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1. Introduction

In the last two decades years, applied mathematics and physics nonlinear phenomena play an
important role in soliton theory, the calculation of analytical and numerical solutions, especially the
travelling wave solutions of nonlinear equations in mathematical physics [1]. Thus, deeper
investigation of the analytical solutions to the nonlinear evolution equations with the help of newly
developed and improved approaches have been considered as one of the important study area in
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nonlinear sciences such as engineering, chemistry, biology, dynamics, plasma physics,
electrodynamics, applied physics and others. In this regard, many powerful models with high
nonlinearity such as the nonlinear (3+1)-dimensional B-type Kadomtsev-Petviashvili-Boussinesq
equation [2], modified a and modified Vakhnenko-Parkes equations [3], the perturbed nonlinear
Schrdlinger equation [4], Davey-Stewartson equation [5], KDV equation [6], the
Calogero-Bogoyavlenskii-Schiff and KPH equations [7] some conformable nonlinear model [8], the
Hirota Maccari system [9], Bogoyavlenskii equation [10], conformable space-time fractional
Fokas-Lenells equation [11], the (2+1)-dimensional Boussinesq equation with fourth order [12], the
(3+1) dimensional conformable fractional Zakharov-Kuznetsov equation with power law
nonlinearity [13], the conformable Ablowitz-Kaup-Newell-Segur equation [14], nonlinear Phi-4
equation [15] and many others [16-19,31-75] have been suggested to investigate deeper physical
properties such as complex, dark, bright and soliton solutions.

In the organization of this paper, in section 2, the brief description of considered methods such
as sine-Gordon Expansion method (SGEM) and improved Bernoulli sub-equation method (IBSEFM)
are given. In section 3, these projected methods are successfully applied to the nonlinear
conformable Date-Jimbo-Kashiwara-Miwa equation (CDJKM) defined as [20]

o( oo
Uy + 84U, U, +2U,, U, +6U, U, —au, — Zﬁ&[&( P D =0, (1)

where oand gare non-zero and u :u(x, y,t) is the wave-amplitude function, which describes

long water waves. In case of =1, Eq (1) turns DJKM equation. DJKM equation was firstly
presented by Kadomtsev and Petviashvili so as to study the stability of the KdV soliton [21]. Later,
some important properties of DJKM have been investigated in [22-25]. In 2020, Wazwaz have
observed the Painlevé integrability and multiple soliton solutions by getting variable coefficient
in [26].

Some important discussions and physical meanings of figures are also presented in section 4.
After the graphical simulations, a conclusion completes the paper in section 5.

2. Projected methods
2.1. The Sine-Gordon expansion method

We will give general structure of the SGEM in this section. Let’s consider the sine-Gordon
equation given by [28];

Uy = Uy =7°sin(u), )
where U =u(X,t),7is areal constant. Using the wave transform

u=u(x,t)=U(&),&=x—ct

into Eq (2), we find the corresponding ordinary differential equation (ODE) as following,
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U”=77—Zsin(u), (3)

(1-¢?)

where U =U ((f) If we integrate Eq (3), we obtain

{(Uﬂilni (L) @

where « is the integration constant. Substituting x =0, w(&) = U? and p2? :77_22 in Eq (4), gives
1

w =bsin(w), (5)
Settingb=1 in Eq (5), gives
W' =sin(w). (6)
Solving Eq (6) via separation of variables, we obtain
sin(w(&)) =sech(), (7
cos(w(£))=tanh(&). 8)

Suppose that the nonlinear fractional differential equations given in the more general form;

P(u,ux,uf,uz,---):o, )

where and € (0,1] Is the order of the conformable derivative. By using wave transformation given
as

u=MKQ=U(Q,§:W—§ﬁ,

we find the following nonlinear ordinary differential equation (NODE)
N(U,uU,U"U%)=0,

where U =U (5) U'= (:I_l; To obtain the solutions of this equation, we suppose the following

equation as trial solution

U(¢)= iZ::tanh” ()] Bsech(&)+ Atanh(&) ]+ A, (10)
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U (w)= Zcos”(w)[Bi sin (w) + A cos(w) ]+ A, (11)

Applying the homogeneous balance principle between the highest power nonlinear term and
highest derivative in the nonlinear ordinary differential equation (NODE), we determine the value of
n. Putting Eq (11) and its consecutive derivatives into the NODE, we obtain a polynomial equation

withsin' (w)cos’ (w). Using some trigonometric properties to the polynomial equation, it is obtained

an algebraic equation system by equating to zero the same power summation of coefficients. With
aid of the computation programme, we solve the equation system to obtain the A,B,,c,k values.

Substituting the A, B, ¢,k values into Eq (10), we get the new travelling wave solutions to the Eq (9).

2.2. The structure of IBSEFM

In this subsection of the paper, we will mention about general structures of the IBSEFM
[29,30].
Step 1: Suppose that the following fractional differential equation,

P(u,Dt“u,ux,ut,uxt,---)zo, (12)

whereU =U(X,t) and e (0,1] is the order of the conformable. The wave transformation is

24

u:u(x,t):U(g”), gzax—%, (13)

where o, 12 are real constants and can be determined later. This transformation reduces Eq (12) into
NODE as following;

N(U,U’,u",u”,---)=0. (14)

Step 2: Let consider the trial solution form of Eq (14) as following

o2 arar@)rar () e @)
iobipj(g) by +B,F () +0,F2(¢)+--+b,F™(¢)

(15)

We can determine the general form of Bernoulli differential equation for F’ according to Bernoulli
theory as

F'=bF+dF", b=0, d=0, M eR\{0,12]}, (16)

where F = F(g”) is Bernoulli differential polynomial function. Eq (16) put into Eq (14), it gives
polynomial equation Q(F) which depends on F as the following equality.

Q(F)=p,F° +-+pF +p, =0. (17)
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We put account the homogeneous balance principle to determine the relation between
n,mand M constants.

Step 3: Equating all the coefficients on(F)yieIds an algebraic equation system;
p. =0, 1=0,...,s.

Once we have solved this system, we can determine the values of a,,a,,...,a, and by,b,....b,.
Step 4: We have two situations depend on b and d according to solution of Eq (16).

—d & 1-M
F(é’):[ b +eb(M—l)§:| , b=d, (18)

=d, €€eR (19

[ (e-D)+(e+1)tanh(b(1-M)¢/2) =l
F(g)—{ 1-tanh(b(1-M )¢ /2) } , b

We get the analytical solutions to Eq (14) via software program by using complete discrimination
system for polynomial of F (g’)

3. Applications of approaches
3.1. Application of SGEM

In this section of the paper, we apply SGEM to the Eq (1) to investigate some analytical
solutions such as exponential and complex.
First of all, we transform Eq (1) into a NODE by the following wave transformation
0

u=u(xyt)=U($), §=k><+my—ﬂ%, (20)

where k,m,care non-zero, @ is conformable derivative order. Putting Eq (20) into Eq (1) and after
some simple calculating, we reach the following NODE

k*mV " +3k*mV? —(am® — 2k*A8)V =0, (21)

where V =U',and also both integral constants are zero.

With the help of balance principle for Eq (10), we find n=2. For this value, Eq (10) can be
written as

V (w) =B, sin(w)+ A cos(w)+ B, cos(w)sin(w)+ A, cos” (w)+ A, (22)
and its second derivation
V" (w)=—-2A cos(w)sin® (w)—4A, cos®(w)sin® (w)+2A, sin* (w)+ B, cos* (w)sin (w)

— B, sin®(w)+ B, cos® (w)sin(w)—5B, cos(w)sin® (w). (23)
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Putting Eq (22) and its second derivation into Eq (21), we find a trigonometric algebraic equation.
When we take all coefficients of trigonometric functions as zero, we obtain a system of coefficients.
Via some computational programs, we reach the some of coefficients as follows:

m(—4m2a+ A;‘)
2pA;

Case 1: (Figures 1 and 2) When A,=—-A,,A =B, =B, =0,k=—%,/1=—

gives the solution in the form,

m(-4m’a+A)) 24)

u (x,y,t)=Ajtanh my—%x+

2BOA;

where A,,m, &, 5 are real constants with non zero.

na
na
04
nz

nz
04
ng
na

Figure 1. The 3D and contour surfaces of Eq (24) for m=1a=0.2,=2,0=09,y=02A =-1-25<x<250<t<1
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Figure 2. The 2D graph of Eq (24) for m=1a=02,=2,0=09,y=0.2 A =-1t=10,-25<Xx<25.
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: 3A, 3iA, . 3A 16m°a +81mA,
Case 2. (Figures 3-5) If A =0,A,=——2,B,=0,B,=- K=—=,8= ,
(Fig )If A=0A 5 B 2 > > B TR
produces
u2=gi%sech(my—§te+%xj—%%(my—%t‘9+%Xj+g%t3nh(my—%ta+%xj’ (25)

where A,,m, A4 are real constants with non zero.

Im[u]

Figure 3. The 3D surfaces of Eq (25) for m=16=09,A =-1y=021=-13.
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Figure 4. The Contour graph of Eq (25) for m=1,6=0.9,y=0.2 A =-11=-1.3,-125<x<125.
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Figure 5. The 2D surfaces of Eq (25) for m=1,6=0.9,y=02A =-11=13t=0.1-125<x<125.

_ _ m(-m’a+B;)
Case 3. (Figures 6-8) Selectingas A, =iB,,A =B, =0,A, =-iB,, = e k=1B,,
2

gives

Uy (X, y,t)=-B, sech(my—%t‘) + iBzxj+ ithanh(my—%tg + iBzx), (26)

where B,, m, A are real constants and non zero.

Figure 6. The 3D surfaces of Eq (26) for m=1,6=09,y=0.2,B,=51=5-25<x<25-1<t<1.
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Figure 7. The contour surfaces of Eq (26) for m=1,6=09,y=0.2,B,=51=5-25<x<25-1<t<1.

Im[u] Re[u]

Figure 8. The 2D surfaces of Eq (26) for m=1,6=0.9,y=0.2,B,=51=5t=0.1,-25<x<25.

28B2 + mB}

Case 4. (Figures 9-11) Choosing A, =%, A =B =0A =-iB, k=iB,,a=— -

gives
u,(x,y,t)=-B, sech(my—it” + iBzxj—liB2 (my—it" + iBzxj
0 3 0
(27)
+ ithanh(my—gtg + iBzxj,

where B,, m, A are real constants and non zero.
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Re[u]

Figure 9. The 3D surfaces of Eq (27) for m=1,1=56=09,y=0.2,B,=1,-25<x<25-1<t<1.
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Figure 10. The contour surfaces of Eq (27) for m=1,1=560=0.9,y=02,B, =1,-25<x<25-1<t<1.
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Figure 11. The 2D surfaces of Eq (27) for m=1,1=56=0.9,y=0.2,B,=1t=0.1-25<x<25.
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Case 5. (Figures 12-14) When we select another coefficients for obtaining analytical solution as

gives

4 3
following, Abzk,A_lzBlzo,Az=—k,82=—ik,,3=_kr2nk—;m,
. ﬂ, 2} /1 0
U (X, y,t)=iksech kx+my—5t +ktanh kx+my—5t , (28)

in which k,m, A4, are real constants and non zero.

101

05+

0or

05+

1.0

Re[u]

Figure 12. The 3D surfaces of Eq (28) for m=1=1,6=0.9,y=0.2,k=-1,-25< x<25-1<t<1.
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Figure 13. The contour surfaces of Eq (28) for m=1=1,6=0.9,y=0.2,k =-1,-25<x< 25,-1<t<1.
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Figure 14. The 2D surfaces of Eq (28) for m=4=16=0.9,y=0.2,k =-1,-25<x<25,-1<t<1.

am® —mA;

Case 6. (Figures 15-17) O =-A,,A =B =0,B,=-iA, k=-A, 1= .
ase 6. (Figures ) Once Ay =-A,,A =B, iA, A, 2R

it is formed as

u6=iAzsech[my—xA2—%tal—&tanh(my—x@—m;ﬂ—;i?)t@} (29)

in which k, m, A, are real constants and non zero.

Im[u]

Re[u]
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0.000

-0.005
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Figure 15. The 3D surfaces of Eq (29) for m=-1,1=60=0.9,y=02,a=1A,=0.1, f=5-95<x<15-1<t<1.
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Figure 16. The contour graphs of Eq (29) for m=-11=0=09,y=02,a=1A, =01 f=5-95<x<15-1<t<L.
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Figure 17. The 2D surfaces of Eq (29) for m=-1,1=6=09,y=02,a¢=1A, =01 4=51t=0.2,-95<x<15.

3.2. Application of IBSEFM

This section applies IBSEFM to the governing model Eq (1) for obtaining some new complex

analytical solutions. Let’s consider the following wave transformation into Eq (1)
6

t
u=u(xyt)=U(<), §=kx+my—ﬂ,5, (30)
beingk, m,care non-zero, @ is conformable derivative. Putting Eq (30) into Eq (1) and after some
simple calculations, we find
k‘mV" +3k’mV? —(am® - 2k*A8)V =0, (31)
where V =U’,and also both integral constants are zero. With the aid of homogeneous balance
principle between V" and V?, we get relationship for n,mand M according to IBSEFM properties

2M +m=n+2. (32)
Using this relationship, we can find many new complex solutions for governing model as

AIMS Mathematics Volume 6, Issue 5, 4238-4264.
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following cases.

Case 1: Whenwetake M =3, m=1 and n=5, then we can obtain follows,

V= ag +aF +a2F2 +a3|:3 +a4F4 +a5F5 Y

_x (33)
b0+b1F ¥
N —ZY‘I’” (34)
¥
v (P P22 (WP
V,/:Y‘P\PZY‘Y_( ) \P4( ) ’ (35)

where F’'=wF +dF°, a. #0, b =0. If we put Egs (33,35) into Eq (31), we get a system of
algebraic equations of F . Solving these models yields different coefficients as follows

Case 1.1. (Figures 18-20) Forb = d , we select follows

. . 16id? —a, o, 243d 16i/3d?

a=2,m=ib=-i,k=,a,= b = 2,a3=2,/3a&.,,a4:8|d W=——,8a,= ,
a, ' 8 Ja Jas

i:i(48d2—aa5)
28,

These coefficients presents following solution for governing model

— 2 48d2 - 6 ’3 2 3 f(xy.t)
7 as Zeﬂas 12d82 _daSGZf(X’y’t)

(36)

48d°% —
where f (x,y,t)= 4d\/§[x+iyi%tg}

Jas

Figure 18. The 3D surfaces of Eq (36) for d=33a,=20,y=0.1/=2a=0=09,=1-1<x<10<t<L

AIMS Mathematics Volume 6, Issue 5, 4238-4264.



4252

Refu]

Imfu]

Figure 19. The contour graphs of Eq (36) for d=3a,=20,y=0.1=2a=0=09,c=1-1<x<10<t<l.

Im[u] Relu]
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X
-2 -1 1 2 -10 -0.5 05 10

Figure 20. The 2D surfaces of Eq (36) for d=3,a,=20,y=01=2,a=60=09,6=1-1<x<10<t<1

Case 1.2. (Figures 21-23) Taking as b=d, and selecting follows

a=2,m=iby=-i,k=1a,= (|a+2,m \/-\/_ —ia—2p1),8, =-2.[3a;,
a, é(la+2ﬂ/l)a5,bl —Zfiﬂ/i w=%,/a 2iBA, \/a 2|ﬂ \/—
finds
4e (—63 +/38, em(x+iy_0tg}j
: @37)

U (X, y,t)=(—a+2ip2) %[Xﬂy_%te}r

- e
\/G—Tﬁ/l(—lzél +ase2\/m(x+ly_0t ]j

where &, 3, 4, € are real constants and non-zero.
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Im[u] Re[u]

Figure 21. The 3D surfaces of Eq (37) for f=2,a=0=09,1=3a,=-42,y=01e=1-3<x<3,0<t<0.3.
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Figure 22. The contour graphs of Eq (37) for f=2,a=60=09,1=3a,=-42,y=01¢=1-3<x<30<t<0.3.
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Figure 23. The 2D surfaces of Eq (37) for f=2,0=0=09,4=3a,=-42,y=016=1-3<x<3,0<t<03.
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Case 1.3. (Figures 24-26) Galnlng as b# d and selectlng follows

a=2m=ib =-,k=La,= ﬁ
R

,‘L:_i(6+abl) _ i \/5,

260, "

1-i)\/6a,b,a, =ia,h,d = [Z—%)\/a_

gives the following complex solution to the governing model

4e (—68 +4/3a.e

\/oTiﬁ/l(xHy—gt”) ]

Ug (X, y,t)=(—a+2ipA) 3(x+|y z 9j+

Im[u]

—
\/m [—1282 + asez‘/"“z_'m[xﬂy—et ]J

where a, 3, 4, € are real constants and non-zero.

: (38)

Re[u]

0.3

10

Figure 24. The 3D surfaces of Eq (38) for b =2,0=0=09,/=3a,=42,y=01=1-13<x<13,0<t<0.3.
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Figure 25. The contour graphs of Eq (38) for b =2,a=60=09,f=3a,=42,y=0.1¢=1-13<x<130<t<03.
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Im[u] Re[u]

Figure 26. The 2D surfaces of Eq (38) for b =2,0=0=09,5=3a,=42,y=01=1-13<x<13,0<t<0.3.

Case 1.4. (Figures 27-29) Withb = d , considering into account as

a=2,m=ib,=—ik= 1a0_— \/_\/ﬁag (1+i)f6a,b,,a _|a4b1d——(———j\/_
i:_i(ﬁ-l-abl) W= i \/g'

2f, " f2b

gives the following complex solution to the governing model

C12(1f . i(6+aby), J (1+1)2((6-6i)z b, +f6a,be’ xw)
um(x’y't)_bl 6(X+Iy+ 2,56b v x/g(12|g +a4b1e2”“>) |

(39)

where f (x,y,t)= i‘/g{x+iy+ i(6+ahb) ,

—_ t Jand b.,a,p,0,¢,a, arereal constants and non-zero.
Jb 236h,

Im[u]

Re[u]

Figure 27. The 3D surfaces of Eq (39) for b =2,a=0=09,/=-3a,=42,y=01e=1-13<x<13,0<t<0.3.
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Figure 28. The contour graphs of Eq (39) for b =2,a=60=09,f=-3,a,=42,y=0.1¢=1-13<x<13,0<t<0.3.
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Figure 29. The 2D surfaces of Eq (39) for b =2,a=60=09,f=-3a,=42,y=01¢=1-13<x<130<t<0.3.

Case 1.5. (Figures 30—32) When we consider as

a,=—i,m=-2,b, =2,k =i,a1:%,a2 — 4id+/6,a, = 2idb,</6,a, =—16id? a, = -8id b,

e 3 '/1:3+8a,
2\2 2
we gain
i 3+8
o3 Yo Gl w
p 2d+/6 +3geﬁ('x_2y_ 20 tj

where «,f,d,s are real constants and non-zero.
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Figure 30. The 3D surfaces of Eq (40) fory=0.1,a=60=0.9,=2,6=1,d =0.5-13<x<13,-1<t<1
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Figure 31. The contour graphs of Eq (40) for y=01a=6=0.9,=2¢6=1d=05-13<x<13-1<t<1.
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Figure 32. The 2D surfaces of Eq (40) for y=0.L,a=6=0.9,=2,6=1,d=0.5-13<x<13,-1<t<1.
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Case 1.6. (Figures 33-35) When we consider as

a, =—i,m=-2,b, =2,k:i,a1:%,a2 = —4id</6,a, = —2idb,\/6,a, =—16id?, a, = —8id’h,,

e 3 ’/1:3+8a,
2.2 2/
we gain
- 3+8
ulz(xay,t)z_% %(ix_zy_( 2;005)1:0}_ 2@( 5 (3+3Ul)tg] ! (41)
—=|ix-2y-
3¢ +2d/6e? 200

where «,,d,¢ are real constants and non-zero.

Im[u]
Re[u]

Figure 33. The 3D surfaces of Eq (41) for y=01a=6=0.9,=2,6=1d=05-13<x<13-1<t<1.

Irn[u]

Re(u]

-1.0

Figure 34. The contour graphs of Eq (41) for y=01a=6=0.9,=2,¢6=1,d=05-13<x<13-1<t<1.
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Imfu] Re[u]
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15

T —

Figure 35. The 2D surfaces of Eq (41) for y=0.1,a2=0=0.9,=2,6=1,d=05,-13<x<13,-1<t<1.

4. Discussion, comparision and physical explanations

This paper finds entirely new complex analytical solutions for governing model with the help of
two powerful approaches such as SGEM and IBSEFM. These solutions have some more important
physical features. The hyperbolic secant (bright soliton) arises in the profile of a laminar jet, the
hyperbolic tangent (dark soliton) arises in the calculation of magnetic moment, the hyperbolic sine
(periodic wave solution) arises in the gravitational potential, and the hyperbolic cotangent (singular
soliton) arises in the Langevin function for magnetic polarization [76]. In this sense, Eq (24) is a dark
soliton solution. Egs (25-29) are used to explain the combined dark-bright soliton solutions. It is
estimated that these solutions may be related to such physical meanings. When we compare these
solutions in [21], one can see that these solutions entirely new complex dark, mixed dark-bright and
dark soliton solutions to the governing model.

In IBSEFM, if we consider more values of M =3 m=2 as n=6, we obtain another new

solution for the governing model as

_ ag +aF +<';12F2 +a3F3 +a4F4 + aSF5 +a6F6 :I
by +b F +b2F2 b4
LYY Y
V= s
Y
o X (rw) w2-2x(w)Pw
w? pé '

where F'=wF + dF3, a; #0, b, #0.1n this regards, this projected technique is a powerful tool for

obtaining new analytical solutions for the nonlinear models.
5. Conclusions
This paper studies on the nonlinear Date-Jimbo-Kashiwara-Miwa equation with conformable
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which defines to explain wave propagation. By using SGEM and IBSEFM, we reach the some new
dark, bright, singular solitons and complex wave solutions. All the found wave solutions in this study
are entirely new and they have satisfied the nonlinear Date-Jimbo-Kashiwara-Miwa equation with
conformable. Under the suitable chosen of the values of parameters, we plotted 2D, 3D and contour
simulations of the wave solutions. From these Figures (1-35), it may be observed that wave solutions
to the studied nonlinear model show the estimated wave propagations.
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