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The decontamination of water containing toxic metals is a challenging problem, and in

the last years many efforts have been undertaken to discover efficient, cost-effective,

robust, and handy technology for the decontamination of downstream water without

endangering human health. According to the World Health Organization (WHO), 180

million people in the world have been exposed to toxic levels of arsenic from potable

water. To date, a variety of techniques has been developed to maintain the arsenic

concentration in potable water below the limit recommended by WHO (10 µg/L).

Recently, a series of technological advancements in water remediation has been

obtained from the rapid development of nanotechnology-based strategies that provide

a remarkable control over nanoparticle design, allowing the tailoring of their properties

toward specific applications. Among the plethora of nanomaterials and nanostructures

proposed in the remediation field, graphene-based materials (G), due to their unique

physico-chemical properties, surface area, size, shape, ionic mobility, and mechanical

flexibility, are proposed for the development of reliable tools for water decontamination

treatments. Moreover, an emerging class of 3D carbon materials characterized by

the intrinsic properties of G together with new interesting physicochemical properties,

such as high porosity, low density, unique electrochemical performance, has been

recently proposed for water decontamination. The main design criteria used to develop

remediation nanotechnology-based strategies have been reviewed, and special attention

has been reserved for the advances of magnetic G and for nanostructures employed in

the fabrication of membrane filtration.

Keywords: arsenic, graphene, potable water, magnetic nanomaterials, nanofiltration membrane, nanoadsorbent,

remediation

INTRODUCTION

Arsenic is a ubiquitous element, present in all environmental compartments as well as in living
organisms (Merian et al., 2004). It is a component of the earth’s crust, minerals, and soils, and it is
used as a wood preservative, a component of fertilizers and pesticides, in the mining, metallurgical,
glass-making and semiconductor industries. Arsenic toxicity has become a public health problem
and an environmental question. The World Health Organization (WHO) estimated that about
180 million people in 50 countries have been exposed to toxic arsenic levels (at least 10 µg/L in
drinking water) (International Agency for Research on Cancer IARC, 2012). Arsenic is included

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org/journals/chemistry#editorial-board
https://www.frontiersin.org/journals/chemistry#editorial-board
https://www.frontiersin.org/journals/chemistry#editorial-board
https://www.frontiersin.org/journals/chemistry#editorial-board
https://doi.org/10.3389/fchem.2020.608236
http://crossmark.crossref.org/dialog/?doi=10.3389/fchem.2020.608236&domain=pdf&date_stamp=2020-12-14
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles
https://creativecommons.org/licenses/by/4.0/
mailto:gmineo@unict.it
mailto:cfoti@unime.it
mailto:apiperno@unime.it
https://doi.org/10.3389/fchem.2020.608236
https://www.frontiersin.org/articles/10.3389/fchem.2020.608236/full


Foti et al. Graphene Strategies for Arsenic Remediation

among class I carcinogens (International Agency for Research
on Cancer IARC, 2012); its toxicity and bioaccumulation greatly
depend on its chemical state and on the metabolic pathways in
which it is involved (Costa, 2019). Acute and chronic toxicity
mechanisms are well-studied, whereas the mechanisms that
underlie arsenic-mediated carcinogenesis, including epigenetic
alterations, remain largely unknown (Costa, 2019; Nurchi et al.,
2020). Arsenic is a metalloid, with four oxidation states (−3, 0,
+3,+5), and it exists in a variety of inorganic and organic forms
with different toxicity levels, depending on its speciation.

Speciation in aqueous solutions is mostly controlled by
redox potential (Eh) and pH. Potential-pH diagrams (Brookins,
1988) show that arsenic in water exists mainly in trivalent or
pentavalent form.

Under oxidizing conditions (high Eh values), the As (V)
species prevail, and their distribution is related to their pH. In
natural pH environments (i.e., 4 < pH < 8), As(V) is present
as H2AsO

−

4 and HAsO2−
4 (Cassone et al., 2018), and the presence

of other metal cations must be considered in the natural waters
(Nordstrom et al., 2014; Cardiano et al., 2018; Chillè et al., 2018;
Giuffrè et al., 2020). Speciation studies performed in presence
of Ca2+ and Mg2+ highlighted the fact that the distribution of
As(V) is strongly influenced by the high concentration of these
cations and, in sea water, As (V) is mainly present as CaAsO−

4
(46.8%) and MgHAsO0

4 (31.8%), while in fresh water, the main

species are HAsO2−
4 and H2AsO

−

4 (31% each), together with
CaHAsO0

4 (25.8%) (Chillè et al., 2018).
Under reducing conditions (low Eh values), arsenic mainly

exists as As (III) and (Cassone et al., 2018) the oxoanions
distribution is associated with the pH; up to pH ≈ 9, As (III)
is present as arsenous acid H3AsO3, whereas its anion H2AsO

−

3
represents the stable species for 9 < pH ≤ 11. As (III) can also
interact with different classes of chelators (Cassone et al., 2019,
2020; Chillè et al., 2020a,b).

Recently, the techniques developed for arsenic removal,
such as membrane filtration, coagulation, adsorption, ion
exchange, have been implemented by nanotechnology-based
strategies (Ungureanu et al., 2015; Siddiqui et al., 2019).
Here, we discuss and summarize (Table 1) the literature
on technological advancements in arsenic remediation using
graphene-based materials.

Graphene-Based Materials Employed for
Arsenic Remediation
Graphene-based materials (G) include numerous carbon
nanomaterials with different morphology, size, shape, chemical
surface, and physical-chemical properties (Georgakilas et al.,
2012; Yang et al., 2016; Siddiqui and Chaudhry, 2018; Neri
et al., 2019; Cordaro et al., 2020; Kokkinos et al., 2020). The
G family includes several members such as graphene oxide
(GO), reduced graphene oxide (RGO), and their derivatives
(e.g., functionalized G and G nanocomposites). Native G
showed many remarkable properties, but its poor processability
together with the production difficulty on a large scale limited
its practical use (Neri et al., 2015b). The development of new
derivatives hosting additional functional groups is the main

strategy for developing G for practical applications (Neri et al.,
2015a). The modification/functionalization processes tune
the intrinsic features and allow the assembly of G in various
structures (Figure 1).

GO and its composites, in the form of membranes, thin
films, paper-like materials, have increasing use in water
decontamination, due to their unique physicochemical features
(Siddiqui and Chaudhry, 2018).

DFT calculations pointed out that pristine GO binds strongly
to heavy metals, like As and Pb, with binding energy of−4.5 and
−4.7 eV, respectively, and weakly to Hg (Panigrahi et al., 2018).

The capability of GO to adsorb As species is directly affected
by GO oxidation, and its increase from 1.98 to 1.35 (C/O ratio)
prompted the As (III) maximum adsorption capacity from 123 to
288 mg/g (Reynosa-Martínez et al., 2020).

The use of GO-based chromatographic stationary phases has
allowed the simultaneous separation of different types of arsenic
species, avoiding multiple analyses (Reid et al., 2020). Porous GO
functionalized with hyperbranched polyethyleneimine (PEI-GO)
was proposed for arsenic-selective solid phase extraction (SPE)
column. PEI increased the sorption capacity by interacting with
both As (III) and As (V) through complexation and electrostatic
interactions, respectively (Ahmad et al., 2018).

GO-functionalized silica microspheres (GO@SiO2) was
investigated for metal speciation analysis of two inorganic
arsenicals (arsenite and arsenate) and two organic arsenicals
(monomethyl arsenic MMA and dimethylarsenic DMA). No
retention by the native GO@SiO2 column was observed for the
tested arsenicals, that are anions around pH 6.0, as they may be
electrostatically expelled. To improve their retaining behaviors,
aromatic quaternary ammoniums were added to electrostatically
attract arsenic anions. The separation performance of GO@SiO2

was compared with that of G@SiO2, showing a negligible
difference in retention time and resolution, confirming no
affinity of oxygenated groups on pristine GO to arsenic anions
(Cheng et al., 2018; Zhao et al., 2018).

One of the main concerns related to the use of GO-
based materials is the problem of recovery after adsorption,
which was resolved using magneto-responsive GO (Hemmati
et al., 2018). Iron compounds were reported to form cross-
linking with the oxygen functionalities on the surface of
carbon materials (Su et al., 2017a). The incorporation of
magnetic nanoparticles in GO prevents the aggregation and
eases the separation by using an external magnetic field. A
comparative study highlighted the fact that As removal was
more effective using Fe3O4-GO composite (M-GO) than Fe3O4-
reduced GO composite (M-RGO), due to the difference in
the amount of oxygenated functional groups (Yoon et al.,
2016).

Magnetic nanoparticles decorated with β-cyclodextrins-
functionalized GO (β-CDs-GO@Fe3O4 NPs) were proposed as
scalable adsorbents of As (III)/As (V) for their excellent water
dispersibility and magnetic properties due to the combination of
the individual advantages of both materials (Kumar and Jiang,
2017). A nanocomposite based on chitosan and magnetic GO
(CMGO) showed the best As (III) adsorption capacity (45 mg/g)
at pH 7 (Sherlala et al., 2019).
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TABLE 1 | Graphene-based Nanoadsorbents and Membranes.

Graphene-based system Features Adsorption capacity

or rejection

References

GO GO as adsorbent As(III) 288 mg/gF Reynosa-Martínez et al., 2020

PEI-GO GO modified with PEI Solid Phase Extraction As(III) 125 mg/gE Ahmad et al., 2018

GO@SiO2 and G@SiO2 GO or G and SiO2 as chromatographic stationary phases Not specified Cheng et al., 2018

M-GO GO, Fe3O4 nanocomposite as adsorbent As(III) 85 mg/gE

As(V) 38 mg/gE
Yoon et al., 2016

M-RGO RGO, Fe3O4 nanocomposite as adsorbent As(III) 57 mg/gE

As(V) 12 mg/gE
Yoon et al., 2016

β-CDs-GO@Fe3O4 GO modified with β-CDs, Fe3O4 nanocomposite as

adsorbent

As(III) 100.23 mg/gE

As(V) 99.51 mg/gE
Kumar and Jiang, 2017

CMGO Chitosan-magnetic-graphene oxide, nanocomposite as

adsorbent

As(III) 45 mg/gE Sherlala et al., 2019

mGO/bead Alginate, GO, Fe3O4 nanocomposite as adsorbent As(V) ∼99%E Vu et al., 2017

GFeN GO and Fe/FexOy core-shell as adsorbent As(III) 306 mg/gL

As(V) 431 mg/gL
Das et al., 2020

Mag-PRGO Partially reduced GO and Fe3O4 nanocomposite as

adsorbent

As(V) 132 mg/gE Bobb et al., 2020

SMG G, Fe (∼5 nm) nanocomposite as adsorbent As(V) 3.26 mg/gL Gollavelli et al., 2013

GNP/Fe-Mg G nanoplates, Fe-Mg nanocomposite as adsorbent As(V) 103.9 mg/gL La et al., 2017b

GNP/CuFe2O4 G nanoplates, CuFe2O4 nanocomposite as adsorbent As(III) 236.29 mg/gL

As(V) 172.27 mg/gL
La et al., 2017a

Fe@CuO&GO Fe/Cu/GO nanocomposite as adsorbent As(III) 70.36 mg/gL

As(V) 62.60 mg/gL
Wu et al., 2019

Fe-GO-Gd Gd2O3, Fe2O3, GO nanocomposite as adsorbent As(V) 35.84 mg/gE Lingamdinne et al., 2020

MG@PDA@PGMA-AET G/Fe3O4, Polydopamine, 2-aminoethanethiol as

adsorbent

As(III) 62.7 mg/gE

As(V) 19.3 mg/g E

Wang et al., 2019

M-RGO Fe2O3 NPs, persulfate (PS) and RGO as

catalyst/adsorbent

Total As 89.8%E Wu et al., 2020

MAF-RGO Mn-Al-Fe and RGO as adsorbent As(III) 402 mg/gF

As(V) 339 mg/gF
Penke et al., 2020

G-CNT-Fe 3D Engineered G, CNT Fe3O4 Not specified Vadahanambi et al., 2013

3D G Fe3O4/aerogel Fe3O4/graphene aerogel as adsorbent As(V) 40.048 mg/gL Ye et al., 2015

MGOH Graphene hydrogel as adsorbent As (III) 25.1 mg/gL

As(V) 74.2 mg/gL
Liang et al., 2019

FeOx-CNs Engineered carbon nanospheres-iron oxide As (III) 416 mg/gF

As(V) 201 mg/gF
Su et al., 2017b

PSU-GO Membrane produced by phase inversion, used in direct

flow filter

As(V) 82.3%E Rezaee et al., 2015

PSU-GO Membrane produced by phase inversion, used in

cross-flow filter

As(V) 99%E Shukla et al., 2018

GO-coated TFC-NF PES-supported membrane produced by GO covalent

coating on Polyamide, used in cross-flow filter

As(V) 98%E Pal et al., 2018a,b

PAN-GO-γ-Fe2O3 Membrane produced by electrospinning used as batch

adsorption

As(V) 95.72%E Tripathy and Hota, 2019

PES-GMF Produced by phase inversion, used in cross-flow filter As(V) 28.70 mg/gE Shahrin et al., 2019

PGLa-Glu-GO-CNT Membrane produced by spin-casting As(V) 92%E

As(III) 96%E

Viraka Nellore et al., 2015

PLGO Membrane produced by filtration over cellulose, used as

fix-bed adsorption column

As(III) 99.8%E Ahmad et al., 2020

DMSPE Adsorbent deposited on membrane, used in direct flow

filter

As(V) 43.9 mg/gL Baranik et al., 2018

FFreundlich model; LLangmuir model; EExperimental.
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FIGURE 1 | (A) Graphene-based materials (graphene, graphene oxide, reduced graphene oxide and engineered graphene). (B) Schematic representation of GO-iron

nanohybrid (GFeN) and the proposed mechanism involved for arsenic removal. (C) Representative example of hierarchically porus 3D assembly (G-CNT-Fe 3D) and

the related SEM image (D) “Reproduced with permission of (Vadahanambi et al., 2013), (Copyright 2020), American Chemical Society”.

To increase the water stability, magnetite and GO were
encapsulated inside a non-toxic alginate bead (mGO/bead) and
the adsorption of Cr (VI) and As (V) from multicomponent
systems and contaminated wastewater was evaluated. mGO/bead
showed excellent performance (80–100% removal) and
recyclability in a complex mixture of heavy metals (Vu
et al., 2017).

GO-iron nanohybrid (GFeN) systems were prepared by a sol-
gel process for the concurrent removal of As(III)/As(V), without
previous oxidation of As(III) to As(V) (Das et al., 2020). As(V)
absorption involves electrostatic interactions as well as surface
complexation with corrosion products, whereas only surface
complexation leads the As(III) absorption. Adsorption capacity
was high for both As (V) and As(III) species (Table 1) without
iron leaching while it decreased in the presence of PO2−

4 and

SiO2−
3 ions. GO acts as a reservoir for the electrons released

during the oxidation of Fe0, allowing the electrons to come back
to Fe NPs (Figure 1B).

Magnetite partially reduced GO (Mag-PRGO) nanocomposite
obtained via laser vaporization-controlled condensation method
(Bobb et al., 2020) was exploited to remove As(V). Mag-PRGO
showed the ability to remove 100% of As(V) up to 100 ppm
final concentration (pH range 4–6), without the loss of iron ions
in solution.

GO and ferrocene were used for the preparation of smart
magnetic graphene (SMG) by a solvent-free microwave-induced
process (Gollavelli et al., 2013). Upon irradiation, GO became
graphene and ferrocene decomposed to metallic Fe core (∼5 nm
in size). SMG showed a maximum As(V) absorption capacity
of 3.26 mg/g (Table 1), starting from an arsenic concentration
of 5.0 ppm.

Adsorbent systems containing two or more metals or
metal oxides were designed to improve arsenic adsorption
performance. Graphene nanoplates (GNPs) supported with Fe-
Mg binary oxide (La et al., 2017b) or spinel CuFe2O4 (La
et al., 2017a) showed a significant As(V) adsorption. The better
adsorption capacity was reached at low pH values, due to the

protonation of OH, which attract As(V) oxyanions, whereas the
decrease of net positive charge, at higher pH values, leads to
a decrease of As(V) adsorption ability. Both systems showed
a relevant selectivity toward arsenic anions compared to other
ion species.

Fe@Cu&GO systems fabricated by coprecipitation of CuO
and Fe3O4 on GO surface showed good values of absorption
for both As(III)/As(V) (Table 1) with a competitive adsorption
of phosphate ions (Wu et al., 2019). As(III) adsorption was
independent from pH variation, whereas As(V) adsorption
decreases under alkali conditions.

Considering the ability of Gadolinium (Gd) oxonium to
form binary compounds with arsenic species and its sizeable
magnetic moment, a Fe-GO-Gd system (Lingamdinne et al.,
2020) was tested for As(V) adsorption. Both ion exchange
surface complexation and electrostatic interactions allowed
As(V) removal. The adsorption ability decreased in the presence
of competitive ions (SO2−

4 , PO3−
4 , and CO2−

3 ) and after four
adsorption/desorption cycles, probably due to the leak of Fe and
Gd ions from the GO surface.

Multifunctional magnetic graphene (MG@PDA@PGMA-
AET), prepared by surface-initiated ICARATRP, was investigated
for simultaneous adsorption and sequential elution of As(III)
and As(V) (Wang et al., 2019). As(V) oxyanions were absorbed
by electrostatic interactions by protonated functional groups
of MG@PDA@PGMA-AET, conversely neutral H3AsO3 species
were absorbed by chelation mechanism with –OH, –SH and –
NH2 groups. The speciation analysis demonstrated a quantitative
and simultaneous adsorption of both arsenic species (Table 1),
using MG@PDA@PGMA-AET as column packing material.

The heterogeneous Fenton-like system (M-RGO) was
proposed for the degradation of 4-aminophenylarsonic (p-ASA)
and for the adsorption of arsenic species from wastewater (Wu
et al., 2020). Removal rate of 89.8% for total As and 98.8% for
p-ASA were estimated at neutral pH value.

Mn-Al-Fe RGO based hybrid system (MAF-RGO) was
proposed to remove arsenic species by electro-sorption and
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reduction process (Penke et al., 2020). Relevant maximum
sorption values for both As(III)/As(V) (Table 1) were estimated
by the Freundlich model. Interestingly, the irradiation of MAF-
RGO with white light (> 420 nm) increased two-fold the
arsenic loading.

Macro/micro/meso porous structures guarantee an excellent
permeation of gas and solution, promoting active interior
sites. Moreover, 3D G systems are characterized by major
mechanical stability avoiding the aggregation phenomenon
typical of graphene layers (He et al., 2020). G-CNT-Fe
3D nanohybrid (Figure 1C), composed of CNTs vertically
standing on G surface and FenOm NPs dispersed on CNT
and G surfaces, (Vadahanambi et al., 2013) showed a higher
performance to capture As(III) species compared to 2D iron-
decorated G system. The high surface-to-volume ratio and
the mesoporous morphology facilitated the molecular diffusion
and the accessibility of iron oxides, which acted as arsenic
interactions sites.

Mesoporous 3D G aerogels (GA) homogenously decorated
with Fe3O4 NPs (Ye et al., 2015) showed a higher maximum
adsorptive capacity (Table 1) compared with 2D Fe-G systems
and porous Fe3O4. To keep the chemical structure of GO
sheets and avoid the damage of oxygen groups, porous 3D
magnetic GO hydrogel (MGOH) was prepared by generation of
chemical bubbles mixing GO, Fe3O4 NPs, and polyacrylamide
hydrochloride (PA) at room temperature (Liang et al., 2019).
MGOH showed good maximum adsorption capacity values
(Table 1) with one of the fastest adsorption speeds, reaching
equilibrium within only 2min for both As(III)/As(V) species.

Arsenic capture ability of engineered carbon nanospheres
(CNs) with a mesopore/macropore structure depends on the
amount of loaded FenOm (Su et al., 2017b). FenOm content of
7 and 13 wt% resulted in a maximum adsorption capacity of
246 and 416 mg/g for As(III), and 93 and 201 mg/g for As(V),
respectively; at higher FenOm content a significant decrease in
absorption capacity was observed, probably due to the formation
of Fe oxide agglomerates that block the pores.

Graphene-Based Membranes for Arsenic
Remediation
Nanofiltration membranes technology is a promising
environment-friendly alternative to the conventional adsorbent
materials or ion exchange resins (Shukla et al., 2018), providing
the rejection of arsenic pollutants by low-cost filtration
operations at low transmembrane pressure, through systems
suitable to avoid fouling (i.e., cross-flow module) (Sen et al.,
2010; Pal et al., 2014). Nanofiltration membranes suitability is
mainly affected by the Donnan exclusion principle (Dresner,
1972; Bowen and Mukhtar, 1996; Jye and Ismail, 2017).

The structure and the porosity of polysulfone (PSU)-based
membranes including GO can be tuned by exploiting PSU
hydrophobicity and GO hydrophilicity (Rezaee et al., 2015;
Shukla et al., 2018).

Pure PSU membrane exhibited a sponge-like system with a
dense skin layer and a few pores with drop-like ends; the addition
of 0.5 (w)% GO resulted in the formation of finger-like pores

with closed ends. Further GO loading resulted in a drastic drop of
the sponge-like structure, while the pores appeared open-ended
and even bigger in size. The negatively charged surface was active
in Donnan repulsion of negatively charged pollutants. With an
increase in pH, the negative charge of the membrane surface
increases, and the predominant arsenate species becomes the
divalent ion (HAsO2−

4 ), enhancing the rejection performances
(Rezaee et al., 2015). Although the rejection performance is
negatively influenced by the contemporary presence of cations
and anions, a higher efficiency of the PSU/carboxylated-GO
membrane to reject mixed metal ions solutions than that of pure
PPSUwas evidenced (Shukla et al., 2018). PSU-basedmembranes
containing GO were prepared also by interfacial polymerization
(Pal et al., 2018b). The polyethersulfone (PES) membrane was
covered with polyamide, and the residual acid groups belonging
to the polyamide-matrix were used to bind a GO layer. This
membrane was able to selectively remove ionic As(V) (Table 1),
retaining useful metal ions of drinking water, without GO losses
in the permeated stream. An economic industrial scale-up was
also considered (Pal et al., 2018a).

A PAN-based electrospun composite containing GO and γ-
Fe2O3 was developed by electrospinning of PAN in DMF with
GO and γ-Fe2O3 (Tripathy and Hota, 2019). PAN-GO-γ-Fe2O3

membrane exhibited high affinity toward As(V) removal (36.1
mg/g) and the presence of anions such as chloride, nitrate,
and sulfate do not affect the efficiency, whereas phosphate
anions’ copresence strongly decreases As(V) chemisorption.
As(V) adsorption is proposed as an electrostatic attraction and
surface complexation mechanism, operated by the -C-OH and
Fe-O groups present on the membrane surface, able to form a
complex with arsenate species H2AsO

−

4 .
GO-manganese ferrite membranes (PES-GMF, from 0.5 to 2

wt% content) were prepared by dispersing GO-manganese ferrite
(GMF) in a polymermixedmatrix of polyvinylpyrrolidone (PVP)
and polyethersulfone (PES) that acted as a pore former and
support, respectively. GO induced a pore size increase, although
high GMF content prompted the agglomerates’ formation due
to dipole-dipole interactions. GMF increased the membrane
hydrophilicity, and the addition of 2 w% of GMF resulted
in an increased membrane water flux of 46% in the pure
PES membrane. A pH-dependent efficiency was detected: in
acidic conditions the electrostatic attraction prevails—positively
charged GMF and As(V) in the form of H2AsO

−

4 ; in alkali
conditions the electrostatic rejection occurs (due to the
deprotonation of GMF and As(V) in form of HAsO2−

4 . The
maximum As(V) adsorption capacity of 75.5 mg/g was found for
the membrane loaded with 2% GMF (Shahrin et al., 2019).

The adsorptive processes based on electrostatic interactions
are suitable only for As(V) species rejection whereas for As(III)
removal the affinity of thiolated groups grafted onto engineered
membranes was exploited.

A complex 3D porous membrane was synthesized by
using GO, single-walled carbon nanotubes (SWCNT) and an
antimicrobial PGLa peptide (Viraka Nellore et al., 2015) and
tested for the removal of toxic As(III), As(V), Pb(II) and
for the disinfection of pathogenic bacteria. Nanofiltration of
multiple metal ions solution containing both As(III) and As(V)
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(10 ppm) and bacteria revealed that 96% of As(III) and 92%
of As(V) were rejected from the membrane (Table 1). Although
As(III) ions are difficult to remove through nanofiltration, they
exhibit high affinity for thiolated groups of glutathione. As
a confirmation of the binding affinity of thiolated proteins
and As(III), an efficient GO-based membrane suitable for
As(III) preconcentration in column phase processes was reported
(Ahmad et al., 2020). GO and Bovine Serum albumin (BSA)
solution was vacuum-filtered through a cellulose nitrate paper
(0.22µm) to obtain a self-standing polymer-laminated GO
membrane (PLGO). BSA was physisorbed onto the GO sheets
through electrostatic interactions inducing the formation of
interlayer nano capillaries on the membrane surface. PLGO
exhibited a maximum adsorption capacity of 140 mg/g, which
is about three times higher than that of GO. The presence
of other metal ions in solution slightly influences the As(III)
selectivity. The recovery and reuse of the membrane do not
affect the adsorption efficiency, confirming their usefulness for
pre-concentration and speciation of As(III).

A Dispersive Micro-Solid Phase Extraction (DMSPE)
membrane was developed by deposition of Al2O3/GO onto
a membrane filter through a vacuum filtration procedure
(Baranik et al., 2018). The membrane quantitatively binds As(V)
deprotonated species (i.e. H2AsO

−

4 and HAsO2−
4 ) thanks to

the high concentrations of surface hydroxylic groups with a
pH-dependent performance.

DISCUSSION

The selected case studies showed the high potentiality of G
nanotechnology to remove As from contaminated water. It is
worth noting the ability of engineered graphene to effectively
remove complex mixtures of organic and inorganic pollutants

from water and its remarkable antimicrobial activity (Karahan
et al., 2018).

Although some nanotechnological tools for water purification
are already marketed (Khan and Malik, 2019), the use of G
in water purification, in particular for As remediation, must
be implemented to advance G nanotechnology from lab to the
market. Specifically, major concerns such as safety, economic
feasibility, and aggregation phenomena, especially in scaled up
water purification systems, need to be reasonably addressed. To
minimize the health risk, safety issues require a careful evaluation
(Caccamo et al., 2020) with the implementation of in-vivo studies.
The lack of standardized ways for G univocal characterization
and the different fabrication methods make the replication of G
published results difficult (Piperno et al., 2018). Characterization
of G should be carried out by standardized ways to support the
new laws for their regulation. REACH (Registration, Evaluation,
Authorization, and Restriction of Chemicals) in the European
Union is being updated for nanomaterial regulation. Finally,
for commercial applications, G would need to be manufactured
in standardized way and reduced cost considering that water
scarcity is a serious problem in underdeveloped countries.
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