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Abstract. In this paper, we consider a k-th order differential inclusion with a multifunction F such that
its restriction to the complement of a suitable null-measure set is lower semicontinuous and bounded.
We prove that there exists an upper semicontinuous multifunction G such that each generalized solu-
tion of the corresponding k-th order differential inclusion is also a generalized solution of the original
differential inclusion. As an application, we prove an existence and qualitative result for the Cauchy
problem associated to a class of k-th order differential inclusions. In particular, we give sufficient condi-
tions under which the solution multifuncion admits an upper semicontinuous multivalued selection with
nonempty compact connected values. Finally, as a further application, we prove an analogous existence
and qualitative result for the generalized solutions of the Cauchy problem associated to a class of k-th
order implicit discontinuous differential equations.
Keywords. Differential inclusions; Cauchy problem; Generalized solutions; Differential equations; Dis-
continuous functions.

1. INTRODUCTION

Let n ∈ N, T > 0, and F : [0,T ]×Rn → 2Rn
be a given multifunction. We recall that a

generalized solution of the differential inclusion u′ ∈F(t,u) in [0,T ] is an absolutely continuous
function u : [0,T ]→ Rn such that

u′(t) ∈ F(t,u(t)) for a.e. t ∈ [0,T ]. (1.1)

Such a differential inclusion arises in the study of many problems, including control theory,
dynamical systems, discontinuous differential equations and so on. Historically, differential
inclusion (1.1) has been studied under two different and separate kind of assumptions, that is,

(i) F is upper semicontinuous with nonempty compact convex values;
(ii) F is lower semicontinuous (or continuous) with nonempty compact (possibly non-convex)

values.
As remarked in [1], the results and the techniques for the two classes of differential inclusions

are substantially distinct in most literature. In [1], Bressan proved a deep result which allowed
to treat the two classes of differential inclusions in a unified way. The following is Bressan’s
result.
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Theorem 1.1. [1, the theorem at p.22]. Let F : R×Rn→ 2Rn
be a bounded, lower semicontin-

uous multifunction with nonempty compact values. Then there exists an upper semicontinuous
multifunction G : R×Rn → 2Rn

, with nonempty compact convex values, such that every gen-
eralized solution u : [α,β ]→ Rn of the differential inclusion u′ ∈ G(t,u) in [α,β ] (with [α,β ],
real compact interval) is also a solution of u′ ∈ F(t,u) in [α,β ].

Theorem 1.1 was proved by using an existence result for directionally continuous selections
([1, Corollary 2.2]). As a matter of fact, Theorem 1.1 allowed to apply to the lower semicontin-
uous and nonconvex case many results valid for the upper semicontinuous convex-valued case,
obtaining new existence and qualitative results for the generalized solutions of problem 1.1
associated with a lower semicontinuous multifunction F (see, for instance, [1, Theorem 4.2]).

Recently, in [2], Theorem 1.1 was extended to a larger class of multifunctions F : R×Rn→
2Rn

, which is wider than the one of lower semicontinuous multifunctions. In order to state the
main result of [2], we need to introduce some notations. First, we denote by D the class of all
subsets U ⊆ R×Rn that can be expressed as a finite union of subsets of R×Rn, each with at
least one projection of null Lebesgue measure. Of course, each set U ∈ D has a null (1+ n)-
dimensional Lebesgue measure. Moreover, we denote by Gn the family of all subsets A ⊆ Rn

such that, for all i = 1, . . . ,n, the supremum and the infimum of the projection of conv(A) on
the ith axis are both positive or both negative (“conv” stands for the “closed convex hull”).

The following is the main result of [2].

Theorem 1.2. [2, Theorem 1.3]. Let n ∈ N, and let F : R×Rn → 2Rn
be a multifunction.

Assume that there exists a set U ∈ D such that the multifunction F |(R×Rn)\U is bounded and
lower semicontinuous with nonempty closed values, and F((R×Rn)\U) ∈ Gn.

Then, there exists a multifunction G : R×Rn→ 2Rn
such that

(a) G is bounded and upper semicontinuous with nonempty compact convex values.
(b) G(R×Rn)⊆ convF((R×Rn)\U).
(c) every generalized solution u : [α,β ]→Rn of the differential inclusion u′ ∈G(t,u) in [α,β ]

(with [α,β ], a real compact interval) is also a solution of the differential inclusion u′ ∈ F(t,u)
in [α,β ], and the point (t,u(t)) ∈ (R×Rn)\U for a.e. t ∈ [α,β ].

As a matter of fact, a multifunction F : R×Rn→ 2Rn
satisfying the assumptions of Theorem

1.2 can fail to be lower semicontinuous even at all points (t,x) ∈ R×Rn (see [2]). Such a
weaker regurarity is paid by assuming that the set F((R×Rn) \U) belongs to the family Gn.
As showed in [2, Example 3.3], Theorem 1.2 does not hold without the latter assumption. As
an application of Theorem 1.2, some new existence and qualitative results were obtained for
the first-order differential inclusion 1.1 associated with a multifunction F , which may not have
any semicontinuity property, as well as for first-order implicit differential equations of the type
g(u′) = f (t,u) associated with a discontinuous function f (see, e.g., [2, 3]).

Now, fix n,k ∈N, let I ⊆R be a compact interval, and let p∈ [1,+∞]. As usual, we denote by
W k,p(I,Rn) the space of all functions u ∈Ck−1(I,Rn) such that u(k−1) is absolutely continuous
in I and u(k) ∈ Lp(I,Rn). Let T > 0, and let F : [0,T ]× (Rn)k→ 2Rn

be a given multifunction.
We recall that a generalized solution of the differential inclusion

u(k) ∈ F(t,u,u′, . . . ,u(k−1)) in [0,T ] (1.2)
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is a function u ∈W k,1([0,T ],Rn) such that

u(k)(t) ∈ F(t,u(t),u′(t), . . . ,u(k−1)(t)) for a.e. t ∈ [0,T ]. (1.3)

The aim of this paper is to extend the Theorem 1.2 above to the kth-order differential inclusion
1.3. With respect to the original proof of Theorem 1.2, such an extension is not trivial and
requires a more articulate technical construction. The main tool of the proof will be a selection
result ([4, Lemma 2.4 ]) for lower semicontinuous multifunctions with possibly nonconvex
values. As an application, we shall prove an existence and qualitative result (Theorem 3.2, see
below) for the generalized solutions of the Cauchy problem{

u(k) ∈ F(t,u,u′, . . . ,u(k−1)), in [0,T ],
u(i)(0) = ξi, i = 0,1, . . . ,k−1,

(1.4)

(where ξ = (ξ0,ξ1, . . . ,ξk−1)∈ (Rn)k is a given point) associated with a multifunction F , which
does not necessarily have any semicontinuity property. In particular, we shall give sufficient
conditions under which the multifunction

ξ ∈ (Rn)k→
{

u ∈W k,1([0,T ],Rn) : u is a generalized solution of (1.4)
}

admits an upper semicontinuous multivalued selection with nonempty compact connected val-
ues. We explicitly remark that a multifunction F satisfying the assumption of Theorem 3.2
below can fail to be lower semicontinuous (even separately) even at all points (t,ξ ) ∈ [0,T ]×
(Rn)k.

Finally, as a further application, we shall prove an existence and qualitative result (Theorem
4.1, see below) for the generalized solutions of the Cauchy problem{

g(u(k)) = f (t,u,u′, . . . ,u(k−1)) in [0,T ],
u(i)(0) = ξi, i = 0,1, . . . ,k−1,

(1.5)

(where ξ = (ξ0,ξ1, . . . ,ξk−1) ∈ (Rn)k is a given point) associated with a discontinuous function
f . In particular, we shall give sufficient conditions under which the solution multifunction

ξ ∈ (Rn)k→S (ξ ) :=
{

u ∈W k,1([0,T ],Rn) : u is a generalized solution of (1.5)
}

admits an upper semicontinuous multivalued selection with nonempty compact connected val-
ues. As before, our assumptions do not imply the continuity of f . As a matter of fact, a function
f : [0,T ]× (Rn)k → R satisfying the assumptions of Theorem 4.1 can be discontinuous, with
respect to the second variable, even at all points ξ ∈ (Rn)k. As regards the function g, we only
require that it is continuous and locally nonconstant. Counterexamples to possible improve-
ments are also given.

2. PRELIMINARIES

Let n,k ∈ N, and let I ⊆ R be a compact interval. In what follows, we consider the space
W k,∞(I,Rn) with the initial topology σ I

n,k that makes the function

u ∈W k,∞(I,Rn)→ (u,u(k)) ∈Ck−1(I,Rn)×L∞(I,Rn)

continuous, where the space Ck−1(I,Rn) is considered with its strong topology, and the space
L∞(I,Rn) is considered with its weak-star topology.
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Let T > 0, and let F : [0,T ]×(Rn)k→ 2Rn
be a given multifunction. Let ξ =(ξ0,ξ1, . . . ,ξk−1)∈

(Rn)k be fixed. According to Section 1, we recall that a generalized solution of the Cauchy
problem (1.4) is a function u ∈W k,1([0,T ],Rn) such that

u(k)(t) ∈ F(t,u(t),u′(t), . . . ,u(k−1)(t)) for a.e. t ∈ [0,T ]

and u(i)(0) = ξi for all i = 0, . . . ,k−1. Of course, if F is bounded, then every generalized solu-
tion of problem (1.4) (as well as of the differential inclusion (1.2) belongs to W k,∞([0,T ],Rn).

In the following, we shall often make the obvious identification (Rn)k = Rnk. For all i =
0,1, . . . ,nk, we denote by Pj : R×Rnk→ R the projection over the j-th axis. That is, if (t,x) =
(t,x1,x2, . . . ,xnk) ∈ R×Rnk, we put

Pj(t,x) =

{
t, j = 0,
x j, j ∈ {1,2, . . . ,nk}.

For each j ∈ N, we shall denote by m j the j-dimensional Lebesgue measure in R j. More-
over, we shall denote by F the family of all subsets U ⊆ R×Rnk such that there exist sets
V0,V1, . . . ,Vnk ⊆R×Rnk, with m1(Pj(Vj)) = 0 for all j = 0,1 . . . ,nk, such that U =

⋃nk
j=0 Vj. Of

course, any set U ∈F satisfies mnk+1(U) = 0.
Let m ∈ N. If x ∈ Rm and r > 0, we shall denote by Bm(x,r) (resp., Bm(x,r)) the open (resp.,

closed) ball in Rm, centered in x with radius r, with respect to the Euclidean norm ‖ · ‖m of Rm.
Finally, we shall denote by B(R) and L ([a,b]), respectively, the Borel family of R and the
family of all Lebesgue measurable subsets of the interval [a,b]. For the reader’s convenience,
we now state some results that will be useful in the sequel. First, we recall the following
proposition.

Proposition 2.1. [5, Proposition 2.6]. Let ψ : [a,b]×Rn → Rk be a given function, and let
E ⊆ Rn be a Lebesgue measurable set, with mn(E) = 0. Let D be a countable dense subset of
Rn, with D∩E = /0. Assume that

(i) for all t ∈ [a,b], the function ψ(t, ·) is bounded;
(ii) for all x ∈ D, the function ψ( · ,x) is L ([a,b])-measurable.
Let G : [a,b]×Rn→ 2Rk

be the multifunction defined by setting, for each (t,x) ∈ [a,b]×Rn,

G(t,x) :=
⋂

m∈N
conv

( ⋃
y∈D

‖y−x‖n≤ 1
m

{ψ(t,y)}
)
.

Then,
(a) G has nonempty closed convex values;
(b) for all x ∈ Rn, the multifunction G( · ,x) is L ([a,b])-measurable;
(c) for all t ∈ [a,b], the multifunction G( t, ·) has closed graph;
(d) if t ∈ [a,b], and ψ(t, ·)|Rn\E is continuous at x ∈ Rn \E, then one has

G(t,x) = {ψ(t,x)}.

The following result summarizes several results proved in [6, pp.103–109]

Theorem 2.1. Let x∗ ∈ Rn, and let Ω ⊆ R×Rn be an open set such that (0,x∗) ∈ Ω. Let
G : Ω→ 2Rn

be an upper semicontinuous multifunction with nonempty compact convex values.
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Assume that there exist M > 0, b > 0 and T > 0 such that

Q := [0,T ]×Bn(x∗,b+MT )⊆Ω and G(Q)⊆ Bn(0,M).

Then,
(i) for every ξ ∈ Bn(x∗,b), the solution set

T G
[0,T ](ξ ) := {u ∈W 1,1([0,T ],Rn) : u(0) = ξ and u′(t) ∈ G(t,u(t)) a.e. in [0,T ]}

is nonempty. Moreover, the multifunction ξ →T G
[0,T ](ξ ) is upper semicontinuous from Bn(x∗,b)

to W 1,∞([0,T ],Rn), with nonempty, compact and connected values;
(ii) the multifunction ξ →A G

[0,T ](ξ ) := {u(T ) : u ∈T G
[0,T ](ξ )} is upper semicontinuous from

Bn(x∗,b) to Rn with nonempty compact connected values.

Finally, we prove the following fact, which will be crucial in the sequel.

Proposition 2.2. Let n,k ∈ N, and let I = [0,a] be a compact interval. For each function
v ∈W k,∞(I,Rn), let

yv : I→ (Rn)k

be defined by putting, for every s ∈ I,

yv(s) = (v(s),v′(s), . . . ,v(k−1)(s)).

Let E :=
{

yv : v ∈W k,∞(I,Rn)
}

, and let

P∗1 :
[
W 1,∞(I,Rn)

]k→W 1,∞(I,Rn)

be the first projection. Then, E is a closed subset of [W 1,∞(I,Rn)]k and the function

P∗1 |E : (E,(σ I
n,1)

k)→ (W k,∞(I,Rn),σ I
n,k)

is surjective and continuous.

Proof. Clearly, one has yv ∈ [W 1,∞(I,Rn)]k for every v ∈W k,∞(I,Rn). In order to check that E
is a closed subset of [W 1,∞(I,Rn)]k, let {vα}α∈Λ be a net in W k,∞(I,Rn) and let

w = (w0,w1, . . . ,wk−1) ∈ [W 1,∞(I,Rn)]k,

such that {yvα
}α∈Λ→ w in [W 1,∞(I,Rn)]k with respect to the topology (σ I

n,1)
k. Therefore, for

every j = 0, . . . ,k−1, we have {v( j)
α }α∈Λ→w j in W 1,∞(I,Rn) with respect to the topology σ I

n,1.
By the definition of the topology σ I

n,1, this means that

{(v( j)
α ,v( j+1)

α )}
α∈Ł→ (w j,w′j) in C0(I,Rn)×L∞(I,Rn)

for every j = 0, . . . ,k−1, where C0(I,Rn) is considered with its strong topology, and the space
L∞(I,Rn) with its weak-star topology. Therefore, for every j = 0, . . . ,k−1, one has that

{v( j)
α }α∈Λ→ w j strongly in C0(I,Rn)

and
{v( j+1)

α }α∈Λ→ w′j weakly-star in L∞(I,Rn).
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In particular, for every i = 1, . . . ,k− 1, one has at same time that {v(i)α }α∈Λ → wi strongly in
C0(I,Rn) and {v(i)α }α∈Λ→ w′i−1 weakly-star in L∞(I,Rn). Consequently, we get that, for every
i = 1, . . . ,k−1,

wi(s) = w′i−1(s) for a.e. s ∈ I . (2.1)

Now, fix i ∈ {1, . . . ,k−1}. From the absolute continuity of wi−1 and (2.1), we have

wi−1(s) = wi−1(0)+
∫ s

0
w′i−1(z)dz = wi−1(0)+

∫ s

0
wi(z)dz

for all s ∈ I. Since wi is continuous, we get that wi−1 ∈C1(I,Rn) and

w′i−1(s) = wi(s) for all s ∈ I .

Therefore, we have proved that, for every i = 1, . . . ,k−1, wi−1 ∈C1(I,Rn) and w′i−1 = wi. This
easily implies that w0 ∈W k,∞(I,Rn) and w = yw0 . Hence, w ∈ E and E is closed, as claimed.

Of course, P∗1 (E) =W k,∞(I,Rn). We now prove that

P∗1 |E : (E,(σ I
n,1)

k)→ (W k,∞(I,Rn),σ I
n,k)

is continuous. To this aim, let (wα)α∈Λ′ be a net in E, converging to a point w ∈ E with respect
to the topology (σ I

n,1)
k. For each α ∈Λ′, let vα ∈W k,∞(I,Rn) be such that wα = yvα

. Moreover,
let v ∈W k,∞(I,Rn) be such that w = yv. Hence, we have that

{(vα ,v′α , . . . ,v
(k−1)
α ))α∈Λ′ → (v,v′, . . . ,v(k−1))

with respect to the topology (σ I
n,1)

k. Consequently, we have

{v( j)
α }α∈Λ′ → v( j) for every j = 0, . . . ,k−1,

with respect to the topology σ I
n,1. By the definition of the topology σ I

n,1, this means that

{(v( j)
α ,v( j+1)

α )}α∈Λ′ → (v( j),v( j+1)) for every j = 0, . . . ,k−1

in C0(I,Rn)×Λ∞(I,Rn) (where C0(I,Rn) is considered with its strong topology, and L∞(I,Rn)

is considered with its weak-star topology). Hence, we have that {v( j)
α }α∈Λ′ → v( j) for every

j = 0, . . . ,k− 1 with respect to the strong topology of C0(I,Rn), and {v(k)α }α∈Λ′ → v(k) with
respect to the weak-star topology of L∞(I,Rn). Therefore, {vα}α∈Λ′ → v with respect to the
strong topology of Ck−1(I,Rn), and thus

{(vα ,v
(k)
α )}α∈Λ′ → (v,v(k))

in Ck−1(I,Rn)×L∞(I,Rn), where the first space is taken with its strong topology, and the second
space with its weak-star topology. Therefore, we have that {vα}α∈Λ′ → v with respect to the
topology σ I

n,k. This implies that {P∗1 (wα)}α∈Λ′ → P∗1 (w) with respect to the topology σ I
n,k.

Thus, our claim follows. The proof is complete. �

For the basic facts and definitions about multifunctions, we refer the reader to [7, 8].
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3. MAIN RESULTS

The following is our main result.

Theorem 3.1. Let n,k ∈ N, and T > 0. Let F : [0,T ]× (Rn)k→ 2Rn
be a given multifunction.

Put S := [0,T ]× (Rn)k. Assume that there exists a set U ⊆ S, with U ∈F such that
(i) F |S\U is lower semicontinuous with nonempty and closed values;
(ii) F(S\U) ∈ Gn and F(S\U) is bounded.

Then, there exists a bounded and upper semicontinuous multifunction G : R× (Rn)k → 2Rn

with nonempty convex and compact values such that
(a) G(R× (Rn)k)⊆ conv(F(S\U));
(b) every generalized solution u ∈W k,∞([0,T ],Rn) of the inclusion

u(k) ∈ G(t,u,u′, . . . ,u(k−1))

in [0,T ] is also a generalized solution of the inclusion u(k) ∈ F(t,u,u′, . . . ,u(k−1)) in [0,T ].
(c) for every generalized solution u ∈W k,∞([0,T ],Rn) of the inclusion

u(k) ∈ G(t,u,u′, . . . ,u(k−1))

in [0,T ], one has

(t,u(t),u′(t), . . . ,u(k−1)(t)) ∈ S\U for a.e. t ∈ [0,T ].

Proof. Let r > 0 be such that F(S\U)⊆Bn(0,r). By the definition of the family F , there exists
W0,W1, . . . , Wnk ⊆R×Rnk, with m1(Pj(Wj)) = 0 for all j = 0,1 . . . ,nk, such that U =

⋃nk
i=0 Wj.

Let H0,H ∈B(R), with H0 ⊆ [0,T ] and m1(H0) = m1(H) = 0, be such that

P0(W0)⊆ H0 and
nk⋃
j=1

Pj(Wj)⊆ H.

Put
V ∗ := ([0,T ]\H0)× (R\H)nk.

Obvious, we have
V ∗ ⊆ S\U. (3.1)

By [4, Lemma 2.4], there exist two sets H ′0,H
′ ∈B(R) with H ′0⊆ [0,T ] and m1(H ′0)=m1(H ′)=

0, and a function f : V ∗→ Rn such that

(i)′ f (t,ξ ) ∈ F(t,ξ ) for all (t,ξ ) ∈V ∗;

(ii)′ f is continuous at every point

(t,ξ ) ∈ ([0,T ]\ (H0∪H ′0))× (R\ (H ∪H ′))nk .

Fix a point z∗ ∈ f (V ∗), and let f ∗ : R×Rnk→ Rn be defined by putting

f ∗(t,ξ ) =

{
f (t,ξ ), i f (t,ξ ) ∈V ∗,
z∗ i f (t,ξ ) ∈ (R×Rnk)\V ∗ .

Let

Z :=
[
(H0∪H ′0∪{0,T})×Rnk

]
∪
[
S∩

nk⋃
i=1

P−1
i (H ∪H ′)

]
.
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Of course, Z ⊆ S. We claim that f ∗|(R×Rnk)\Z is continuous. To see this, fix (t,ξ ) ∈ (R×Rnk)\
Z.

First, we assume that (t,ξ ) ∈ S. Hence,

(t,ξ ) ∈ S\Z = (]0,T [×Rnk)\Z.

Since (S\Z)⊆V ∗, we get

f ∗|(]0,T [×Rnk)\Z = f |(]0,T [×Rnk)\Z. (3.2)

By (ii)′, the function f |(]0,T [×Rnk)\Z is continuous. Consequently, by (3.2), we have that f ∗|(]0,T [×Rnk)\Z
is continuous. Since (]0,T [×Rnk) \Z is an open neighborhood of (t,ξ ) in (R×Rnk) \Z, we
have that f ∗|(R×Rnk)\Z is continuous at (t,ξ ), as desired.

Conversely, we assume that (t,ξ ) /∈ S. Since (R×Rnk)\S is open in R×Rnk and

(R×Rnk)\S⊆ (R×Rnk)\Z,

the set (R×Rnk)\S is open in (R×Rnk)\Z . Since f ∗ is constant over (R×Rnk)\S, we get
that f ∗|(R×Rnk)\Z is continuous at (t,ξ ), as desired.

Now, taking into account (3.1) and (i)′, we have

f ∗(R×Rnk) = f (V ∗)⊆ F(V ∗)⊆ F(S\U)⊆ Bn(0,r) .

In particular, by assumption (ii), we get that f ∗(R×Rnk) ∈ Gn.
Let D⊆ (R×Rnk)\Z be a countable set, which is dense in R×Rnk. Of course, such a set D

exists due to m1+nk(Z) = 0.
Now, let G : R×Rnk→ 2Rn

be the multifunction defined by setting, for each (t,ξ )∈R×Rnk,

G(t,ξ ) :=
⋂

m∈N
conv

( ⋃
(l,η)∈D

‖(l,η)−(t,ξ )‖1+nk≤
1
m

{ f ∗(l,η)}
)
.

Using Proposition 2.1, and taking into account that f ∗|(R×Rnk)\Z is continuous, we get that
(i)′′ the multifunction G has closed graph and nonempty closed convex values;
(ii)′′ for every (t,ξ ) ∈ (R×Rnk)\Z, one has

G(t,ξ ) = { f ∗(t,ξ )}.

In particular, since (S\Z)⊆V ∗, we have that f ∗|S\Z = f |S\Z . Hence

G(t,ξ ) = { f (t,ξ )} for all (t,ξ ) ∈ S\Z . (3.3)

Moreover, from the above construction, we get

G(R×Rnk)⊆ conv(F(V ∗))⊆ conv(F(S\U)), (3.4)

which implies that

G(R×Rnk) ∈ Gn and G(R×Rnk)⊆ Bn(0,r). (3.5)

From (3.5), (i)′′ and [8, Theorem 7.1.16], we have that G is upper semicontinuous. Of course,
we can regard the multifunction G as defined on R× (Rn)k by means of the identification
(Rn)k = Rnk. Now, let u ∈W k,∞([0,T ],Rn) be a solution of the differential inclusion

u(k) ∈ G(t,u,u′, . . . ,u(k−1)) in [0,T ].
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Hence, there exists §0 ∈L ([0,T ]), with m1(§0) = 0 such that

u(k)(t) ∈ G(t,u(t),u′(t), . . . ,u(k−1)(t)) for all t ∈ [0,T ]\§0 . (3.6)

In particular, by (3.4), we have

u(k)(t) ∈ conv(F(V ∗))⊆ conv(F(S\U)) for all t ∈ [0,T ]\§0 .

Fix i ∈ {1, . . . ,n}, and let us denote by ui the i-th component of the function u. From (3.5) and
(3.6), we get that u(k)i (t) has constant sign for all t ∈ [0,T ]\§0. Assume that

u(k)i (t)> 0 for all t ∈ [0,T ]\§0

(if u(k)i (t) < 0 for all t ∈ [0,T ] \ §0, then the argument is analogous). This implies that the ab-
solutely continuous function u(k−1)

i is strictly increasing in [0,T ] (with a.e. positive derivative).
Applying [9, Theorem 2], we have that (u(k−1)

i )−1 is absolutely continuous. Hence, it follows
from [10, Theorem 18.25] that

Ci,k−1 := (u(k−1)
i )−1(H ∪H ′) = {t ∈ [0,T ] : u(k−1)

i (t) ∈ H ∪H ′}

has null Lebesgue measure. Since u(k−1)
i is strictly increasing in [0,T ], there exists a partition

0 = tk−1,0 < .. . < tk−1, jk−1 = T

(with jk−1 ≤ 2) of the interval [0,T ] such that u(k−1)
i has constant sign over each interval

]tk−1,l−1, tk−1,l[ (in particular, u(k−1)
i (t) 6= 0 on each interval ]tk−1,l−1, tk−1,l[). This implies that,

for every l = 1, . . . , jk−1, the function u(k−2)
i |[tk−1,l−1,tk−1,l ] is strictly monotone. Then, for each

l = 1, . . . , jk−1, [9, Theorem 2] yields that the function

(u(k−2)
i |[tk−1,l−1,tk−1,l ])

−1

is absolutely continuous. So, in view of [10, Theorem 18.25], it maps null sets into null sets.
Consequently, for every l = 1, . . . , jk−1, the set

(u(k−2)
i |[tk−1,l−1,tk−1,l ])

−1(H ∪H ′) =
{

t ∈ [tk−1,l−1, tk−1,l] : u(k−2)
i (t) ∈ H ∪H ′

}
has null Lebesgue measure. Thus, it is easily seen that the set

Ci,k−2 := (u(k−2)
i )−1(H ∪H ′) = {t ∈ [0,T ] : u(k−2)

i (t) ∈ H ∪H ′}

has null Lebesgue measure. Since the function u(k−2)
i is strictly monotone on each interval

[tk−1,l−1, tk−1,l] with l = 1, . . . , jk−1, we have that there exists a partition

0 = tk−2,0 < .. . tk−2, jk−2 = T

(with jk−2 ≤ 4) of the interval [0,T ] such that u(k−2)
i has constant sign over each interval

]tk−2,l−1, tk−2,l[ (in particular, u(k−2)
i (t) 6= 0 on each interval ]tk−2,l−1, tk−2,l[). This implies that,

for every l = 1, . . . , jk−2, u(k−3)
i |[tk−2,l−1,tk−2,l ] is strictly monotone. Then, by [9, Theorem 2], for

each l = 1, . . . , jk−2, the function

(u(k−3)
i |[tk−2,l−1,tk−2,l ])

−1
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is absolutely continuous. Consequently, it follows from [10, Theorem 18.25] that the set

Ci,k−3 := [u(k−3)
i ]−1(H ∪H ′) = {t ∈ [0,T ] : u(k−3)

i (t) ∈ H ∪H ′}
has null Lebesgue measure. If we apply recursively the same argument, we get that, for every
j = 0, . . . ,k−1, the set

Ci, j := [u( j)
i ]−1(H ∪H ′) = {t ∈ [0,T ] : u( j)

i (t) ∈ H ∪H ′},
has null Lebesgue measure. At this point, put

C := {0,T}∪H0∪H ′0∪§0∪
[ ⋃

i=1,...,n
j=0,...,k−1

Ci, j

]
.

The above construction implies that m1(C) = 0. Choose a point t ∈ [0,T ]\C =]0,T [\C. From
the definition of the sets Ci, j, we have that

u( j)
i (t) /∈ H ∪H ′

for every i = 1, . . . ,n and every j = 0, . . . ,k−1. Hence

(t,u(t),u′(t), . . . ,u(k−1)(t)) ∈ S\Z. (3.7)

By (3.3), we then get

G(t,u(t),u′(t), . . . ,u(k−1)(t)) = { f (t,u(t),u′(t), . . . ,u(k−1)(t))} .
Taking into account (i)′ and (3.6), we then have

u(k)(t) = f (t,u(t),u′(t), . . . ,u(k−1)(t)) ∈ F(t,u(t),u′(t), . . . ,u(k−1)(t)) .

Consequently, since m1(C) = 0, the function u is a generalized solution in [0,T ] of the differen-
tial inclusion

u(k) ∈ F(t,u,u′, . . . ,u(k−1)).

Since (S\Z)⊆V ∗ ⊆ (S\U), the relation (3.7) implies that

(t,u(t),u′(t), . . . ,u(k−1)(t)) ∈ S\U for a.e. t ∈ [0,T ].

The proof is now complete. �

As an application of Theorem 3.1, we now prove the following existence and qualitative
result for higher-order differential inclusions.

Theorem 3.2. Let n,k ∈N and T > 0, and let F : [0,T ]×(Rn)k→ 2Rn
be a given multifunction.

Put S := [0,T ]× (Rn)k. Assume that there exists a set U ⊆ S with U ∈F such that
(i) F |S\U is lower semicontinuous with nonempty and closed values;
(ii) F(S\U) ∈ Gn and F(S\U) is bounded.

Then, for every ξ = (ξ0,ξ1, . . . ,ξk−1) ∈ (Rn)k, the solution set

T F
[0,T ](ξ ) :=

{
u ∈W k,1([0,T ],Rn) : u is a generalized solution of (1.4)

}
of problem (1.4) is nonempty. Moreover, there exists a multifunction

Φ : (Rn)k→ 2W k,∞([0,T ];Rn)

such that
(a) Φ(ξ )⊆T F

[0,T ](ξ ) for all ξ ∈ (Rn)k;
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(b) Φ is upper semicontinuous (with respect to the topology σ
[0,T ]
n,k of W k,∞([0,T ];Rn)) with

nonempty, compact and connected values;
(c) the multifunction

ξ ∈ (Rn)k→{u(T ) : u ∈Φ(ξ )}
is upper semicontinuous with nonempty connected and compact values;

(d) for every ξ ∈ (Rn)k and every u ∈Φ(ξ ), one has

(t,u(t),u′(t), . . . ,u(k−1)(t)) ∈ S\U for a.e. t ∈ [0,T ];

(e) the multifunction

ξ ∈ (Rn)k→{u(k) ∈ L∞([0,T ],Rn) : u ∈Φ(ξ )}

is upper semicontinuous (with compact connected values) with respect to the weak-star topology
of L∞([0,T ],Rn).

Proof. Let r > 0 such that F(S \U) ⊆ Bn(0,r). By the definition of the family F , there exists
sets W0,W1, . . . , Wnk ⊆ R×Rnk, with m1(Pj(Wj)) = 0 for all j = 0,1 . . . ,nk, such that U =⋃nk

i=0 Wj. Let H0,H ∈B(R), with H0 ⊆ [0,T ] and m1(H0) = m1(H) = 0, be such that

P0(W0)⊆ H0 and
nk⋃
j=1

Pj(Wj)⊆ H.

Of course, we have that

Ω := ([0,T ]\H0)× (R\H)nk ⊆ S\U. (3.8)

By the definition of the family Gn and assumptions (i) and (ii), we have that F |Ω is lower
semicontinuous with nonempty and closed values, F(Ω) ∈ Gn and F(Ω)⊆ Bn(0,r).

Now, let I := [0,1/2], and let F∗ : I×(Rn)k→ 2Rn
be defined by putting, for each (s,ξ0,ξ1, . . . ,

ξk−1) ∈ I× (Rn)k,

F∗(s, ξ0 ,ξ1, . . . ,ξk−1) = 2kT k F( 2T s, ξ0,
1

2T
ξ1,

1
22T 2 ξ2, . . . ,

1
2k−1T k−1 ξk−1 ) .

Consider the function f : I× (Rn)k→ [0,T ]× (Rn)k defined by putting, for each (s,ξ0,ξ1, . . . ,
ξk−1) ∈ I× (Rn)k,

f (s, ξ0 ,ξ1, . . . ,ξk−1) = (2T s, ξ0,
1

2T
ξ1,

1
22T 2 ξ2, . . . ,

1
2k−1T k−1 ξk−1 ). (3.9)

It is immediate to check that f is continuous. Moreover, one has

F∗(s, ξ0 ,ξ1, . . . ,ξk−1) = 2kT k F( f (s, ξ0 ,ξ1, . . . ,ξk−1)) (3.10)

for every (s,ξ0,ξ1, . . . ,ξk−1) ∈ I× (Rn)k. Now, put

H∗0 :=
1

2T
H0, H∗ :=

k−1⋃
i=0

(2iT i H) .

Of course, H∗0 ,H
∗ ∈B(R), H∗0 ⊆ I and m1(H∗0 ) = m1(H∗) = 0. Moreover, put

S∗ := I× (Rn)k, Ω
∗ := (I \H∗0 )× (R\H∗)nk,

and let U∗ = S∗ \Ω∗. We observe the following facts.
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(i)′ U∗ ∈F . Indeed, one has

U∗ =
[(

P−1
0 (H∗0 )

)
∪
( nk⋃

j=1

P−1
j (H∗)

)]
∩S∗ .

(ii)′ f (Ω∗)⊆Ω (again, we identify (Rn)k = Rnk in the obvious way).
(iii)′ The multifunction F∗|Ω∗ is lower semicontinuous with nonempty closed values. This

follows easily from assumption (i), (3.10), (ii)′, the continuity of f and Ω⊆ S\U .
(iv)′ F∗(Ω∗)⊆ Bn(0,r∗), where r∗ := 2kT kr. This follows from (3.10) and (ii)′ since

F∗(Ω∗) = 2kT k F( f (Ω∗))⊆ 2kT k F(Ω)⊆ 2kT k F(S\U). (3.11)

(v)′ F∗(Ω∗) ∈ Gn. This follows easily from assumption (ii), (3.11) and the definition of Gn.
Therefore, taking into account that Ω∗= S∗\U∗, we have that F∗ satisfies all the assumptions

of Theorem 3.1. Consequently, there exists a bounded and upper semicontinuous multifunction
G : R× (Rn)k→ 2Rn

with nonempty convex compact values such that
(i)′′ G(R× (Rn)k)⊆ conv(F∗(Ω∗))⊆ Bn(0,r∗);
(ii)′′ every generalized solution u ∈W k,∞(I,Rn) of the inclusion

u(k) ∈ G(s,u,u′, . . . ,u(k−1))

in I is also a generalized solution of the inclusion u(k) ∈ F∗(s,u,u′, . . . ,u(k−1)) in I.
(iii)′′ for every generalized solution u ∈W k,∞(I,Rn) of the inclusion

u(k) ∈ G(s,u,u′, . . . ,u(k−1))

in I, one has
(s,u(s),u′(s), . . . ,u(k−1)(s)) ∈Ω

∗ for a.e. s ∈ I.

Now, let us define a multifunction Q : R× (Rn)k → 2(R
n)k

by putting, for each (s,ξ ) =
(s,ξ0,ξ1, . . . ,ξk−1) ∈ R× (Rn)k,

Q(s,ξ ) = Q(s,ξ0,ξ1, . . . ,ξk−1) = {ξ1}×{ξ2}× ·· ·×{ξk−1}×G(s,ξ ).

By [8, Theorem 7.3.14], the multifunction Q is upper semicontinuous.
For every fixed ξ = (ξ0,ξ1, . . . ,ξk−1) ∈ (Rn)k, let us consider the first-order Cauchy problem{

y′ ∈ Q(s,y) in I,
y(0) = ξ .

(3.12)

Moreover, let

T Q
I (ξ ) :=

{
y(s) = (y0(s),y1(s), . . . ,yk−1(s)) ∈ (W 1,1(I,Rn))k :

: y(s) is a generalized solution of (3.12)
}

and
A Q

I (ξ ) :=
{

y(1/2) = (y0(1/2),y1(1/2), . . . ,yk−1(1/2)) : y ∈T Q
I (ξ )

}
be the solution set and the attainable set of problem (3.12), respectively. Fix ξ ∗ ∈ (Rn)k and
choose any b > 0. Since

lim
L→+∞

[
L2−

(
(b+

L
2
+‖ξ ∗‖nk)

2 +(r∗)2)]=+∞,
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there exists M > 0 such that

(b+
M
2
+‖ξ ∗‖nk)

2 +(r∗)2 < M2. (3.13)

We now show that
Q
(
I×Bnk(ξ

∗,b+
M
2
)
)
⊆ Bnk(0,M). (3.14)

To this aim, fix s ∈ I and ξ = (ξ0,ξ1, . . . ,ξk−1) ∈ (Rn)k with ξ ∈ Bnk(ξ
∗,b+(1/2)M). Let

η = (η0,η1, . . . ,ηk−1) ∈ Q(s,ξ ). By the definition of Q, there exists z ∈ G(s,ξ ) such that
η = (ξ1,ξ2, . . . ,ξk−1,z). Taking into account that

‖ξ‖2
nk ≤ (b+

M
2
+‖ξ ∗‖nk)

2,

(ii)′ and (3.13) we have

‖η‖2
nk ≤ ‖ξ1‖2

n +‖ξ2‖2
n + · · ·+‖ξk−1‖2

n +‖z‖2
n

≤ ‖ξ‖2
nk +(r∗)2

≤ (r∗)2 +(b+
M
2
+‖ξ ∗‖nk)

2

< M2.

Hence, (3.14) is proved. Applying Theorem 2.1 to problem (3.12), we have that, for every
ξ = (ξ0, . . . ,ξk−1)∈ (Rn)k with ξ ∈ Bnk(ξ

∗,b), the solution set T Q
I (ξ ) is nonempty. Moreover,

the multifunction ξ →T Q
I (ξ ) is upper semicontinuous from Bnk(ξ

∗,b) to

W 1,∞(I,Rnk) =
(
W 1,∞(I,Rn)

)k
,

with nonempty compact connected values (it is quite immediate to check that the topology σ I
nk,1

coincides with the product topology (σ I
n,1)

k). Moreover, Theorem 2.1 implies that ξ →A Q
I (ξ )

is upper semicontinuous in Bnk(ξ
∗,b) with nonempty compact connected values. Since ξ ∗ ∈

(Rn)k is arbitrary, we get that
(i)′′′ the solution set T Q

I (ξ ) is nonempty for every ξ ∈ (Rn)k. Moreover, the multifunction
ξ → T Q

I (ξ ) is upper semicontinuous from (Rn)k to [W 1,∞(I,Rn)]k with nonempty compact
connected values;

(ii)′′′ the multifunction ξ → A Q
I (ξ ) is upper semicontinuous from (Rn)k to (Rn)k with

nonempty compact connected values.
Now, let

P∗1 :
[
W 1,∞(I,Rn)

]k→W 1,∞(I,Rn)

be the first projection. For each v ∈W k,∞(I,Rn), let yv : I → (Rn)k be defined by putting, for
every s ∈ I,

yv(s) = (v(s),v′(s), . . . ,v(k−1)(s)),

and let
E :=

{
yv : v ∈W k,∞(I,Rn)

}
.

By Proposition 2.2, we have that E is a closed subset of [W 1,∞(I,Rn)]k, P∗1 (E) = W k,∞(I,Rn),
and the function

P∗1 |E : (E,(σ I
n,1)

k)→ (W k,∞(I,Rn),σ I
n,k)



36 P. CUBIOTTI

is continuous. For each ξ = (ξ0,ξ1, . . . ,ξk−1) ∈ (Rn)k , let us consider the Cauchy problem{
u(k) ∈ G(t,u,u′, . . . ,u(k−1)) in I,
u(i)(0) = ξi,

(3.15)

and let
T G

I (ξ ) :=
{

u ∈W k,1(I,Rn) : u is a generalized solution of (3.15)
}

its solution set. Since G is bounded, we have T G
I (ξ )⊆W k,∞(I,Rn) for all ξ ∈ (Rn)k.

Fix ξ = (ξ0,ξ1, . . . ,ξk−1) ∈ (Rn)k , and let

w(s) = (w0(s),w1(s), . . . ,wk−1(s)) ∈T Q
I (ξ )⊆

[
W 1,∞(I,Rn)

]k
.

Hence, w′(s) ∈ Q(s,w(s)) for a.e. s ∈ I. Therefore, by the definition of Q, we have, for a.e.
s ∈ I,

w1(s) = w′0(s), w2(s) = w′1(s), . . . , wk−1(s) = w′k−2(s),

w′k−1(s) ∈ G(s,w0(s), . . . ,wk−1(s)) .
Since the functions w0,w1, . . . ,wk−1 are absolutely continuous, by the same standard argument
as in the proof of Proposition 2.2, it follows that w0 ∈Ck−1(I,Rn). For every s ∈ I, one has

w1(s) = w′0(s), w2(s) = w′′0(s), . . . wk−1(s) = w(k−1)
0 (s).

Hence, w0 ∈W k,∞(I,Rn)) and

w(k)
0 (s) = w′k−1(s) ∈ G(s,w0(s), . . . ,w

(k−1)
0 (s))

for a.e. s ∈ I. Moreover, one has

w( j)
0 (0) = w j(0) = ξ j for every j = 0, . . . ,k−1.

Hence, w0 ∈T G
I (ξ ) and w = yw0 ∈ E. Therefore, we obtain that, for every ξ = (ξ0, . . . ,ξk−1)∈

(Rn)k,
T Q

I (ξ )⊆ E, and P∗1 (T
Q

I (ξ ))⊆T G
I (ξ ). (3.16)

Now, let us define a multifunction ¶ : (Rn)k→ 2W k,∞(I,Rn) by putting, for each ξ =(ξ0,ξ1, . . . ,ξk−1)
∈ (Rn)k,

¶(ξ ) := P∗1 (T
Q

I (ξ )) .

By (3.16), we get that

¶(ξ )⊆T G
I (ξ ) for every ξ = (ξ0,ξ1, . . . ,ξk−1) ∈ (Rn)k. (3.17)

By (i)′′′, (3.16) and the continuity of the function

P∗1 |E : (E,(σ I
n,1)

k)→ (W k,∞(I,Rn),σ I
n,k),

we get that
(a)′ the multifunction ¶ is upper semicontinuous (with respect to the topology σ I

n,k of the
space W k,∞(I,Rn)), with nonempty, compact and connected values.

Now, if we denote by Π1 : (Rn)k→ Rn the first projection from (Rn)k to Rn, it is easy to see
from the above construction that, for every ξ = (ξ0, . . . ,ξk−1) ∈ (Rn)k,

{u(1/2) : u ∈ ¶(ξ ))}= Π1(A
Q

I (ξ )).

Thus, taking into account (ii)′′′ and the continuity of Π1, we have that
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(b)′ the multifunction

R : ξ ∈ (Rn)k→ R(ξ ) := {u(1/2) : u ∈ ¶(ξ ))}

is upper semicontinuous in (Rn)k with nonempty, compact and connected values.
In order to conclude the proof, let h : (Rn)k→ (Rn)k be the continuous functions defined by

putting, for each ξ = (ξ0, . . . ,ξk−1) ∈ (Rn)k,

h(ξ ) = (ξ0, 2T ξ1, 22T 2
ξ2, . . . , 2k−1T k−1

ξk−1).

Moreover, let
φ : (W k,∞(I,Rn),σ I

n,k)→ (W k,∞([0,T ],Rn),σ
[0,T ]
n,k )

be defined by putting, for each u ∈W k,∞(I,Rn),

φ(u)(t) = u
( 1

2T
t
)

for every t ∈ [0,T ] .

Arguing as above, it is not difficult to check that φ is continuous. Moreover, one has

φ(T G
I (h(ξ )))⊆T F

[0,T ](ξ ) for every ξ = (ξ0,ξ1, . . . ,ξk−1) ∈ (Rn)k. (3.18)

To see this, fix ξ = (ξ0,ξ1, . . . ,ξk−1)∈ (Rn)k and a function v∈ φ(T G
I (h(ξ ))). Therefore, there

exists u ∈ T G
I (h(ξ )) such that v = φ(u). By the definition of φ(u), for every j = 0, . . . ,k− 1,

we have

v( j)(t) =
1

2 jT j u( j)
( t

2T

)
for all t ∈ [0,T ]. (3.19)

Moreover, taking into account (ii)′′, there exists a set K ⊆ I with m1(K) = 0 such that

v(k)(t) =
1

2kT k u(k)
( t

2T

)
for all t ∈ [0,T ]\ (2T K) (3.20)

and
u(k)(s) ∈ F∗(s,u(s),u′(s), . . . ,u(k−1)(s)) for all s ∈ I \K. (3.21)

Consequently, for every j = 0, . . . ,k−1, we have

v( j)(0) =
1

2 jT j u(0) = ξ j.

Moreover, for every t ∈ [0,T ]\ (2T K), taking into account (3.21), one has

v(k)(t) =
1

2kT k u(k)(
t

2T
)

∈ 1
2kT k F∗(

t
2T

,u(
t

2T
),u′(

t
2T

), . . . ,u(k−1)(
t

2T
))

=
1

2kT k F∗(
t

2T
,v(t),2T v′(t), . . . ,2k−1T k−1v(k−1)(t))

= F(t,v(t),v′(t), . . . ,v(k−1)(t)).

Hence, v ∈T F
[0,T ](ξ ).
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Now, let Φ : (Rn)k → 2W k,∞([0,T ],Rn) be the multifunction defined by setting, for each ξ ∈
(Rn)k,

Φ(ξ ) = φ(¶(h(ξ ))) .

By (a)′ and the continuity of φ and h, it follows that Φ is upper semicontinuous (with respect to
the topology σ

[0,T ]
n,k of W k,∞([0,T ],Rn)) with nonempty, compact and connected values. More-

over, by (3.17) and (3.18), we have that Φ(ξ )⊆T F
[0,T ](ξ ) for every ξ ∈ (Rn)k.

In order to prove conclusion (c), it is immediate to check that, for every ξ ∈ (Rn)k,

{v(T ) : v ∈Φ(ξ )}= {u(1/2) : u ∈ ¶(h(ξ ))}.

Consequently, conclusion (c) follows from the continuity of h and (b)′.
Now, in order to prove conclusion (d), we fix a point ξ ∈ (Rn)k and v ∈ Φ(ξ ). By the

definition of Φ, there exists u ∈ ¶(h(ξ )) such that v = φ(u). By (3.17), in particular, we have
u ∈T G

I (h(ξ )). Hence, by (iii)′′, there exists a set K1 ⊆ I with m1(K1) = 0 such that

(s,u(s),u′(s), . . . ,u(k−1)(s)) ∈Ω
∗ for every s ∈ I \K1. (3.22)

Fix t ∈ [0,T ]\ (2T K1). Putting s = (1/2T ) t ∈ I \K1, and using (3.19) and (3.9), we have

(t,v(t),v′(t); . . . ,v(k−1)(t)) = (t,u(
t

2T
),

1
2T

u′(
t

2T
), . . . ,

1
2k−1T k−1 u(k−1)(

t
2T

))

= (2T s,u(s),
1

2T
u′(s), . . . ,

1
2k−1T k−1 u(k−1)(s))

= f (s,u(s),u′(s), . . . ,u(k−1)(s)).

By (3.22), (ii)′ and (3.8) we immediately get

(t,v(t),v′(t); . . . ,v(k−1)(t)) ∈Ω⊆ (S\U),

as desired. Therefore, conclusion (d) is proved since m1(2T K1) = 0.
Finally, in order to prove conclusion (e), we observe that, by the definition of the topology

σ
[0,T ]
n,k , the function

v ∈W k,∞([0,T ],Rn)→ v(k) ∈ L∞([0,T ],Rn)

is continuous (where, as before, L∞([0,T ],Rn) is considered with its weak-star topology).
Hence, conclusion (e) follows at once from conclusion (b). The proof is now complete. �

Remark 3.1. The assumptions on the multifuncion F in Theorems 3.1 and 3.2 do not imply
any kind of semicontinuity for F . To see this, fix T > 0, and consider the case where n = k = 1,
and F : [0,T ]×R→ 2R is defined by putting, for each (t,x) ∈ [0,T ]×R,

F(t,x) =

{
[−2x2,−x2], t ∈ [0,T ],x ∈Q,

[2+ sinx,4] t ∈ [0,T ],x ∈ R\Q.

It is immediate to check that all the assumptions of Theorems 3.1 and 3.2 are satisfied by taking
U = [0,T ]×Q (in particular, the lower semicontinuity of F |S\U follows by [8, Theorems 7.3.8
and 7.3.17]). However, for every fixed (t,x)∈ [0,T ]×R, such a multifunction F is neither lower
nor upper semicontinuous at (t,x).
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Remark 3.2. Theorems 3.1 and 3.2 do not hold without the assumption F(S \U) ∈ Gn. To see
this, fix T > 0, and consider the function f : [0,T ]×R→ R defined by setting

f (t,x) =

{
0, t ∈ [0,T ],x 6= 0,
1, t ∈ [0,T ],x = 0.

(3.23)

As showed in [11, Example 1], for such a function f the Cauchy problem{
u′ = f (t,u) in [0,T ],
u(0) = 0

(3.24)

has no generalized solutions in [0,T ]. Now, we consider the multifunction F : [0,T ]×R→ 2R

defined by setting, for each (t,x) ∈ [0,T ]×R,

F(t,x) = { f (t,x)}.

It is immediate to check that such a multifunction F satisfies all the assumptions of Theorems
3.1 and 3.2 (with n = k = 1, U = [0,T ]×{0}), except the assumption F(S \U) ∈ G1. Now,
observe that the conclusion of Theorem 3.2 does not hold since T F

[0,T ](0) =. Moreover, even
the conclusion of Theorem 3.1 is not true for such a multifunction F . To see this, we assume
that there exists a multifunction G : R×R→ 2R satisfying the conclusion of Theorem 3.1.
Then, by Theorem 2.1, there should exist an absolutely continuous u : [0,T ]→ R such that
u(0) = 0 and u′(t) ∈G(t,u(t)) for a.e. t ∈ [0,T ]. Consequently, u′(t) ∈ F(t,u(t)) = { f (t,u(t))}
for a.e. t ∈ [0,T ], which is a contradiction since the Cauchy problem (3.24) has no generalized
solutions.

4. AN APPLICATION TO ORDINARY DIFFERENTIAL EQUATIONS

Let n,k∈N, and T > 0. Let Y ⊆Rn be a nonempty set. Let g : Y →R and f : [0,T ]×(Rn)k→
R be two given functions, and let ξ = (ξ0,ξ1, . . . ,ξk−1) ∈ (Rn)k. We recall that a generalized
solution of the Cauchy problem{

g(u(k)) = f (t,u,u′, . . . ,u(k−1)) in [0,T ],
u(i)(0) = ξi, i = 0,1, . . . ,k−1,

(4.1)

is a function u ∈W k,1([0,T ],Rn) such that

u(k)(t) ∈ Y and g(u(k)(t)) = f (t,u(t),u′(t), . . . ,u(k−1)(t)) for a.e. t ∈ [0,T ],

and u(i)(0) = ξi for every i = 0,1, . . . ,k− 1. For each fixed ξ = (ξ0,ξ1, . . . ,ξk−1) ∈ (Rn)k, we
denote by

S (ξ ) =
{

u ∈W k,1([0,T ],Rn) : u is a generalized solution of (4.1)
}

the solution set of problem (4.1). Of course, if Y is bounded, then every generalized solution of
problem (4.1) belongs to W k,∞([0,T ],Rn).

Our aim in this section is to apply Theorem 3.2 to obtain an existence and qualitative result for
the generalized solutions of the implicit problem (4.1) associated with a discontinuous function
f . As far as we know, there are not many results in this direction, even for the special case
k = 1. In this latter case, some existence and qualitative results can be found in [2] and [11].
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In the explicit case where k = 1 and g(u′) = u′, conversely, the Cauchy problem (4.1) has been
widely studied in the past (see, for instance, [12, 13, 14, 15, 16, 17, 18]).

The following is our result.

Theorem 4.1. Let n,k ∈ N, and T > 0. Let Y ∈ Gn be a nonempty, compact, connected and
locally connected subset of Rn. Let g : Y →R and f : [0,T ]×(Rn)k→R be two given functions
with g continuous. Put S := [0,T ]× (Rn)k. Assume that there exists a set U ⊆ S with U ∈F
such that

(i) f |S\U is continuous;
(ii) f (S\U)⊆ g(Y );
(iii) for every r ∈] infg(Y ), supg(Y )[ , intY (g−1(r)) = /0.

Then, for every ξ = (ξ0,ξ1, . . . ,ξk−1) ∈ (Rn)k, the solution set S (ξ ) of problem (4.1) is
nonempty. Moreover, there exists a multifunction

Φ : (Rn)k→ 2W k,∞([0,T ];Rn)

such that
(a) Φ(ξ )⊆S (ξ ) for all ξ ∈ (Rn)k;
(b) Φ is upper semicontinuous (with respect to the topology σ

[0,T ]
n,k of W k,∞([0,T ];Rn)) with

nonempty, compact and connected values;
(c) the multifunction

ξ ∈ (Rn)k→{u(T ) : u ∈Φ(ξ )}
is upper semicontinuous with nonempty connected and compact values;

(d) for every ξ ∈ (Rn)k and every u ∈Φ(ξ ), one has

(t,u(t),u′(t), . . . ,u(k−1)(t)) ∈ S\U for a.e. t ∈ [0,T ];

(e) the multifunction

ξ ∈ (Rn)k→{u(k) ∈ L∞([0,T ],Rn) : u ∈Φ(ξ )}
is upper semicontinuous (with compact connected values) with respect to the weak-star topology
of L∞([0,T ],Rn).

Proof. By [19, Theorem 2.4], the function g is inductively open on Y . That is, there exists a set
Y ∗ ⊆ Y such that g(Y ∗) = g(Y ) and the function g|Y ∗ : Y ∗→ g(Y ) is open. Let T : S \U → 2Y

be the multifunction defined by setting, for each (t,ξ ) = (t,ξ0,ξ1, . . . ,ξk−1) ∈ S\U ,

T (t,ξ0,ξ1, . . . ,ξk−1) = g−1( f (t,ξ0,ξ1, . . . ,ξk−1))∩Y ∗.

By the above construction, and assumptions (i) and (ii) and [8, Proposition 7.3.3], it is not
difficult to check that T is lower semicontinuous with nonempty closed values. Moreover,
T (S \U) ⊆ Y is bounded by the compactness of Y . Choose any point y∗ ∈ T (S \U), and let
F : S→ Y be the multifunction defined by putting, for each (t,ξ ) = (t,ξ0,ξ1, . . . ,ξk−1) ∈ S,

F(t,ξ0,ξ1, . . . ,ξk−1) =

{
T (t,ξ0,ξ1, . . . ,ξk−1) i f (t,ξ0,ξ1, . . . ,ξk−1) ∈ S\U,

{y∗} i f (t,ξ0,ξ1, . . . ,ξk−1) ∈U.

Since F(S\U)= T (S\U)⊆Y , the multifunction F satisfies all the assumptions of Theorem 3.2.
Consequently, there exists a multifunction Φ : (Rn)k→ 2W k,∞([0,T ],Rn) satisfying the conclusion
of Theorem 3.2.
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Now, we claim that Φ(ξ ) ⊆ S (ξ ) for every ξ ∈ (Rn)k. To this aim, fix ξ ∈ (Rn)k and
u ∈Φ(ξ ). By the properties (a) and (d) described in the conclusion of Theorem 3.2, there exists
a set K ⊆ [0,T ] with m1(K) = 0 such that

u(k)(t) ∈ F(t,u(t),u′(t), . . . ,u(k−1)(t)) and (t,u(t),u′(t), . . . ,u(k−1)(t)) ∈ S\U

for all t ∈ [0,T ]\K. Hence,

u(k)(t) ∈ Y and u(k)(t) ∈ T (t,u(t),u′(t), . . . ,u(k−1)(t)) for all t ∈ [0,T ]\K.

Consequently, for every t ∈ [0,T ]\K, taking into account the definition of T , the continuity of
g and the closedness of Y , we get

u(k)(t) ∈ g−1( f (t,u(t),u′(t), . . . ,u(k−1)(t)))∩Y ∗

⊆ g−1( f (t,u(t),u′(t), . . . ,u(k−1)(t)))

= g−1( f (t,u(t),u′(t), . . . ,u(k−1)(t))) .

Hence, we get

g(u(k)(t)) = f (t,u(t),u′(t), . . . ,u(k−1)(t)), ∀t ∈ [0,T ]\K,

hence u ∈S (ξ ), as claimed. At this point, our conclusion follows at once by the conclusion of
Theorem 3.2. �

Remark 4.1. The assumptions of Theorem 4.1 do not imply the continuity of the function
f : [0,T ]× (Rn)k→ R with respect to the second variable. To see this, fix T > 0, and consider
the case n = k = 1, Y = [2,3], g(y) = y, and f : [0,T ]×R→ R defined by putting, for each
(t,x) ∈ [0,T ]×R,

f (t,x) =

{
1, t ∈ [0,T ],x ∈Q,

2 t ∈ [0,T ],x ∈ R\Q.

It is immediate to check that all the assumptions of Theorems 4.1 are satisfied by taking U =
[0,T ]×Q. However, for every t ∈ [0,T ], function f (t, ·) is discontinuous at each point x ∈ R.

Indeed, in Theorem 4.1 we make requirements only on f |S\U . Consequently, f could even be
defined only over S \U . This fact is the main peculiarity of Theorem 4.1 since in the literature
(up to our knowledge) the function f (t, ·) is usually defined either on the whole space (Rn)k, or
on a closed set with empty interior, or on a ball (see, for instance, [20, 21, 22, 23, 24, 25, 26, 27]
and the references therein).

Remark 4.2. Theorems 4.1 does not hold without the assumption Y ∈ Gn. To see this, let
T > 0, n = k = 1, Y = [0,1], g(y) = y, U = [0,T ]×{0}, and let f : [0,T ]×R→R be defined by
(3.23). It is immediate to check that all the assumptions of Theorem 4.1 are satisfied except for
the assumption Y ∈ G1. However, the conclusion of Theorem 4.1 does not hold since we have
S (0) = in this case (see Remark 3.2).
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