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ABSTRACT Chronic obstructive pulmonary disease (COPD) is the third leading cause of morbidity and
death globally. The lack of effective treatments results from an incomplete understanding of the underlying
mechanisms driving COPD pathogenesis.

Interleukin (IL)-22 has been implicated in airway inflammation and is increased in COPD patients.
However, its roles in the pathogenesis of COPD is poorly understood. Here, we investigated the role of IL-
22 in human COPD and in cigarette smoke (CS)-induced experimental COPD.

IL-22 and IL-22 receptor mRNA expression and protein levels were increased in COPD patients
compared to healthy smoking or non-smoking controls. IL-22 and IL-22 receptor levels were increased in
the lungs of mice with experimental COPD compared to controls and the cellular source of IL-22 included
CD4+ T-helper cells, γδ T-cells, natural killer T-cells and group 3 innate lymphoid cells. CS-induced
pulmonary neutrophils were reduced in IL-22-deficient (Il22−/−) mice. CS-induced airway remodelling
and emphysema-like alveolar enlargement did not occur in Il22−/− mice. Il22−/− mice had improved lung
function in terms of airway resistance, total lung capacity, inspiratory capacity, forced vital capacity and
compliance.

These data highlight important roles for IL-22 and its receptors in human COPD and CS-induced
experimental COPD.
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Introduction
Chronic obstructive pulmonary disease (COPD) is the third leading cause of morbidity and death and
imposes a significant socioeconomic burden globally [1]. It is a complex, heterogeneous disease
characterised by chronic pulmonary inflammation, airway remodelling and emphysema, which are
associated with progressive lung function decline [2]. Cigarette smoke (CS) is a major risk factor for
COPD [2]. The mainstays of therapy for COPD are glucocorticoids, β2-adrenergic receptor agonists and
long-acting muscarinic antagonists [3]. However, these agents only provide symptomatic relief rather than
modifying the causal factors or suppressing disease progression [3]. There is emerging interest in altered
lung and gut microbiomes and the gut–lung axis which could be modified for therapeutic gain [4, 5].
However, there is currently a lack of effective treatments for COPD due to the poor understanding of the
underlying mechanisms.

Interleukin (IL)-22 is a member of the IL-10 cytokine family which is implicated in several human
diseases, including mucosal-associated infections and inflammatory disorders of the lung [6]. CD4+

T-helper cells, γδ T-cells, natural killer (NK)T-cells and group 3 innate lymphoid cells (ILC3) are generally
the major cellular sources of IL-22 [6]. Unlike IL-22, expression of the IL-22 receptor (IL-22R) is largely
restricted to structural cells. This ligand–receptor distribution permits immune cells to regulate responses
of stromal cells, and particularly at barrier surfaces such as the lung, where epithelial cells play an active
role in initiating, regulating and resolving immune responses. IL-22R is a cell-surface heterodimer
consisting of IL-22RA1 and IL-10RB [6]. IL-22RA2 is a naturally occurring IL-22 antagonist which
negatively regulates IL-22-induced inflammatory responses [6, 7]. Functional studies in murine systems
indicate that IL-22 has immune-regulatory properties in infection, inflammation, autoimmunity and
cancer [6]. In these models, the functional consequences of IL-22 expression can be either pathological or
protective, depending on the context in which it is expressed. Indeed, increased IL-22 levels and IL-22+

cells have been demonstrated in the blood, sputum and lung biopsies of COPD patients [8]. The role of
IL-22 in lung antimicrobial defence and the impact of COPD on this defence pathway has been reported
[9, 10]. In experimental COPD, Haemophilus influenzae infection impaired IL-22 production, and
wild-type (WT) and IL-22-deficient (−/−) mice had impaired clearance [10]. CS exposure suppressed
Streptococcus pneumoniae-induced IL-22 production and treatment with recombinant IL-22 restored
bacterial clearance [11]. Despite this, there is limited knowledge of the role that IL-22 plays in COPD
pathogenesis independent of respiratory infection.

Here, we investigate its role using gene expression analysis of airway epithelial brushings and parenchymal
cores from human COPD patients, an established mouse model of CS-induced experimental COPD that
recapitulates the critical features of human disease [4, 12–18], and IL-22 reporter and Il22−/− mice [19].
IL-22 and IL-22R mRNA and protein were increased in the airways of mild-to-moderate COPD patients.
IL-22 and IL-22+ T-cells and ILC3s were increased in experimental COPD. CS-induced pulmonary
neutrophilic inflammation, airway remodelling and emphysema were reduced and lung function was
improved in Il22−/− mice compared to WT controls, thus implicating IL-22 in COPD pathogenesis.

Methods
Ethics statement, animal details, additional methods and statistical analyses are described in the
supplementary material.

Human gene expression
Analysis of IL22, IL22RA1, IL10RB and IL22RA2 in published human array datasets (accession numbers:
GSE5058 and GSE27597) [20–22] was performed using Array Studio software (OmicSoft Corporation,
Research Triangle Park, NC, USA).
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Mice
Animals were female, 7–8-week-old, WT C57BL/6 mice, Il17aeGFP/+;Il22td−tomato/+ reporter and Il22−/−

mice on a C57BL/6 background [19].

Experimental COPD
Mice were exposed to normal air or nose-only inhalation of CS for 8 weeks in a protocol representative of
a pack-a-day smoker as extensively described previously [4, 12–18, 23, 24].

Quantitative PCR
Total RNA was extracted from whole lung tissue and blunt-dissected airways and parenchyma
and reverse transcribed [13]. mRNA transcripts were determined using real-time quantitative (q)
PCR (ABIPrism7000, Applied Biosystems, Scoresby, Victoria, Australia) using custom-designed
primers (Integrated DNA Technologies, Baulkham Hills, New South Wales, Australia)
(supplementary table S1).

Flow cytometry
IL-17A+ and IL-22+ CD4+ T-cells, γδ T-cells, NKT-cells and ILC3s in lung homogenates were determined
based on surface marker expression (supplementary table S2) [25–27] using a BD FACSAriaIII. Flow
cytometry antibodies were from Biolegend (Karrinyup, Australia) or BD Biosciences (North Ryde,
Australia) (supplementary table S3, supplementary figure S1).

Pulmonary inflammation
Airway inflammation was assessed by differential enumeration of inflammatory cells in bronchoalveolar
lavage fluid (BALF) [12, 14, 28, 29]. BALF supernatants were stored at −20°C for assessment of IL-22
protein levels. Tissue inflammation was assessed by enumeration of inflammatory cells [12–14, 29] and
histopathological scoring based on established criteria [30].

ELISA
IL-17A, IL-22, myeloperoxidase (MPO) and neutrophil elastase protein levels were quantified using
commercially available ELISA kits (R&D Systems or Biolegend) [19].

Immunohistochemistry
Lungs were perfused, inflated, formalin fixed, paraffin embedded and sectioned (4 μm) [13, 14]. Longitudinal
sections of the left lung were deparaffinised and stained with antibodies against IL-22RA1 or IL-22RA2.
Immunohistochemistry (IHC) in human samples is described in supplementary tables S4–S6 [31].

Airway remodelling
Airway epithelial (μm2) and collagen deposition area (μm2) were assessed in a minimum of four small
airways (basement membrane perimeter <1000 μm) per section [12–14, 17, 18]. Data were quantified
using ImageJ software (version 1.50; National Institutes of Health, Bethesda, MD, USA) and normalised to
basement membrane perimeter (μm).

Alveolar enlargement
Alveolar diameter was assessed using the mean linear intercept technique [12–14, 17, 18, 32].

Lung function
Mice were anaesthetised using ketamine (100 mg·kg−1) and xylazine (10 mg·kg−1), tracheas cannulated and
attached to Buxco® Forced Maneuvres apparatus (DSI, St. Paul, MN, USA) to assess total lung capacity
(TLC) [12, 13]. FlexiVent apparatus (FX1 System; SCIREQ, Montreal, Canada) was used to assess lung
volume, airway resistance, inspiratory capacity, forced vital capacity (FVC), compliance and elastance (tidal
volume 8 mL·kg−1, respiratory frequency 450 breaths·min−1) [12, 33, 34].

Results
IL-22 and IL-22R mRNA expression and protein levels are increased in human COPD
First, we determined whether the mRNA expression of IL-22 and its receptors IL-22RA1 and IL-10RB and
antagonist IL-22RA2 were altered in humans with mild-to-moderate COPD (Global Initiative for Chronic
Obstructive Lung Disease (GOLD) stage I or II accession GSE5058 [20, 21, 35]). Pre-existing microarray
data from airway epithelial brushings of healthy nonsmokers, healthy smokers and COPD patients were
interrogated [20]. IL-22, IL-22RA1, IL-10RB and IL-22RA2 mRNA expression were not significantly
altered in airway epithelial brushings from healthy smokers compared to nonsmokers (figure 1a–d).
However, importantly, IL-22 (2.01-fold), IL-22RA1 (2.48-fold), IL-10RB (3.26-fold) and IL-22RA2
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(1.78-fold) mRNA expression was increased in airway epithelial brushings from patients with
mild-to-moderate COPD compared to nonsmokers. Similar results were observed when mild-to-moderate
COPD was compared to healthy smokers.
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FIGURE 1 Interleukin (IL)-22 and IL-22R mRNA expression are increased in airway epithelial brushings from
human mild-to-moderate chronic obstructive pulmonary disease (COPD) patients compared to healthy
smokers and nonsmokers. Microarray data from airway epithelial cells from healthy human nonsmokers,
healthy smokers without COPD and COPD patients with Global Initiative for Chronic Obstructive Lung Disease
(GOLD) stage I (mild) or II (moderate) disease (accession: GSE5058 [20]) were interrogated: a) IL-22,
b) IL-22RA1, c) IL-10RB, d) IL-22RA2 mRNA expression. Microarray data from lung parenchymal cores from
human healthy nonsmokers and COPD patients with GOLD stage IV (severe) disease (accession: GSE27597
[22]) were interrogated: e) IL-22, f ) IL-22RA1, g) IL-10RB, h) IL-22RA2 mRNA expression. Data are expressed
as log2 intensity robust multi-array average signals. The Benjamini–Hochberg method for adjusted p-value/
false discovery rate was used to analyse differences between nonsmokers, smokers and COPD patients. RMA:
robust multichip averaging; NS: nonsignificant. #: p<0.005 compared to COPD.
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We then assessed the mRNA expression of IL-22 and its receptors in pre-existing microarray data from
lung parenchyma cores from severe COPD patients (GOLD stage IV [35] accession: GSE27597 [22]).
There was no change in IL-22, IL-22RA1, IL-10RB or IL-22RA2 expression in cores from COPD patients
compared to nonsmokers without COPD (figure 1e–h). IL-22, IL-22RA1, IL-22RA2 and IL-10RB were
unchanged in peripheral lung tissue from patients with mild emphysema (supplementary figure S2 from
GSE8581). There was no significant correlation between pack-years and IL-22, IL-22RA1 and IL-22RA2
gene expression in lung tissue (supplementary figure S3 from GSE17770). Using lung cancer as a disease
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FIGURE 2 Interleukin (IL)-22, IL-22RA1 and IL-10RB, but not IL-22RA2 protein are increased in human chronic obstructive pulmonary disease
(COPD). IHC for IL-22 and its receptors in peripheral lung from smokers with mild-to-moderate stable COPD and compared to age- and smoke
history-matched smokers with normal lung function. a) IL-22+ alveolar macrophages; b) IL-22 receptor (IL-22R)A1+ alveolar macrophages;
c) IL-22RA1+ airway epithelial cells; d) IL-10RB+ alveolar macrophages. Data are presented as mean±SEM, n=12 per group.
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FIGURE 3 Interleukin (IL)-22 protein levels are increased in the lungs of cigarette smoke (CS)-exposed mice with experimental chronic obstructive
pulmonary disease. Wild-type (WT) C57BL/6 mice were exposed to normal air or CS for 8 weeks. IL-22 protein levels in a) lung homogenates and
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control, no differential expression of IL-22, IL-22RA1, IL-22RA2 or IL-10RB in either bronchial brushings
(GSE4115) or lung tissue (GSE1650) between healthy smokers and subjects with lung cancer were
observed (supplementary figures S4 and S5).

Finally, we assessed IL-22 and receptor protein levels in human COPD using IHC. The percentage of
IL-22+ alveolar macrophages and IL-22RA1+ and IL-10RB+ airway epithelial cells were increased in COPD
compared to age- and smoking history-matched smokers with normal lung function (figure 2,
supplementary figure S6 and supplementary tables S6–S9). No change in IL-22RA2 was detected
(supplementary table S8).

In a separate cohort of COPD patients, IL-22RA1 was increased in airway epithelial cells of current
smokers with COPD compared to nonsmokers (supplementary figure S7 and supplementary table S10).
When combined with ex-smokers with COPD, this IL-22RA1 signal in the airway epithelium is lost
(supplementary figure S7).

IL-22 and receptor protein levels are increased in the lungs in experimental COPD
Next, we investigated the expression of IL-22 and its receptors in CS-induced experimental COPD, which
models mild-to-moderate COPD. We first confirmed that IL-22 was increased in experimental COPD. Il22
mRNA was difficult to detect in mouse lungs; therefore, we assessed protein levels using ELISA in both
whole-lung homogenates (include both airways and parenchyma) and BALF supernatants. CS-exposure of
WT mice resulted in increased IL-22 protein levels in lung homogenates, but not BALF supernatants
compared to normal air-exposed controls (figure 3a and b). IL-22 protein levels were unaltered following
1 week of CS exposure (supplementary figure S8). Collectively, these data show that IL-22 is increased in
both human and experimental COPD and are consistent with previous reports [8].

Next, we assessed IL-22 receptor expression in blunt-dissected airways versus parenchymal tissue [13].
CS-exposure had no statistically significant effect on Il22ra1 or Il10rb mRNA expression, but did reduce
Il22ra2 expression in the airways compared to normal air-exposed controls (figure 3c–e). CS exposure also
did not affect Il22ra1 or Il22ra2 mRNA expression, but did increase Il10rb expression in the parenchyma
compared to normal air-exposed controls (figure 3f–h). While no statistically significant differences in
Il22ra1 mRNA expression were observed in this model, it is notable that Il22ra1 mRNA expression was
∼10-fold higher in the airways than the parenchyma.

Finally, we assessed IL-22 receptor protein expression in mouse lung tissue sections. CS-exposure resulted
in notable increases in both IL-22RA1 and IL-22RA2 protein levels, particularly in airway epithelial cells,
but also in alveolar macrophages (supplementary figure S9).

IL-22+ CD4+ T-cells, γδ T-cells, NKT-cells and ILC3s are increased in the lungs in experimental
COPD
Given that IL-22 is increased in both human and experimental COPD, we defined the cellular source of
increased pulmonary IL-22 using Il17aeGFP/+; Il22td-tomato/+ reporter mice which enable the detection of
IL-17A+ and IL-22+ cells without ex vivo stimulation. CS-exposure of reporter mice resulted in increased
numbers of IL-17A+, IL-22+ and IL-17A+IL-22+ CD4+ T-cells, γδ T-cells, NKT-cells and ILC3s compared
to normal air-exposed controls (figure 4a–p). We then assessed the relative proportions of these cells
following CS-exposure (figure 4q–s). As shown previously [36], γδ T-cells were the dominant source of
IL-17A following CS exposure (figure 4q). CD4+ T-cells, NKT-cells and ILC3s were the major
IL-22-producing cells (figure 4r), while NKT-cells were the dominant source of dual IL-17A+IL-22+ cells
(figure 4s).

FIGURE 4 (previous page) Interleukin (IL)-22+ CD4+ T-cells, γδ T-cells, natural killer (NK)T-cells and group 3
innate lymphoid cells (ILC3s) are increased in the lungs of cigarette smoke (CS)-exposed mice with
experimental chronic obstructive pulmonary disease. Il17aeGFP/+;Il22td−tomato/+ reporter mice were exposed to
normal air or CS for 8 weeks and the cellular source of IL-17A and IL-22 in the lung was assessed using flow
cytometry. Total numbers of a) IL-17A+, b) IL-22+ and c) IL-17A+IL-22+ CD4+ T-cells in the lung. Total
numbers of d) IL-17A+, e) IL-22+ and f) IL-17A+IL-22+ γδ T-cells in the lung. Total numbers of g) IL-17A+,
h) IL-22+ and i) IL-17A+IL-22+ NKT-cells in the lung. Total numbers of j) IL-17A+, k) IL-22+ and l) IL-17A+IL-22+

ILC3 cells in the lung. Relative proportions of CD4+ T-cells, γδ T-cells, NKT-cells and ILC3s expressing
m) IL-17A, n) IL-22 and o) IL-17 and IL-22. Data are presented as mean±SEM, n=6, with another independent
experiment showing similar results. Two-tailed Mann–Whitney t-test was used to analyse differences between
two groups. *: p<0.05 compared to normal air-exposed controls. Representative fluorescence-activated cell
sorting (FACS) plots of IL-17A+ and IL-22+ CD4+ T-cells; IL-17A+ and IL-22+ γδ T-cells; IL-17A+ and IL-22+

NKT-cells; and IL-17A+ and IL-22+ ILC3s are presented in supplementary figure S10.
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CS-induced pulmonary neutrophils were reduced in Il22−/− mice
We next investigated whether IL-22 plays a role in the pathogenesis of experimental COPD. WT and
Il22−/− mice were exposed to normal air or CS for 8 weeks [12–18]. Pulmonary inflammation in BALF
was assessed by staining and differential enumeration of inflammatory cells. CS exposure of WT mice
resulted in significantly increased total leukocytes, macrophages, neutrophils and lymphocytes compared
to normal air-exposed WT controls (figure 5a–d). CS-exposed Il22−/− mice also had increased numbers of
these cells compared to normal air-exposed Il22−/− controls. Neutrophils were significantly reduced, but
total leukocytes, macrophages and lymphocytes were unaltered in CS-exposed Il22−/− mice compared to
CS-exposed WT controls.

We then assessed inflammatory cell numbers in lung tissue sections [12–14, 29]. CS exposure of WT mice
significantly increased inflammatory cell numbers in the parenchyma compared to normal air-exposed
WT controls (figure 5e–f ). CS-exposed Il22−/− mice had increased parenchymal inflammatory cells
compared to their normal air-exposed controls. Numbers of parenchymal inflammatory cells were not
different between CS-exposed Il22−/− and WT mice.

Next, histopathology was scored according to a set of custom-designed criteria as described previously
[30]. CS exposure of WT mice increased histopathology score, which was characterised by increased
airway, vascular and parenchymal inflammation (figure 5g–k). CS-exposed Il22−/− mice had increased
histopathology, airway, vascular and parenchymal inflammation scores compared to their normal
air-exposed controls. Il22−/− mice had a small but significant reduction in total histopathology score,
compared to CS-exposed WT controls.

We then profiled the mRNA expression of chemokines and cytokines, other than IL-22, that are involved
in neutrophil influx into the lung including chemokine (C-X-C motif ) ligand (CXCL)1, CXCL2 and
IL-17A [37]. CS-exposure of WT mice resulted in significantly increased Cxcl1, Cxcl2 and Il17a mRNA
expression compared to normal air-exposed WT controls with Cxcl1 and Cxcl2 having ∼200-fold greater
expression than Il17a (figure 5l–n). CS-exposed Il22−/− mice also had increased expression of Cxcl1 and
Il17a, but not Cxcl2, compared to normal air-exposed Il22−/− controls. There was a significant reduction
in Cxcl2, but not Cxcl1 or Il17a mRNA expression in CS-exposed Il22−/− mice compared to CS-exposed
WT controls. Protein levels of IL-17A, MPO and neutrophil elastase were increased in CS-exposed WT
mice, but were unaltered in Il22−/− mice (supplementary figure S11).

CS-induced increases in airway epithelial area, collagen deposition and emphysema-like alveolar
enlargement do not occur in Il22−/− mice
We have previously shown that CS-exposed WT mice develop small airway remodelling (increased
epithelial area), fibrosis (collagen deposition) and emphysema-like alveolar enlargement after 8 weeks of
CS exposure [12–14, 17, 18, 32]. Thus, we determined whether IL-22 contributes to these disease features.
In agreement with our previous studies, CS exposure of WT mice increased small airway epithelial cell
area compared to normal air-exposed WT controls (figure 6a and b). In contrast, CS-exposed Il22−/− mice
had no change in airway epithelial cell area compared to normal air-exposed Il22−/− controls.

CS-exposed WT mice had increased collagen deposition compared to normal air-exposed WT controls
(figure 6c and d). However, CS-exposed Il22−/− mice did not have increased collagen deposition compared
to Il22−/− normal air-exposed controls.

CS-exposed WT mice had significantly increased alveolar diameter compared to normal air-exposed WT
controls (figure 6e and f). CS-exposed Il22−/− mice did not have increased alveolar diameter compared
normal air-exposed Il22−/− controls.

As a result of the relatively small differences in airway epithelial area, collagen deposition and alveolar diameter
the differences were not statistically different between CS-exposed Il22−/− mice and CS-exposed WT controls.

CS-induced lung function impairment is improved in Il22−/− mice
We assessed the role of IL-22 in CS-induced impairment of lung function, measured in terms of lung volume,
airway resistance, TLC, inspiratory capacity, FVC and compliance. CS-exposed WT mice had increases in all of
these parameters compared to normal air-exposed WT controls (figure 7a–f). In CS-exposed Il22−/− mice,
none of these lung function parameters were significantly different compared to normal air-exposed Il22−/−

controls. Again, likely due to small changes in mild-to-moderate experimental COPD, these lung function
parameters were not significantly altered in CS-exposed Il22−/− mice compared to CS-exposed WT controls.
However, CS-exposed Il22−/− mice had similar lung function to air-exposed WT controls.

We assessed tissue elastance and found a nonsignificant reduction in CS-exposed WT mice that was not
different in Il22−/− mice (supplementary figure S12).
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FIGURE 5 Cigarette smoke (CS)-induced pulmonary inflammation is reduced in Il22−/− mice. Wild-type (WT) and interleukin (IL)-22-deficient
(Il22−/−) C57BL/6 mice were exposed to normal air or CS for 8 weeks to induce experimental chronic obstructive pulmonary disease. a) Total
leukocytes, b) macrophages, c) neutrophils and d) lymphocytes in bronchoalveolar lavage fluid (BALF); e) representative images of parenchymal
inflammatory cells; f ) numbers of parenchymal inflammatory cells per high powered field; g) representative images of lung histopathology
scoring; h) total histopathology score in lung sections and scores specifically in the i) airway, j) vascular and k) parenchymal regions; l) Cxcl1,
m) Cxcl2 and n) Il17a mRNA expression in lung homogenates. Data are presented as mean±SEM, n=6, with another independent experiment
showing similar results. The one-way ANOVA with Bonferroni post-test analysed differences between three or more groups. *: p<0.05 compared to
normal air-exposed controls; NS: nonsignificant.
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FIGURE 6 Cigarette smoke (CS)-induced increases in airway epithelial area, collagen deposition and
emphysema-like alveolar enlargement do not occur in Il22−/− mice. Wild-type (WT) and interleukin
(IL)-22-deficient (Il22−/−) C57BL/6 mice were exposed to normal air or CS for 8 weeks to induce experimental
chronic obstructive pulmonary disease. a) Representative images of small airway epithelium; b) small airway
epithelial thickness in terms of epithelial cell area (μm2) per basement membrane perimeter (μm);
c) representative images of collagen deposition around small airways; d) area of collagen deposition (μm2) per
basement membrane perimeter (μm); e) representative images of alveolar structure; f) alveolar diameter (μm).
Data are presented as mean±SEM, n=6, with another independent experiment showing similar results. The
one-way ANOVA with Bonferroni post-test analysed differences between three or more groups. *: p<0.05
compared to normal air-exposed controls; NS: nonsignificant.
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Discussion
Here, we demonstrate that IL-22 plays a previously undefined role in the pathogenesis of CS-induced
experimental COPD. IL-22 and its receptors were increased in both human and experimental COPD. We
show for the first time, using IL-22 reporter mice, that elevated lung IL-22 levels in experimental COPD
result from increased IL-22+ CD4+ T-cells, γδ T-cells, NKT-cells and ILC3s. In addition, we have
demonstrated that CS-induced neutrophilic airway inflammation was reduced in Il22−/− mice compared to
WT controls. Furthermore, Il22−/− mice did not develop CS-induced airway remodelling and emphysema
and had improved lung function that was comparable to normal air-exposed controls. Hence, this study
provides new insights into the roles of IL-22 in the pathogenesis of COPD.

The presence or absence of IL-22 may affect resident microbiota. Indeed, we have reviewed the pathogenic
roles for gut and lung microbiota in the development of COPD [5, 38, 39]. To minimise the influence of
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FIGURE 7 Cigarette smoke (CS)-induced lung function impairment is improved in Il22−/− mice. Wild-type (WT)
and interleukin (IL)-22-deficient (Il22−/−) C57BL/6 mice were exposed to normal air or CS for 8 weeks to
induce experimental chronic obstructive pulmonary disease. Lung function was assessed in terms of a) lung
volume from pressure–volume loops, b) airway resistance, c) total lung capacity (TLC), d) inspiratory capacity,
e) forced vital capacity (FVC) and f) compliance. Data are presented as mean±SEM, n=6, with another
independent experiment showing similar results. The one-way ANOVA with Bonferroni post-test analysed
differences between three or more groups. *: p<0.05 compared to normal air-exposed controls; NS:
nonsignificant.
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altered microbiota, WT and Il22−/− mice were derived from the same breeding pairs, maintained in the
same facility and used experimentally at the same time, and so they would be expected to have very similar
microbiomes.

Using pre-existing microarray datasets, we show that IL-22 and IL-22R mRNA expression were increased
in airway epithelial cells from patients with mild-to-moderate COPD [20]. However, IL-22 and IL-22R
mRNA were unaltered in lung parenchymal cores in severe COPD [22]. Our data are supported by studies
that show increased IL-22 protein levels and IL-22+ immune cells in blood, sputum and lung biopsies of
COPD patients (reviewed in [8]). However, there are limited reports of IL-22 receptor expression in
COPD. Neutrophil proteases have been shown to alter IL-22R-dependent antimicrobial defence in COPD,
but there was no change in IL22RA1 mRNA expression in lung tissue or primary cultures of proximal
airway epithelial cells from COPD patients compared to healthy controls [9]. IL-10RB and IL-22RA2 have
not been assessed in COPD. Consistent with our human data, IL-22 was increased in lung tissue
homogenates in experimental COPD after 8 weeks, but not before the development of disease upon 1 week
of CS exposure. IL-22 receptor mRNA expression was different between human and mouse. However, at
the protein level, IL-22RA1 and RA2 were visually increased in the airway epithelium of CS-exposed mice,
which was consistent with changes at the mRNA level in humans. IL-22 receptors were also increased at
protein level in human COPD. Collectively, our data show that IL-22 and its receptors are increased in
both human and experimental COPD. However, the expression of IL-22 and its receptors is heterogenous
and is influenced by tissue location and disease severity.

Given that IL-22 was increased in the lungs in experimental COPD, we used IL-17A and IL-22 dual
reporter mice that facilitate the identification of IL-17A- and IL-22-expressing immune cells without ex
vivo stimulation or cell fixation. This enables a more accurate determination of the in vivo lung
environment. We show for the first time that CS exposure induced IL-22 production from CD4+ T-cells, γδ
T-cells, NKT-cells and ILC3s, which are the major cellular sources of IL-22, and all these cell subsets have
known roles in COPD pathogenesis [36, 40, 41]. However, the individual contribution of each of these
cells to IL-22 production and COPD pathogenesis remains to be fully elucidated, especially in humans.

Previously, the role of IL-22 in the pathogenesis of COPD was largely unknown. We addressed this gap in
knowledge using an established mouse model of tightly controlled chronic nose-only CS-induced
experimental COPD [12–18]. Our models are representative of a pack-a-day smoker [24]. We have
consistently shown that 8 weeks of CS exposure in our models is sufficient to induce the hallmark features
of human COPD: chronic inflammation, airway remodelling, emphysema and impaired lung function [12–
18]. This 8-week time point was specifically chosen to investigate the underlying pathogenic mechanism(s)
during the early stages (GOLD I/II) and identify potential therapeutic targets to halt the progression
of COPD.

Using this established model, we show for the first time that IL-22 contributes to COPD pathogenesis
independently of infectious exacerbations. Il22−/− mice had reduced airway neutrophils, which was
associated with decreased Cxcl2 mRNA expression. CXCL1 and CXCL2 are the mouse orthologues/
homologues of human IL-8 and have critical roles in neutrophil influx into the airways following
CS-exposure [42]. It has been suggested that improper activation of neutrophils lies at the core of COPD
pathology, and mechanisms regulating their function are potential therapeutic targets [43]. However, Il22−/−

mice were protected from the increases in MPO or neutrophil elastase levels. Il22−/− mice also had decreased
lung tissue inflammation indicated by reduced histopathological score. This is consistent with a previous
report showing that administration of recombinant (r)IL-22 into the lung increased tissue inflammation [44].

Additionally, we demonstrate, as we have shown previously, that increases in airway epithelial area,
collagen deposition around small airways and emphysema-like alveolar enlargement occur following
chronic CS exposure in WT mice [12–18]. Notably, these features did not develop in Il22−/− mice
compared to normal air-exposed Il22−/− controls, although the changes were not significant between
CS-exposed Il22−/− mice and CS-exposed WT controls. IL-22 is essential for lung epithelial cell repair
following influenza virus infection and is implicated in renal fibrosis [45, 46]. Others have shown that
mice lacking IL-22 have delayed bacterial clearance and increased alveolar wall thickening and airway
remodelling [10]. Administration of rIL-22 with or without acute CS-exposure induced airway epithelial
thickening and collagen deposition, although this was not quantified [44].

Our study is the first report on the role of IL-22 in regulating multiple lung function parameters,
particularly in models of COPD. We show that Il22−/− mice have improved lung function in terms of lung
volumes, airway resistance, TLC, inspiratory capacity, FVC and compliance, comparable to normal
air-exposed WT mice. One previous report in an acute CS-exposure model showed increased airway
resistance following administration of rIL-22 [44]; however, ours is the first study to assess lung function
in Il22−/− mice.

https://doi.org/10.1183/13993003.00174-2018 12

BASIC SCIENCE AND COPD | M.R. STARKEY ET AL.



The absence of IL-22 in CS-exposed Il22−/− mice suppressed both airway remodelling and concomitantly
the impairment of lung function in experimental COPD. Indeed, CS-exposed Il22−/− mice were protected
against increases in epithelial area, collagen deposition and emphysema compared to normal air-exposed
controls. Airway remodelling involving epithelial hyperplasia and fibrosis are important in driving
resistance to airflow [17, 18]. Emphysema leads to apparent increases in total lung and inspiratory capacity
and tissue compliance, which results from the loss of alveolar and parenchymal tissue. In line with the
protection against airway remodelling and emphysema-like alveolar enlargement, CS-exposed Il22−/− mice
were protected from impaired lung function and changes in airway resistance, total lung and inspiratory
capacities and tissue compliance.

In summary, our study demonstrates previously unrecognised roles for IL-22 in COPD pathogenesis. It
highlights the potential role of IL-22 in chronic lung diseases, which may be a useful biomarker in the
diagnosis and/or prognosis of COPD patients. Furthermore, using a clinically relevant and established
model of experimental COPD, our study demonstrates that IL-22 promotes CS-induced pulmonary
neutrophilic inflammation, airway remodelling and lung function impairment. However, inhibiting IL-22
may increase the risk of exacerbations due to its central role in pathogen clearance. Therefore, caution in
therapeutic approaches targeting IL-22 signalling are required. The relationships between IL-22 and genetic
factors, infections/colonisation and phenotypes in COPD remain to be defined.
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