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Featured Application: An innovative Metallic Foam Shell (MFS) protective device against flying
ballast impact damage in railway axles was proposed by some of the authors. The next step of this
research activity is the application of the proposed MFS protective device in offshore structures.
The results of this study are useful for these applications.

Abstract: Aluminium foam sandwich structures have excellent energy absorption capacity, combined
with good mechanical properties and low density. Some of the authors of this paper proposed an
innovative Metallic Foam Shell protective device against flying ballast impact damage in railway
axles. A closed-cell aluminium foam was chosen for the Metallic Foam Shell device. The main goal
of this study was the experimental investigation of the impact responses of aluminium foam panels.
Low velocity impact tests were carried out at different energies on different types of aluminium foam
panels in order to investigate the effects of some parameters, such as core thickness, skin material and
layer. Tests were conducted at repeated impacts on aluminium foam panels without and with skins
made of aluminium and glass fibre-reinforced polymer. The experimental results were compared
and the impacted panels were investigated by means of the nondestructive techniques ultrasonic
phased array and digital radiography.

Keywords: aluminium foam sandwich panels; low velocity impact tests; lightweight structures;
offshore structures; non-destructive evaluation; ultrasonic phased array; digital radiography

1. Introduction

Sandwich structures are widely used in the transportation industry (automotive,
aerospace, shipbuilding industries) for their lightweight and crashworthiness ability, so it
is necessary to assess their energy absorption capabilities [1,2]. The impact resistance of
aluminium honeycomb [3–5] and foam [6–9] sandwich panels were investigated by means
of low-velocity impact (LVI) tests. The comparison of the responses of different types of
sandwich panels is reported in [10].

Composite foam sandwich panels were investigated for railway applications, for rail
vehicle car bodies [11] and protective devices subjected to low-velocity impact of ballast
projectiles [12], showing that such materials have the potential to enhance the impact
strength of components in this field. Epasto et al. [13] proposed an innovative Metallic
Foam Shell (MFS) protective device against flying ballast impact damage in railway axles.
MFS protective device can absorb up to 90% of the initial impact energy with total protection
of the axle. Closed-cell aluminium foams (AFs) were chosen by Epasto et al. [13] for MFS
because they have interesting combinations of properties, such as being lightweight and
having high energy absorption capacity.
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The next step of this research activity was to study the application of the proposed
MFS protective device in the offshore structures. Han et al. [14] compared the anticollision
performance of four types of fenders (aluminium, rubber, AF–rubber and rubber–AF)
with an offshore wind turbine (OWT) tripod impacted by a ship. They found that AF
was the best choice for the fender. The authors observed that both the correct positioning
of the AF inside the fender and the optimal thickness of the AF had beneficial effects
compared to other materials, i.e., a positive influence on the anticollision protocol, making
the tripod less exposed to damage and avoiding the progressive collapse of the ship during
secondary disasters.

The AF applications in marine structures were described in detail in [15] and [16].
The main applications identified by the authors were helicopter-landing pads, floating
navigation signs, components of fast patrol vessels or rescue boats, acoustic/thermal
shielding of exhaust and transport containers for hazardous materials. In addition to the
mentioned applications, a new foam containing fiberglass was proposed as a potential
insulating material for onboard fire doors in shipbuilding [17]. Using the newly developed
fiberglass-containing foam, the authors achieved a significant reduction of the thermal
bridges for a thinner (37%) and lighter (61%) fire door than a traditional one (with rock-
wool). In addition, they noticed that acoustic and mechanical properties increased with the
use of this cellular material.

As reported in [9,14], ship and offshore structures may frequently suffer from repeated
impact loadings during their service life, which are due to different reasons, such as
helicopter wheel landings, ice floe impact, slamming on the bow, green water on the deck,
sloshing and jet flow in liquefied natural gas (LNG) tank, collisions between supply vessels
and offshore platforms. Consequently, the structural safety of marine structures under
repeated impact loads attracted considerable attention [18,19]. Current studies of AF panels
are mainly focused on the dynamic responses under single impact, whereas the dynamic
response under repeated impacts was studied only in a few papers. Zhu et al. [20] and
Guo et al. [21] conducted single and repeated impacts on aluminium foam sandwich (AFS)
plates at room (20 ◦C) and low (−60 ◦C) temperatures. The authors observed that the single
impact deflections of AFS plates at −60 ◦C were smaller compared to those obtained at
20 ◦C. They associated this decrease with the increase in AF yield stress at low temperatures.
In the case of repeated impact tests, the absorbed energies and deflections of AFS plates at
−60 ◦C were smaller than those at 20 ◦C. Moreover, the effect of temperature on the impact
properties of the AFS plates became more obvious as the number of impacts increased.

The impact responses of AFS panels produced via the powder metallurgical (PM)
route were previously studied by some of the authors [13]. The LVI tests were carried
out at impact energy of 35 J on AFS panels with aluminium and glass fibre-reinforced
polymer (GFRP) skins, and the following postmortem analyses were applied: visual
testing (VT), computed tomography (CT), pulsed thermography (PT) and ultrasonic phased
array (UPA) [13].

For further investigation, in comparison to the previous study [13], the authors con-
sidered other distinct types of AF panels. The main goal of this study was the experimental
investigation of different types of AFS panels under single and repeated impact loading.
The impact response of foam-based panels was compared with that of AFS with different
types of external skins, namely, aluminium and GFRP skins. The LVI tests were carried
out at different energies, ranging from low- (35 J) to high- (400 J) level impact energy, and
the effects of several parameters were investigated, including core thickness, skin material
and layer effects. Some tests were conducted at repeated impacts on AF panels without
and with skins made of aluminium and GFRP. The impacted panels were investigated by
means of the nondestructive techniques (NDT) UPA and digital radiography (DR).

Several studies exist in the literature about the applications of volumetric NDTs.
Taheri et al. [22] compared the defect detection capability and sensitivity of the UPA
method with conventional ultrasonic technique (UT), concluding that UPA was a promising
method for detecting the size and location of defects in GFRP materials. Wang et al. [23] pro-
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posed a new, omnidirectional, near-field sampling, phased-array damage imaging method
suitable for real-time damage detection in composite materials. Many studies applied
different NDT methods, such as lock-in thermography (LT) [24,25], computed tomogra-
phy [13], UPA [13,26] and radiography [27], to highlight advantages and limitations of the
techniques in the detection of the damage for composite materials. CT was applied in the
damage detection of AHS panels with GFRP skins [5] and aluminium skins [10,28]. Other
studies [29,30] characterised composite materials subjected to impact tests, not only investi-
gating the damaged area, but also the internal damage, including the internal structure and
fibre breakage on the various layers of the composite structure. Hou et al. [31] analysed
the challenge in the development of innovative computer-aided techniques for automatic
detection from radiography images due to the limitation of human interpretation for this
test method. Zhang et al. [32] applied a technique called adaptive threshold segmentation
in radiography images to carry out defect segmentation by specifying the margin by which
the target object was brighter than the background.

2. Materials and Methods
2.1. Materials

Several AF specimens with various thicknesses, foam densities and skin materials
were produced to be used in the LVI tests. The chemical composition of the AF, produced
by the powder metallurgical (PM) route, was 10 wt.% Si and Al balanced, while 0.4 wt.% of
titanium hydride (TiH2) powder was used as the foaming agent via heating to 620 ◦C [33].
The matrix material (AlSi10) was an aluminium alloy with good physical, thermal and
mechanical characteristics (density 2659 kg/m3, electrical resistivity 4.91 Mω·cm, thermal
conductivity 110 W/m◦C and tensile strength 379 MPa), together with excellent machin-
ability properties. The density of the AF panels ranged from 400 to 640 kg/m3. The in-plane
dimensions of the specimens were 60 mm × 60 mm. The specimens had two values of
thickness, 20 mm and 34 mm. GFRP composite and aluminium alloy 6082 were used for
the skins of AFS panels. The mechanical characteristics of GFRP and aluminium skins
can be found in [13,34]. The mechanical properties of the GFRP skins were the following:
ρ = 1328 kg/m3, E = 7500 MPa, σu = 80 MPa and εmax = 1.3%. The layup of GFRP skins,
manufactured by hand layup, consisted of six layers according to the following stacking
sequence: 2 MAT layers, 2 central layers oriented at 0◦ and 45◦ and 2 MAT layers. The
central layers consisted of 0◦/90◦ bidirectional fabrics. The total thickness of a GFRP skin
was equal to 4.3 mm. The bidirectional fabrics had a specific weight of 400 g/m2 and
the MAT layer had a specific weight of 225 g/m2. The fibre volume fraction was 0.55.
The aluminium skin with total thickness of 2 mm was used in order to yield identical
in-plane flexural stiffness with GFRP skin. The flexural stiffness D of both aluminium and
GFRP was calculated in [13] by applying both Classical Lamination Theory and the Dietz
approach [26]. Double-layer AFS panels were manufactured by applying epoxy adhesive
provided by Teknica.

Six different types of AF panels, shown in Figure 1, were investigated by means of
LVI tests:

• Type I: AF panels without external skins and with a 20 mm thickness;
• Type II: AF panels without external skins and with a 34 mm thickness;
• Type III: AFS panels with aluminium skins and with a 22 mm total thickness;
• Type IV: AFS panels with aluminium skins and with a 36 mm total thickness;
• Type V: AFS panels with GFRP skins and with a 38 mm total thickness;
• Type VI: double-layer AFS panels with aluminium skins and with a 44 mm total thickness.
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Figure 1. Investigated AF panels: Type I (a), Type II (b), Type III (c), Type IV (d), Type V (e) and
Type VI (f).

2.2. Low-Velocity Impact Tests

The low-velocity impact (LVI) tests were performed with a Ceast Fractovis Plus drop
test machine, equipped with a system for the elimination of multiple impacts. The LVI tests
were carried out at different energies, ranging from low-level impact energy (35 J) to high-
level impact energy (400 J). A desired impact energy could be obtained by changing the
drop height and/or the impactor mass. The machine was provided with a spring system,
which was automatically activated when the tower height was insufficient to obtain the
requested potential energy. An impactor with conical shape (6.35 mm conical radius and
Ø25.4 mm base) was used for the tests on single-layer panels (Types I–V), whereas an
impactor with a spherical shape (10 mm radius) was used for the tests on double-layer
panels (Type VI). The use of an impactor with spherical shape for double-layer panels
was due to practical reasons. Even though the drop test machine was equipped with an
adjustable support system for a wide range of thickness, the double-layer panels did not
fit in the space available between the support and the reference point of the conical nose,
which corresponded to the zero height of the impact; thus a spherical nose was chosen
instead of the conical one, used for the single-layer panel.

The impact energy of 35 J was chosen for the repeated impact tests on AF panels
without and with skins made of aluminium and GFRP. The panels were simply supported
during the impact test on a fixed ring with an internal diameter of 40 mm, without any
clamping system.

During the test, the sample was hit by an impactor of mass M at the certain initial
velocity v0 and three variables were recorded during this impact event: the force F, the time
t and the initial velocity v0. The force signal F(t) was recorded during the impact test by
the impactor, which was instrumented by means of a 90 kN piezoelectric force transducer.
The drop test machine was equipped with a photocell that triggered the digital acquisition
system at the passage of the impactor and measured its velocity v0 at the beginning of
the contact before the impact. The acceleration signal a(t) was given by the ratio between
the force signal F(t), subtracted by the impactor weight P (P = Mg) and the mass M. The
displacement signal w(t) was obtained by double integration of the acceleration signal a(t)
knowing the initial impact velocity v0, which was measured by the photocell.

Figure 2 shows the impact setup test and an AFS specimen.
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Figure 2. Conical (a) and hemispherical (b) impactor.

2.3. Nondestructive Inspection

Nondestructive inspection was performed to evaluate the damage occurred on the
AFS specimens after LVI tests. The UPA and DR techniques were applied.

Figure 3 shows the radiographic system.
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Figure 3. Radiographic system.

UPA tests were performed by using Olympus Focus PX 16/128 acquisition unit with
TomoView software and a 64 element linear probe at 3.5 MHz (3.5 L64-NW1, 64 mm
aperture, 1 mm pitch, 7 mm elevation) equipped with a wedge SNW1-0 L-IHC and with a
Versa MOUSE encoder.

The inspection was performed for the investigated AFS structures. The AFS specimens
with GFRP skin presented the difficulty to detect the damage from visual inspection and
the different material velocity longitudinal waves between GFRP skin and the AF core,
giving high attenuation of ultrasonic waves. For the last reason, the UPA inspections
were performed only for the skins. For AFS with aluminium skin, the inspections were
conducted over the whole specimen (i.e., skin plus core). Thus, longitudinal wave velocity
was calculated, which was equal to 2757 m/s for the GFRP skin and 4223 m/s for the
aluminium skin.

Beam delay and sensitivity was adjusted to perform phased array calibrations. The
beam delay was adjusted in order to match the front wall with the zero point. The obtained
sensitivity parameters from our calibration were as follows: for the GFRP, the reflector
amplitude was 100% with a tolerance of 10% and a gain of 20 dB, while for the aluminium,
the reflector amplitude was 90% with a tolerance of 5% and a gain of 26 dB. The encoder
resolution was also calibrated and the obtained values for the GFRP skin and the aluminium
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skin were 8.55 steps/mm and 9.07 steps/mm, respectively. UPA inspections were carried
out with a resolution of 1 pixel = 1 mm.

The tested specimens were subjected to radiographic inspection, aiming to investigate
the consequences of the impact event. The radiographic evaluation was performed with
a Bosello SRE m@x system. At the next step, the radiographic inspection was used by
implementing the Bosello SRE m@x system in order to study the specimens in more detail.
The radiographic machine was equipped with a shielded cabin and an X-ray tube with a
maximum voltage of 320 kV and a focal spot size of 0.4 mm. The detector was a flat panel
with a resolution of 1024 × 1024 pixels. The system was equipped with a manipulator with
an automatic 4-axes movement control system.

The impacted specimens were positioned in the X-ray system, as shown in Figure 3.
The radiographic images were obtained by setting the X-ray source at a voltage of 75 kV
and a current of 0.4 mA. Radiographies were processed with inbuilt Imaging Processing
software from Bosello High Technology (IP BHT Plus image processor) and a median EN
filter was applied to improve the signal-to-noise ratio in the radiographic images.

3. Results and Discussion
3.1. Low-Velocity Impact Tests

The load–displacement curves for all the investigated panels at different impact
energies are shown in Figure 4.
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The load–displacement curves for each type of the investigated panels at different
impact energies are presented in Figure 5.
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aluminium skins.

Peak Crush Force (FMAX) and depth (w) are defined as the highest values of force
magnitude and displacement observed in the force–displacement response, respectively.
The specific absorbed energy (SAE) was calculated by dividing the amount of energy
absorbed during the impact event, equal to the area under the force–displacement curve,
by the density (ρ) of each specimen, as described in Equation (1) below.

SAE =

∫ w
0 Fds

ρ
(1)

The specific weight absorbed energy (SAEw) was defined by dividing the amount of
energy absorbed during impact event (Ea) for the weight of each specimen. Table 1 reports
the specimens’ thickness (ttot), impact energy (Ei) and the results of the experimental tests
in terms of peak force (FMAX), depth (w) and specific absorbed energy respective to density
(SAE) and weight (SAEw). The specimens with 44 mm thickness were the double-layer
panels; the core densities of each layer are reported in Table 1.

According to the analysis of the results shown in Figure 4 and Table 1, the responses
of the different AFS panels with skins (Types III, IV, V and VI) were similar at the same
impact energies; they showed similar values of w, FMAX and SAE. Different behaviours
were observed for the AF panels without skins (Types I and II), with lower values of FMAX
and higher values of w and SAE. Generally, a lower FMAX is desirable for crashworthiness
designed to minimise any sudden deceleration due to the impact. Conversely to SAE, the
lower the FMAX, the better the energy absorption structure.

Perforation of the full AF panels was observed at the following impact energies: 70 J
for Type I, 150 J for Type II, 200 J for Type III and 400 J for Type IV. The effectiveness of
energy absorption properties of the AFS was evaluated by comparing the values of the
maximum specific energies which produced the full panel perforation (Type I–VI) to the
maximum SAE of other structures under LVI loading, which are reported in literature [10]:
AFS, AFS with GFRP external skins, aluminium honeycomb sandwich (AHS), AHS with
GFRP external skins, double-layer AHS, seven-layer trapezoidal corrugated aluminium
sandwich structures with 0◦/0◦ (7L-TCAS 0◦/0◦) and 0◦/90◦ (7L-TCAS 0◦/90◦)-oriented
fins and Ti64 body-centred cubic (BCC) microlattice core with GFRP skins (GFRP-BCC).
The results of the comparison are summarised in Table 2.
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Table 1. Results of the impact tests.

Specimen Type Ei
[J]

ρcore
[kg/m3]

ttot
[mm] Skins w

[mm]
FMAX
[N]

SAEw
[J/kg]

SAE
[J·m3/kg]

1 I 35 642 20 no 12 5.01 × 103 723 0.053
2 II 35 453 34 no 12 3.70 × 103 603 0.073
3 IV 35 430 36 Al 7 5.62 × 103 446 0.057
4 V 35 468 38 GFRP 7 5.71 × 103 392 0.054
5 I 70 477 20 no 28 3.88 × 103 2025 0.147
6 II 70 563 34 no 19 4.40 × 103 985 0.121
7 III 70 483 22 Al 12 8.62 × 103 1279 0.100
8 IV 70 548 36 Al 13 8.08 × 103 758 0.098
9 III 85 422 22 Al 15 7.81 × 103 1757 0.137
10 II 100 556 34 no 25 5.95 × 103 1411 0.176
11 III 100 476 22 Al 15 9.42 × 103 1936 0.152
12 IV 100 525 36 Al 16 9.65 × 103 1206 0.155
13 VI 100 505/508 44 Al 13 1.13 × 104 885 0.140
14 IV 125 536 36 Al 15 1.12 × 104 1414 0.191
15 II 150 583 34 no 31 7.39 × 103 2049 0.256
16 III 150 531 22 Al 20 1.09 × 104 2712 0.214
17 IV 150 549 36 Al 17 1.18×104 1737 0.230
18 VI 150 425/428 44 Al 19 1.22 × 104 1411 0.217
19 III 200 421 22 Al 27 1.07 × 104 4065 0.313
20 IV 200 519 36 Al 22 1.25 × 104 2386 0.31
21 VI 200 455/457 44 Al 23 1.72 × 104 2042 0.313
22 VI 250 437/439 44 Al 27 1.73 × 104 2363 0.372
23 IV 300 504 36 Al 29 1.33 × 104 3398 0.434
24 VI 300 408/409 44 Al 29 1.88 × 104 2774 0.432
25 IV 350 590 36 Al 31 1.52 × 104 3393 0.449
26 VI 350 395/545 44 Al 27 2.40 × 104 2956 0.461
27 IV 400 616 36 Al 35 1.59 × 104 3829 0.508
28 VI 400 400/403 44 Al 33 2.63 × 104 3746 0.592

According to the analysis of the results shown in Table 2, the maximum SAE producing
the full panel perforation showed a linear trend with respect to the total thickness of
the panels (Figure 6). Moreover, the AFS panels exhibited, obviously, higher values of
maximum SAE compared to the values for the AF panels without skins and similar values
respect to the values for AHS panels with 3 mm cell diameter.
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Table 2. Comparison of the maximum specific absorbed energy (SAE) among different sand-
wich structures.

Sandwich Structures Test
Conditions

ρcore
[kg/m3]

ttot
[mm]

Maximum SAE
[J m3/kg]

AFS Alulight with bonded skins c-hi 1 906 11 0.140
AFS Schunk with integral skins c-hi 674 11 0.131

GFRP-AFS Alulight c-hi 1066 17.5 0.211
GFRP-AFS Schunk c-hi 1032 17.5 0.218

AHS d3 (cell diameter d = 3 mm) c-hi 674 11 0.131
AHS d6 (cell diameter d = 6 mm) c-hi 639 11 0.138

GFRP-AHS d3 c-hi 926 17.5 0.243
GFRP-AHS d6 c-hi 910 17.5 0.313

AHS d3 ss-hi 2 130 11 0.126
AHS d6 ss-hi 80 11 0.140

AHS d3 double-layer ss-hi 130 22 0.312
AHS d6 double-layer ss-hi 80 22 0.328

AHS double-layer (d3 up layer
and d6 bottom layer) ss-hi 130/80 22 0.288

AHS double-layer (d6 up layer
and d3 bottom layer) ss-hi 80/130 22 0.289

7L-TCAS 0◦/0◦ c-hi 370 70 0.811
7L-TCAS 0◦/90◦ c-hi 370 70 0.797

GFRP-BCC c-hi 825 9.5 0.098
AF (Type I) ss-ci 3 477 20 0.147
AF (Type II) ss-ci 583 34 0.256

AFS with bonded skin (Type III) ss-ci 421 22 0.313
AFS with bonded skin (Type IV) ss-ci 616 36 0.508

1 Clamped, hemispherical indenter; 2 simply supported, hemispherical indenter; 3 simply supported, conical
indenter.

3.2. Repeated Impact Tests

Figure 7 shows the load–displacement curves of the repeated impact tests on AF
panels without and with skins made of aluminium and GFRP.
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Figure 8 shows the load–displacement curves for a Type IV specimen subjected to 10
repeated impact tests including stages of loading and unloading at impact energy equal to
35 J. The impact repeating was sustained until obtaining a displacement of 36 mm equal to
the specimen thickness.
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Figure 8. Loading and unloading curves for a Type IV specimen subjected to repeated impacts at
impact energy equal to 35 J.

Figure 9 shows the load–displacement curves for a Type II specimen subjected to
repeated impact tests, including stages of loading and unloading at an impact energy equal
to 35 J. The impact repeating was sustained until the full panel perforation. Figure 10
shows the load–displacement curves obtained by three tests on Type IV specimens, namely,
a single impact test at an impact energy equal to 350 J, a single impact test at an impact
energy equal to 400 J and a repeated impact test at an impact energy equal to 35 J.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 19 
 

 

Figure 8. Loading and unloading curves for a Type IV specimen subjected to repeated impacts at 

impact energy equal to 35 J. 

Figure 9 shows the load–displacement curves for a Type II specimen subjected to 

repeated impact tests, including stages of loading and unloading at an impact energy 

equal to 35 J. The impact repeating was sustained until the full panel perforation. Figure 

10 shows the load–displacement curves obtained by three tests on Type IV specimens, 

namely, a single impact test at an impact energy equal to 350 J, a single impact test at an 

impact energy equal to 400 J and a repeated impact test at an impact energy equal to 35 J. 

 

Figure 9. Loading and unloading curves for a Type II specimen subjected to repeated impacts at 

an impact energy equal to 35 J. 
Figure 9. Loading and unloading curves for a Type II specimen subjected to repeated impacts at an
impact energy equal to 35 J.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 19 
 

 

Figure 10. Load-displacements curves obtained by three tests on Type IV specimens. 

According to the results (Figures 8 and 10), the behaviours of the AFS panels under 

repeated impacts were similar to those observed for the AHS panels [18,20]. The unload-

ing stiffness after an impact was almost equal to the loading stiffness of the next impact 

(Figures 8 and 9). As the impact number increased, the peak force and the loading stiffness 

increased, while the displacement decreased (Figure 8). With the increase in the impact 

number, the foam core compressed, gradually reaching the densification stage, and the 

foam panel was strengthened, resulting in an increase of the impact force and a reduction 

of the permanent deflection. The following results were obtained considering all ten re-

peated impact tests at an impact energy Ei equal to 35 J: Ea = 308 J, FMAX = 1.19E×104 N, SAE 

= 0.487 J·m3/kg (evaluated considering the initial value of specimen density ρ = 632 kg/m3, 

while the core density ρcore = 510 kg/m3) and SAEw = 3743 J/kg. The ten repeated impact 

tests at an impact energy Ei equal to 35 J produced a lower value of peak load (FMAX) and 

higher value of depth (w) respective to the values obtained by the single impact test car-

ried out on a Type IV specimen at an impact energy Ei equal to 350 J (Figure 10). The initial 

slope of the load–displacement curve and the slope after the first peak load were similar 

for the three tests (repeated impact test at impact energy equal to 35 J and single impact 

test at impact energies equal to 350 and 400 J), as shown in Figure 10. 

Concerning the load trend during the repeated impact tests carried out on the Type 

IV specimen, the load value increased up to the 6th impact, which produced the initial 

skin perforation, and a peak value of 1.19 × 104 N was achieved (Figure 8). The load varia-

tion for each impact test is reported in Table 3. 

The full skin perforation occurred after the 8th impact, highlighted by the increase in 

load value in the 9th impact test, when the skin effect was no longer present. 

Concerning the depth trend during the repeated impact tests carried out on the Type 

IV specimen, the depth value decreased after each impact due to core crushing and den-

sification, up to the 6th impact, which produced the initial skin perforation. Then, the 

depth value highly increased after the 7th and 8th impacts, when full skin perforation 

occurred. The depth value was almost constant, with a small percentage variation after 

the 8th, 9th and 10th impacts, where the effect of the skin was missing. The total depth 

calculated after 10 impacts was 36.45 mm, corresponding to the complete panel perfora-

tion. 

The load and depth variation for each impact test are reported in Table 3. 

Table 3. Load and depth percentage variation after the repeated impact tests. 

Impact Number Load [N] Load Variation [%] Depth [mm] Depth Variation [%] 

1st 5.93 × 103 - 7.37 - 

2nd 7.98 × 103 +34.52 5.68 −22.86 

Figure 10. Load-displacements curves obtained by three tests on Type IV specimens.



Appl. Sci. 2021, 11, 1148 12 of 18

According to the results (Figures 8 and 10), the behaviours of the AFS panels un-
der repeated impacts were similar to those observed for the AHS panels [18,20]. The
unloading stiffness after an impact was almost equal to the loading stiffness of the
next impact (Figures 8 and 9). As the impact number increased, the peak force and the
loading stiffness increased, while the displacement decreased (Figure 8). With the in-
crease in the impact number, the foam core compressed, gradually reaching the den-
sification stage, and the foam panel was strengthened, resulting in an increase of the
impact force and a reduction of the permanent deflection. The following results were
obtained considering all ten repeated impact tests at an impact energy Ei equal to 35 J:
Ea = 308 J, FMAX = 1.19E×104 N, SAE = 0.487 J·m3/kg (evaluated considering the initial
value of specimen density ρ = 632 kg/m3, while the core density ρcore = 510 kg/m3) and
SAEw = 3743 J/kg. The ten repeated impact tests at an impact energy Ei equal to 35 J
produced a lower value of peak load (FMAX) and higher value of depth (w) respective to the
values obtained by the single impact test carried out on a Type IV specimen at an impact
energy Ei equal to 350 J (Figure 10). The initial slope of the load–displacement curve and
the slope after the first peak load were similar for the three tests (repeated impact test at
impact energy equal to 35 J and single impact test at impact energies equal to 350 and 400 J),
as shown in Figure 10.

Concerning the load trend during the repeated impact tests carried out on the Type IV
specimen, the load value increased up to the 6th impact, which produced the initial skin
perforation, and a peak value of 1.19 × 104 N was achieved (Figure 8). The load variation
for each impact test is reported in Table 3.

Table 3. Load and depth percentage variation after the repeated impact tests.

Impact Number Load [N] Load Variation [%] Depth [mm] Depth Variation [%]

1st 5.93 × 103 - 7.37 -

2nd 7.98 × 103 +34.52 5.68 −22.86

3rd 9.40 × 103 +17.74 5.36 −5.62

4th 1.08 × 104 +14.57 3.74 −30.31

5th 1.11 × 104 +3.53 3.84 +2.65

6th 1.19 × 104 +6.56 3.29 −14.31

7th 1.09 × 104 −8.62 3.84 +16.73

8th 1.04 × 104 −4.31 4.41 +14.96

9th 1.05 × 104 +1.01 4.48 +1.52

10th 1.01 × 104 −3.68 4.26 −4.78

The full skin perforation occurred after the 8th impact, highlighted by the increase in
load value in the 9th impact test, when the skin effect was no longer present.

Concerning the depth trend during the repeated impact tests carried out on the
Type IV specimen, the depth value decreased after each impact due to core crushing and
densification, up to the 6th impact, which produced the initial skin perforation. Then, the
depth value highly increased after the 7th and 8th impacts, when full skin perforation
occurred. The depth value was almost constant, with a small percentage variation after
the 8th, 9th and 10th impacts, where the effect of the skin was missing. The total depth
calculated after 10 impacts was 36.45 mm, corresponding to the complete panel perforation.

The load and depth variation for each impact test are reported in Table 3.
Table 4 shows the comparison between the repeated impact tests and the single impact

test at 350 J for the Type IV panel in terms of the maximum values of load FMAX and depth.
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Table 4. Comparison between repeated impact tests and single impact test at 350 J for the Type
IV panel.

Test Type FMAX [N] w [mm]

Repeated impact tests 1.19 × 104 36.45

Single impact test at 350 J 1.52 × 104 30.57

Variation [%] +27.73 −16.13

3.3. Nondestructive Evaluation

Nondestructive evaluation by means of DR allowed damage detection in the AF
specimens without skins subjected to an energy impact of 35 J (Figure 11). Thus, considering
the very low level of the impact energy, the detected foam damage involved only the foam
under the indenter nose without provoking perforation. The impact damage could be
assessed by analysing the grey levels, which describe densification in the darker regions
and cell failure in the lighter ones. The damage depth could be observed only in the side
projection, which is not possible to perform in onsite application with portable equipment.
Nevertheless, due to a high content of air with a composite-specific, near-wall probe,
ultrasonic waves could not penetrate the specimens. Thus, UPA did not allow inspection
of the specimens without external skins (Types I and II).
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Figure 11. Radiographic images for Type I (upper) and Type II (below) AF specimens subjected to
an energy impact of 35 J.

In the double-layer specimens (Type VI), UPA did not allow obtainment of reliable
results, while damage detection was evaluated by the DR technique. As depicted in
Figure 12a, the core damage (lighter area in the centre of the specimen) could be easily
observed also in the case in which upper skin fracture did not occur. Obviously, such
damage could not be detected by visual inspection (Figure 12b). In the side projection,
global bending without perforation produced the damage of the inner skin was observed.



Appl. Sci. 2021, 11, 1148 14 of 18

Thus, the energy absorbing mechanism was mainly due to the global compression strain,
which involved the second layer. A similar behaviour was detected for double-layer AHS
panels [10].
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Figure 12. (a) Radiographic and (b) visual inspections for Type VI specimen subjected to an energy
impact of 300 J.

By analysing the load–displacement curves reported in Figure 4d–f for Type VI, an
abrupt decrease in load, at about 8–9 mm in depth, was seen. This load drop was probably
due to the collapse mechanism of double-layer AF panels. Moreover, a global densification
damage, due to the collapse of the AF cell walls, occurred in the bottom layer of Type VI
panels for impact energies over 150 J, as demonstrated by the radiographic and visual
inspections, shown in Figure 12a,b. A similar behaviour was reported in [10].

UPA was successfully applied for damage evaluation of Type IV specimens (as re-
ported in a previous study [13]) also in the case in which the damage was provoked by
a second impact at the same energy (35 J, Figure 13). Indeed, ultrasonic waves easily
detected both the densification areas in about the mid-depth of the specimen (Figure 13c)
and the debonding between skin and core. The latter was barely detected by DR due to
superimposition of all projections (Figure 13a,b). Core densification was detected in the
darker zone in the mid-depth of the specimen. Different considerations can be drawn for
the Type V specimens, since UPA was well-suitable for damage evaluation of the skin only
(Figure 14c,d). Indeed, due to the high beam attenuation of the skin, ultrasonic waves could
not reach the foam bottom without allowing damage detection of the core. As demon-
strated in a previous research paper [13], UPA allows the detection of skin delamination
and fibre failure. Thus, it remains the most suitable technique for this kind of specimens.
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By analysing the radiographic images (Figure 14b), the skin damage cannot be properly
resolved with this focal spot size. In the side view (Figures 14a and 15), the skin damage
was barely detected.
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Nomenclature 

AF Aluminium Foam 

AFS Aluminium Foam Sandwich 

AHS Aluminium Honeycomb Sandwich 

a(t) Acceleration (m/s2) 

c-hi Clamped hemispherical indenter 

D Flexural stiffness (N·mm) 

DR Digital Radiography 

E Young’s modulus (MPa) 

Ea Absorbed energy during impact event (J) 

Ei Impact energy (J) 

F(t) Force (N) 

FMAX Impact peak crush force (N) 

Figure 15. A particular of radiographic inspection for Type V specimen subjected to an impact of 35 J.
Skin damage is highlighted by the red circle.

4. Conclusions

The impact behaviours of six different types of aluminium foam panels were inves-
tigated by means of LVI tests at different impact energies, ranging from 35 to 400 J. The
following findings can be outlined:

• The response of different types of AFS panels with skins was similar at the same
impact energy, while the AF panels without skins had a different impact behaviour
with lower values of FMAX and higher values of w and SAE;

• AFS panels highlighted similar values of maximum SAE compared to AHS panels
with 3 mm cell diameter;

• The maximum SAE showed a linear trend with respect to the total thickness of
the panels;

• The LVI behaviours of AFS panels under repeated impacts were similar to that ob-
served for the AHS panels. The unloading stiffness after an impact was almost equal
to the loading stiffness of the next impact. As the impact number increased, the FMAX
and the loading stiffness increased, while the increment of the displacement decreased;

• Ten repeated impact tests at the impact energy equal to 35 J on the same panel
produced lower values of FMAX and w with respect to the single impact test at 350 J;

• UPA represented an effective technique for damage detection in AFS panels with
aluminium skins, while DR was able to detect foam densification and skin fracture
due to the impact event. Both techniques can be applied, with some limitations, for
damage detection of real foam-based structures;

• The results of this comprehensive experimental investigation are useful for determin-
ing impact performance and optimization design of lightweight AF and AFS panels
used in various engineering applications.

Author Contributions: Conceptualization, E.L., V.C. and G.E.; methodology, F.D. and G.E.; investiga-
tion, F.D. and G.E.; resources, E.L.; data curation, F.D. and G.E.; writing—original draft preparation,
V.C., G.E. writing—review and editing, V.C., G.E., E.L., H.M.; visualization, H.M. and F.D.; supervi-
sion, V.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

AF Aluminium Foam
AFS Aluminium Foam Sandwich
AHS Aluminium Honeycomb Sandwich
a(t) Acceleration (m/s2)
c-hi Clamped hemispherical indenter
D Flexural stiffness (N·mm)
DR Digital Radiography
E Young’s modulus (MPa)
Ea Absorbed energy during impact event (J)
Ei Impact energy (J)
F(t) Force (N)
FMAX Impact peak crush force (N)
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GFRP Glass fibre-reinforced polymer
LVI Low-velocity impact
M Impactor mass (kg)
MFS Metallic Foam Shell
NDE Non-Destructive Evaluation
P Impactor weight (kg m/s2)
SAE Specific Absorbed Energy (J m3/kg)
SAEw Weight Specific Absorbed Energy (J/kg)
ss-ci Simply supported conical indenter
ss-hi Simply supported hemispherical indenter
t Time (s)
tcore Core thickness (mm)
tskin Skin thickness (mm)
ttot Total thickness (mm)
UPA Ultrasonic phased array
v0 Initial velocity (m/s)
w Depth (mm)
εmax Maximum strain (%)
ρ Specimen density (kg/m3)
ρcore Core density (kg/m3)
σu Ultimate stress (MPa)
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