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SEQUENCES OF WEAK SOLUTIONS
TO A FOURTH-ORDER ELLIPTIC PROBLEM

FILIPPO CAMMAROTO ∗

ABSTRACT. This paper contains some results of existence of infinitely many solutions to
an elliptic equation involving the p(x)-biharmonic operator coupled with Navier boundary
conditions where the nonlinearities depend on two real parameters and do not possess any
symmetric property. The approach is variational and the main tool is an abstract result of
Ricceri.

1. Introduction

The aim of this paper is to establish the existence of infinitely many solutions to the
following p(x)-biharmonic elliptic equation with Navier boundary conditions,⎧⎨⎩

∆2
p(x)u = λ f (x,u)+µg(x,u) in Ω

u = ∆u = 0 on ∂Ω

(Pλ ,µ )

where Ω ⊂Rn (n ≥ 1) is a bounded domain with smooth boundary ∂Ω, p ∈C0(Ω) satisfies
max{1,n/2}< inf

Ω
p≤ sup

Ω
p, ∆2

p(x)u :=∆(|∆u|p(x)−2∆u) is the p(x)-biharmonic operator,
f ,g : Ω×R→R are two Carathéodory functions with suitable behaviors, λ ∈R and µ > 0.
The operator ∆2

p(x) is the natural generalization to the variable exponent framework of the
standard p-biharmonic (p > 1 constant).
Equations with variable exponent growth conditions model various phenomena, for instance,
the image restoration or the motion of the so called electrorheological fluids, characterized
by their ability to drastically change their mechanical properties under the influence of an
exterior electromagnetic field (see for instance Růžička (2000) and Chen et al. (2004) and
the survey paper of Rădulescu (2015)). The most suitable contexts in which this kind of
problems can be studied is represented by the Lebesgue and Sobolev spaces with variable
exponents; for more informations about this topic, the reader is invited to consult Kováčik
and Rákosník (1991), Fan et al. (2001), Fan and Zhao (2001), and Diening et al. (2011)
together with the further sources of Cammaroto and Vilasi (2013a,b, 2014) and Vilasi (2016)
in which several classes of variable exponent problems (and related multiplicity results) are
investigated, still from a variational perspective.
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In the last years several authors have showed their interest in fourth-order differential
problems involving p-biharmonic and p(x)-biharmonic operators, motivated by the fact
that this type of equations arise in many domains like micro electromechanical systems,
surface diffusion on solids, thin film theory, flow in Hele-Shaw cells and phase fieldmodels
of multiphasic systems and, more generically, in fields such as the elasticity theory, or more
in general, in continuous mechanics. Some recent existence results for Navier problems
driven by the p-biharmonic and p(x)-biharmonic operators are provided by Furusho and
Takaŝi (1998), Ayoujil and El Amrouss (2009), Wang and Shen (2009), Candito and Livrea
(2010), Ayoujil and El Amrouss (2011), Candito et al. (2012), Massar et al. (2012), Yin and
Liu (2013), Kong (2014), Kefi and Rădulescu (2017), and Bueno et al. (2018).
In this paper, the existence of infinitely many solutions to (Pλ ,µ ) is obtained by finding
suitable conditions on the nonlinearities; unlike much of the existing literature on the subject
this approach does not require any symmetry condition on the nonlinearities, but rather an
opportune behaviour of the term µg at infinity, expressed in terms of its primitive.
The approach used in this paper is variational; more precisely we will apply the following
critical point theorem that Ricceri established in 2000 (Theorem 2.5 of Ricceri (2000)),
recalled below for the reader’s convenience.

Theorem 1.1. Let E be a reflexive real Banach space and let Φ,Ψ : E → R be two sequen-
tially weakly lower semicontinuous and Gâteaux differentiable functionals. Assume also
that Ψ is strongly continuous and coercive.

For each r > infE Ψ, define ϕ to be

ϕ(r) := inf
x∈Ψ−1(]−∞,r[)

Φ(x)− inf
Ψ−1(]−∞,r[)w

Φ

r−Ψ(x)
,

where Ψ−1(]−∞,r[)w is the closure of Ψ−1(]−∞,r[) in the weak topology.
Fixed L ∈ R, then

a) if {rk} is a real sequence such that limk→∞ rk =+∞ and ϕ(rk)< L for all k ∈ N,
the following alternative holds: either Φ+LΨ has a global minimum or there exists
a sequence {xk} ⊂ E of critical points of Φ+LΨ such that limk→∞ Ψ(xk) = +∞;

b) if {sk} is a real sequence such that limk→∞ sk = (infE Ψ)+ and ϕ(sk) < L for all
k ∈ N, the following alternative holds: either there exists a global minimum of
Ψ which is a local minimum of Φ+LΨ or there exists a sequence {xk} ⊂ E of
pairwise distinct critical points of Φ+ LΨ with limk→∞ Ψ(xk) = infE Ψ which
weakly converges to a global minimum of Ψ.

Since its appearance in 2000 until our days, Theorem 1.1 has been a powerful tool to get
multiplicity results for different kinds of problems. In particular, it has been applied to
obtain the existence of infinitely many solutions for a vast range of differential problems.
In each of these applications, in order to guarantee that ϕ(rk)< L (or ϕ(sk)< L), for each
k ∈ N, and that the functional Φ+LΨ has no global minimum, it is necessary to construct
suitable sequences of functions. Generally, in these constructions, one uses the norm of the
variable raised to a suitable power which depends on the nature of the problem and that
gives to the functions the requested regularity properties: in some application the norm is
used without power (see, for instance, Cammaroto et al. (2005), Kristály (2006), Bonanno
et al. (2010), and Dai and Wei (2010)), in some others it is raised to the second (Candito
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and Livrea (2010), Bonanno and Di Bella (2011), Candito et al. (2012), and Massar et al.
(2012)) or to the third (Heidarkhani (2014) and Makvand Chaharlanga and Razani (2018))
or to the forth power (Afrouzi and Shokooh (2015)); Hadjian and Ramezani (2017) and
Reza Heidari Tavani and Nazari (2019) combined the norm with trigonometric functions.
The choice of a particular sequence of functions inside the proof reflects heavily on the
assumptions and while there are some cases in which probably the choice is optimal, in some
other cases it could happen that a different choice of the sequence would make the result
applicable in a greater number of cases. This is the reason why in this paper an abstract class
of test functions is introduced; some examples presented in Section 4 will clarify this fact.
A similar procedure is used by Cammaroto and Genoese (2018) and Cammaroto and Vilasi
(2019) and above all by Song (2014) where he doesn’t choose the test functions arbitrarily
during the proof but uses two generic functions whose properties are described in the initial
assumptions.
The paper is then structured as follows. Section 2 includes all the basic results about
Lebesgue and Sobolev variable exponent spaces necessary for the variational set-up of
Problem (Pλ ,µ ). In Section 3 the multiplicity results will be presented and, finally, in Section
4 some concrete examples of nonlinearities will be exhibited.

2. Variational framework

We collect here some preliminary results about Lebesgue and Sobolev variable exponent
spaces, which are used in our investigations.
To begin with, we fix some notation for the sequel. Given a measurable function u : Ω → R,
we set

u− := essinf
Ω

u, u+ := esssup
Ω

u.

We denote by ω := π
n
2 /Γ

(︁ n
2 +1

)︁
the measure of the unit ball in Rn. If X is a Banach space,

the symbol B(x,r) denotes the open ball centered at x ∈ X and of radius r > 0 and B(x,r)
its clousure.
Let Ω be a bounded smooth domain of Rn, n ≥ 1, and let p ∈C0(Ω) satisfy 1 < p− ≤ p+.
Define the variable exponent Lebesgue space Lp(x)(Ω) by

Lp(x)(Ω) =

{︃
u : Ω → R measurable:

∫︂
Ω

|u|p(x)dx <+∞

}︃
.

It is a reflexive Banach space when endowed with the Luxemburg norm

|u|p(x) = inf
{︃

σ > 0 :
∫︂

Ω

⃓⃓⃓ u
σ

⃓⃓⃓p(x)
dx ≤ 1

}︃
.

If we denote by ρp(x) : Lp(x)(Ω)→ R the functional defined by

ρp(x)(u) =
∫︂

Ω

|u|p(x)dx

for all u ∈ Lp(x)(Ω), it is the so-called modular of the space Lp(x)(Ω) and the following
proposition clarifies its relations with the Luxemburg norm.

Proposition 2.1. Let u ∈ Lp(x)(Ω) and let {uk} be a sequence in Lp(x)(Ω); then
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(1) |u|p(x) < 1 (= 1;> 1) ⇔ ρp(x)(u)< 1 (= 1;> 1);

(2) |u|p(x) > 1 ⇒ |u|p
−

p(x) ≤ ρp(x)(u)≤ |u|p
+

p(x);

(3) |u|p(x) < 1 ⇒ |u|p
+

p(x) ≤ ρp(x)(u)≤ |u|p
−

p(x);
(4) |uk −u|p(x) → 0 ⇔ ρp(x)(uk −u)→ 0.

For any k ∈ N, define the variable exponent Sobolev space W k,p(x)(Ω) by

W k,p(x)(Ω) =
{︂

u ∈ Lp(x)(Ω) : Dα u ∈ Lp(x)(Ω) for any |α| ≤ k
}︂
,

where Dα u is the partial derivative of u with respect to the multi-index
α = (α1,α2, . . . ,αn) ∈ Nn

0 and |α| = ∑
n
i=1 αi. The space W k,p(x)(Ω) is a separable and

reflexive Banach space under the norm

∥u∥k,p(x) = ∑
|α|≤k

|Dα u|p(x).

We denote by W k,p(x)
0 (Ω) the closure of C∞

0 (Ω) in W k,p(x)(Ω) and X := W 2,p(x)(Ω)∩
W 1,p(x)

0 (Ω) will be the space naturally associated with (Pλ ,µ ). On X the functional

∥u∥ := inf

{︄
σ > 0 :

∫︂
Ω

⃓⃓⃓⃓
∆u
σ

⃓⃓⃓⃓p(x)
dx ≤ 1

}︄
for any u ∈ X , defines a norm equivalent to ∥·∥2,p(x) (see for instance Zang and Fu (2008)).

Clearly the embedding X ↪→W 2,p−(Ω)∩W 1,p−
0 (Ω) is continuous and, by Rellich- Kon-

drachov’s theorem, W 2,p−(Ω)∩W 1,p−
0 (Ω) ↪→ C0(Ω) compactly when Ω is bounded and

p− >
n
2

. This leads immediately to the following important result.

Proposition 2.2. The embedding X ↪→C0(Ω) is compact provided that p− >
n
2

.

The previous result implies that there exists a constant c∞ > 0 such that

∥u∥
∞
≤ c∞ ∥u∥ (1)

for every u ∈ X . In addition, defining the modular ϒ : X → R by

ϒ(u) = ρp(x)(∆u) =
∫︂

Ω

|∆u|p(x)dx

for all u ∈ X , it is well known that a similar result as Proposition 2.1 holds:

Proposition 2.3. Let u ∈ X and let {uk} be a sequence in X. Then
(1) ∥u∥< 1 (= 1;> 1) ⇔ ϒ(u)< 1 (= 1;> 1);
(2) ∥u∥ ≥ 1 ⇒ ∥u∥p− ≤ ϒ(u)≤ ∥u∥p+;
(3) ∥u∥ ≤ 1 ⇒ ∥u∥p+ ≤ ϒ(u)≤ ∥u∥p−;
(4) ∥uk −u∥→ 0 ⇔ ϒ(uk −u)→ 0.

Now, for the motivations illustrated in the Introduction, let us introduce the following class
of functions.

If {ak},{bk},{σk} are three real sequences with 0 < ak < bk and σk > 0 for all k ∈ N,
let us denote by H ({ak},{bk},{σk}) the space of all sequences {χk} satisfying
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(i) χk ∈W 2,p+(ak,bk), for each k ∈ N;
(ii) 0 ≤ χk(x)≤ σk for a.e. x ∈ (ak,bk) and for each k ∈ N;
(iii) lim

x→a+k
χk(x) = σk, lim

x→b−k
χk(x) = 0;

(iv) lim
x→a+k

χ
′
k(x) = lim

x→b−k
χ
′
k(x) = 0;

(v) for all j ∈ {1,2} there exists c j > 0, independent of k, such that

|χ( j)
k (x)| ≤ c j

σk

(bk −ak) j (2)

for a.e. x ∈ (ak,bk) and for each k ∈ N.

If x0 ∈Ω, {bk}⊂]0,+∞[ such that B(x0,bk)⊂Ω, for each k∈N, and {χk}∈H ({ak},{bk},{σk}),
consider the function uk : Ω → R defined as follows:

uk(x) :=

⎧⎨⎩ 0 in Ω\B(x0,bk)
σk in B(x0,ak)
χk(|x− x0|) in B(x0,bk)\B(x0,ak).

(3)

Owing to the embedding W 2,p+(Ω) ↪→W 2,p(x)(Ω), it is clear that {uk} ⊂ X . Moreover, a
simple computation shows that, fixed k ∈ N, for any i = 1,2, . . . ,n one has

∂ 2uk

∂x2
i
(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 in Ω\B(x0,bk)
0 in B(x0,ak)

χ ′′
k (|x− x0|)

(xi − x0
i )

2

|x− x0|2
+

+χ ′
k(|x− x0|)

|x− x0|2 − (xi − x0
i )

2

|x− x0|3
in B(x0,bk)\B(x0,ak)

(4)

From (2) (4) we obtain the following inequality

|∆uk(x)|= χ
′′
k (|x− x0|)+χ

′
k(|x− x0|)

n−1
|x− x0|

≤ σk

(bk −ak)2 c2 +
σk

bk −ak

n−1
ak

c1,

(5)

thanks to which we are able to get the following estimation of the modular ϒ at uk

ϒ(uk)≤
(︃

σk

(bk −ak)2 c2 +
σk

bk −ak

n−1
ak

c1

)︃p+

ω(bn
k −an

k)

≤
ωσ

p+
k (bn

k −an
k)

ap+
k (bk −ak)2p+

(akc2 +(n−1)(bk −ak)c1)
p+

(6)

that is valid for those k ∈ N such that
σk

(bk −ak)2 c2 +
σk

bk −ak

n−1
ak

c1 ≥ 1.

In the sequel, without further mentioning, we always assume that p ∈C0(Ω) satisfies

max
{︂

1,
n
2

}︂
< p− ≤ p+.
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Let us denote by C the class of all Carathéodory functions ζ : Ω×R → R satisfying
sup
|t|≤ξ

|ζ (·, t)| ∈ L1(Ω) for all ξ > 0 and let f ,g ∈ C .

A weak solution to (Pλ ,µ ) is any function u ∈ X such that∫︂
Ω

|∆u|p(x)−2
∆u∆vdx = λ

∫︂
Ω

f (x,u)vdx+µ

∫︂
Ω

g(x,u)vdx

for all v ∈ X . Obviously the weak solutions of problem (Pλ ,µ ) are nothing but the critical
points of the functional E : X → R defined by

E (u) := Ψ(u)+λJF(u)+µJG(u),

for any u ∈ X , where

Ψ(u) :=
∫︂

Ω

|∆u|p(x)

p(x)
dx,

JF(u) :=−
∫︂

Ω

F(x,u)dx,

JG(u) :=−
∫︂

Ω

G(x,u)dx,

(7)

for all u ∈ X , where

F(x, t) :=
∫︂ t

0
f (x,s)ds, G(x, t) :=

∫︂ t

0
g(x,s)ds

for all (x, t) ∈ Ω×R.

3. Multiplicity results

The main result of this paper reads as follows:

Theorem 3.1. Let f ,g ∈ C satisfy:
( f1) there exist a measurable function m : Ω → R, with 1 ≤ m ≤ p in Ω and m+ < p−

and a function h ∈ L1(Ω), such that

| f (x, t)| ≤ h(x)
(︂

1+ |t|m(x)−1
)︂

for a.e. x ∈ Ω, for all t ∈ R;
(g1) G(x, t)≥ 0 for a.e. x ∈ Ω, for all t ≥ 0;
(g2) there exist x0 ∈ Ω, ρ,s1,s2 > 0, such that B(x0,ρ)⊂ Ω and

a := liminf
t→+∞

∫︂
Ω

max
|ξ |≤t

G(x,ξ )dx

ts1
<+∞, b := limsup

t→+∞

∫︂
B(x0,ρ)

G(x, t)dx

ts2
> 0.

Then the following facts hold:
(i) if s1 < p− and s2 > p+, for all λ ∈ R and for all µ > 0, (Pλ ,µ ) admits a sequence

of non-zero weak solutions;
(ii) if s1 < p− and s2 = p+, there exists µ1 > 0 such that, for all λ ∈ R and for all

µ > µ1, (Pλ ,µ ) admits a sequence of non-zero weak solutions;
(iii) if s1 = p− and s2 > p+, there exists µ2 > 0 such that, for all λ ∈ R and for all

µ ∈ (0,µ2), (Pλ ,µ ) admits a sequence of non-zero weak solutions;
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(iv) if s1 = p− and s2 = p+, there exist γ > 1 and Cγ,ρ > 0 such that, if

Cγ,ρ <
bp−

ap+ωcp−
∞

, (8)

(the previous inequality always being satisfied whether a = 0 or b = +∞) then
µ1 < µ2 and for all λ ∈ R and every µ ∈ (µ1,µ2), (Pλ ,µ ) admits a sequence of
non-zero weak solutions.

Proof. To prove (i), fixed λ ∈ R and µ > 0, we use Theorem 1.1, item a), with E = X , Ψ

as in (7), Φ = λJF + µJG and L = 1. It is clear that Ψ is C1, sequentially weakly lower
semicontinuous and, being

Ψ(u)≥ 1
p+

∥u∥p− ,

coercive as well. The sequential weak lower semicontinuity of Φ follows, by standard
arguments, from ( f1), (g2) and Proposition 2.2. Now, we define

ϕ(r) = inf
Ψ(u)<r

supΨ(w)≤r Φ−Φ(u)

r−Ψ(u)

for all r > 0, and we will find a sequence {rk} ⊂ R, diverging to +∞, such that ϕ(rk)< 1
for all k ∈ N. To this aim, thanks to the definition of ϕ , it sufficies to build a sequence
{uk} ⊂ X , with Ψ(uk)< rk, for all k ∈ N, and satisfying

sup
Ψ(w)≤rk

(︃
−λ

∫︂
Ω

F(x,w)dx−µ

∫︂
Ω

G(x,w)dx
)︃
+λ

∫︂
Ω

F(x,uk)dx+

+µ

∫︂
Ω

G(x,uk)dx < rk −Ψ(uk).

(9)

We choose uk = 0, for any k ∈ N. Thanks to (g2), fixed ã > a, for any k ∈ N there exists
αk ≥ k such that ∫︂

Ω

max
|ξ |≤αk

G(x,ξ )dx ≤ ãα
s1
k .

For any k ∈ N define

rk :=
1

p+cp−
∞

α
p−
k .

It is clear that rk →+∞ as k → ∞ and Ψ(uk)< rk. To verify (9), observe that one has

∥w∥
∞
≤ c∞ ∥w∥ ≤ c∞ max

{︃
(p+Ψ(w))

1
p+ ,(p+Ψ(w))

1
p−
}︃

for any w ∈ X . Taking this fact into account, if w ∈ X and Ψ(w)≤ rk, one has, for k large
enough

∥w∥∞ ≤ c∞(p+rk)
1/p− = αk
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and by ( f1), (g1), (g2) we obtain, for k large enough,

−λ

∫︂
Ω

F(x,w)dx−µ

∫︂
Ω

G(x,w)dx ≤ |λ |
∫︂

Ω

|h(x)|

(︄
w+

|w|m(x)

m(x)

)︄
dx+

+µ

∫︂
Ω

max
|ξ |≤αk

G(x,ξ )dx ≤ |λ |∥h∥L1(Ω)

(︄
αk +

αm+

k
m−

)︄
+µ ãα

s1
k ≤

≤ |λ |∥h∥L1(Ω) c∞(p+)
1

p− r
1

p−
k +

|λ |∥h∥L1(Ω)

m− cm+

∞ (p+)
m+

p− r
m+

p−
k +

+µ ãcs1
∞ (p+)

s1
p− r

s1
p−

k < rk.

(10)

According to part a) of Theorem 1.1, either the functional Φ+Ψ has a global minimum or
there exists a sequence of weak solutions {vk} ⊂ X such that ∥vk∥→+∞ as k → ∞. Let us
show that Φ+Ψ is unbounded from below. Thanks to (g2), fixed 0 < b̃ < b, for any k ∈ N
there exists βk ≥ k such that ∫︂

B(x0,ρ)
G(x,βk)dx ≥ b̃β

s2
k .

Let γ > 1 such that B(x0,γρ)⊂ Ω and {χk} ∈ H (ρ,γρ,βk). Similarly to (3), consider the
function uk defined by

uk(x) :=

⎧⎨⎩ 0 in Ω\B(x0,γρ)
βk in B(x0,ρ)
χk(|x− x0|) in B(x0,γρ)\B(x0,ρ).

(11)

Since βk →+∞ as k → ∞, we can use (6) and we get

ϒ(uk)≤
ωβ

p+
k (γn −1)

ρ2p+−n(γ −1)2p+
(c2 +(n−1)(γ −1)c1)

p+

and hence

Ψ(uk)≤
1

p−
ϒ(uk)≤

1
p−

ωCγ,ρ β
p+
k , (12)

where

Cγ,ρ =Cγ,ρ({ηk}) :=
γn −1

ρ2p+−n(γ −1)2p+
(c2 +(n−1)(γ −1)c1)

p+ . (13)

So, one has

Φ(uk)+Ψ(uk)≤ |λ |
∫︂

Ω

|h(x)|

(︄
uk +

|uk|m(x)

m(x)

)︄
dx−µ b̃β

s2
k +

1
p−

ωCγ,ρ β
p+
k ≤

≤ |λ |∥h∥L1(B(x0,ρ))
βk +

|λ |∥h∥L1(B(x0,ρ))

m− β
m+

k −µ b̃β
s2
k +

1
p−

ωCγ,ρ β
p+
k

(14)

and, since m+ < p+ < s2 and βk → +∞ as k → ∞, Φ(uk) +Ψ(uk) → −∞, namely the
functional Ψ+Φ does not possess any global minimum, as desired. This concludes the
proof of (i).
The proof of (ii) and (iii) follows from slight modifications. When s1 < p− and s2 = p+, set
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µ1 :=
ωCγ,ρ

bp−
(if b =+∞, we agree to read, as usual, µ1 = 0). Then, if λ ∈ R and µ > µ1,

choosing
ωCγ,ρ

µ p−
< b̃ < b, in the wake of the proof of (i), we obtain

Φ(uk)+Ψ(uk)≤ |λ |∥h∥L1(B(x0,ρ))
βk +

|λ |∥h∥L1(B(x0,ρ))

m− β
m+

k −µ b̃β
p+
k +

1
p−

ωCγ,ρ β
p+
k

and also in this case Φ(uk)+Ψ(uk)→−∞ thanks to the choice of b̃. On the other hand, in

the case s1 = p− and s2 > p+, it suffices to pick µ2 :=
1

ap+cp−
∞

(as before, if a = 0, we set

µ2 = +∞). Then, fixing λ ∈ R, µ < µ2 and choosing a < ã <
1

µ p+cp−
∞

, similarly to (i),

using (g2) with such an ã we get

−λ

∫︂
Ω

F(x,w)dx−µ

∫︂
Ω

G(x,w)dx ≤ |λ |∥h∥L1(Ω) c∞(p+)
1

p− r
1

p−
k +

+
|λ |∥h∥L1(Ω)

m− cm+

∞ (p+)
m+

p− r
m+

p−
k +µ ãcp−

∞ p+rk < rk

for k large enough, due to the choice of ã.
Finally, in the last case (iv), assumption (8) ensures that µ1 < µ2. So, in the light of (ii) and
(iii), the conclusion is achieved for any λ ∈ R and µ ∈ (µ1,µ2). □

The next result is a direct consequence of Theorem 3.1 and deals with the case that the
nonlinearities f and g have a particular form.

Theorem 3.2. Let h ∈ L1(Ω), h1 ∈ L1(Ω) \ {0} with h1 ≥ 0 in Ω, m : Ω → R measur-
able with 1 ≤ m ≤ p in Ω and m+ < p−. Let g̃ : R → R be a continuous function with∫︂ t

0
g̃(ξ )dξ ≥ 0 for all t ≥ 0. Finally assume that there exist two real sequences {αk}, {βk},

with limk→∞ αk = limk→∞ βk =+∞, and s1,s2,α,β > 0, such that

max
|ξ |≤αk

∫︂
ξ

0
g̃(t)dt ≤ αα

s1
k ,

∫︂
βk

0
g̃(t)dt ≥ ββ

s2
k .

Then, considering the problem⎧⎨⎩
∆2

p(x)u = λh(x)|u|m(x)−2u+µh1(x)g̃(u) in Ω

u = ∆u = 0 on ∂Ω

(P̃λ ,µ )

the following facts hold:

(i) if s1 < p− and s2 > p+, for all λ ∈ R and for all µ > 0, (P̃λ ,µ ) admits a sequence
of non-zero weak solutions;

(ii) if s1 < p− and s2 = p+, there exists µ1 > 0 such that, for all λ ∈ R and for all
µ > µ1, (P̃λ ,µ ) admits a sequence of non-zero weak solutions;

(iii) if s1 = p− and s2 > p+, there exists µ2 > 0 such that, for all λ ∈ R and for all
µ ∈ (0,µ2), (P̃λ ,µ ) admits a sequence of non-zero weak solutions;
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A3-10 F. CAMMAROTO

(iv) if s1 = p− and s2 = p+, there exist x0 ∈ Ω, ρ > 0, γ > 1 and Cγ,ρ > 0 such that, if

Cγ,ρ <
β p− ∥h1∥L1(B(x0,ρ))

α p+ ∥h1∥L1(Ω) ωcp−
∞

, (15)

then µ1 < µ2 and for all λ ∈ R and every µ ∈ (µ1,µ2), (P̃λ ,µ ) admits a sequence
of non-zero weak solutions.

Proof. The proof follows immediately by applying Theorem 3.1 to the nonlinearities

f (x, t) = h(x)|t|m(x)−2t, g(x, t) = h1(x)g̃(t)

for all (x, t) ∈ Ω×R. Assumptions ( f1) and (g1) are immediate to verify. Since h1 ̸≡ 0, let
us choose x0 ∈ Ω and ρ > 0 such that B(x0,ρ)⊂ Ω and h1 > 0 in B(x0,ρ). One has∫︂

Ω

max
|ξ |≤αk

G(x,ξ )dx =
∫︂

Ω

max
|ξ |≤αk

(︃∫︂
ξ

0
h1(x)g̃(t)dt

)︃
dx =

= ∥h1∥L1(Ω) max
|ξ |≤αk

∫︂
ξ

0
g̃(t)dt ≤ α ∥h1∥L1(Ω) α

s1
k

and thus

liminf
t→+∞

∫︂
Ω

max
|ξ |≤t

G(x,ξ )dx

ts1
≤ α ∥h1∥L1(Ω) <+∞. (16)

In a similar way,∫︂
B(x0,ρ)

G(x,βk)dx = ∥h1∥L1(B(x0,ρ))

∫︂
βk

0
g̃(t)dt ≥ β ∥h1∥L1(B(x0,ρ))

β
s2
k

and therefore

limsup
t→+∞

∫︂
B(x0,ρ)

G(x, t)dx

ts2
≥ β ∥h1∥L1(B(x0,ρ))

> 0. (17)

So, the conclusions (i)− (iii) follow directly from Theorem 3.1 with a = α ∥h1∥L1(Ω) and
b = β ∥h1∥L1(B(x0,ρ))

. As for (iv), inequality (8) is verified by the joint use of (15), (16) and
(17). □

Obviously, Theorem 3.1 can be applied even in the case of a constant exponent p.
Anyway, in this case, the assumption m+ < p− doesn’t allow to cover the case m = p. For
this reason, the last theorem of this section concerns the case m = p. In this situation the
existence of infinite weak solutions will be obtained not for each λ ∈ R but for λ running
in an appropriate interval.

Theorem 3.3. Let p>max{1,n/2}, f ,g∈C such that (g1) and (g2) are verified. Moreover,
suppose that:

( f̃ 1) there exist h ∈ L1(Ω) such that | f (x, t)| = h(x)
(︁
1+ |t|p−1

)︁
for a.e. in Ω and for

all t ∈ R.
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SEQUENCES OF WEAK SOLUTIONS TO A FOURTH-ORDER ELLIPTIC PROBLEM A3-11

Then, considering the problem⎧⎨⎩
∆2

pu = λh(x)|u|p−2u+µg(x,u) in Ω

u = ∆u = 0 on ∂Ω

(P∗
λ ,µ )

the following facts hold:

(i) if s1 < p < s2, for all λ such that |λ | < 1
∥h∥L1(Ω)

cp
∞

(for all λ if h = 0) and for all

µ > 0, the problem (P∗
λ ,µ ) admits a sequence of non-zero weak solutions;

(ii) if s1 < p = s2, there exists µ1 > 0 such that, for all µ > µ1, there exists λµ > 0
such that, for all |λ |< λµ , the problem (P∗

λ ,µ ) admits a sequence of non-zero weak
solutions;

(iii) if s1 = p < s2, there exists µ2 > 0 such that, for all µ ∈ (0,µ2), there exists λµ > 0
such that, for all |λ |< λµ , the problem (P∗

λ ,µ ) admits a sequence of non-zero weak
solutions;

(iv) if s1 = s2 = p, there exists γ > 1 and Cγ,ρ > 0 such that, if

Cγ,ρ <
b

aωcp
∞

(18)

then µ1 < µ2 and for all µ ∈ (µ1,µ2), there exists λµ > 0 such that, for all |λ |< λµ

the problem (P∗
λ ,µ ) admits a sequence of non-zero weak solutions.

Proof. The proof is similar to that of Theorem 3.1; the two main evaluations (10) and (14),
when m = p, read as follows

−λ

∫︂
Ω

F(x,w)dx−µ

∫︂
Ω

G(x,w)dx ≤ |λ |∥h∥L1(Ω) c∞ p
1
p r

1
p

k +

+ |λ |∥h∥L1(Ω) cp
∞rk +µ ãcs1

∞ p
s1
p r

s1
p

k

(19)

and
Φ(uk)+Ψ(uk)≤ |λ |∥h∥L1(B(x0,ρ))

βk+

+
|λ |∥h∥L1(B(x0,ρ))

p
β

p
k −µ b̃β

s2
k +

1
p

ωCγ,ρ β
p
k

(20)

with the same meaning of symbols as before.
To prove (i), fix λ such that |λ | ≤ 1

∥h∥L1(Ω)
cp

∞

and µ > 0. Thanks to the choice of λ and to

the fact that s1 < p then, from (19) we get

λ

∫︂
Ω

F(x,w)dx+µ

∫︂
Ω

G(x,w)dx < rk (21)

for k large enough (remember that lim
k→∞

rk =+∞); moreover, from (20) we obtain

lim
k→∞

Φ(uk)+Ψ(uk) =−∞ (22)
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A3-12 F. CAMMAROTO

because p < s2.

To prove (ii), it is sufficient to choose µ1 =
ωCγ,ρ

bp
. Fixed µ > µ1 and b̃ in a similar way

as done in Theorem 3.1, we define λµ = min

{︄
1

∥h∥L1(Ω)c
p
∞

,
µ b̃p−ωCγ,ρ

∥h∥L1(B(x0,ρ))

}︄
. Fixed λ such

that |λ |< λµ , obviously, from (19), we get (21) (for k large enough) because s1 < p and
thanks to the choice of λ . Moreover, using (20), the choice of λ and µ guarantees that (22)
holds.
To prove (iii), it is sufficient to choose µ2 =

1
acp

∞ p
. Fixed µ ∈ (0,µ2) and ã in a similar

way as done in Theorem 3.1, we choose λµ =
1−µ ãcp

∞ p
∥h∥L1(Ω)c

p
∞

. Fixed λ such that |λ | < λµ ,

obviously, from (20), we get (22) because p < s2. Moreover, using (19), the choice of λ

and µ guarantees that (21) holds.
In the last case, to prove (iv), we observe that, thanks to (18), we have µ1 < µ2. So, fixed
µ ∈ (µ1,µ2), and choosing ã and b̃ in a similar way as done in Theorem 3.1, we define

λµ = min

{︄
1−µ ãcp

∞ p
∥h∥L1(Ω)c

p
∞

,
µ b̃p−ωCγ,ρ

∥h∥L1(B(x0,ρ))

}︄
. Fixed λ such that |λ |< λµ , obviously, from (19),

we get (21) (for k large enough) because of the choice of λ and µ . Moreover, using (20),
the choice of λ and µ guarantees that (22) holds.

□

4. Examples

In this section we supply some examples related to the previous results. The first one
concerns Theorem 3.2 (case (i)) and works as a prototype for this kind of nonlinearities.

Example 4.1. Let h1 ∈ L1(Ω)\{0}, h1 ≥ 0 in Ω. Choose α,β ,s1,s2 > 0 with s1 < p− and
s2 > p+, and let {βr} be a non-decreasing real sequence such that limr→∞ βr =+∞.
Define a subsequence {βrk} of {βr} and a new sequence {αk} recursively as follows:

βr1 >

(︃
α

β

)︃ 1
s2−s1

, βrk >

(︃
β

α

)︃ 1
s1

β

s2
s1

rk−1 := αk−1, for all k ≥ 2. (23)

Now, define ĝ : R→ R by

ĝ(t) :=

⎧⎪⎪⎨⎪⎪⎩
0 for t ∈ (−∞,0]
At3 +Bt2 for t ∈ (0,βr1 ]
ββ

s2
rk for t ∈ (βrk ,αk], k ≥ 1

Ckt3 +Dkt2 +Ekt +Fk for t ∈ (αk,βrk+1 ], k ≥ 1

(24)
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SEQUENCES OF WEAK SOLUTIONS TO A FOURTH-ORDER ELLIPTIC PROBLEM A3-13

where

A :=−2ηβ
s2−3
r1

,

B := 3ββ
s2−2
r1

,

Ck :=−
2(ββ

s2
rk −ααk−1)

(βrk −αk−1)3 ,

Dk :=
3(βrk +αk−1)(ββ 2

rk
−αα

s1
k−1)

(βrk −αk−1)3 ,

Ek :=−
6αk−1βrk(ββ

s2
rk −αα

s1
k−1)

(βrk −αk−1)3 ,

Fk :=
αβ 2

rk
α

s1
k−1(βrk −3αk−1)+ββ

s2
rk α2

k−1(3βrk −αk−1)

(βrk −αk−1)3 .

It is straightforward to verify that the sequences {αk}, {βrk} defined by (23) and the function∫︂ t

0
g̃(ξ )dξ := ĝ(t) satisfy all the requirements of Theorem 3.2. Indeed, by construction,

one has

max
|ξ |≤αk

ĝ(ξ ) = ββ
s2
rk

= αα
s1
k ,

ĝ(βrk) = ββ
s2
rk
,

for all k ∈ N.

The second example is related to Theorem 3.2 (case (iv)). In this circumstance, for the
sake of concreteness we limit ourselves to the one-dimensional setting, providing an explicit
estimate of the constant c∞ in (15).

Example 4.2. Let n = 1, Ω = (−1,1), p(x) = −2x2 +4 for all x ∈ (−1,1), s1 = p− = 2,

s2 = p+ = 4, h1 ∈ L1((−1,1))\{0}, h1 ≥ 0 in (−1,1) and
∫︂ 1/2

−1/2
h1(x)dx > 0.

Assume {αk}, {βrk}, g̃ as in Example 4.1. It is well-known that, for all u ∈W 2,2((−1,1))∩
W 1,2

0 ((−1,1)), one has

max
x∈(−1,1)

|u(x)| ≤
√

2
2

⃦⃦
u′
⃦⃦

L2((−1,1))

and ⃦⃦
u′
⃦⃦

L2((−1,1)) ≤
2
π

⃦⃦
u′′
⃦⃦

L2((−1,1)) ,

so

max
x∈(−1,1)

|u(x)| ≤
√

2
π

⃦⃦
u′′
⃦⃦

L2((−1,1)) .

Now, since Lp(x)((−1,1)) ↪→ L2((−1,1)) and

∥u∥L2((−1,1)) ≤ 2max

⎧⎨⎩2

(︃
x2−1

2(x2−2)

)︃+

,2

(︃
x2−1

2(x2−2)

)︃−⎫⎬⎭ |u|p(x) = 2 4√2|u|p(x)
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(cf. Corollary 3.3.4 in Diening et al. 2011), collecting the previous estimates we finally get

max
x∈(−1,1)

|u(x)| ≤ 2 4
√

8
π

∥u∥ .

Now choose ρ = 1
2 , γ = 3

2 and for any k ∈ N let χk ∈ H

(︃
1
2
,

3
4
,βrk

)︃
be the function

χk(x) := 64βrk

(︃
2x3 − 15

4
x2 +

9
4

x− 27
64

)︃
,

for any x ∈
(︃

1
2
,

3
4

)︃
. The computations of the first two derivatives of ηk yield

|χ ′(x)| ≤ 6βrk , |χ ′′(x)| ≤ 96βrk ,

so (2) is satisfied by c1 =
3
2

and c2 = 6, respectively.

As a next step, consider the sequence {uk}⊂W 2,p(x)((−1,1))∩W 1,p(x)
0 ((−1,1)) defined

by

uk(x) :=

⎧⎨⎩
0 in (−1,1)\ (− 3

4 ,
3
4 )

βrk in (− 1
2 ,

1
2 )

χk(|x|) in (− 3
4 ,

3
4 )\ (−

1
2 ,

1
2 ).

(25)

It turns out that Cγ,ρ = 21834. Hence, inequality (8) is fulfilled provided that

β

α
>

22234
√

2
π2

∥h1∥L1((−1,1))

∥h1∥L1((−1/2,1/2))
.

The third example is again related to Theorem 3.2 and it concerns a similar type of nonlin-
earity as in Example 4.1.

Example 4.3. Let p > 1, δ > 1 and let g̃ : R→ R be the function such that

∫︂ t

0
g̃(ξ )dξ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, in (−∞,0],
−2δ t3 +3δ t2, in (0,1],

2p(k−1)δ k in
(︂

2k−1δ
k−1

p ,2k−1δ
k
p
]︂

k ≥ 1,

Akt3 +Bkt2 +Ckt +Dk in
(︂

2k−1δ
k
p ,2kδ

k
p
]︂

k ≥ 1

where

Ak :=−2(p−3)k+4
δ

(p−3)k
p
(︁
δ −2−p)︁ ,

Bk := 9 ·2(p−2)k+2
δ

(p−2)k
p
(︁
δ −2−p)︁ ,

Ck :=−3 ·2(p−1)k+3
δ

(p−1)k
p
(︁
δ −2−p)︁ ,

Dk := 2pk
δ

k (︁5δ −22−p)︁ .
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SEQUENCES OF WEAK SOLUTIONS TO A FOURTH-ORDER ELLIPTIC PROBLEM A3-15

The function s satisfies all the assumption of Theorem 3.2 with α = 1, β = δ , αk = 2k−1δ
k
p

and βk = 2kδ
k
p , for each k ∈ N. In particular

max
|ξ |≤αk

∫︂
ξ

0
g̃(t)dt =

∫︂ 2k−1δ
k
p

0
g̃(t)dt = 2p(k−1)

δ
k = α

p
k

and ∫︂
βk

0
g̃(t)dt = 2pk

δ
k+1 = δβ

p
k

for all k ∈ N.

The last example shows a case in which the choice of a sequence of functions with the
norm raised to a second power makes Theorem 3.2 inapplicable, while the use of a different
sequence solves the problem.

Example 4.4. Let p>max{1,n/2}, Ω= B(0,1) in Rn, x0 = 0, h1 ∈ L1(Ω)\0, with h1 ≥ 0,

ρ =
1
2

, γ = 2 and {σk} ⊂]0,+∞[ with limk→∞ σk =+∞. Let
{︁

χ1
k

}︁
,
{︁

χ2
k

}︁
∈H ( 1

2 ,1,{σk})
the sequences defined by

χ
1
k (x) = 4σk(4x3 −9x2 +6x−1)

and
χ

2
k (x) =

σk

2
cos(π(2x−1)+1)

for all x ∈
(︃

1
2
,1
)︃

and for each k ∈ N. We observe that, for each x ∈
(︃

1
2
,1
)︃

,

|χ1
k
′
(x)| ≤ 3σk, |χ1

k
′′
(x)| ≤ 24σk

and then the constants c j(
{︁

χ1
k

}︁
), defined in (2), are respectively c1(

{︁
χ1

k

}︁
) =

3
2

and

c2(
{︁

χ1
k

}︁
) = 6. In a similar way, for each x ∈

(︃
1
2
,1
)︃

, we have

|χ2
k
′
(x)| ≤ πσk, |χ2

k
′′
(x)| ≤ 2π

2
σk

and, in this case, the constants c j(
{︁

χ2
k

}︁
) are respectively c1(

{︁
χ2

k

}︁
) =

π

2
and c2(

{︁
χ1

k

}︁
) =

π2

2
.

The last sequence of test function that we take in consideration has been used by Candito
et al. 2012 for the same kind of problem; in this case the norm is raised to the second power;
namely

χ
3
k (x) =

{︄
σk
(︁
−8x2 +8x−1

)︁
in ( 1

2 ,
3
4 )

σk(8x2 −16x+8) in ( 3
4 ,1)

(26)

for each k ∈ N. In this case

|χ3
k
′
(x)| ≤ 4σk, |χ3

k
′′
(x)| ≤ 16σk
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and then c1(
{︁

χ3
k

}︁
) = 2 and c2(

{︁
χ1

k

}︁
) = 4. With respect to these three sequences of test

functions the best Cγ,ρ depends on the values of n and p. For instance, for n = 3 and p = 2
the best Cγ,ρ is the one in correspondance with the sequence {χ3

k }; in fact

Cγ,ρ({χ
1
k }) = 1134, Cγ,ρ({χ

2
k })≈ 913, Cγ,ρ({χ

3
k }) = 896.

But, for instance, for n = 4 and p = 3, the best Cγ,ρ is the one in correspondance with the
sequence {χ2

k } being

Cγ,ρ({χ
1
k }) = 69457,5 Cγ,ρ({χ

2
k })≈ 53871, Cγ,ρ({χ

3
k }) = 60000.

Now, in any case, if we consider the function g̃ of Example 4.3, taking

δ >
ωcp

∞∥h1∥L1(Ω)Cγ,ρ

∥h1∥L1(B(0, 1
2 )

the corresponding problem admits a sequence of non-zero weak

solutions.
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