji)√
ωji

ϕij
˙̂
Pij(t) , (J8)

which can be expressed as

V̂ +
out(t) = V̂ +

in (t)−K V̂ +
L (t) , (J9)
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where K = 2παΛ2/(~v), and

V̂ +
L = Φzpf

∑

i<j

ϕij
˙̂
Pij(t) .

Notice that when the oscillator interacts in the USC regime with a qubit, V̂ +
L cannot be

expanded in terms of the destruction photon operator only, independently on the chosen

gauge. It also contains contributions from the photon creation operator â†.

We observe that an analogous input-output theory can be developed for optical cavities

interacting with a matter system in the USC regime [35, 69]. In the presence of systems

interacting quite strongly with thermal reservoirs, this approach can be improved using

ab-initio approaches [70] or introducing quasinormal modes [63].
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[59] P. Forn-Dı́az, J. J. Garćıa-Ripoll, B. Peropadre, J.-L. Orgiazzi, M. A. Yurtalan, R. Belyan-

sky, C. M. Wilson, and A. Lupascu, “Ultrastrong coupling of a single artificial atom to an

electromagnetic continuum in the nonperturbative regime,” Nat. Phys. 13, 39–43 (2017).

[60] C. K. Law, “Interaction between a moving mirror and radiation pressure: A Hamiltonian

formulation,” Phys. Rev. A 51, 2537 (1995).

[61] V. Macr̀ı, A. Ridolfo, O. Di Stefano, A. F. Kockum, F. Nori, and S. Savasta,“Nonperturbative

dynamical Casimir effect in optomechanical systems: Vacuum Casimir-Rabi splittings,” Phys.

Rev. X 8, 011031 (2018).

[62] E. A. Power and T. Thirunamachandran, “Quantum electrodynamics in a cavity,” Phys. Rev.

A 25, 2473–2484 (1982).

[63] S. Franke, S. Hughes, M. K. Dezfouli, P. T. Kristensen, K. Busch, A. Knorr, and M. Richter,

“Quantization of quasinormal modes for open cavities and plasmonic cavity quantum electro-

dynamics,” Phys. Rev. Lett. 122, 213901 (2019).

[64] E. del Valle, A. Gonzalez-Tudela, F. P. Laussy, C. Tejedor, and M. J. Hartmann, “Theory

of frequency-filtered and time-resolved n-photon correlations,” Phys. Rev. Lett. 109, 183601

(2012).
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The Dicke model, which describes the dipolar coupling between N two-level atoms and a quantized
electromagnetic field, seemingly violates gauge invariance in the presence of ultrastrong light-matter coupling,
a regime that is now experimentally accessible in many physical systems. Specifically, it has been shown that,
while the two-level approximation can work well in the dipole gauge, the Coulomb gauge fails to provide the
correct spectra in the ultrastrong coupling regime. Here we show that, taking into account the nonlocality of
the atomic potential induced by the two-level approximation, gauge invariance is fully restored for arbitrary
interaction strengths, even in the N → ∞ limit. Finally, we express the Hopfield model, a general description
based on the quantization of a linear dielectric medium, in a manifestly gauge-invariant form, and show that the
Dicke model in the dilute regime can be regarded as a particular case of the more general Hopfield model.

DOI: 10.1103/PhysRevA.102.023718

I. INTRODUCTION

Models describing the interaction between one or few
modes of the electromagnetic field in a resonator and indi-
vidual or ensembles of few level atoms are a cornerstone
of quantum optics. The simplest examples are the quantum
Rabi [1–3] and the Dicke Hamiltonians [4–7] describing,
respectively, the interaction of a single-mode bosonic field
with a two-level atom, and with an ensemble of N two-level
atoms. Their simplified version obtained after the rotating
wave approximation are the Jaynes-Cummings and Tavis-
Cummings models [8,9], respectively.

Recently, it has been argued that truncations of the atomic
Hilbert space, to obtain a two-level description, violate the
gauge principle [10–12]. Such violations become particularly
relevant in the case of ultrastrong (USC) light-matter cou-
pling, a regime, now experimentally accessible in many phys-
ical systems, in which the coupling strength is comparable
to the transition energies in the system [13,14]. In particular,
it has been shown that, while in the electric dipole gauge
the two-level approximation can be performed as long as the
Rabi frequency remains much smaller than the energies of
all higher-lying levels, it can drastically fail in the Coulomb
gauge, even for systems with an extremely anharmonic spec-
trum [11]. The Dicke Hamiltonian, a model of key importance
for the description of collective effects in quantum optics,
shares analogous worrying problems, not only in the presence
of a small number N of atoms, but also in the so-called
dilute regime, where N → ∞, while the coupling strength be-
tween the field and the resulting collective excitations remains
finite [11]. Examples of realizations of the Dicke model in the
USC dilute regime include intersubband organic molecules

*Corresponding author: ssavasta@unime.it

[15–20], intersubband polaritons [21–24], and Landau
polaritons [25–29].

In quantum electrodynamics, the choice of gauge influ-
ences the form of light-matter interactions. However, gauge
invariance implies that all physical results should be inde-
pendent of this formal choice. As a consequence, the ob-
servation that the quantum Rabi and Dicke model provide
gauge-dependent energy spectra casts doubts on the reliability
of these widespread descriptions.

The source of these gauge violations has been recently
identified and a general method for the derivation of light-
matter Hamiltonians in truncated Hilbert spaces, able to pro-
duce gauge-invariant physical results, even for extreme light-
matter interaction regimes, has been proposed [30]. According
to the gauge principle, the coupling of the matter system
with the electromagnetic field is introduced by the minimal
replacement rule p̂ → p̂ − qÂ, where p̂ is the momentum
of an effective particle, Â is the vector potential of the
field, and q is the charge. It has been known for decades
that approximations in the description of a quantum system
with space truncation can give rise to nonlocal potentials
which can always be expressed as potentials depending on
both position and momenta: V (r, p̂) [31]. In these cases, in
order not to ruin the gauge principle, the minimal coupling
replacement has to be applied not only to the kinetic energy of
the particles in the system, but also to the nonlocal potentials
in the effective Hamiltonian of the matter system [31–33].
Once this procedure is applied, it is possible to obtain gauge-
invariant models, even in the presence of extreme light-matter
interaction regimes [30,34]. This method has been applied to
obtain a quantum Rabi model satisfying the gauge principle
[30]. In the following, we will refer to models not violating
gauge invariance as gauge-invariant (GI) models, even if the
form of the Hamiltonians change after a gauge transformation.
The generalization to N two-level systems (Dicke model) is
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briefly discussed in the Supplemental Material of Ref. [34].
The resulting GI quantum Rabi and Dicke Hamiltonians in the
Coulomb gauge differ significantly in form from the standard
ones and both contain field operators to all orders. A recent
overview of these gauge issues in TLSs can be found in
Ref. [35].

Here, after revisiting the derivation of the GI Dicke model,
we derive the corresponding dilute regime, also known as the
thermodynamic limit [36–39]. In such a limit, applying the
Holstein-Primakoff transformation [40], the standard Dicke
Hamiltonians in the dipole and in the Coulomb gauges, both
bilinear in the bosonic operators, are obtained (see, e.g.,
Ref. [36]). Such Hamiltonian can be diagonalized exactly, us-
ing a multimode Bogoliubov transformation. However, it has
been shown that the effective Hamiltonians in the Coulomb
and dipole gauge give rise to polariton eigenfrequencies
(modes) which can significantly differ for large coupling
strengths [11]. Although the form of the gauge-invariant
Dicke model contains field operators to all orders and appears
very different from a bilinear Hamiltonian, we show that, in
the thermodynamic limit, a bilinear Hamiltonian very similar
to the standard one is obtained. Specifically, the resulting
Dicke Hamiltonian in the Coulomb gauge only differs from
the standard one for the coefficient of the diamagnetic term
(proportional to Â2). However, we show that such a difference
is sufficient to restore gauge invariance.

Another widespread description of the interaction between
the quantized electromagnetic field and collective excitations
is the Hopfield model [41]. This model was initially intro-
duced to describe the interaction of the electromagnetic field
with a harmonic resonant polarization density of a three-
dimensional (3D) dielectric crystal. Nowadays, it is used to
describe the interaction between free or confined light and dif-
ferent kinds of collective excitations, such as optical phonons,
excitons in nanostructures, magnons, and plasmonic crystals,
which can be described as bosonic fields. We compare the
(GI) Dicke and the Hopfield models and apply to the latter
the concepts derived for obtaining the first. In doing so, we
provide a method to derive in a simple way manifestly gauge-
invariant Hopfield models, having only knowledge about the
matter polarization field.

II. DICKE MODEL WITH FINITE NUMBER OF DIPOLES

For the following analysis, we consider a generic setting as
shown in Fig. 1, where a finite number of electric dipoles are
coupled to the single mode of the electromagnetic field in a
resonator (see, e.g., Ref. [11]). The dipoles can be modeled
as effective particles of mass m in potentials V (xi ), where
xi is the separation between the charges q and −q of the ith
dipole. In the absence of any dipole-dipole interaction, and of
the interaction with the electromagnetic field, the Hamiltonian
describing a system of N effective particles can be written as
Ĥ (N )

0 = ∑N
i=1 Ĥ (i)

0 , where

Ĥ (i)
0 = p̂2

i

2m
+ V (xi ). (1)

Assuming that the two lowest-energy levels (h̄ω0 and h̄ω1)
are well separated by the higher-energy levels and considering
the system of dipoles interacting with a field mode of fre-

FIG. 1. Sketch of an optical resonator coupled to N identical,
distinguishable, quantum emitters. We consider two-level emitters
that can be described by means of collective operators Ĵα with α ≡
{x, y, z}, which obey the angular momentum commutation relations
(with cooperation number j = N/2). These atoms interact with a
bosonic mode of frequency ωc via a dipole interaction. The resulting
normalized collective coupling strength scales ∝√

N .

quency ωc ∼ ωx, where ωx ≡ ω1,0 (here ωi, j ≡ ωi − ω j), we
can truncate the Hibert space of each dipole by considering as
a basis only the two lowest-energy levels. In this case, each
dipole can be modeled as a pseudospin, and the Hamiltonian
describing the system of N dipoles, in the absence of interac-
tion with the electromagnetic field, can be written in terms of
collective angular momentum operators Ĵα = (1/2)

∑N
i=1 σ̂ (i)

α

(α = x, y, z) as

Ĥ(N )
0 = �̂Ĥ (N )

0 �̂ = h̄ωx(Ĵz + j), (2)

where σ̂ (i)
α are Pauli matrices and j = N/2, and here �̂ is

the operator projecting each effective particle into a two-level
space. Notice that, after the projection, the operator �̂ repre-
sents the identity operator for the linear space constituted by
the tensor product of all the N two-level spaces. Throughout
this article we will use calligraphic symbols (as, for example,
Ĥ(N )

0 ) to indicate quantum operators in truncated Hilbert
spaces. Notice that the ground state of the system corresponds
to all the spins in their ground state: | j, jz = − j〉, and it is
an eigenstate of Ĥ(N )

0 with eigenenergy equal to zero. When
all the dipoles are in their excited state, the corresponding
collective state | j, jz = j〉 has energy h̄ωxN .

A. Quantum Dicke model in the Coulomb gauge

By applying the minimal coupling replacement, the Hamil-
tonian for the system constituted by N dipoles and a single-
mode electromagnetic resonator in the Coulomb gauge can be
written as

Ĥ (N )
cg =

N∑
i=1

[
( p̂i − qÂ)2

2m
+ V (xi )

]
+ Ĥc, (3)

where Ĥc = h̄ωcâ†â is the bare photonic Hamiltonian includ-
ing a single mode with resonance frequency ωc and annihi-
lation (creation) operator â (â†), and Â = A0(â + â†) is the
vector potential along the x direction with a zero-point ampli-
tude A0. Notice that the vector potential has been assumed
to be constant in the spatial region where the dipoles are
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present. This approximation can be relaxed, even maintaining
the dipole approximation.

It has been shown [30,42] that the minimal coupling
replacement p̂ → p̂ − qÂ determining Eq. (3) can also be
implemented by applying to the matter system Hamiltonian
the following unitary transformation:

Ĥ (N )
cg = ÛN Ĥ (N )

0 Û †
N + Ĥc, (4)

where

ÛN = exp

(
i
q

h̄
Â

N∑
i=1

xi

)
. (5)

By expanding the kinetic terms, Eq. (3) can be written as the
sum of three contributions:

Ĥ (N )
cg = Ĥ (N )

0 + Ĥc + V̂ (N )
cg , (6)

where V̂cg = V̂Ap + V̂D describes the interaction terms

V̂ (N )
Ap = Â

N∑
i=i

p̂i

m
(7)

and

V̂ (N )
D = N

q2

2m
Â2 = D(â + â†)2, (8)

where D = NA2
0q2/(2m). Using the Thomas-Reiche-Kuhn

(TRK) sum rule [43], the coefficient in the diamagnetic term
can be written as q2/2m = ∑

k ωk, j |dk, j |2/h̄, where dk, j =
〈ψk|qx|ψ j〉 are the dipole matrix elements between two en-
ergy eigenstates of the effective particle, that in the following
we assume to be real quantities. The TRK sum rule has
a precise physical meaning, since it expresses the fact that
the paramagnetic and diamagnetic contributions to the phys-
ical current-current response function cancel in the uniform
static limit, which is a consequence of gauge invariance
[44–46]. The physical current operator, corresponding to the
Hamiltonian in Eq. (3), is

Ĵphys = δĤcg

δÂ
= q

N∑
i=1

p̂i

m
+ N

q2

m
Â, (9)

and the corresponding current-current response function in the
uniform static limit is proportional to [46]

−2N
∑

k

ωk, j |dk, j |2 + N
h̄q2

m
= 0. (10)

This relationship expresses the fact that the paramagnetic (first
term on the left-hand side) and diamagnetic (second term
on the left-hand side) contributions to the physical current-
current response function cancel out in the uniform and static
limit [46]. It is interesting to observe that the TRK sum rule
remains valid even in the presence of interatomic potentials
[46]. Very recently, a TRK sum rule for the electromagnetic
field coordinates, which holds even in the presence of USC
interaction with a matter system, has been proposed [47].

Defining the adimensional coupling strengths ηk =
A0dk,0/h̄, the diamagnetic coefficient can be written as

D = Nh̄
∑

k

ωk,0 η2
k . (11)

The standard Dicke Hamiltonian in the Coulomb gauge can
be obtained from Eq. (3) truncating the Hilbert space of each
dipole to include only two energy levels:

H′(N )
cg = �̂Ĥ (N )

cg �̂ = ωcâ†â + h̄ωx(Ĵz + j)

+ 2h̄ωxη(â† + â)Ĵy + j
q2A2

0

m
(â† + â)2, (12)

where η ≡ η1 = A0d1,0/h̄, and the relation ih̄pi/m =
[xi, H (i)

0 ] has been used.
It has been shown that the two-level truncation for the ef-

fective particles ruins the gauge invariance [10]. In particular,
it has been argued that the Coulomb-gauge Hamiltonian in
Eq. (12) is not related by a unitary transformation (hence it
is not gauge equivalent) to the corresponding Hamiltonian
in the dipole gauge. Closely related developments have been
presented in Refs. [11,12,30]. We will discuss this issue in
detail below. Here we limit to showing that the Hamiltonian in
Eq. (12) does not satisfy the gauge principle and how to solve
this problem following Ref. [30]. This Hamiltonian can be
obtained, projecting in two-level spaces the full Hamiltonian
in Eq. (3). Using Eq. (4)

Ĥ′(N )
cg = �̂ÛN

∑
i

[
p̂2

i

2m
+ V (xi )

]
Û †

N�̂ + h̄ωcâ†â. (13)

By applying the unitary operator to the kinetic and potential
terms separately, observing that [V (xi ), ÛN ] = 0, we obtain

Ĥ′(N )
cg = �̂

∑
i

( p̂i − qÂ)2

2m
�̂ + �̂

∑
i

V (xi )�̂ + h̄ωcâ†â.

(14)

It has been shown that truncating the Hilbert space transforms
a local operator like V (xi ) into a nonlocal one which can
be expressed as a function of both position and momentum
[31]: �̂V (xi )�̂ = W (xi, p̂i ). Therefore, the Hamiltonian in
Eq. (14) contains operators [W (xi, p̂i )] depending also on the
particle momenta, where the minimal coupling replacement,
prescribed by the gauge principle, has not been applied.

In particular, we observe that, for a local potential, we have
〈x′|V |x〉 = V (x)δ(x − x′). By using the closure relation, it
can be expressed as V (x, x′) = ∑

n,n′ Vn.n′ψn(x)ψ∗
n′ (x′), where

ψn(x) = 〈x|ψn〉 and {|ψn〉} constitute a complete orthonormal
basis. Notice that the Dirac delta function can be reconstructed
only by keeping all the infinite vectors of the basis. Hence
any truncation of the complete basis can transform a local
potential into a nonlocal one. The action of the resulting
nonlocal potential on a generic state |ψ〉 in the position
representation is

〈x|V |ψ〉 =
∫

dx′〈x|V |x′〉〈x′|ψ〉 =
∫

dx′V (x, x′)ψ (x′).

(15)
Using the translation operator property, 〈x|T̂a|ψ〉 = exp[i(a −
x) p̂]ψ (x), we obtain from Eq. (15)

〈x|V |ψ〉 =
∫

dx′V (x, x′)ei(a−x)p̂ψ (x) = V (x, p̂)ψ (x). (16)

As an example, Fig. 2 shows as a local potential V (x) (in this
case a double-well potential) evolves into a nonlocal one when
increasing the truncation of the Hilbert space. Here n indicates
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FIG. 2. Example of nonlocal potentials V (x, x′) originating from
a local potential V (x) (in this case a double well) after the truncation
of the Hilbert space to the lowest n energy levels. Decreasing the
number of levels, the degree of nonlocality increases. We considered
the potential V (x̃) = Ek[−(β/2)x̃2 + (γ /4)x̃4], where x̃ is a dimen-
sionless coordinate [11], β = 3.95 and γ = 2.08 are dimensionless
coefficients, and Ek is the kinetic-energy coefficient: Ĥ0 = Ek ˆ̃p2/2 +
V (x̃). Note that only dimensionless quantities, as a function of
dimensionless quantities, have been plotted and the three axes have
been omitted.

the number of energy states included in the projection opera-
tor, starting from the ground state.

A formulation preserving the gauge principle can be ob-
tained replacing in Eq. (14) the terms

�̂V (xi )�̂ = W (xi, p̂i )

with

�̂W (xi, p̂i − qÂ)�̂.

Hence this problem, arising from the truncation of the Hilbert
space of the matter system, can be overcome by first applying
to the matter system Hamiltonian (in the absence of inter-
action) Ĥ0 the projection operator �̂, and then the unitary
operator ÛN as follows:

Ĥ (N )
0 → �̂Ĥ (N )

0 �̂ → ÛN�̂Ĥ (N )
0 �̂Û †

N .

Finally, if one asks that the resulting Hamiltonian be within
the truncated Hilbert space, one has to finally project:

ÛN�̂Ĥ (N )
0 �̂Û †

N → �̂ÛN�̂Ĥ (N )
0 �̂Û †

N�̂.

This method is not limited to truncated two-level spaces
but can be applied to any truncated Hilbert space to produce
light-matter interaction Hamiltonians satisfying the gauge
principle. Applying this procedure, we obtain

Ĥ(N )
cg = ÛNĤ(N )

0 Û†
N + h̄ωcâ†â, (17)

where ÛN = �̂ÛN�̂. Using repeatedly the properties of the
identity operator �̂ = �̂2, we obtain

ÛN = exp [2iη(â + â†)Ĵx]. (18)

Here, once the Hilbert space is truncated, the operator � is
assumed to describe the identity operator in the truncated
Hilbert space. This last procedure is essential in order to
obtain unitary operators acting on Ĥ0. According to the
gauge principle, the coupling with the electromagnetic field
has to compensate for the space- and time-dependent unitary
transformations applied to the wave function of the particle.
Field-dependent unitary operators can compensate for unitary
transformations of the quantum state of the particle even in
the presence of Hilbert space truncation. As shown in a very
recent work [48], this procedure is essential to implementing
the gauge principle in truncated Hilbert spaces.

The unitary transformation ÛNĤ0Û†
N describes the rotation

of the system of pseudospins around the x axis by an angle
φ̂ = 2η(â + â†). The resulting Hamiltonian is

Ĥ(N )
cg = h̄ωcâ†â + h̄ jωx + h̄ωx{Ĵz cos[2η(â† + â)]

+ Ĵy sin[2η(â† + â)]}. (19)

This result shows that the occurrence of a nonlocal potential,
arising from the truncation of the matter system Hilbert space,
changes significantly the structure of the Coulomb-gauge
interaction Hamiltonian (see, e.g., Ref. [49] for comparison).
The price that one has to pay for preserving the gauge prin-
ciple in such a truncated space is that the total Hamiltonian
contains field operators at all orders, in contrast to the standard
Coulomb gauge Hamiltonian in Eq. (12).

B. Dicke model in the dipole gauge

The Hamiltonian in the dipole gauge for a collection of
N effective particles, Ĥ (N )

dg , corresponds to the Power-Zienau-
Woolley Hamiltonian after the dipole approximation. It can be
obtained directly from the Hamiltonian in the Coulomb gauge
with the electric dipole approximation Eq. (3) by means of a
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gauge transformation, which is also a unitary transformation:

Ĥ (N )
dg = T̂N Ĥ (N )

cg T̂ †
N , (20)

where T̂N = Û †
N . We obtain

Ĥ (N )
dg = Ĥ (N )

0 + T̂N ĤcT †
N . (21)

Applying the Baker-Campbell-Hausdorff lemma, we have

Ĥ (N )
dg = Ĥ (N )

0 +Ĥc + i
qA0

h̄
(â† − â)

∑
i

xi+
(

qA0

h̄

)2 ∑
i, j

xix j .

(22)

The standard Dicke Hamiltonian in the dipole gauge can be
obtained from Eq. (22) truncating the Hilbert space of each
dipole to include only two energy levels: Ĥ(N )

dg = �̂Ĥ (N )
dg �̂.

Observing that q�̂
∑

i xi�̂ = 2d1,0Ĵx, and using the fact that
�̂ is the identity operator for the resulting collection of two-
level systems, we obtain

Ĥ(N )
dg = h̄ωcâ†â + h̄ωx(Ĵz + j) + 2 ih̄η ωc(â† − â)Ĵx

+ 4h̄ η2 ωc Ĵ2
x . (23)

Comparing Eq. (4) and Eq. (21) (notice that T̂N = Û †
N ), we

observe that, while the Coulomb-gauge Hamiltonian can be
obtained by applying a unitary transformation to the bare
matter Hamiltonian, the dipole-gauge Hamiltonian is obtained
by applying the H.c. transformation to the bare photonic
Hamiltonian.

We will show in the next subsection that, in contrast to
the standard derivation of the Coulomb-gauge Dicke Hamil-
tonian, the dipole gauge Hamiltonian in Eq. (23) does not
violate the gauge principle. This behavior can be understood
by observing that a truncation on the number of modes in
the photonic system, as a single-mode description of the res-
onator, despite determining a loss of spatial locality [50], does
not introduce any spatial nonlocality in the quadratic potential
of the single-mode Hamiltonian, since different normal modes
are independent and correspond to different effective particles.
On the contrary, truncating the Hilbert space of an individual
mode, e.g., considering a few photon system, could produce
issues analogous to those appearing in the Coulomb gauge.

Equation (23) describes the Dicke Hamiltonian in the
dipole gauge. It includes a self-polarization term induced by
the interaction with the electromagnetic field (∝Ĵ2

x ). Neglect-
ing it can lead to unphysical results [51] and to the loss
of gauge invariance. This Hamiltonian slightly differs from
that derived in [11], where the intra-atom self-polarization
terms ∝x2

i are included in the atomic potentials and give
rise to a renormalization of the atomic transition frequency
ω1,0 and of the coupling η. While the full inclusion of these
terms into the qubit Hamiltonian might seem to be the most
accurate approach to derive a reduced two-level Hamiltonian,
it applies the two-level truncation to the different terms of the
light-matter interaction Hamiltonian with a different level of
accuracy. Specifically, while the terms ∝x2

i are included in
the atomic potentials before the diagonalization of the atomic
Hamiltonian, the other terms are taken into account only after
the application of the two-level approximation. Moreover,
the resulting self-polarization term Ĵ2

x = (1/4)
∑

i, j σ̂
(i)
x σ̂

( j)
x

still includes the intra-atomic contributions (i = j), although
these determine only a rigid shift of all the energy levels. In
Ref. [11] it is shown that, when the coupling strength is quite
high, including the intra-atom self-polarization terms in the
atom potential before the diagonalization of the full atomic
Hamiltonian, can result in less accurate results.

C. Gauge invariance of the Dicke model

The Dicke Hamiltonian in the dipole gauge in Eq. (23) can
also be derived directly applying a gauge (unitary) transfor-
mation to the Dicke Hamiltonian in the Coulomb gauge in
Eq. (17) [or alternatively in Eq. (19)]:

Ĥ(N )
dg = T̂NĤ(N )

cg T̂ †
N , (24)

where T̂N = Û†
N . Equation (24) demonstrates that the two

formulations of the Dicke model Ĥ(N )
cg and Ĥ(N )

dg are related
by a gauge transformation. Such a relation is not fulfilled if
Ĥ(N )

cg is replaced by Ĥ′(N )
cg .

III. DICKE MODEL IN THE N → ∞ LIMIT

The starting point for our analysis in the thermodynamic
limit is the Holstein-Primakoff representation [40] of the an-
gular momentum operators Ĵz = b̂†b̂ − j, Ĵ+ = b̂†

√
2 j − b̂†b̂,

and Ĵ− = Ĵ†
+ [notice that Ĵ± = Ĵx ± iĴy]. Here b̂ and b̂† are

bosonic operators. This allows one to obtain effective Hamil-
tonians that are exact in the standard thermodynamic limit
N → ∞ and η → 0, with η

√
N → λ remaining a finite quan-

tity.
We proceed in the thermodynamic limit by replacing

the angular momentum operators introduced in the previous
section by using the Holstein-Primakoff representation, ex-
panding the square roots, and finally neglecting terms with
powers of j in the denominator, since these go to zero in the
considered limit [52]. We can start from the Hamiltonian of
the collective spin system in the absence of interaction with
the electromagnetic field in Eq. (2). We obtain

Ĥ0 = h̄ωxb̂†b̂. (25)

A. Dipole gauge

Applying the Holstein-Primakoff representation to Eq. (23)
and performing the thermodynamic limit (N → ∞, η

√
N →

λ), we obtain

Ĥdg = h̄ωcâ†â + h̄ωxb̂†b̂ + ih̄λ ωc(â† − â)(b̂ + b̂†)

+ h̄ωc λ2 (b̂ + b̂†)2. (26)

B. Coulomb gauge

In contrast to the Dicke Hamiltonians in the dipole gauge
Ĥ(N )

dg , and in the standard Coulomb gauge Ĥ′(N )
cg , the correct

Coulomb gauge Dicke Hamiltonian Ĥ(N )
cg contains field oper-

ators at all orders. At a first sight, this feature prevents the
possibility to obtain a harmonic Dicke Hamiltonian in the
thermodynamic limit as obtained from Ĥ(N )

dg . Hence the ther-
modynamic limit, apparently, would destroy gauge invariance.
Actually, as we are going to show, this is not the case.
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Starting from Eq. (19), performing a series expansion of
cos [2η(â† + â)] and sin [2η(â† + â)], we obtain

Ĥ(N )
cg = h̄ωcâ†â + h̄

Nωx

2
+ h̄ωx(b̂†b̂ − N/2)

× [1 − 2η2(â† + â)2 + O(η4)]

− ih̄ωx

√
N

2
(b̂† − b̂)[2η(â† + â) + O(η3)]. (27)

In the thermodynamic limit (N → ∞,
√

Nη → λ), only terms
up to the second order in η remain different from zero, and we
finally obtain

Hcg = h̄ωcâ†â + h̄ωxb̂†b̂ − ih̄ωxλ (b̂† − b̂)(â†

+ â) + h̄D(â† + â)2, (28)

where we defined D = ωxλ
2. As a result, also the correct

Coulomb gauge Hamiltonian H(N )
cg [Eq. (19)] reduces to a

Hamiltonian which describes a harmonic system constituted
by two interacting harmonic oscillators, like the dipole gauge
Hamiltonian.

In the same limit, the standard Coulomb gauge Hamilto-
nian H′(N )

cg , not satisfying the gauge principle, becomes

H′
cg = h̄ωcâ†â + h̄ωxb̂†b̂ − ih̄ωxλ (b̂† − b̂)(â† + â)

+ h̄D′(â† + â)2, (29)

where we used Eq. (11), and defined D′ = ∑
k ωk,0λ

2
k = D/h̄.

Ĥ′
cg in Eq. (29) is very similar to Ĥcg in Eq. (28). They only

differ for the diamagnetic coefficient multiplying the term
(â† + â)2. While the coefficient in Eq. (29) (D′) contains a
sum over all the allowed transitions from the ground state, the
one in Eq. (28) (D < D′), more consistently, contains only the
contribution from the single two-level transition considered in
the two-level approximation leading to the Dicke model. As
we will show in the next subsection, this difference determines
the loss or the preservation of gauge invariance. Moreover, it
has been observed that the value of the diamagnetic coefficient
with respect to ωxλ

2 can prevent or allow a superradiant phase
transition in Dicke models [53].

It is interesting and reassuring that also after the truncation
of the Hilbert space of the atomic ensemble, using Eq. (28),
the paramagnetic and diamagnetic contributions to the phys-
ical current-current response function [44–46] still cancel in
the uniform static limit. In particular, in the present case, it is
proportional to

− (ωxλ)2

ωx
+ D = 0. (30)

This does not occur using the Hamiltonian in Eq. (29):

− (ωxλ)2

ωx
+ D′ �= 0. (31)

C. Gauge invariance

In order to demonstrate that Ĥcg and Ĥdg are related
by a unitary (gauge) transformation and hence display the
same spectrum of eigenergies, we start applying the Holstein-
Primakoff representation to the unitary operator which imple-
ments the minimal coupling replacement in Eq. (17), as well

as the gauge transformation of the Dicke model [see Eq. (24)].
Taking the standard limits (N → ∞, with

√
Nη = λ finite),

we obtain

ÛN → Û = exp [iλ(â + â†)(b̂ + b̂†)]. (32)

The Dicke Hamiltonian in the Coulomb gauge Ĥcg can be
readily obtained by applying the generalized minimal cou-
pling replacement using Eq. (25) and Eq. (32):

Ĥcg = ÛĤ0 Û† + h̄ωcâ†â. (33)

This approach is particularly interesting, since it provides
a recipe to obtain the correct Coulomb-gauge light-matter
interaction Hamiltonian starting from the knowledge of the
unperturbed Hamiltonian of a bosonic excitation Ĥ0 and its
associated polarization operator, which in this case is p̂ =√

Nd1,0(b̂ + b̂†). Notice that the unitary operator in Eq. (33)
can be expressed as Û = exp (iÂp̂/h̄). Thus, within this ap-
proach, it is not necessary to start explicitly considering a col-
lection of effective two-level atoms, but it is sufficient to start
from a bosonic Hamiltonian for the bare matter system and
then to use the generalized minimal coupling replacement in
Eq. (33). We will discuss further this point and its connection
with the Hopfield model in the next section.

Applying to Ĥcg the unitary transformation T̂ ĤcgT̂ †,
where T̂ = Û†, the corresponding Hamiltonian in the dipole
gauge in Eq. (26) is easily recovered:

T̂ ĤcgT̂ † = Ĥdg. (34)

Equation (34) demonstrates that Ĥdg and Ĥcg are related by a
unitary transformation as required by gauge invariance; hence
they will display the same eigenvalues. In contrast, Ĥ′

cg is not

related to Ĥdg by a unitary transformation and thus it will
display different energy levels.

We now provide a direct check of the breakdown of gauge
invariance of the Dicke model as described by the standard
Hamiltonian in the Coulomb gauge Eq. (29). Specifically, we
compare the resonance frequencies of the two collective po-
lariton modes obtained by diagonalizing (using Bogoliubov-
Hopfield transformations) the Hamiltonians Eqs. (26), (28),
and (29). For the polariton frequencies, resulting from the
diagonalization of Eq. (26), we obtain

ω2
dg± = 1

2

[
ω̃2

x + ω2
c ±

√(
ω̃2

x − ω2
c

)2 + 4λ2ωxωc
]
, (35)

where ω̃x =
√

ωx(ωx + 4λ2/ωc).
Diagonalizing the Hamiltonian in Eq. (28) results in the

polariton frequencies

ω2
cg± = 1

2

[
ω̃2

c + ω2
x ±

√(
ω̃2

c + ω2
x

)2 − 4 ω2
cω

2
x

]
, (36)

with ω̃c = √
ωc(ωc + 4D).

The polariton frequencies ω′
cg± resulting from the diago-

nalization of the standard Coulomb-gauge Dicke Hamiltonian
in Eq. (29) can be obtained from Eq. (36) after the replacement
D → D′.

The unitary gauge transformation in Eq. (34) implies that
ωdg± = ωcg±. This relation can be explicitly shown after
some algebraic manipulation. On the contrary, the polariton
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FIG. 3. Frequencies ωcg± = ωdg± and ω′
cg± of the two polari-

ton modes, obtained diagonalizing the Dicke model, in the limit
N → ∞, as a function of the normalized coupling strength λ for
(a) the resonant case (ωc = ωx) and (b) for the detuned case with
ωx = 0.8ωc.

frequencies obtained from Ĥ′
cg are different:

ω′
cg± �= ωcg± = ωdg±.

Figure 3 displays ωcg±/ωc = ωdg±/ωc and ω′
cg±/ωc as a

function of λ, for D′ = 2D. The choice of α ≡ D′/D depends
on the specific system. Here we used the reasonable value
α = 2.

The differences are relevant, starting from normalized
coupling strengths λ ∼ 0.4. Hence we can conclude that
for coupling strengths λ � 0.4 the standard Coulomb-gauge
Dicke Hamiltonian (in the thermodynamic limit) provides
significantly wrong polariton frequencies in agreement with
the results in Ref. [11].

D. Superradiant quantum phase transitions

In the past, it was shown [54] that, when the number of
atoms tends to infinity, the Dicke model can undergo a transi-
tion to a superradiant phase, where the system exhibits a spon-
taneous coherent electromagnetic field. The initial predic-
tion used the rotating wave approximation (Tavis-Cummings
model). However, soon after, using a Hamiltonian similar to
that in Eq. (26), it was shown that photon condensation is
robust against the addition of counter-rotating terms [55,56].
These early studies soon stimulated great interest on the Dicke
model as well as a long-standing and still ongoing debate and
controversies (see Ref. [7] for a recent review). A thorough
detailed description of the whole debate is beyond the scope
of this article. Here we limit ourselves to briefly describing
how the results presented here enter this debate.

The Dicke model Hamiltonian in Eq. (26) also exhibits
a quantum phase transition [57], which can occur at zero
temperature by tuning the light-matter coupling λ across a
quantum critical point. Above the quantum critical point, the
ground state of the cavity QED system is twice degenerate.

To the best of our knowledge, this phase transition has
never been observed in thermal equilibrium systems. How-
ever, it has been realized with quantum simulators made of
atoms in an optical cavity subject to both dissipation and
driving [58,59].

Early on, it was pointed out that addition of the neglected
diamagnetic term (proportional to Â2) in the Dicke model,
naturally generated by applying minimal coupling, forbids
the phase transition as a consequence of the TRK sum rule
(no-go theorem for superradiant phase transition) [60,61].
Specifically, using the Hamiltonian in Eq. (29), it has been
shown that the superradiant phase transition can occur only if

ωxλ
2 > D′ = D/h̄,

where

D = NA2
0q2/(2m).

However, the TRK sum rule, which can be expressed as

D′ =
∑

k

ωk,0λ
2
k = D/h̄

(here ωk,0 and λk are the transition frequencies and coupling
rates between the ground state and all the excited states of the
atom), implies that ωxλ

2 � D′.
More recently [53], it has been shown that the TRK sum

rule also forbids the quantum phase transitions, in the case of
cavity QED systems consisting of real atoms coupled to the
field via minimal coupling Eq. (29). Such a no-go theorem
does not apply to circuit QED systems. If this phase transition
can be observed using superconducting circuit systems is still
a subject of debate.

The general debate on a superradiant phase transition was
enriched by a work providing a microscopic derivation of the
Dicke model in the dipole gauge [62]. In this model [see, e.g.,
Eq. (26)], there is no diamagnetic term preventing the Dicke
phase transition. Hence the authors claim that the basis of
no-go argumentations concerning the Dicke phase transition
with atoms in electromagnetic fields dissolves. Actually, this
puzzling ambiguity was addressed in previous work [49].
In the electric dipole gauge, the system is described by the
original Dicke Hamiltonian. As a consequence, in the dipole
gauge, the quantum operator −iωc(â − â†) does not corre-
spond, as in the Coulomb gauge, to the electric-field operator
but to the displacement operator. Although above the critical
coupling 〈â〉 �= 0, the phase transition leads to a spontaneous
polarization of the two-level systems, however, it does not
lead to a spontaneous transverse electric field. This occurs
because the electric-field operator in the dipole gauge is

Ê = −iωc[â − â† − λ(b̂ − b̂†)].

More recent work [10] confirms this view and applies it to
circuit QED systems.

This article, showing accurately that the Dicke model in the
thermodynamic limit provides gauge-independent physical
results, eliminates any gauge ambiguities in discussions on the
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superradiant phase transition in cavity QED systems consist-
ing of real atoms coupled to the field via minimal coupling.
In particular, the same results obtained in the dipole gauge
are obtained in the Coulomb gauge if the correct Coulomb-
gauge Hamiltonian in Eq. (29) is adopted, and if the system
operators Ô, as well the system states, are transformed accord-
ing to the proper unitary transformation: Ôdg = T̂ ÔcgT̂ † and
|ψdg〉 = T̂ |ψcg〉. Finally, we observe that, using the Coulomb
gauge Dicke model in Eq. (29), since the TRK sum rule is
satisfied [see Eq. (30)], the superradiant phase transition is
forbidden because (following, e.g., Ref. [53]) it would require
ωxλ

2 < D.

IV. GAUGE INVARIANCE OF THE HOPFIELD MODEL

The Hopfield model provides a full quantum description
of the interaction between the electromagnetic field and a
dielectric which is described by a harmonic polarization den-
sity. The original treatment considers a 3D uniform dielectric
with a single resonance frequency describing dispersionless
collective excitations. This exactly solvable model was ini-
tially applied to the case of excitonic polaritons. Afterwards,
it has been applied and/or generalized to describe a great
variety of systems with different dimensionalities and degrees
of freedom, including quantum well [63] and cavity polaritons
[64], phonon polaritons [65,66], and plasmonic nanoparticle
crystals [67]. A generalized Hopfield model for inhomoge-
neous and dispersive media has been proposed [68]. Here
we analyze the original model, its gauge properties, and its
connection with the Dicke model in the thermodynamic limit.

The field operators are given in terms of the bosonic pho-
tonic operators âk,λ and the bosonic operators b̂k,λ describing
the destruction of the polarization quanta by

Â(r) =
∑
k,λ

A(0)
k ek,λ(âk,λ + â†

−k,λ)eik·r,

(37)
P̂(r) = P(0)

∑
k,λ

ek,λ(b̂k,λ + b̂†
−k,λ)eik·r,

where k is the wave vector, λ labels the two transverse
polarizations, ek,λ are the polarization unit vectors, and we
have defined A(0)

k = √
h̄/(2ε0V ωk ) and P(0) = √

h̄ω0β/(2V ).
Here, V is the quantization volume, ωk and ω0 are the bare
resonance frequencies of the photonic modes and of the matter
system waves, respectively, and β is the polarizability [41].

The Hopfield Hamiltonian in the Coulomb gauge can be
written as

ĤHop
cg = h̄

∑
k,λ

ωkâ†
k,λâk,λ + h̄ω0

∑
k,λ

b̂†
k,λb̂k,λ

+ ih̄ω0

∑
k,λ

�k (âk,λ + â†
−k,λ

)(b̂k,λ − b̂†
−k,λ

)

+ h̄ω0

∑
k,λ

�2
k (âk,λ + â†

−k,λ)2, (38)

where �k = VA(0)
k P(0)/h̄.

It is interesting to observe that this equation can be written
in the compact form

ĤHop
cg = h̄

∑
k,λ

ωkâ†
k,λâk,λ + ÛHop

(
h̄ω0

∑
k,λ

b̂†
k,λb̂k,λ

)
Û †

Hop,

(39)
where

ÛHop = exp

[
i
∑
k,λ

�k (âk,λ + â†
−k,λ

)(b̂k,λ − b̂†
−k,λ

)

]
. (40)

We observe that this unitary operator coincides with the
Hermitian conjugate of the operator describing the Coulomb
→ dipole gauge transformation in a system with a polarization
density operator given by Eq. (37):

ÛHop = T̂ †
Hop, (41)

where

T̂Hop = exp

[
i

h̄

∫
dr Â(r) · P̂(r)

]
. (42)

This relationship implies that the Hopfield Hamiltonian in
the dipole gauge can be easily obtained:

ĤHop
dg = T̂HopĤHop

cg T̂ †
Hop = T̂Hop

(
h̄

∑
k,λ

ωkâ†
k,λâk,λ

)
T̂ †

Hop

+ h̄ω0

∑
k,λ

b̂†
k,λb̂k,λ. (43)

After simple algebra, we obtain

ĤHop
dg = h̄

∑
k,λ

ωkâ†
k,λâk,λ + h̄ω0

∑
k,λ

b̂†
k,λb̂k,λ

−ıh̄
∑
k,λ

ωk�k (âk,λ − â†
−k,λ)(b̂k,λ + b̂†

−k,λ)

+ h̄
∑
k,λ

ωk�
2
k (b̂k,λ + b̂†

−k,λ)2. (44)

Equation (43) demonstrates that Eq. (38) and Eq. (44) are
related by a unitary (gauge) transformation and hence display
the same energy spectrum. The compact forms in Eq. (39) and
Eq. (43) are manifestly gauge related. Moreover, being man-
ifestly related by a unitary transformation, they provide the
same energy spectra and the same matrix elements of physical
observables. Of course, both the corresponding operators and
the vector states have to be transformed accordingly, when
changing from one gauge to the other. If needed, a continuous
set of gauge transformations which depend on one parameter
can be considered. It is sufficient to, e.g., start from the Hamil-
tonian in the Coulomb gauge and then consider a unitary
transformation using modified unitary operators, where the
exponent in Eq. (42) is multiplied by such a parameter (see,
e.g., Ref. [12]).

These results open the way to the application of the gen-
eralized minimal coupling replacement [see Eqs. (39), (41),
and (42)] to promptly derive general gauge-invariant Hopfield
Hamiltonians. Given a generic polarization operator like that
in Eq. (37), using the unitary operator in Eq. (42), it is possible
to directly obtain the total Hamiltonian in the Coulomb or
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dipole gauge by applying the corresponding transformation
to the bare matter system Hamiltonian [see Eq. (39)] or to the
bare photonic Hamiltonian [see Eq. (44)]. From this point of
view, the Dicke model in the dilute regime can be regarded as
a particular case of the Hopfield model where the polarization
density operator is P̂ = (

√
Nd1,0/V )(b̂ + b̂†) (see Sec. III C).

V. CONNECTION WITH THE PEIERLS SUBSTITUTION

Throughout this work we considered ensembles of nonin-
teracting atoms. It remains an open problem how to construct
gauge-invariant model Hamiltonians for interacting atoms.
Here we limit ourselves to briefly analyzing the simplest
case of spinless electrons in a one-dimensional inversion-
symmetric crystal with N sites (one atom per site) in a
tight-binding approximation (see, e.g., Refs. [46,69]). In the
absence of the interaction with the field, and considering
a single orbital φ j (x) = φ(x − Rj ) (here Rj indicates the
site coordinate) per atom, the model Hamiltonian can be
written as

Ĥ0 = E0

N∑
j=1

| j〉〈 j| − t
N∑

j=1

(| j + 1〉〈 j| + H.c.), (45)

where E0 = 〈φ j |H0|φ j〉 and t = −〈φ j±1|H0|φ j〉. Considering
the interaction with a uniform field, the model Hamiltonian
becomes

Ĥ = �ÛĤ0Û
†�, (46)

where Û = exp (iqxÂ) and � = ∑
j | j〉〈 j|. Assuming that Û

is almost constant within the spatial range of the localized
orbitals, we have 〈φ j |Û |φ j′ 〉 
 δ j, j′ exp (iqR jÂ). We obtain

Ĥ0 = E0

N∑
j=1

| j〉〈 j| − t
N∑

j=1

(eiqaÂ| j + 1〉〈 j| + H.c.), (47)

where a = Rj+1 − Rj . This result corresponds to the so-
called Peierls substitution and can be easily generalized to
fields which are slowly varying on the lattice scale replacing
the phase fators in Eq. (47) with exp{iq a

2 [Â(Rj+1) + Â(Rj )]}
[46,70–73]. If more than one orbital per atom is considered,
in addition to the Peierls substitution [46], we expect the
presence (also in the diagonal term proportional to E0) of
additional phase factors depending on the dipole moment
matrix element between two orbitals at the same site, similar
to those obtained for a single atom [30]. Such a development
is left for future work. We conclude this section by observing
that the Peierls substitution method and the results presented
in this work are closely connected. They both implement the
minimal coupling replacement applying unitary operators to

the bare Hamiltonian of the material system. Such a connec-
tion is further explored in a very recent work [48].

VI. DISCUSSION AND OUTLOOK

We have investigated the gauge invariance of the Dicke
model in the dilute regime. In particular, we started from the
derivation of the correct (not violating the gauge principle)
Dicke model in the Coulomb gauge for a finite number N
of dipoles. After that, using the Holstein-Primakoff trans-
formation, we obtained the Coulomb-gauge Dicke Hamilto-
nian in the dilute regime. We demonstrated that it is related
by a gauge (unitary) transformation to the corresponding
Hamiltonian in the dipole gauge. Hence the two gauges, as
required, provide the same energy spectra, in contrast with
the standard Dicke model. The standard Dicke Hamiltonian
in the Coulomb gauge and the one derived here only differ
for the diamagnetic coefficient multiplying the term (â† + â)2.
This difference determines either the loss or the preservation
of gauge invariance.

We also analyzed the Hopfield model, showing its gauge
invariance. We provided a method to derive in a simple way
manifestly gauge-invariant Hopfield models, having knowl-
edge just of the matter polarization field. These results show
that the Dicke model in the dilute regime can be regarded as a
particular case of the more general Hopfield model.

Finally, we briefly discussed the connection of the gauge-
invariant approach here discussed with the Peierls substitution
used to introduce the interaction of crystals with the electro-
magnetic field. This brief analysis suggests a generalization
of the present approach to many-body interacting electron
systems.

Very recently, it has been shown that generalized Dicke
models for two-level systems which do not display inversion
symmetry can generate sizable spin squeezing and entan-
glement [74]. It would be interesting to apply the methods
proposed here to eliminate gauge ambiguities from these
models.
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The quantum Rabi model is a widespread description for the coupling between a two-level system
and a quantized single mode of an electromagnetic resonator. Issues about this model’s gauge
invariance have been raised. These issues become evident when the light-matter interaction reaches
the so-called ultrastrong coupling regime. Recently, a modified quantum Rabi model able to provide
gauge-invariant physical results in any interaction regime was introduced [Nature Physics 15, 803
(2019)]. Here we provide an alternative derivation of this result, based on the implementation
in two-state systems of the gauge principle, which is the principle from which all the fundamental
interactions in quantum field theory are derived. The adopted procedure can be regarded as the two-
site version of the general method used to implement the gauge principle in lattice gauge theories.
Applying this method, we also obtain the gauge-invariant quantum Rabi model for asymmetric
two-state systems, and the multi-mode gauge-invariant quantum Rabi model beyond the dipole
approximation.

I. INTRODUCTION

The ultrastrong and deep-strong coupling (USC and
DSC) between individual or collections of effective two-
level systems (TLSs) and the electromagnetic field has
been realized in a variety of settings [1, 2]. In these ex-
treme regimes of quantum light-matter interaction, the
coupling strength becomes comparable to (USC) or larger
than (DSC) the transition frequencies of the system.

Recently, it has been argued that truncations of the
atomic Hilbert space, to obtain a two-level description
of the matter system, violate the gauge principle [3–5].
Such violations become particularly relevant in the USC
and DSC regimes. In particular, De Bernardis et al. [3]
shows that, while in the electric dipole gauge, the two-
level approximation can be performed as long as the Rabi
frequency remains much smaller than the energies of all
higher-lying levels, it can drastically fail in the Coulomb
gauge, even for systems with an extremely anharmonic
spectrum.

The impact of the truncation of the Hilbert space of
the matter system to only two states was also studied by
Stokes and Nazir [4], by introducing a one-parameter (α)
set of gauge transformations. The authors found that
each value of the parameter produces a distinct quantum
Rabi model (QRM), providing distinct physical predic-
tions. Investigating a matter system with a lower an-
harmonicity (with respect to that considered in Ref. [3]),
they use the gauge parameter α as a sort of fit parameter

∗ corresponding author: ssavasta@unime.it

to determine the optimal QRM for a specific set of sys-
tem parameters, by comparing the obtained α-dependent
lowest energy states and levels with the corresponding
predictions of the non-truncated gauge invariant model.
The surprising result is that, according to this proce-
dure, in several circumstances the optimal gauge is the
so-called Jaynes-Cummings (JC) gauge, a gauge where
the counter-rotating terms are automatically absent.

Recently, the source of gauge violation has been iden-
tified, and a general method for the derivation of light-
matter Hamiltonians in truncated Hilbert spaces able to
produce gauge-invariant physical results has been devel-
oped [6] (see also related work [7–9]). This gauge in-
variance was achieved by compensating the non-localities
introduced in the construction of the effective Hamilto-
nians. The resulting quantum Rabi Hamiltonian in the
Coulomb gauge differs significantly from the standard
one, but provides exactly the same energy levels obtained
by using the dipole gauge, as it should be, because phys-
ical observable quantities must be gauge invariant. A re-
cent overview of these gauge issues in TLSs can be found
in Ref. [10].

Very recently, the validity of the gauge invariant QRM
developed in Ref. [6] has been put into question by Stokes
and Nazir [5]. Specifically, it is claimed that the results in
Ref. [6] are not correct, and the truncation of the Hilbert
space necessarily ruins gauge-invariance.

Here we present a detailed derivation of the results in
Ref. [6] with an alternative, more direct and fundamen-
tal method. In our opinion, this approach demonstrates
that the results in Ref. [6] [Eqs. (8) and (9) in particular]
are indeed correct, and moreover, represent the imple-
mentation in a fully consistent and physically meaning-

ar
X

iv
:2

00
6.

06
58

3v
1 

 [
qu

an
t-

ph
] 

 1
1 

Ju
n 

20
20



2

ful way of the fundamental gauge principle in two-state
systems. The derivation described here can be regarded
as the two-site version of the general method for lattice
gauge theories [11]. These represent the most advanced
and commonly used tool for describing gauge theories in
the presence of a truncated infinite-dimensional Hilbert
space. When a gauge theory is regularized on the lattice,
it is vital to maintain its invariance under gauge transfor-
mations [11]. An analogous approach has been developed
as early as 1933 [12] for the description of tightly-bound
electrons in a crystal in the presence of a slowly-varying
magnetic vector potential (see, e.g., also Refs. [13–15]).

Applying this method, we also obtain the multi-mode
gauge-invariant QRM beyond the dipole approximation.

The derivation presented here in Sect. IV, we believe,
is already sufficient to eliminate any concerns about the
validity of the results in Ref. [6]. However, in Sect. V, we
also provide a reply to the key points raised by Stokes
and Nazir [5].

II. THE GAUGE PRINCIPLE

In this section, we recall some fundamental concepts,
which we will apply in the next sections.

In quantum field theory, the coupling of particles with
fields is constructed in such a way that the theory is in-
variant under a gauge transformation [16]. Here, we limit
the theoretical model to consider U(1) invariance. This
approach can be generalized to introduce non-abelian
gauge theories [11, 16].

Let us consider the transformation of the particle field
ψ → eiqθψ. This transformation represents a symme-
try of the free action of the particle (e.g., the Dirac ac-
tion) if θ is a constant, but we want to consider a generic
function θ(x) (local phase transformation). However, the
free Dirac action is not invariant under local phase trans-
formations, because the factor eiqθ(x) does not commute
with ∂µ. At the same time, it is known that the action of
the free electromagnetic field is invariant under the gauge
transformation:

Aµ → Aµ − ∂µθ . (1)

It is then possible to replace, in the action, the derivative
∂µ with a covariant derivative of ψ as

Dµψ = (∂µ + iqAµ)ψ , (2)

so that

Dµψ → eiqθDµψ , (3)

even when θ depends on x. It is now easy to construct
a Lagrangian with a local U(1) invariance. It suffices to
replace all derivatives ∂µ with covariant derivatives Dµ.

The same procedure, leading to the well-known mini-
mal coupling replacement, can be applied to describe the
interaction of a non-relativistic particle with the electro-
magnetic field. Considering a particle of mass m with

a geometrical coordinate x and a potential V (x), the
Hamiltonian of such a particle interacting with the elec-
tromagnetic field can be written as

Ĥgi
0 =

1

2m
[p̂− qA(x)]

2
+ V (x) , (4)

where p̂ = −id/dx is the momentum of the particle
(here ~ = 1). It turns out that the expectation values
〈ψ|Ĥgi

0 |ψ〉 are invariant under local phase transforma-
tions,

ψ(x)→ eiqθ(x)ψ(x) , (5)

thanks to the presence of the gauge field A(x).
Note that the function of a continuous degree of free-

dom ψ(x) lives in the infinite-dimensional space of all
square-integrable functions, and the local phase trans-
formation transforms a state vector in this space into a
different vector in the same space. Finally, we observe
that the total Hamiltonian, in addition to Ĥgi

0 , includes
the free Hamiltonian for the gauge field.

III. DOUBLE-WELL SYSTEMS IN THE
TWO-STATE LIMIT

The problem of a quantum-mechanical system whose
state is effectively restricted to a two-dimensional Hilbert
space is ubiquitous in physics and chemistry [17]. In the
simplest examples, the system simply possesses a degree
of freedom that can take only two values. For example,
the spin projection in the case of a nucleus of spin-1/2 or
the polarization in the case of a photon. Besides these
intrinsically two-state systems, a more common situation
is that the system has a continuous degree of freedom x,
for example, a geometrical coordinate, and a potential
energy function V (x) depending on it, with two separate
minima [17] (see Fig. 1). Let us assume that the barrier
height V is large enough that the system dynamics can be
adequately described by a two-dimensional Hilbert space
spanned by the two ground states in the two wells |L〉
and |R〉.

The motion in the two-dimensional Hilbert space can
be adequately described by the simple Hamiltonian:

Ĥ0 =
∑

j=L,R

Ej |j〉〈j| − t (|R〉〈L|+ h.c.) , (6)

where the tunneling coefficient is given by t = 〈L|Ĥ0|R〉,
and

Ĥ0 =
p̂2

2m
+ V (x) (7)

is the usual system Hamiltonian.
If the potential is an even function of the geometrical

coordinate, V (x) = V (−x) (see Fig. 2), EL = ER, and
we can fix EL = ER = 0. Introducing the Pauli operator
ρ̂x = |L〉〈R|+ h.c., we obtain

Ĥ0 = −tρ̂x , (8)
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Figure 1. A double-well system in the two-state limit.
The symbols E0 and E1 are the two lowest-energy levels, well
separated in energy by the next higher energy level E2. Panel
(a) also shows the square modulus of the two wavefunctions
localized in the well, obtained as linear combinations of the
two lowest energy wavefunctions displayed in panel (b).

whose eigenstates, delocalized in the two wells, are the
well-known symmetric- and antisymmetric combinations
(see Fig. 2b),

|S〉 =
1√
2

(|R〉+ |L〉) ,

|A〉 =
1√
2

(|R〉 − |L〉) , (9)

with eigenvalues EA,S = ±t, so that ∆ = EA −ES = 2t,
where we assume t > 0. The Hamiltonian in Eq. (6) can
be written in diagonal form as

Ĥ0 = (∆/2)σ̂z , (10)

where σ̂z = −ρ̂x = |A〉〈A| − |S〉〈S|. Note, to distin-
guish between the different basis states for the operator
representations, we use σ̂i for the |A〉−|S〉 basis, and ρ̂i
for the |L〉−|R〉 basis. Thus, for example, the diagonal
σ̂z operator becomes of nondiagonal form in the |L〉−|R〉
basis.

It is worth noticing that this elementary analysis is not
restricted to the case of a double-well potential. Analo-
gous considerations can be carried out for systems with
different potential shapes, displaying two (e.g., lowest
energy) levels well separated in energy from the next
higher level. The wavefunctions ψL(x) = 〈x|L〉 and
ψR(x) = 〈x|L〉 can be obtained from the symmetric and
antisymmetric combinations of ψS(x) and ψA(x) (see
Fig. 1), which can be obtained exactly as the two low-
est energy eigenfunctions of the Schrödinger problem de-
scribed by the Hamiltonian in Eq. (7). The gap ∆ = 2t

is obtained from the difference between the correspond-
ing eigenvalues. This two-state tunneling model is a well
known formalism to describe many realistic systems, in-
cluding the ammonia molecule, coupled quantum dots,
and superconducting flux-qubits.

The case of a potential of the effective particle which
does not display inversion symmetry can also be easily
addressed. For example, an asymmetric double well po-
tential, as shown in Fig. 1, can be considered. In this
case, Eq. (6) can be expressed as

Ĥ0 =
ε

2
ρ̂z −

∆

2
ρ̂x . (11)

The quantity ε is the detuning parameter, that is, the
difference in the ground-state energies of the states lo-
calized in the two wells in the absence of tunneling.
The Hamiltonian in Eq. (11) can be trivially diagonal-
ized with eigenvalues ±ωq/2, where ωq =

√
∆2 + ε2.
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Figure 2. A symmetric double-well system in the two-
state limit. The symbols E0 and E1 are the two lowest-
energy levels, well separated in energy by the next higher
energy level E2. Panel (a) also shows the square modulus
of the two wavefunctions localized in the well, obtained as
symmetric and antysimmetric combinations of the two lowest
energy wavefunctions displayed in panel (b).

IV. THE GAUGE PRINCIPLE IN TWO-LEVEL
SYSTEMS

The question arises if it is possible to save the gauge
principle when, under the conditions described above,
such a particle is adequately described by states confined
in a two-dimensional complex space. If we apply an arbi-
trary local phase transformation to, e.g., the wavefunc-
tion ψA(x) = 〈x|A〉: ψA(x) → ψ′A(x) = eiqθ(x)ψA(x), it
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happens that, in general, ψ′A(x) 6= cSψS(x) + cAψA(x),
where cA and cS are complex coefficients. Thus the
general local phase transformation does not guarantee
that the system can still be described as a two state
system. According to this analysis, those works claim-
ing gauge non-invariance due to material truncation in
ultrastrong-coupling QED [3–5] (we would say at any cou-
pling strength, except negligible), at first sight, might
appear to be correct.

The direct consequence of this conclusion would be
that two-level models, widespread in physics and chem-
istry, are too simple to implement their interaction with
a gauge field, according to the general principle from
which the fundamental interactions in physics are ob-
tained. Since adding to the particle system description
a few additional levels does not change this point, the
conclusion is even more dramatic. Moreover, accord-
ing to Stokes and Nazir [4, 5], this leads to several non-
equivalent models of light-matter interactions providing
different physical results. One might then claim the death
of the gauge principle and of gauge invariance in trun-
cated Hilbert spaces, namely in almost all cases where
theoreticians try to provide quantitative predictions to
be compared with experiments.

Our view is drastically different: we find that the
breakdown of gauge invariance is the direct consequence
of the inconsistent approach of reducing the information
(Hilbert space truncation) on the effective particle, with-
out accordingly reducing the information, by the same
amount, on the phase θ(x) determining the transforma-
tion in Eq. (5). In physics, the approximations must be
done with care. These must be consistent.

We start by observing that the two-state system de-
fined in Eq. (6) still has a geometric coordinate, which
however can assume only two values: xj (with j = L,R),
that we can approximately identify with the position of
the two minima of the double-well potential. More pre-
cisely, and more generally, they are:

xR = 〈R|x|R〉 ,
xL = 〈L|x|L〉 . (12)

Here, parity symmetry implies xL = −xR. In the fol-
lowing we will use the shorthand 〈R|x|R〉 = a/2. Hence,
the operator describing the geometric coordinate can be
written as [17] X = (a/2)ρ̂z, where ρ̂z ≡ |R〉〈R|− |L〉〈L|.

We observe that the terms proportional to t in the
Hamiltonian in Eq. (6) or Eq. (8), implies that these
can be regarded as nonlocal Hamiltonians, i.e., with
an effective potential depending on two distinct coordi-
nates. Nonlocality here comes from the hopping term
t = 〈R|Ĥ0|L〉, which is determined by the interplay of
the kinetic energy term and of the potential energy in
Ĥ0.

It is clear that the consistent and meaningful local
gauge transformation corresponds to the following trans-
formation

|ψ〉 = cL|L〉+ cR|R〉 → |ψ′〉 = eiqθLcL|L〉+ eiqθRcR|R〉 ,
(13)

where |ψ〉 is a generic state in the two-dimensional
Hilbert space, and θj are arbitrary real valued param-
eters.

It is easy to show that the expectation values of Ĥ0 are
not invariant under the local transformation in Eq. (13).
They are only invariant under a uniform phase change:
|ψ〉 → eiqθ|ψ〉. However, one can introduce in the Hamil-
tonian field-dependent factors that compensate the dif-
ference in the phase transformation from one point to
the other. Specifically, following the general procedure of
lattice gauge theory, we can consider the parallel trans-
porter (a unitary finite-dimensional matrix), introduced
by Kenneth Wilson [11, 18, 19],

Uxk+a,xk
= exp

[
iq

∫ xk+a

xk

dxA(x)

]
, (14)

where A(x) is the gauge field. After the gauge transfor-
mation of the field, A′(x) = A(x)+dθ/dx, the transporter
transforms as

U ′xk+a,xk
= eiq θ(xk+a)Uxk+a,xk

e−iq θ(xk) . (15)

This property can be used to implement gauge invariant
Hamiltonians in two-state systems.

A. Symmetric two-state systems

Introducing properly the parallel transporter in
Eq. (14) into Eq. (8), we obtain a gauge-invariant two-
level model:

Ĥgi
0 = −t |R〉〈L|UxR,xL

+ h.c. . (16)

Gauge invariance can be directly verified:

〈ψ′|
(
|R〉〈L|U ′xR,xL

+ h.c.
)
|φ′〉 =

〈ψ| (|R〉〈L|UxR,xL
+ h.c.) |φ〉 ,

where |ψ〉 and |φ〉 are two generic states in the vector
space spanned by |L〉 and |R〉. By neglecting the spatial
variations of the field potential A(x) on the distance a =
xR − xL, (dipole approximation). The Hamiltonian in
Eq. (16) can be written as

Ĥgi
0 = −t |R〉〈L| eiqaA + h.c. . (17)

Using Eq. (9) and the Euler formula, it can be easily ver-
ified that the Hamiltonian in Eq. (17) can be expressed
using the diagonal basis of Ĥ0, as

Ĥgi
0 =

∆

2
[σ̂z cos (qaA) + σ̂y sin (qaA)] , (18)

where σ̂y = −i (|A〉〈S| − |S〉〈A|). Using Eq. (9) and
Eq. (12), then

qa/2 = q〈A|x|S〉 . (19)

This precisely coincides with the transition matrix ele-
ment of the dipole moment as in Ref. [6].
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Considering a quantized field Â, the total light-matter
Hamiltonian also contains the free-field contribution:

Ĥ =
∆

2

[
σ̂z cos (qaÂ) + σ̂y sin (qaÂ)

]
+ Ĥph . (20)

For the simplest case of a single-mode electromag-
netic resonator, the potential can be expanded in terms
of the mode photon destruction and creation operators.
Around x = 0, Â = A0(â + â†), where A0 (assumed
real) is the zero-point-fluctuation amplitude of the field
in the spatial region spanned by the effective particle.
We also have: Ĥph = ωphâ

†â, where ωph is the resonance
frequency of the mode. It can be useful to define the
normalized coupling strength parameter [6]

η = q(a/2)A0 , (21)

so that Eq. (20) can be written as

Ĥ =
∆

2

{
σ̂z cos [2η(â+ â†)] + σ̂y sin [2η(â+ â†)]

}

+ ωphâ
†â . (22)

Using the relations ρ̂z ≡ |R〉〈R| − |L〉〈L| = |A〉〈S| +
|S〉〈A| ≡ σ̂x, the Hamiltonian in Eq. (16) can also be
expressed as

Ĥ = ÛĤ0Û† , (23)

where

Û = exp (iqaÂσ̂x/2) . (24)

Equations (23) and (24) coincide with Eqs. (8) and (9)
of Ref. [6], which represents the main results.

It is also interesting to rewrite the coordinate-
dependent phase transformation in Eq. (13) as the appli-
cation of a unitary operator on the system states. Defin-
ing φ = (θR + θL)/2 and θ = (θR − θL)/2, Eq. (13) can
be written as

|ψ〉 → |ψ′〉 = eiqφeiqθσ̂x |ψ〉 . (25)

This shows that the coordinate-dependent phase change
of a generic state of a TLS is equivalent to a global phase
change, which produces no effect, plus a rotation in the
Bloch sphere, which can be compensated by introducing
a gauge field as in Eq. (23). Notice also that Eq. (25)
coincides with the result presented in the first section of
the Supplementary Information of Ref. [6], obtained with
a different, but equivalent approach.

In summary, the method presented here can be re-
garded as the two-site version (with the additional dipole
approximation) of the general method for lattice gauge
theories [11], which represents the most advanced and so-
phisticated tool for describing gauge theories in the pres-
ence of truncation of infinite-dimensional Hilbert spaces.
These results eliminate any concern about the validity
of the results presented in Ref. [6], raised by Stokes and
Nazir [5].

We conclude this subsection by noting that Eq. (16)
can be also used, without applying the dipole approxima-
tion, to obtain the (multi-mode) gauge-invariant quan-
tum Rabi model beyond the dipole approximation. Specif-
ically, without applying the dipole approximation to
Eq. (16), after the same steps to obtain Eq. (22), we ob-
tain

Ĥ =
∆

2

[
σ̂z cos

(
q

∫ xR

xL

dx Â(x)

)

+ σ̂y sin

(
q

∫ xR

xL

dx Â(x)

)]
+ Ĥph . (26)

One interesting consequence of this result is that it in-
troduces a natural cut-off for the interaction of high en-
ergy modes of the electromagnetic field with a TLS. In
particular, owing to cancellation effects in the integrals
in Eq. (26), the resulting coupling strength between the
TLS and the mode goes rapidly to zero when the mode
wavelength becomes shorter than a/2 = 〈A|x|S〉.

It is worth noticing that this derivation of the gauge-
invariant QRM does not require the introduction of an
externally controlled two-site lattice spacing, in contrast
to general lattice gauge theories. In the present case, the
effective spacing a between the two sites is only deter-
mined by the transition matrix element of the position
operator between the two lowest energy states of the ef-
fective particle, a = 2〈A|x|S〉, which in turn determines
the dipole moment of the transition, qa/2.

B. Asymmetric two-state systems

The results in this section can be directly generalized
to also address the case of a potential of the effective par-
ticle which does not display inversion symmetry. It has
been shown that the interaction (in the USC and DSC
limit) of these TLSs (without inversion symmetry) with
photons in resonators can lead to a number of interest-
ing phenomena [20–26]. In this case, Eq. (11) provides
the bare TLS Hamiltonian. Note that the first term in
Eq. (11) is not affected by the two-state local phase trans-
formation in Eq. (13), hence the gauge invariant version
of Eq. (11) can be written as

Ĥgi
0 =

ε

2
ρ̂z −

∆

2
(|R〉〈L|UxR,xL

+ h.c.) , (27)

which, in the dipole approximation, reads:

Ĥgi
0 =

ε

2
ρ̂z −

∆

2

(
|R〉〈L| eiqaA + h.c.

)
. (28)

This can be expressed as

Ĥgi
0 =

ε

2
ρ̂z −

∆

2
[ρ̂x cos (qaA)− ρ̂y sin (qaA)] , (29)

which can also be written in the more compact form

Ĥgi
0 = ÛĤ0Û† , (30)



6

where

Û = exp [iqaAρ̂z/2] . (31)

Equations (30) and (31) represent the minimal cou-
pling replacement for TLS, derived directly from the fun-
damental gauge principle.

We observe that the operator X̂ = aρ̂z/2 represents the
geometrical-coordinate operator for the two-state system,
with eigenvalues ±a/2. The Hamiltonian in Eq. (29) can
be directly generalized beyond the dipole approximation
with the following replacement:

aA→
∫ a/2

−a/2
dxA(x) . (32)

Considering a single-mode electromagnetic resonator,
the total Hamiltonian becomes

Ĥ = ωphâ
†â+

ε

2
ρ̂z (33)

− ∆

2

{
ρ̂x cos

[
2η(â+ â†)

]
− ρ̂y sin

[
2η(â+ â†)

]}
.

Since the operator X̂ is the position operator in the
two-state space, the unitary operator Û† = T̂ also corre-
sponds to the operator which implements the PZW uni-
tary transformation [27], leading to the dipole-gauge rep-
resentation,

Ĥd = Û†ĤÛ = ωphâ
†â+

ε

2
ρ̂z −

∆

2
ρ̂x

− iηωph(â− â†)ρ̂z + η2Î , (34)

where we used: ρ̂2z = Î, where I is the identity operator
for the two-state system. Note that Ĥd coincides with
the Hamiltonian describing a flux qubit interacting with
an LC oscillator [24].

V. DISCUSSION

In Sect. IV, we have derived from first principles the
general QRM for TLSs. The results presented in Sect. IV
exactly coincide with those obtained by Di Stefano et
al. [6] for symmetric TLSs and in the dipole approxima-
tion. This derivation is already sufficient to eliminate
any concern about the validity of the results in Ref. [6],
recently raised Stokes and Nazir [5]. However, for com-
pleteness, here we address some of the specific criticisms
that were raised.

A. The main issue raised by Stokes and Nazir in
Ref. [5]

The gauge-invariant approaches developed in Sect. IV,
and also in Ref. [6], are in contrast with the point of view
adopted by Stokes and Nazir [4, 5]. According to them,
gauge non-invariance is a necessary implication of the

truncation of the Hilbert space of the material system.
Moreover, it was claimed [5] that the approach proposed
in Ref. [6] rests on an incorrect mathematical assertion
and so does not resolve gauge non-invariance.

We have shown in Sect. IV, not only that the gauge-
invariant QRM developed in Ref. [6] is correct, but also
that it fits well in the spirit of lattice gauge theories ini-
tiated by Kenneth Wilson [11]. Hence it is clear that
the claims in Refs. [4, 5] – that gauge non-invariance is
a necessary implication of the truncation of the Hilbert
space of the material system – are not correct.

Consistent with our approach, lattice gauge theories
show that it is vital to maintain the gauge invariance of a
theory after reducing the infinite amount of information
associated to a continuous coordinate [11], contrary to
the claims of Stokes and Nazir [4, 5].

In this section, we will also show that the method and
the assumptions adopted in Ref. [6] to obtain a gauge
invariant QRM and a general method to preserve gauge
invariance in truncated Hilbert spaces are correct.

The apparent proof that the results in Ref. [6] rests on
an incorrect mathematical assertion and does not resolve
gauge non-invariance is presented in the section entitled
“Material truncation”.

According to the authors [5], the main issue is that
Ref. [6] tacitly and incorrectly equates

P̂ exp (iqxÂ)P̂ = exp [iq(P̂ xP̂ )Â] , (35)

where P̂ is the projection operator for the TLS. Since,
they argue, P̂ 6= Î (here Î indicates the identity oper-
ator), in general, if f(Ô) is a nonlinear function of a
Hermitian operator Ô, we have P̂ f(Ô)P̂ 6= f(P̂ ÔP̂ ).

Here, the key point from which all the criticisms de-
scend, simply, is that Ref. [6] assumes P̂ = Î, while, ac-
cording to Stokes and Nazir [5], P̂ 6= Î. Specifically, the
results in Ref. [6], rely on the deliberate decision to treat
the effective particle like a TLS, with its own identity.
This is very clearly stated already below Eq. (5). Quot-
ing directly from Ref. [6]: “P̂ = |0〉〈0|+ |1〉〈1| is the TLS
identity operator”. Clearly P̂ is an operator with a 2× 2
matrix representation. On the contrary, in Ref. [5], and
using their different operator notation, P is an infinite-
dimensional operator. From our perspective, the Hilbert
space truncation occurs once and definitely. Moreover,
once the matter system is described by a two-state sys-
tem, any meaningful operator must act on this space and
hence, it has a 2×2 matrix representation, and the prop-
erties of the identity operators can be legitimately used.
As a consequence, operations like, e.g., Ô2 = (P̂ ÔP̂ )2

are perfectly correct, in contrast to Ô2 = (P̂ ÔP̂ )2, with
P̂ defined as in Ref. [5].

References [4, 5] both consider the two-level approxi-
mation in a partial and (in our view) inconsistent man-
ner, with operators that repeatedly can bring the system
in and out of the “two-level" system. Thus, strictly speak-
ing, they do not have a rigorous two-level system, but one
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coupled to other external levels. This unfortunate mix-
up destroys gauge invariance as they show in their plots
in Ref. [4].

In order to distinguish between the two different def-
initions of projection operators, from now on, we will
indicate the projection operators as defined in Ref. [6]
using calligraphic symbols. Reference [6] starts by using
(specifying it from the beginning) P̂ ≡ Î already when
deriving the dipole-gauge Rabi Hamiltonian in Eq. (5),
before presenting the main result [6]. A consequence of
this choice, is that the equivalence P̂Û(x)P̂ = Û(P̂xP̂) is
legitimate. This result is obtained by expanding Û(x) in
a Taylor series and then using for each term the relation
P̂xnP̂ = (P̂xP̂)n, which can be easily obtained using
the properties of identity operators. This procedure is
described in detail at the beginning of the Section I of
the Supplementary Material of Ref. [6] for a generic op-
erator D̂(θ) = eiqθ(x).

In summary, Stokes and Nazir [5] strongly criticizes
the consequences of the choice P̂ ≡ Î. They explain that
for a non-linear function f , [see Eq. (20)], P̂ f(Ô)P̂ 6=
f(P̂ ÔP̂ ), which is of course correct if P̂ is not the iden-
tity operator. However, we are surprised to see that,
a few lines before Eq. (20), Ref. [5] seems to contra-
dict itself, by using P̂ f(Ô)P̂ = f(P̂ ÔP̂ ) to derive their
Eq. (17). Specifically, following the procedure introduced
in Ref. [4], Stokes and Nazir [5] start from the non-
truncated total Hamiltonian Hα. Then, they apply the
projection operator P to obtain their standard α-gauge
two-level model. However, they treat in a different way
the free atomic Hamiltonian Hm and the light-matter in-
teraction term Vα. Specifically, they apply the first pro-
jection operator as PHmP , but instead of applying the
same procedure to the interaction term: Vα → PVαP ,
they use the non-equivalent (according to their defini-
tion of P ) truncation: Vα(x, p)→ Vα(PxP, PpP ). Since
Vα(x, p) is a non-linear function of x (it contains a
quadratic term), it is not at all clear why the authors
used Vα(PxP, PpP ), instead of PVα(x, p)P .

The same procedure is also adopted and briefly de-
scribed by Stokes and Nazir in Ref. [4] (see the Methods
section in particular). Below Eq. (12), (which is the same,
in a slightly different notation of Eq. (16) in Ref. [5]),
the authors write:
“If the interaction Hamiltonian V α is linear in r and pα
then the two-level model Hamiltonian can also be written
Hα

2 = PαHPα. This is not the case forH in Eq. (11) due
to the “d̂2" term, which demonstrates the availability of
different methods for deriving truncated models. Here we
adopt the approach most frequently encountered in the
literature, and outline other methods in Supplementary
Note 2.”

In summary, not only do Stokes and Nazir [5] use what
a few lines below claim to be absolutely wrong, but, in a
closely related work, the same authors also admit, after
using this procedure, that it is “frequently encountered
in the literature”.

B. Gauge-ambiguities

Stokes and Nazir [5] (see also Ref. [28]) also point
out that gauge-ambiguities are much broader than gauge
non-invariance that results from an approximation. Ac-
cording to these references, subsystem predictions vary
significantly with the gauge relative to which the subsys-
tems are defined independent of model approximations.

Although it is true that features such as, e.g., the
amount of light-matter entanglement and of bare exci-
tations in the system eigenstates, are gauge-relative, in
our opinion, this statement can be misleading and re-
quires some comment. In particular, we observe that, as
described in detail in Ref. [7], the approach developed
in Ref. [6] can be applied to remove gauge ambiguities
in all the experimentally observable quantities including
the detectable light-matter entanglement in the ground
state of cavity-QED systems, even in the presence of
Hilbert space truncation. This is one of the main results
of Ref. [7]. The main point here is that measurements (as,
e.g., experimental clicks or transmission amplitudes) are
numbers that do not care about our gauge discussions.
Therefore, if our approximations are applied consistently,
as theoreticians, we should provide these numbers. As
theoreticians, we can play with different representations,
but all of them must be consistent and unambiguous.
Reference [7] shows that this is the case even under ex-
treme conditions, as in the presence of deep ultrastrong
light-matter interactions and/or non-adiabatic ultrafast
switches of the interaction. These theories work well even
in the presence of relevant approximations, if these are
carried out in a consistent manner.

C. Other points raised by Ref. [5]

• Bloch sphere rotation
According to Stokes and Nazir [5], the models actually

analysed in Ref. [4] are Bloch sphere rotations of the
multipolar QRM.

As a matter of fact, the light-matter interaction is in-
troduced, at a fundamental level, by invoking the gauge
principle. This leads to the minimal coupling replace-
ment. Then, a gauge (unitary) transformation can be ap-
plied to obtain the multipolar gauge Hamiltonian, which
acquires a simple form in the dipole approximation. In
Sect. I of the Supplementary Material of Ref. [6], it is
explained how the results in Ref. [6] are indeed able to
satisfy the gauge principle. Results in Sect. IV confirm
this result in a very clear and precise way. Hence, from
a fundamental point of view, the opposite is true: The
multipolar QRM works fine because it is a Bloch sphere
rotation (as required by gauge invariance in TLSs) of the
Hamiltonian in Eqs. (8) and (9) of Ref. [6].

As a final remark on this point, we observe that in
the Coulomb gauge and using the QRM of Ref. [6], the
electric field operator can be expanded in terms of cre-
ation and destruction photon operators, as in the not-
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truncated model, and as in the free electromagnetic the-
ory (in the absence of interactions). On the contrary, af-
ter the gauge transformation in the multipolar QRM, the
electric field operator also contains contributions from
the atomic dipole, as a consequence of the PZW trans-
formation. This is shown in detail in Ref. [7]. This view
is further confirmed by Eq. (16) here, which can be used
to derive the QRM beyond the dipole approximation in
Eq. (26). A result that, to our knowledge, has never been
obtained, so far within any gauge, including the multi-
polar gauge.

• Non-equivalent models

Stokes and Nazir [5] state:, “the idea of Ref. [4] (here
Ref. [6]) to define two-level model gauge transformations
as projections of gauge-fixing transformations does not
resolve gauge non-invariance, because it does not produce
equivalent models.” The authors refuse our choice to
regard the operator P̂ as the identity operator for the
two-level space, although it seems that they also use it
[4, 5] (see Sec. V). Then, they realize [5] that refusing this
implies that gauge non-invariance in truncated Hilbert
spaces cannot be resolved. This is not surprising, since
in Sect. I of the Supplementary Material of Ref. [6], it
has been shown that the gauge principle is satisfied using
repeatedly the properties of the identity operator.

In our view, the conclusion reached in Ref. [5] is a
direct consequence of an inconsistent choice attributed
to Ref. [6]. Sect. IV here further confirms that only the
choice P̂ = Î can produce a gauge invariant theory in the
spirit of lattice gauge theories.

D. Some consequences of renouncing gauge
invariance

The consequence of the only possible choice, accord-
ing to Refs. [4, 5], is that the gauge principle cannot
be implemented in truncated Hilbert spaces, and gauge
transformations provide non-equivalent light-matter in-
teraction models. Since this remains true beyond TLSs,
and since almost every practical calculation involving
field-matter interactions is carried out cutting the infi-
nite amount of information provided by exact infinite-
dimensional Hilbert spaces, the unpleasant conclusion of
Stokes and Nazir [4, 5] is that gauge invariance and the
gauge principle do not work in most practical cases. Nat-
urally, this would be a huge problem, not only in cavity
QED, but also for a wide range of calculations, including
the transport and optical properties of solids, especially
in the presence of strong fields, and for the broad field
of lattice gauge theories in quantum field theory and in
condensed matter many-body quantum physics [11]. As
shown, e.g., in Refs. [12–15, 18, 19], [11] and references
therein, luckily this is not the case (see also Sect. IV).

VI. ON THE EXISTENCE OF
SYSTEM-DEPENDENT OPTIMAL QUANTUM

RABI MODELS

In Stokes and Nazir’s Ref. [5], and also in their Ref. [4],
the authors correctly admit that the dipole gauge is op-
timal when the anharmonicity is high. However, a sys-
tem with high anharmonicity is just, as also discussed
in Ref. [6], a system where the two level truncation can
be safely performed, even in the presence of very high
light-matter coupling strength.

On the contrary, when the anharmonicity, µ (with
µ = (ω2,1 − ω1,0)/ω10) is of the same order or lower
than the normalized light-matter interaction strength η
(i.e., µ ∼ η), the two level approximation becomes unreli-
able, because the detuning between the cavity frequency
and the additional atomic transition frequencies becomes
comparable with the coupling strength. This trivial and
well-known issue has been described in detail in Sect. V
of the Supplementary Information of Ref. [6].

In addition, if a strong positive detuning between the
cavity-mode resonance frequency and the two-level tran-
sition frequency is considered, the coupling of additional
atomic transitions with the cavity photons becomes even
more relevant, and the two-level approximation becomes
pointless. Indeed, this is the situation corresponding to
a number of plots in Ref. [4].

Ref. [5], citing Ref. [4], explains that the multipolar-
gauge (what we call dipole-gauge) does not work when
the material system is an harmonic oscillator. In Ref. [4]
the same concept is explained as: “We show further that
if the material system is a harmonic oscillator, then it is
possible to derive a JCM (Jaymes Cummings model) that
is necessarily more accurate than any derivable QRM
(quantum Rabi model) for finding ground-state aver-
ages.”

It is well-known that the spectra and the physical prop-
erties of a harmonic system constituted by two coupled
harmonic oscillators is very far from those of a system
constituted of a two-level model interacting with a har-
monic oscillator (QRM). Hence, the fact that the dipole-
gauge QRM, which is an highly non-linear model is not
able to describe harmonic oscillators is not surprising.
However we are not able to catch the meaning of a highly
nonlinear model, used as a fit to to reproduce only some
very limited feature of the physics of two coupled har-
monic oscillators (weak excitation limit).

We could elaborate in significantly more details and
considerations, however, this is not the right place for a
detailed analysis of the results in Ref. [4].

In the present work, we have shown how to apply the
fundamental gauge principle to TLSs in order to derive
a gauge-invariant QRM. Of course, this procedure works
fine, until, taking also into account the interaction with
the gauge field, the two-level approximation is meaning-
ful. Naturally, if the detuning between the field and addi-
tional transitions becomes comparable with the coupling
strength, these cannot be ignored anymore, and the two-
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level approximation is no more adequate.

VII. CONCLUSIONS

In contrast with the claims of Stokes and Nazir [5],
we have shown in Sect. IV of this work that the results
presented in Ref. [6], and also used in Ref. [7], are cor-
rect, deriving them with an alternative, more direct and
fundamental method. This derivation shows that the re-
sults in Ref. [6] are not only correct, but they constitute
the only route (to our knowledge) to implement, in a fully
consistent and physically meaningful way, the fundamen-
tal gauge principle in truncated Hilbert spaces. We have
also extended the results in Ref. [6] to asymmetric two-
state systems.

In addition, the method used here allowed us to obtain
the gauge-invariant QRM beyond the dipole approxima-
tion, which is one of the main results of this work. Note
that the problem of a quantum-mechanical system, whose
state is effectively restricted to a two-dimensional Hilbert
space and which interacts with the electromagnetic field
in various regimes, is ubiquitous in physics and chemistry
[17]. Hence, the availability of a general gauge-invariant
model describing this widespread physics is highly desir-
able.

The results in Sect. IV shows that the results in Ref. [6]
also fit well in the great tradition of lattice gauge theories
opened by Kenneth Wilson [11]. Lattice gauge theories
constitute a powerful reference example where it is pos-
sible and also vital to maintain the gauge invariance of a
theory after reducing the infinite amount of information
associated to a continuous coordinate [11], contrary to
the claims of Refs. [4, 5].

A noteworthy feature of this derivation of the gauge-
invariant QRM is that, in the present case, the two-site
lattice spacing is not externally controlled, in contrast to
general lattice gauge theories. Here, the effective spacing
a between the two sites is only determined by the transi-
tion matrix element of the position operator between the
two lowest energy states of the effective particle, which
in turn determines the dipole moment of the transition.

In Sect. V we have also disproved the criticism by
Stokes and Nazir [5], claiming that the results in Ref. [6]

rest on an incorrect mathematical assertion.
We conclude with some key observations from

Sect. VB, where we pointed out that the analysis here
and in Refs. [6, 7] also remove gauge ambiguities in the
experimentally observable quantities, including the de-
tectable light-matter entanglement in the ground state
of cavity-QED systems, even in the presence of Hilbert
space truncation. This is one of the main results of
Ref. [7]. The key point is that measurements (as, e.g.,
experimental clicks or transmission amplitudes) are data
that do not care about gauge representations. Therefore,
if our approximations are applied consistently, as theo-
reticians, we should provide numbers which are not af-
fected by gauge transformations. Of course, as theoreti-
cians we can play with different representations, but all
of them must be consistent. Reference [7] shows that this
is the case even under extreme conditions, as in the pres-
ence of deep ultrastrong light-matter interactions and/or
non-adiabatic ultrafast switches of the interaction. All
this works even in the presence of relevant approxima-
tions, if these are carried out in a consistent way.

If a theory is to be useful and meaningful, it should re-
move any ambiguities in the description of experimental
data – so a theory that is introduced to be ambiguous
and not gauge invariant, ultimately is not very useful; so
claiming such a theory is more correct is futile.
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6.5 Conclusions and Outlook

In this thesis work I presented the research activity developed during my

Ph.D. program, mainly focused on several aspects of hybrid quantum sys-

tems. Specifically, I followed two lines of research. The first one concerns the

study of dissipation and decoherence effects in open quantum systems enter-

ing the USC light-matter regime. The second line of research is devoted to

the resolution of recently claimed gauge invariance issues in USC cavity- and

circuit-QED. [79, 119, 120]. In the following I will draw a brief summary of

the main results and achievements obtained in both this research activities.

Among the most relevant results obtained in the study of open quantum

system dynamics in the USC regime, we presented a generalized dressed mas-

ter equation [72], valid for arbitrary open hybrid quantum systems interacting

with thermal reservoirs and for arbitrary strength of the coupling between the

components of the hybrid system. The latter allowed us to study the dynam-

ics of systems with harmonic, quasiharmonic, and anharmonic transitions.

For example, exploiting this new theoretical tool, we demonstrated that me-

chanical quantum excitations can be coherently transferred among spatially

separated mechanical oscillators through a dissipation-less quantum bus, due

to the exchange of virtual Casimir photon pairs [121]. Moreover, a signifi-

cant measurable flux of Casimir photons can be obtained in optomechanical

systems also without a coherent pumping, suggesting another way for the

experimental observation of the DCE [122]. Specifically, we demonstrated

that an incoherently excited vibrating mirror can emit Casimir photon pairs,

in analogy to atomic fluorescence or electroluminescence in semiconductor

devices. The experimental demonstration of both of these processes could

have important consequences. The first would show that the electromag-

netic quantum vacuum is able to transfer mechanical energy somewhat like

an ordinary fluid, opening up exciting possibilities of applying ideas from

fluid dynamics in the study of the electromagnetic quantum vacuum. The

experimental realization of this effect would make the DCE in high-frequency

optomechanical systems a versatile and powerful new resource for the devel-

opment of quantum-optomechanical technologies. On the other hand, the
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possibility to observe a DCE by an incoherent thermal-like excitation would

allow the parametric conversion of mechanical energy into electromagnetic

energy in optomechanical systems where the mechanical frequency is usually

much lower than the cavity frequency, eliminating the need for extremely high

mechanical oscillation frequencies and ultrastrong single-photon optomechan-

ical coupling. Furthermore, this new process could be exploited in order to

achieve two-photon hyper-Raman scattering, where squeezed photons already

present in an optical resonator are scattered into resonant cavity-photon

pairs, in parametrically amplified optomechanical systems.

Gauge invariance is a general guiding principle in building the theory

of fundamental interactions stating that all physical results must be inde-

pendent of the gauge choice. In the recent years, different authors claimed

that approximate models for light–matter interactions derived in different

gauges may lead to different predictions, or can display different convergence

properties in ultrastrongly coupled light-matter systems. After identifying

the source of this gauge violation, we developed a method able to derive

the correct gauge-invariant form of Hamiltonians in truncated Hilbert spaces

valid even for extreme light–matter interaction regimes [123]. Exploiting this

method, we derived the correct quantum Rabi Hamiltonian in the Coulomb

gauge. Besides solving long-lasting controversies arising from gauge ambi-

guities in the quantum Rabi and Dicke models, these results could be also

relevant for the study of systems with non-adiabatic time-dependent cou-

pling strength and for the study of open quantum systems. For example, it

turns out that when the interaction of the light and matter components of a

quantum system is very strong (USC), the correct gauge dependence of the

subsystem operators appearing in the master equation cannot be neglected

as usual. Moreover, if the coupling between a subsystem (for example, the

matter system) and the environment is described by a gauge interaction and

the system–bath coupling strength is not weak, the preservation of the gauge

principle should be ensured despite any truncation procedure. Furthermore,

we have also investigated the gauge invariance of the Dicke model in the di-

lute regime, and deriving, also in this case, the correct gauge-invariant Dicke

Hamiltonian in the Coulomb gauge for both a finite number N of dipoles and
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in the dilute regimes with N →∞ [124]. Finally, by employing an operational

approach based on the physical measurements of the system observables, we

have investigated and solved a number of qualitative ambiguities in the the-

oretical description of cavity- and circuit-QED systems [125]. Among them

we can highlight the proper definition of subsystem and their quantum mea-

surements, the structure of light-matter ground states and the analysis of

time-dependent interactions. In particular, even if we focused our attention

on the quantum Rabi model, our results can be extended to matter systems

including, multi-levels systems, a collection of quantum emitters, collective

excitations, multi-mode resonators and atoms (natural or artificial) coupled

to a continuum of light modes, finding possible applications even in cavity

quantum optomechanics.

In a very recent preprint [126], we pointed out the relationship between

the gauge-invariant quantum Rabi model and lattice gauge theories. This

connection, I believe, will allow soon to obtain gauge-invariant models for

the rigorous study of cavity-embedded 1D chains, and 2D systems, like

graphene [127–129]. Furthermore, this approach, will allow the develop-

ment of accurate models for studying topological quantum photonics and

the cavity QED of interacting electron systems.

In conclusion, looking at the recent scientific literature, there is a great

growing interest in studying light-matter interactions in the ultrastrong cou-

pling regime. The results presented in this thesis have been so far very well

received by the referees of various journals, and are receiving several citations.

I am quite confident that my Ph.D. work will have a significant impact in the

field of interacting quantum systems, and may contribute to the development

of novel quantum technologies.
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[72] A. Settineri, V. Macŕı, A. Ridolfo, O. Di Stefano, A. F. Kockum,

F. Nori, and S. Savasta, “Dissipation and thermal noise in hybrid quan-

tum systems in the ultrastrong-coupling regime,” Phys. Rev. A, vol. 98,

p. 053834, Nov 2018.

[73] V. Macr̀ı, A. Ridolfo, O. Di Stefano, A. F. Kockum, F. Nori, and

S. Savasta, “Nonperturbative dynamical Casimir effect in optomechan-

ical systems: vacuum Casimir-Rabi splittings,” Phys. Rev. X, vol. 8,

p. 011031, Feb 2018.

[74] K. Hepp and E. H. Lieb, “On the superradiant phase transition for

molecules in a quantized radiation field: the Dicke maser model,” Ann.

Physics, vol. 76, no. 2, pp. 360–404, 1973.



200 Bibliography

[75] Y. K. Wang and F. T. Hioe, “Phase transition in the Dicke model of

superradiance,” Phys. Rev. A, vol. 7, p. 831, Mar 1973.
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