
entropy

Article

Nonlinear Heat Transport in Superlattices with
Mobile Defects

David Jou 1,*,† and Liliana Restuccia 2

1 Grup de Fisíca Estadística, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia, Spain
2 Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences,

University of Messina, Viale F. Stagno d’Alcontres, Salita Sperone 31, 98166 Messina, Italy;
lrestuccia@unime.it

* Correspondence: David.Jou@uab.cat
† Current address: Institut d’Estudis Catalans, Carme 47, 08001 Barcelona, Spain.

Received: 30 October 2019; Accepted: 4 December 2019; Published: 6 December 2019
����������
�������

Abstract: We consider heat conduction in a superlattice with mobile defects, which reduce the thermal
conductivity of the material. If the defects may be dragged by the heat flux, and if they are stopped
at the interfaces of the superlattice, it is seen that the effective thermal resistance of the layers will
depend on the heat flux. Thus, the concentration dependence of the transport coefficients plus the
mobility of the defects lead to a strongly nonlinear behavior of heat transport, which may be used in
some cases as a basis for thermal transistors.

Keywords: heat transport; extended thermodynamics; mobile defects; defect engineering; thermal
transistor; superlattices

1. Introduction

The dependence of transport coefficients on the concentration of defects, applied stress, and
nanostructure of the system allows new ways to achieve subtle and useful behaviors in energy
management, thermal metamaterials, or thermal computation. uThis has given a strong impetus to
defect engineering and nanoengineering to design and develop systems with suitable behaviors [1–12].

The aim of this paper is to analyze heat transport in superlattices with mobile point defects [13–19]
as a thermodynamic exploration of possible metamaterials with sophisticated transport properties.
The model provides a particular illustration of a much more general set of transport equations for
anisotropic materials, and uses the fact that thermal conductivity may be strongly reduced by the
presence of small amounts of point defects. If such defects may move inside the material under the
influence of a heat flux, and if material barriers to the motion of defects may be provided by the
interfaces of the superlattice, heat transport becomes a strongly nonlinear phenomenon. This may be
used to control heat transfer in the superlattice by using the feedback of nonequilibrium distribution of
defects on the value of the thermal resistance, and may be used in some cases as the basis for thermal
transistors [20–23].

Though we use the formalism of classical irreversible thermodynamics, with fluxes being linear
functions of the thermodynamic forces, the concentration dependence of the thermal conductivity
establishes a deep coupling between the dynamics of defects and the heat transfer behavior, leading to
globally nonlinear behavior. In Section 2, we present the model. In Section 3, we explore the heat-flux
dependence of the thermal resistance of the layers constituting the superlattice; and in Section 4 we
comment on possible applications of mobile defects as the basis for a thermal transistor. In Section 5,
we consider coupled longitudinal and radial effects, for the sake of generality. Section 6 is devoted to
conclusions and remarks.
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2. The Model

We consider an elongated superlattice composed of alternating thin layers of materials A and B,
see Figure 1.

Figure 1. A superlattice of alternating layers of two semiconductors A and B.

Other geometries could be considered, but we take the simplest one allowing for an anisotropic
system characterized by a longitudinal direction and two transversal directions with definitely
different properties.

In each layer of material (or in some specific layers of material), there is some concentration c of
point defects. In the absence of heat flux, this concentration is supposed to be homogeneous inside
each layer. Consecutive layers are separated by a material interface which puts some barriers to heat
flow and to flow of defects. The presence of these defects is not a consequence of a deficient fabrication
method, but it is artificially controlled in order to modify in suitable ways the thermal conductivity of
the material in each layer.

Indeed, it is known that the thermal conductivity of a material may be much reduced by the
presence of a small amount of defects. This is the basis of the so-called “defect engineering of
materials” and it is a recent field of research with a number of potential applications, such as in thermal
metamaterials, heat diodes and heat transistors, improved photovoltaic devices or light-emitting
devices, and so on [1–12].

Here, we will assume that such defects may move inside the material when the material is imposed
with nonequilibrium boundary conditions [13–19]. In particular, we assume that they may move under
the action of a heat flux—as the consequence, for instance, of some “phonon drag” phenomenon, or
under an electric field, if the defects are charged.

The balance laws for specific internal energy u and defect concentration c are

cT θ̇ = −∇ · q,

ċ = −∇ · J, (1)

where θ is the temperature, cT is the specific heat per unit volume (such that du = cTdθ), and q and J
are the heat flux and the defect flow, respectively.

The classical entropy production per unit volume and time in a system with heat transport and
defect transport is [24–29]

σ = q · ∇θ−1 − J · ∇(µθ−1), (2)

with µ being the chemical potential of defects. This corresponds to the product of the fluxes of u and c
times the gradients of the thermodynamic conjugates to u and c, namely, θ−1 and −µθ−1. Following
classical irreversible thermodynamics, we will assume that the fluxes q and J may be expressed as
linear combinations of the thermodynamic forces ∇θ−1 and −∇(µθ−1) .

This may be written explicitly for longitudinal and radial components. Regarding the longitudinal
components along the z-axis, we have (see Figure 2)
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Figure 2. Heat-induced longitudinal motion of defects along the heat flux and longitudinal diffusion
of defects against the gradient of defects concentration.

(
qz

Jz

)
=

(
Lqq Lqc

Lcq Lcc

)(
∇zθ−1

−∇zµθ−1

)
, (3)

with Lqq, Lqc, Lcq, and Lcc being transport coefficients. The Onsager reciprocity relations state that the
matrix of these coefficients must be symmetrical, i.e.,

Lqc = Lcq. (4)

Note that for some anisotropic systems a coupling between longitudinal and radial components is
possible and it will be examined in Section 5, but here we stick to the simplest case.

Now, we will rewrite (3) in terms of ∇θ and of ∇c, by assuming that µθ−1 = f̃ (c), so that

∇(µθ−1) = ∂ f̃ (c)
∂c ∇c = f(c)∇c, with ∂ f̃ (c)

∂c = f(c). Then, (3) becomes

qz = −λ∇zθ − λ′∇zc,

Jz = −D′∇zθ − D∇zc, (5)

where λ is the thermal conductivity, D is the diffusion coefficient of the defects, and λ′ and D′ are the
coupling coefficients between defect field and heat flow field. Comparing (3) and (5), it is seen that
λ = Lqqθ−2, D = Lcc f(c), λ′ = Lqc f(c) and D′ = Lcqθ−2.

Now, we assume that λ depends on T and on c. Thus, the dynamics of c will have an influence on
the thermal conductivity. To explore this feature we rewrite (5) as

q = −λ
′′∇θ + α1cJ,

J = −D
′′∇c + α2cq, (6)

where α2cq is the drift velocity of defects under the action of a steady heat flux, λ
′′ ≡ λ − λ′D′

D ,
α1c ≡ λ′

D , D
′′ ≡ D− λ′D′

D , α2c ≡ D′
λ , and α1cJ is related to the phonon flow induced by the motion

of defects.
These transport equations apply to each layer of the superlattice, but transport through the

interfaces between layers of materials A and B must be described by their own laws specifying the
interface [1]. The equations are

∆θ = θA − θB ≡ RθABqz + RθdAB Jz, (7)

∆c = cA − cB ≡ RdAB Jz + RdθABqz. (8)
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Here, RθAB and RdAB are respectively the thermal boundary resistance of the wall and the resistance of
the wall to the flow of defects through it [1,2]. We will assume for simplicity that the coefficients of the
crossed coupling terms are zero, namely, RθdAB = RdθAB = 0. Later on, we will focus the attention on
some particular expression for these transport coefficients. In summary, since λ′′(θ, c) is a function of θ

and c, the local motion of defects modifies the spatial distribution of c and therefore the value of λ′′.

3. Longitudinal Heat Transport Across a Superlattice

We assume that the interfaces allow heat to pass, but that they do not allow the flow of defects
from one layer to the neighboring layers, namely, that RdAB in (8) is very high. This assumption is for
the sake of simplicity, as it allows one to consider the motion of defects as restricted to each particular
layer. Since here we are only aiming to examine the general ideas of the model, rather than obtaining
accurate particular realistic values, this approximation is sufficient for our purposes. We will consider
that the whole system is submitted to a longitudinal heat flux as a consequence of a temperature
difference along the long axis.

3.1. Steady State Distribution of Defects

After imposing qz, we obtain from the second equation in (6) the distribution of defects in each
layer of the material, in order to later consider the feedback of this concentration on the thermal
resistance of each layer. Here, we consider the particularly simple but interesting case in which D

′′

and α2 in (6) are constant. In a steady state, with J = 0, the spatial distribution of defects inside a layer
corresponding to ċ = 0 will be, by solving the second equation of (6),

c(z) = c(0)exp
[

α2q
D′′

z
]

, (9)

with c(0) related to the initial homogeneous concentration c0 of defects in the layer at equilibrium.
The value of c(0) may be related to c0 by the conservation of the number of defects, according to (6)
(namely, for J = 0),

c0 L =
∫ L

0
c(z)dz, c0 L = c(0)

∫ L

0
exp

[
α2

D′′
qz
]

dz =
c(0)D

′′

α2q

[
exp

(
α2q
D′′

L
)
− 1
]

. (10)

Up to first order in α2qL
D′′

, one has

c(0) =
c0

1 + 1
2

α2qL
D′′

. (11)

In the next Section, we consider how (10) and (11) modify the thermal resistence of the layer.

3.2. Nonlinear Thermal Resistance of the System

The thermal conductivity λ(θ, c) depends on the concentration of defects and on their spatial
distribution in the system. We have seen in the previous Section that a longitudinal heat flux modifies
the longitudinal distribution of mobile defects according to (9). Here, we consider how this modifies
the effective thermal resistance (ThRes) of the corresponding layer. The thermal resistance of each
layer is defined as

q ≡ θ(z1)− θ(z2)

ThRes
, (12)

with z1 and z2 being the positions of the boundaries of the layer. Note that this is analogous to Ohm’s
law of electricity if q is replaced by the electrical current intensity and θ by the electrical potential.
In our case, in Section 4, we have taken z1 = 0, z2 = L.
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3.3. Thermal Resistance as a Function of q

From Equation (6), for q, with J = 0 (because in the steady state the total flow of defects is zero,
since they are stopped by the interface) we have

θ(z1)− θ(z2) =
∫ z2

z1

qdz
λ
′′ (θ(z), c(z))

, (13)

where in the one-dimensional steady state, q is constant.
For the dependence of λ(θ, c) we assume

λ(θ, c) =
λ0(θ)

1 + a(θ)c
, (14)

with a(θ) being a coefficient which depends on the nature of the material matrix and of the defects.
This is a simple way of describing the reduction of thermal conductivity for increasing values of the
concentration of defects. Since (14) may be written as

1
λ(θ)

=
1

λ0(θ)
+

a(θ)c
λ0(θ)

, (15)

and since λ is proportional to the collision time of the carriers, (15) may be interpreted as the fact
that the total frequency of collisions of heat carriers 1

τtot
(with τtot being the average collision time of

heat carriers in the presence of defects) is the sum of the frequency of collisions without defects, 1
τ0

,
plus the frequency of collisions of the heat carriers with defects, assumed to be proportional to the
defect concentration c. The simple model (14) as (15) could be improved at high concentration defects,
but here it is not necessary for our illustrative purposes.

Ignoring the dependence of λ0(θ) and a(θ) on θ (which could be easily implemented in a
numerical model, but which is not necessary to get a qualitative understanding of the problem
we are dealing with), we have

θ(z1)− θ(z2) =
∫ z2

z1

q [1 + ac(z)] dz(
λ0 − λ′D′

D

)
− λ′D′

D ac(z)
, (16)

with c(z) given by (9). Since c(z) depends on q, (16) will lead to a thermal resistance depending on q.
Indeed, (16) will be

θ(z1)− θ(z2) =
q(

λ0 − λ′D′
D

) ∫ z2

z1

1 + ac(z)dz
1− Aac(z)

, (17)

with A ≡
(

λ′D′
D

) [
λ0 − λ′D′

D

]−1
. This yields

θ(z1)− θ(z2) =
qL

λ0 − λ′D′
D

1 +
D(1 + A)

α2qAL
ln

1− Aac(0)exp
[

α2q
D′′

L
]

1− Aac(0)

 , (18)

with q being the modulus of the heat flux q.
Up to the first order in ac(0)qα2L

D′′
and for z1 = 0, z2 = L, one has

θ(0)− θ(L) =
qL

λ0 − λ′D′
D

1
1− Aac(0)

{
1 +

ac(0)α2qL
2D′′

[
1

1− Aac(0)

]}
. (19)
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The thermal resistance will then have the form

TherRes(θ, c, q) = TherRes(θ, c)
{

1 + ac(0)
[

α2L
2D′′

(1− Aac(0)
]

q
}

, (20)

with TherRes(θ, c) being the part of the thermal resistance which does not depend on the heat flux, i.e.,
which does not depend on the mobility of defects (recall that the heat-induced motion of defects is
described by the coefficient α2, when this coefficient is zero the defects do not move). Then, the thermal
resistance depends on q and, in the present approximation, it increases with q and with c(0). A possible
application of this dependence could be in situations requiring some stability of the value of the heat
flux in front of changes of temperature in one of the boundaries of the system. Indeed, the heat-flux
dependence of (19) will make that an increase in θ(0) (at constant θ(L)) will produce an increase of
the heat flux lower than the increase corresponding to a thermal resistance independent on q (namely,
lower than for α2 = 0 in (20)) .

The total thermal resistance of a superlattice is the sum of the thermal resistances of the layers
plus those of the interfaces. To these effects, some phonon coherence effects may also arise, related to
the thickness of the layers [30,31]. In the situations we are considering, the wave nature of phonons is
not expected to be relevant, because the defects will make the phonon flow incoherent. Thus, the total
thermal resistance will be the sum of thermal resistance of the layers (related to the thickness of the
layers) and those of the interfaces (related to the physical differences between the layers in contact).

In Equation (20), we have expressed how the mobility of defects influences the thermal resistance
of a layer. Different layers could have different concentrations of defects (different values of c(0))
and different kinds of defects (different defect mobilities α2). The thermal resistance of the interfaces
between layers would also be modified by the heat flux, as a consequence of the defect mobility.
We have considered that the interfaces do not allow the flow of defects across them and that, as a
consequence, defects will accumulate in one side of the interface (that to which the defects are arriving
as a consequence of being dragged by the heat flux) and will be depleted from the other side of the
interface (that from which the defects are leaving because of being dragged). In general, the thermal
resistance of the interfaces is higher when the physical differences of nature, structure, and composition
of the layers in contact are higher. Thus, since the drag of defects increases the difference of defect
concentrations at both sides of the interface (increasing it at one side and decreasing it at the opposite
side), the thermal resistance of the interfaces will increase with the heat flux. Concrete expressions for
this increase will depend on the model adopted for heat transfer across the interface [32,33].

4. Transversal Heat Transport: A Mathematical Model for a Defect-Based Thermal Transistor

Thermal transistors play, with respect to the heat flux, an analogous role to electronic transistors
with respect to electric currents, namely, they may control and amplify a heat flux [20–23].

Currently, they may be useful for the control of heat flux in small scale devices. In the future, they
could be the basis of logical gates and of thermal computers processing information in form of thermal
signals. Several different strategies are being proposed to obtain heat transistors, namely, thermoelastic,
electrochemical, thermoelectrical, and quantum—[34], [35], [36], [37], and [38], respectively. In this
Section, we propose a further new strategy based on the heat-dependence of thermal resistance, that we
have outlined in the previous Section, but used in a transversal way, rather than in a longitudinal way.

The system is sketched in Figure 3.
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Figure 3. Heat transistor system, based on mobile defects driven by a heat flux considered in this Section.

In our proposal, a thin layer of a material B containing mobile defects able to move along the
layer, is sandwiched between two pieces of materials A and C. Part A is traversed by a heat flux qA,
perpendicular to the B thin layer, and along the layer B a heat flux qB is injected. The total heat supplied
to A and B per unit of time flows out of the system through part C. The heat flux qB produces a drift of
defects along the direction qB, thus, the heat flux B carries out a number of defects from region B and,
as a consequence, increases the thermal conductivity of layer B. To make easier the removal of such
defects while qB is flowing, we make layer B a little bit longer (in the direction of qB) than the width of
sections A and C. Note that, in contrast to Section 3, in the present Section, the defects are dragged in a
direction transversal to the longitudinal axis of the superlattice.

In order for this system to be considered as a transistor, it is necessary that

∂qC
∂qB

> 1. (21)

This implies that the variations in the outgoing heat flow qC are amplified through variations of qB.
The equations describing the fluxes qA and qC between the positions characterized by

temperatures T1 and TC, and between TC and T2, respectively, (see Figure 3) are

T1 − TC =

[
LA
λA

+
LB

λB(qB)

]
qA = RAB(qB)qA, (22)

TC − T2 =
LC
λC

qC = RCqC, (23)

with RAB and RC being the thermal resistances of A + B and of C, respectively. In this simple
formulation, we neglect the thermal resistances at the interfaces AB and BC, but there is not difficulty
in incorporating them in a more accurate but more cumbersome analysis. Equations (22) and (23)
follow from direct application of Fourier’s law. The new point is that RAB depends on the flux qB.

The value of TC is found from the steady-state condition qC = qA + qB. This implies that

R−1
C [TC − T2] = R−1

AB [T1 − TC] + qB. (24)

From here, for TC as a function of qB, one obtains

TC =
R−1

ABT1 + R−1
C T2 + qB

R−1
AB + R−1

C
. (25)

Introducing this expression for TC into Equation (22), one obtains

qA = R−1
ABT1 −

R−1
AB

R−1
AB + R−1

C

[
R−1

ABT1 + R−1
C T2 + qB

]
. (26)
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From here, the relation ∂qA
∂qB

may be obtained, taking into account that R−1
AB depends on qB, since

an increase in qB produces a decrease of RAB. From here, we obtain the amplification factor

∂qC
∂qB

= 1 +
∂qA
∂qB

= 1−
R−1

AB

R−1
AB + R−1

C
[1 + ΓABT1] +

+ ΓABT1 −
R−1

ABT1 + R−1
C T2 + qB[

R−1
AB + R−1

C

]2 TABR−1
C , (27)

with ΓAB standing for ΓAB ≡
∂R−1

AB
∂qB

. If ΓAB = 0, (27) reduces to

∂qC
∂qB

=
R−1

C

R−1
AB + R−1

C
< 1. (28)

In our case, since RAB = RA + RB(qB), and RB (namely, LB
λB(qB)

) decreases with an increase of qB,

one has ∂RAB
∂qB

< 0, and thus, ΓAB = −R−2
AB

∂RAB
∂qB

> 0. From (27), it follows that the amplification factor
will be higher than 1 if

ΓAB >
R−1

AB

R−1
C

+
1

T1 − T2
. (29)

In order to modelize how qB reduces the total concentration of defects in the layer B, assume that
the flux of defects is

Jde f = −D∇c + cαq, (30)

with αq giving the drift velocity of defects under the presence of a heat flow.
Thus, in steady state, we have

c(z) = c(0)exp
[αq

D
z
]

. (31)

For q = 0, the concentration of defects is homogeneous in the layer B. The higher the q, the
shorter the characteristic length l ≡ D/αq, where the defects become concentrated. In our model, we
propose that the layer B has a length wider than the width of A and C. In this way, a fraction of defects
will accumulate in this extra zone, and will go out from the region where they reduce the heat flux.
The effective concentration of defects in the zone of the heat flow will be reduced, and the reduction of
thermal resistance for a given heat flux will be more effective the longer is the additional length d of
the layer.

For the sake of a simple illustration, assume that

λB(T, c) =
λB0(T)
1 + βTC

≈ λB0(T) [1− βTC] , (32)

as it was been assumed in (14).

We will have
∂RB
∂q

=
LB
λB0

βT
∂c
∂q

< 0, (33)

i.e.,

ΓAB = − LB

λB0R2
AB

βT
∂c
∂q

. (34)
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In view of relation (29), this means that the present model will work as a thermal transistor
provided that

− ∂c
∂q

=
λB0

LB

RABRC
βTc(T1 − Tc)

. (35)

To have this behavior, it will be convenient that α is high, D is low, and the additional depth d of
layer B is relatively long.

5. General Case with Longitudinal and Transversal Components of q and J

In this Section, we will consider the additional possibility that a longitudinal heat flow produces
not only a longitudinal drag of defects but also a transversal drag of defects. This is possible in some
anisotropic materials. From the entropy production (2), in classical nonequilibrium thermodynamics,
the equations relating the fluxes q, J to their thermodynamic forces ∇θ−1 and −∇(µθ−1), in the case
where we consider the longitudinal and transversal components of these fields, see Figures 1 and 4,
we have

Figure 4. Heat-induced radial motion of defects and radial diffusion of defects.


qz

qr

Jz

Jr

 =


λzz λzr λ′zz λ′zr
λrz λrr λ′rz λ′rr
χ′zz χ′zr χzz χzr

χ′rz χ′rr χrz χrr



∇zθ−1

∇rθ−1

−∇zµθ−1

−∇rµθ−1

 (36)

The Onsager reciprocity relations state that the matrix of these coefficients must be symmetrical,
i.e., we have

λzr = λrz, λ′zz = χ′zz, λ′zr = χ′rz, λ′rz = χ′zr, χzr = χrz, λ′rr = χrr, χrz = χzr. (37)

Note that for some anisotropic systems, a coupling between longitudinal and radial components
is possible. When radial effects are neglected, (36) reduces to (3).

Now, we will rewrite (36) in terms of ∇θ and of ∇c, by assuming that µθ−1 = f̃ (c), so that

∇(µθ−1) = ∂ f̃ (c)
∂c ∇c = f(c)∇c, with ∂ f̃ (c)

∂c = f(c). Then, (3) becomes

qz = −λzzθ−2∇zθ − λzrθ−2∇rθ − λ′zz f(c)∇zc− λ′zr f(c)∇rc,

qr = −λrzθ−2∇zθ − λrrθ−2∇rθ − λ′rz f(c)∇zc− λ′rr f(c)∇rc,

Jz = −χ′zzθ−2∇zθ − χ′zrθ−2∇rθ − χzz f(c)∇zc− χzr f(c)∇rc,

Jr = −χ′rzθ−2∇zθ − χ′rrθ−2∇rθ − χrz f(c)∇zc− χrr f(c)∇rc. (38)
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In a more compact version, we could write (38) in a form analogous to (6) but with matricial form
of λ, D, α1 and α2, namely,

q = −λ · ∇θ + α1c · J

J = −D · ∇c + α2c · q, (39)

with D being the diffusion coefficient of defects and α2q giving the drift velocity of defects under the
action of a steady heat flux.

These transport equations apply to each layer of the superlattice, but transport through the
interfaces between layers must be described by their own laws specifying the interface. The equations
are like (7) and (8), namely,

∆θ = θA − θB ≡ RθABqz + RθdAB Jz, (40)

∆c = cA − cB ≡ RdAB Jz + RdθABqz. (41)

Here, RθAB and RdAB are respectively the thermal boundary resistance of the wall and the
resistance of the wall to the flow of defects through it. We will assume for simplicity that
RθdAB = RdθAB = 0. Eventually, we considered that the transport coefficients depend on θ and
c, i.e., we have λij(θ, c), λ′ij(θ, c), χij(θ, c), χ′ij(θ, c). Later on, we will specify some expressions for
these transport coefficients.

We will assume that RdAB is very high, i.e., that the interfaces do not allow the flow of defects
from one layer to the neighboring layers. This assumption is for the sake of simplicity, as it allows one
to consider the motion of defects as localized to each particular layer.

We will consider that the whole system is submitted to a temperature difference along the long
axis, namely, it is submitted to a temperature gradient ∇zθ, which will depend on the position along
the axis. Instead, the longitudinal heat flux qz will be constant along the axis in the steady state. After
imposing qz, our aim is to obtain the distribution of defects in each layer of the material and the
feedback of this concentration on the thermal resistance of each layer.

To have a maximum simplicity, we consider a qz imposed on the system and reduce the equations
for q to

qz = −λ̃zz(c)∇zθ, (42)

i.e., we assume that the radial gradient of θ is negligible with respect to its longitudinal gradient along
z. In a steady state, the spatial distribution of defects inside a layer corresponding to ċ = 0 will be

c(z) = c(0)exp
[αzq

D
z
]

. (43)

We consider in more detail the equations for the defects as

Jr = −χ̃rz∇zθ − χ̃′rz∇zc− χ̃rr∇rc, (44)

Jz = −χ̃zz∇zθ − χ̃′zz∇zc− χ̃zr∇rc, (45)

where we assume that the radial gradient of concentrations is not necessarily negligible. The first terms
on the right hand side of Equations (44) and (45) describe the motion of point defects produced by the
heat flux, and the other two terms describe diffusion of defects in longitudinal and radial directions.

In terms of qz (i.e. expressing ∇zθ in terms of qz) and in the steady state (Jr = 0, Jz = 0),
Equations (44) and (45) may be rewritten as

χ̃rz

λ̃zz
qz = −Drz∇zc− Drr∇rc, (46)

χ̃zz

λ̃zz
qz = −Dzz∇zc− Dzr∇rc, (47)
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with Dij being the components of the tensorial diffusion coefficient of point defects. From Equations (46)
and (47), the spatial distribution of defects c(r, z) in the steady state under the presence of heat flux qz

may be obtained. In fact, Equations (46) and (47) describe the transversal and longitudinal effect of
heat flux on the point defects which are sketched in Figures 1 and 2. Thus, the defects will also flow
towards the lateral walls of the superlattice. Then, two effects will be competing in the modification
of thermal resistance in terms of the heat flux: an increase due to longitudinal accumulation; and a
decrease due to a radial accumulation near the walls. The examination of this situation is much more
complex than in Section 3.

6. Concluding Remarks

In this paper, we have worked out a simple transport equation to describe heat transfer in
systems with mobile defects. The heat flux modifies the spatial distribution of defects, and the defects
modify the thermal resistance of the layers and the interfaces, thus, influencing the heat flux itself.
This is also found, for instance, in heat transport in turbulent superfluid helium, where the heat flux
produces quantized vortices which contribute to the thermal resistance of the system [39]. In particular,
we have worked out a simplified model of how the effective thermal resistance of a layer of a thermal
superlattice may depend on q as a result of q inducing a motion of point defects and that the defects
are stopped at the interfaces. The effects found here could contribute to a relative stabilization of
the heat flux, by reducing the variation of q following from a variation of the boundary temperature.
Note that since qz > 0 as qz < 0 produce different nonequilibrium spatial distributions of the defects,
this will imply some heat rectification. Furthermore, we have considered a possible thermal transistor,
in which a transversal heat flux controls the thermal resistance through a spatial redistribution of
defects. This suggests a new way of achieving thermal transistors, besides the ways previously
suggested in the literature.

The effects proposed here could be reinforced by including temperature dependence of the
concentration-dependent contribution to thermal conductivity (second term of Equation (43)). If the
contribution of c is multiplied by an increasing function of temperature, the dependence of the thermal
resistance of the defect layer will increase in a stronger way with increasing heat flux.

It is also interesting to note that the different behavior of the interface with respect to heat flux and
defect flux breaks the Onsager reciprocity at a macroscopic level, though it remains valid at a microscopic
level. Indeed, in (23) we have assumed Onsager symmetry of the transport coefficients inside any layer
of the superlattice. Thus, a temperature gradient contributes to a defect flux, and a concentration gradient
contributes to a heat flux. However, since the interfaces allow a heat flux but not a defect flux through
them, imposing a temperature gradient will not allow a defect flux in the steady state.
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