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Abstract: This paper reports the analysis of the intramolecular OH stretching band obtained by 

Fourier Transform Infrared (FTIR) spectroscopy measurements. In order to characterize the effect of 

montmorillonite on the properties of Bovine Serum Albumin (BSA) the two-state model is adopted 

for the analysis of the OH stretching band. We assume that the OH stretching can be divided into two 

different states of inter-molecular bonding. The results of this experimental work confirm that the 

montmorillonite leads to a stabilization of the BSA structure. Also, the analysis of the spectra 

temperature dependence shows a montmorillonite-induced higher thermal stability of the BSA in 

respect to pristine BSA. Thus, this paper allows to highlight the importance of montmorillonite as 

thermal bio-protector: this is also evidenced by the theory widely discussed in the following 

introduction regarding the birth of the first life forms on earth in montmorillonite clay, in which the 

protective role of the montmorillonite interlayer space is also highlighted. A FTIR analysis was 

carried out to investigate the interaction of montmorillonite with BSA. Two different approaches, i.e. 

Spectral Distance and Wavelet analyses, constitute two effective and innovative approaches for the 

characterization of the thermal properties of pristine BSA and of BSA in the presence of 

montmorillonite. The results allowed us to consider as BSA in the presence of montmorillonite has a 

lower spectral sensitivity when the temperature changes and, therefore, the role of montmorillonite 
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as a thermal bio-protector is motivated. 

Keywords: bovine serum albumin, montmorillonite, Fourier Transform InfraRed Spectroscopy 

 

1. Introduction  

Many theories have been proposed on the origins of life on earth: in the Russian book of 1924, 

Oparin hypothesized that simple molecules (CH4, NH3) reacted to form small bio-molecules and 

bio-polymers (nucleotides, peptides,). They, then, evolve in multimolecular systems and, finally, they 

gave rise to the first forms of life [1]. Later, in a book of 1929, Haldane proposed a similar theory 

about the origins of life [2]: but, it was Bernal (1951) that suggested that clays had a fundamental 

role in chemical evolution and in the origins of life due to their ability to absorb, protect from 

ultraviolet radiation and catalyze the polymerization of organic molecules [3]. Then, Cains-Smith (1982) 

has proposed that clays can act as genetic candidates [4]. Hence, the inclusion of organic molecules 

and monomers in the layered structure of clays, such as montmorillonite and kaolinite, would favor 

the formation and replication of biopolymers such as enzymes and polynucleotides. In this 

introduction, we present a summary of data relating to different studies present in the literature to 

show as montmorillonite could be considered the cradle of the evolution of the early life forms on 

earth and, also, we want to highlight the role of thermal bio-protector of the montmorillonite clay. 

We propose, in fact, that the birth of life occurs on clays and in particular in montmorillonite [5–12]. 

Considering RNA as the fundamental component of primordial life characterized by catalytic and 

genetic properties, some theoretical steps are described below which show as the formation of RNA 

precursors would occur in the montmorillonite structure. Then, there is the phase related not only to 

the formation of RNA as oligomers parallel to the sheets in the interlayer spaces, but also to the 

fixing of some trimers at the edges of the sheets of adjacent layers perpendicular to their surfaces 

since the length of each individual trimer is equal to the interlayer distance. The encapsulation of 

each trimer with an oligomer attracted to a fatty acid-composed vesicle would be the starting point 

for the formation of a codon-anticodon complex which could determine to the birth of a primordial 

genetic code [13–19]. The interaction between water, heat and rock gave rise to the first forms of life: 

water, in fact, is an indispensable element for any form of life and, in fact, many chemicals dissolve 

easily in the water and, therefore, could be mixed and give rise to chemical reactions [20–21]. We 

assume that the evolution of the first life forms would have occurred within the earth's surface and 

more precisely on the rock constituted from clay-rich soil layers. In fact, in the presence of water, 

montmorillonite clay can form a filter and allow the soil layers to become impermeable [22–25]. 

There are three main groups of clay such as kaolinite, illite and smectite: the most common smectite 

is montmorillonite, which is the main constituent of bentonite, derived by volcanic ash, and it is very 

likely that it was present in the earth's crust in its primitive state. Based on the number and 

arrangement of the tetrahedral and octahedral sheets contained in the layers of crystal structure, 

silicate-based clays are classified into two different groups: minerals of type 1: 1 (a tetrahedral and 

an octahedral sheet) and type 2: 1 minerals [26–29]. Therefore, there are two types of phyllosilicates: 

those with a 1: 1 ratio, such as kaolinite, in which each lamella is formed by only two layers (one 

octahedral and one tetrahedral) and the phyllosilicates with a 2: 1 ratio, such as montmorillonite, in 

which a single layer is formed by an octahedral sheet interposed between two tetrahedral sheets and, 
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moreover, there is the presence of weak Van der Waals bonds between the various layers [30–35]. 

Figure 1 schematically shows the schematic structure of montmorillonite. 

 

Figure 1. Schematic structure of montmorillonite with a 2: 1 ratio, in which each layer 

consists by two silica tetrahedral sheets with an interposed alumina octahedral sheet. 

The montmorillonite formula is (Al
0.2

Si
7.8

)
IV

(Mg
0.6

Al
3.4

)
VI

O20(OH)4: its composition, without 

considering the presence of the material between the various layers, is: Al2O3 (28,3%), SiO2 (66,7%), 

H2O (5%), which allows us to show as in the montmorillonite there may be isomorphic substitutions 

of the Si
4+

 cations with Al
3+

 within the tetrahedral sheets, and of the Al
3+

 cation with Mg
2+

 in the 

octahedral sheets. So, the montmorillonite charge for each layer is: [7.8 (+4)] + [0.2 (+3)] + [3.4 (+3)] 

+ [0.6 (+2)] + [20 (−2)] + [4 (−1)] = −0.8 charge/unit cell. So, these layers are characterized by an 

excess negative charge, which is balanced by the elements in the interlayer spaces such as alkaline or 

alkaline-earth cations, solvated, in turn, by water molecules. Due to this peculiar structure, 

montmorillonite has many physicochemical properties such as a large surface area, high adsorption 

capacity, swelling and ion exchange [36–39]. Moreover, the interlayer space of montmorillonite 

depends on the degree of hydration of the mineral: by increasing the number of water layers, the 

crystalline lattice expands (Figure 2); by complete dehydration, however, it loses its ability to expand. 

In fact, in the presence of water, H2O molecules dispose themselves within the montmorillonite 

interlayer space, generating an increased space between the layers. 

 

Figure 2. Swelling of montmorillonite clay in water. 
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Regarding the water absorption capacity, this property is very important for these clays. In fact, 

clays can absorb or desorb water as a function of changes in the moisture content: as above reported, 

when H2O molecules are absorbed, they fill the space between the various layers. Montmorillonite 

has excellent water absorption properties; however, the interaction between the water molecules and 

montmorillonite can produce swelling. The absorption of water molecules and the swelling of 

montmorillonite determine to the formation of hydrated states and can give rose to hysteresis 

phenomena. The montmorillonite swelling and hydration processes play a fundamental role for a 

wide variety of engineering applications. Furthermore, the anisotropy of a wide class of clays is 

reflected in a broad variable range of mechanical properties. The structure of hydrated 

montmorillonite is shown in Figure 2: this anisotropy of montmorillonite can produce great 

differences in the values of elastic constants, shear modulus, and Young’s modulus. Moreover, these 

mechanical properties decrease with increasing hydration [40–42]. Furthermore, as regards the 

thermal properties, montmorillonite is a good thermal insulator and, moreover, it allows to increase 

the thermal stability once added as an additive in many materials. Recent developments in the use of 

self-assembling supramolecular objects to fabricate innovative well-defined nanomaterials links soft 

matter chemistry to hard matter sciences [43–46] and requires the employment of techniques and 

approaches that to simultaneously detect the structure re-organization and dynamics at the nanoscale [47–49]. 

This is a significant area of research to produce thermal barrier effects in the structure of the 

composite material: in fact, the thermal barrier properties of clays are appreciated in many 

applications involving the use of heat-resistant materials and flame retardants. The nanoclays have 

been largely studied and used in polymer matrix composites to obtain greater thermal stability and 

better flame retardancy properties. The variation of thermal expansion, under the effect of heat, for 

metals, polymers and ceramics was analyzed: generally, the order of magnitude of the thermal 

expansion in polymers, metals and ceramics can be indicated as follows: polymer> metal> ceramics. 

This order is based on the values of the linear thermal expansion coefficient in the values range 20–100, 3–20 

and 3–5 ppm/°C for polymers, metals and ceramics, respectively [50]. Therefore, a higher thermal 

stability of montmorillonite allows its use as a filler in polymers to make composite materials with a 

low coefficient of thermal expansion. However, the improvement of the thermal stability of the 

polymers requires an increase in the ratio between surface and volume of a material (aspect ratio) 

and, therefore, can be obtained for values of this aspect ratio higher than 100. Many experimental 

studies have been conducted to explain the fundamental role played by ribonucleic acid (RNA) in the 

evolution of early life forms. The three main steps that would lead to the formation of the first life 

forms with the birth of a primordial genetic code are summarized below. Montmorillonite can 

catalyze the formation of RNA oligomers in aqueous solution through the union of RNA nucleotides, 

which in turn join together to form longer chains [51]. The extent of this catalysis depends on the 

value of the negative charge present inside the montmorillonite and on the number of cations 

associated with it. Under certain experimental conditions, it is possible to obtain oligomers of 40 to 50-mers 

up to the length of small ribozymes [52–54]. As reported previously, the surfaces of the 

montmorillonite layers have a negative charge: in wet conditions, the quantity of water and cations 

present in the environment allow a variable space between the layers occupied by water and cations. 

While, in dry conditions, these interlayer spaces are reduced and occupied by hydrated cations, 

which hold together the layers. Therefore, montmorillonite is able to expand and contract its 

structures maintaining its crystallographic integrity. Due to this ability, the oligomerization of RNA 

nucleotides would occur mainly in the interlayer space parallel to the surface sheets of 
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montmorillonite [55–58] (Figure 3). Consequently, for a development of the oligomerization process 

of RNA nucleotides in the interlayer space of montmorillonite, we propose that it is moderately 

expanded, i.e. in the presence of low quantities of water and cations [59–62] (Figure 3).  

 

Figure 3. Schematic representation of the formation of RNA oligomers in the interlayer 

space in presence of low number of cations and water molecules. 

As reported previously, the formation of numerous RNA oligomers occurred in the space 

between the parallel layers to the montmorillonite sheets in the presence of a low amount of water. 

During the rainy period, the water with the cations diffuses inside the interlayer space until it reaches 

a size of 1.02 nm (Figure 4). Consequently, the RNA oligomers leave the interlayer space under the 

pressure of the water and the cations: after this exit, some trimers, positioned perpendicular to the 

sheets of the adjacent layers, reach with their two ends the edge of these sheets surfaces when the 

length of the trimers is equal to the interlayer space of 1.02 nm [63–64].  

 

Figure 4. Exit of the oligomers from interlayer space and positioning of trimers in a 

position perpendicular to the sheets of adjacent layers. 
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According to this theory, the RNA oligomers are protected by the montmorillonite layers, but, 

after their exit from the interlayer space, they need protection from some prebiotic conditions such as 

the high temperature and the high quantities of UV radiation. For this protection, it has been proven 

that montmorillonite can also catalyze the formation of vesicles composed of simple aliphatic 

carboxylic acids present in the prebiotic environment and that the clay particles and/or RNA 

oligomers could encapsulate inside of these vesicles [65–66]. We propose that, in presence of 

prebiotic conditions, the RNA oligomers can be encapsulated inside fatty acids-composed vesicles, 

which provide protection and environments for further biochemical reactions (Figure 5). Furthermore, 

these fatty acids-composed vesicles show permeability to the nucleotides in such a way as to allow 

the nucleic acid to be stretched within them. They exhibit high thermal stability and keep DNA and 

RNA oligonucleotides within them at temperatures between 0 °C and 100 °C [67]. Then, each fixed 

trimer would be encapsulated with the closest oligomer attracted to a vesicle in which a 

codon-anticodon complexes might emerge (Figure 5): the accompanying oligomer should evolve in 

RNA transfer (tRNA) by binding with one of its complementary sequence (anticodon) to the fixed 

trimer considered as a codon and by the presence of new nucleotides that could enter through the 

membrane of this vesicle defined as codon-anticodon vesicle. However, each free oligomer would be 

encapsulated alone or with the others in a vesicle in which these oligomers could increase in length 

by binding together and/or adding new nucleotides present to produce new possible ribozymes. 

 

Figure 5. Formation of codon-anticodon complexes in protective vesicles. 

After this wet period and at the beginning of a dry period, the amount of water starts to be low 

and, consequently, the montmorillonite interlayer spaces decrease until reaching the state of a 

possible resumption of the formation of new RNA oligomers. However, during the reduction of the 

interlayer space, each codon-anticodon vesicle detaches itself from the edges of the sheets and it is 

located, outside the crystalline structure of the clay itself, in contact with the vesicle above and below. 

Hence, these vesicles would merge to allow to the connection between nucleotides of subsequent 

triplets: as a result, a long chain of codon-anticodon complexes may appear within a long single 

vesicle. This chain would represent the first operational RNA already connected to the corresponding 

tRNA. So, in summary, the encapsulation of each fixed trimer with an oligomer attracted to a fatty 

acids-composed vesicle would be the starting point for the formation of a codon-anticodon complex 
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which could lead to the birth of a primordial genetic code. The development of advanced 

nanomaterials exploit the self-assembly process that involves the combination of non-covalent soft 

interactions with the multi-functionality of building blocks and provides an excellent strategy for the 

preparation of novel, advanced nanomaterials with highly controlled properties for biotechnology 

and material science application [68–71]. Previously, it has been highlighted that clays have a high 

specific surface, cation exchange capacity and absorption capacity and, therefore, they are 

appreciated for their high absorption capacity of cations including Ag
+
, Zn

2+
 and Cu

2+
. Furthermore, 

previous research in the literature has shown that clays modified with these cations have antibacterial 

properties [72–77]. As regards, however, the antibacterial properties of montmorillonite modified 

with Fe
3+

 cations, some studies in the literature have shown effective removal of phenolic organic 

compounds from wastewater due to the oxidative oligomerization catalyzed on the surface by the 

same Fe
3+

 saturated montmorillonite [78–80]. Moreover, it has been hypothesized that the Fe
3+

 

saturated montmorillonite could also be able to eliminate the bacteria present in the wastewater. 

Although montmorillonites modified with Cu
2+

, Zn
2+

 and Ag
+
 cations show antibacterial activity, the 

presence of these cations in water could pose a potential risk to public health due to their toxicity at 

high concentrations. Therefore, it was proposed to use the saturated montmorillonite of Fe
3+

 as a 

possible alternative for the water disinfection process because iron is an essential element for humans [81]. 

In summary, the effectiveness of Fe
3+

 saturated montmorillonite for the elimination of bacteria 

present in secondary wastewater has been demonstrated. So, these experimental results suggest as the 

montmorillonite modified with Fe
3+

 cations could probably be used as an effective antibacterial 

material for water disinfection in small plants used for the treatment of drinking water and in large 

plants used for the treatment of drinking water and wastewater. In this experimental work, samples of 

montmorillonite and its mixture with Bovine Serum Albumin (BSA) were investigated as a function 

of temperature by means of Fourier Transform Infrared (FTIR) spectroscopy technique and Spectral 

Distance (SD) approach. In order to determine the thermal protective effects of Montmorillonite on a 

system of biophysical interest, a protein, the Bovine Serum Albumin (BSA) was chosen [82–89]. It is 

a serum albumin protein derived from cows and it has numerous biochemical applications such as 

ELISAs (Enzyme-Linked Immunosorbent Assay) and immunohistochemistry [90–95]. Bovine 

Serum Albumin (BSA) is a small, soft, stable, non-reactive protein, and it is used as a representative 

short peptide in the drug delivery system [96–101]. It is well known that exist different techniques to 

investigate the behaviours of proteins, such as X-rays, Nuclear Resonance Magnetic, Neutron 

Scattering, Dynamic Light Scattering, Acoustic Levitation, Raman spectroscopy and InfraRed 

absorption [102–110]. 

2. Materials and method 

Pristine montmorillonite powders purchased from Merck (Milano, Italy, surface area 250 m
2
/g), 

BSA (purchased from Sigma) and double distilled water were used to prepare the samples. 

Montmorillonite/water mixtures have been prepared by adding to pure protein double-distilled water (80 wt% 

montmorillonite); for montmorillonite/water/BSA mixtures the concentration was: 80 wt% 

montmorillonite/20 wt% (BSA (50 wt%)+ H2O (50 wt%)). Fourier Transform InfraRed (FTIR) 

spectroscopy allows us to characterize the molecule rotational and vibrational motions. This 

spectroscopic technique explores 14000–10 cm
-1

 range of the electromagnetic spectrum, which 

encloses the Near-IR range (14000–4000 cm
-1
), the Mid-IR range (4000–400 cm

-1
), and the Far-IR (400–10 cm

-1
). 
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FTIR technique is a powerful method to investigate the structural and dynamical properties of 

materials as well as their dependence on temperature: this technique is based on the analysis of the 

absorption spectra [111–114]. In this experimental work, we collected vibrational spectra by means 

of the Vertex 70v spectrometer (Bruker Optics, Ettlingen, Germany) using a Platinum diamond ATR. 

All spectra were collected by using an average of 96 scans with a resolution of 4 cm
-1

 in a spectral 

range of 4000~400 cm
-1

, from a temperature of 20 °C to 55 °C. The pre-processing data procedure 

was performed through OPUS software and, then, by means of Matlab environment. Due to the 

complexity of the investigated systems we prefer to analyze globally the spectral features of the 

samples by applying an innovative approach consisting in the integrated use of the Spectral Distance 

and Wavelet Cross Correlation protocols. Such an approach reveals to be very effective since in the 

present study we focus the attention only on the spectra temperature dependence. On this purpose, to 

characterize the temperature sensitivity of the analyzed samples, the Spectral Distance approach has 

been used; this latter is based on the following expression: 

 
(1) 

where  represents the absorbance at the frequency ,  denotes the lowest 

temperature, that is 20 °C and  is the frequency resolution of the instrument. 

3. Results and discussion 

In Figure 6, the FTIR spectrum of montmorillonite in the spectral range of 4000 ÷ 400 cm
-1

 at 

the temperature of T = 20 °C is reported.  

 

Figure 6. FTIR spectrum of montmorillonite in the resolution spectral range of 4000 ÷ 400 

cm
-1

 at the temperature of T = 20 °C.  
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The most significant peaks are located at ~ 3632 cm
-1

, i.e. O-H stretching; at ~ 1639 cm
-1

 that 

represents the O-H bending (hydration); at ~ 1113 cm
-1 

and 1035 cm
-1

 make reference to the i-O 

stretching, out of plane and in plane, respectively. Finally, the peak at ~915 cm
-1

 denotes the AlAlOH 

bending, at ~793 cm
-1

 is situated the tridymite peak and the peak at ~529 cm
-1

 represents the Si-O 

bending vibration. Figure 7 shows the FTIR spectrum of BSA in the spectral range of 4000 ÷ 400 cm
-1

 

at at the temperature of T = 20 °C. 

 

Figure 7. FTIR spectra of the BSA in the resolution spectral range of 4000 ÷ 400 cm
-1

 at  

temperature T = 20 °C. 

For the FTIR BSA spectrum, one of the most important IR spectral feature for the protein are the 

bands of Amide. In particular, in Figure 7, there are at ~ 3292 cm
-1

 the Amide A, at ~ 1649cm
-1

 Amide 

I and at ~ 1537cm
-1

 Amide II. 

 

Figure 8. FTIR spectra for montmorillonite/water mixtures in the spectral range of 4000 ÷ 

400 cm
-1

 and in the temperature range of 20 °C ÷ 55 °C.  
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Figure 8 reports the FTIR spectra for montmorillonite/water mixtures in the spectral range of 

4000 ÷ 400 cm
-1

 and in the temperature range of 20 °C ÷ 55 °C. Figure 9 shows the FTIR spectra for 

montmorillonite/water mixtures/BSA in the spectral range of 4000 ÷ 400 cm
-1

 and in the temperature 

range of 20 °C ÷ 55 °C.  

 
 

Figure 9. FTIR spectra for montmorillonite/water mixtures/BSA in the spectral range of 

4000 ÷ 400 cm
-1

 and in the temperature range of 20 °C ÷ 55 °C.  

As it can be seen, in Figure 9, the typical IR bands of montmorillonite and the peaks of Bovine 

Serum Albumin (BSA) are observed. More precisely, by increasing temperature a little decrease in IR 

band intensity at ~ 3440 cm
-1

 of the O-H stretching band is observed; this suggests a dehydration of 

montmorillonite. The peaks at ~ 1649 and at 1537 cm
-1

 are typical of BSA and can be attributed to the 

C = O stretching vibration of the peptide linkages; they turn out to be very sensitive to the secondary 

structural components of the protein. These two peaks decrease with increasing temperature. 

Before to proceed with the analysis of data, a pre-processing data procedure was performed by 

eliminating the background. To better investigate the mechanisms of interactions that occur between 

montmorillonite and BSA, the spectrum difference has been taken into account. In particular, from the 

spectrum of montmorillonite in the presence of BSA, the spectrum of montmorillonite has been 

subtracted the spectrum of montmorillonite so obtaining the spectrum difference. This procedure was 

adopted for each spectra of all the investigated temperatures. In Figure 10, the spectra differences, in 

the temperature range 20 °C ÷ 55 °C, are reported. 
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Figure 10. Spectra differences in the temperature range 20 °C ÷ 55 °C. 

The thermal behaviour of the investigated systems was characterized by the evaluation of SD (eq. 1). 

Figure 11 reports SD as a function of temperature for BSA (green circle) and for the spectrum 

difference (light blue square) together with their linear fits. 

 

Figure 11. SD as a function of temperature for BSA (green circle) and for BSA in the 

presence of montmorillonite (light blue square) together with their linear fits (continuous 

lines). 

In order to extract quantitative information, a linear fit has been performed: 

 (2) 
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By this examination, it results that the slope coefficient value for the spectrum difference, 

, is lower than the slope coefficient value for BSA, that is equal to . 

This suggests that BSA in presence of montmorillonite has a higher thermal resistance and for this 

reason montmorillonite can be considered as an effective thermal bioprotector.  

Another approach to investigate the thermal behavior of montmorillonite consists in applying the 

wavelet cross correlation method, that allows to determine, evaluating the wavelet cross-correlation 

coefficient, , the degree of affinity between two signals. Such a method is very innovative and 

powerful and is employed in several kinds of disciplines such as climate, geoscience, physics, 

mathematics, finance, engineering science and others [115–120]. Let’s consider two wavelet 

transforms,  and  of the investigated spectra, where represents the scale parameter 

( and  denotes the shift parameter, and the two wavelet spectra  and  [121–125]. 

From a mathematical point of view is the inner product of the function  and scaled and 

shifted mother wavelets : 

 

where  denotes the one-dimensional function, * is the complex conjugate, and  is the mother 

wavelet: 

         (3) 

then, one defines the wavelet spectrum : 

        (4) 

and finally, one determines the wavelet cross-correlation coefficient, : 

       (5) 

The wavelet cross-correlation coefficient varies in the range  ; if the value is 

equal to 1 indicates a positive statistical relationship between the spectra; if the value is equal to 0 no 

statistical relationship between spectra exists; finally, if the value is equal to -1 a negative correlation 

between the two spectra is present. In the present study, the spectrum at lowest temperature (T = 20 °C) 

has been chosen as reference wavelet spectrum both for BSA and for the spectrum difference.  

Figure 12 shows the evaluated wavelet cross-correlation coefficient, , versus temperature 

for BSA (orange circles) and for the spectrum difference (magenta squares) together with their linear 

fits.  

What it emerges is that  decreases by increasing temperature following a decreasing linear 

trend. Also in this case, a linear fit has been performed and the slope coefficient value for the 

spectrum difference,  is lower than the slope coefficient value for BSA, that is equal to  
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. These results confirm that montmorillonite can be considered as a thermal 

bioprotector.  

 

Figure 12. Wavelet cross-correlation coefficient, , versus temperature together with 

their linear fits. 

4. Conclusion 

The present experimental work has allowed to show the importance of montmorillonite clay as a 

thermal bioprotector. FTIR data were collected to study the interaction of montmorillonite with BSA. 

SD and wavelet analyses, constitute two effective and innovative approaches for the characterization 

of the thermal properties of pure BSA and od BSA in the presence of montmorillonite. Both 

approaches suggest that BSA in the presence of montmorillonite has a lower spectral sensitivity 

when the temperature changes and, hence, the role of montmorillonite as a thermal bioprotector is 

thus justified. This is also evidenced by the theory widely discussed in the introduction of the paper 

regarding the birth of the first life forms on Earth in montmorillonite clay, in which the protective 

role of the montmorillonite interlayer space is also highlighted.  
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