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Indoxyl sulfate (IS) is a protein-bound uremic toxin resulting from the metabolism of
dietary tryptophan which accumulates in patients with impaired renal function, such as
chronic kidney disease (CKD). IS is a well-known nephrovascular toxin but little is known
about its effects on central nervous system (CNS) cells. Considering the growing interest
in the field of CNS comorbidities in CKD, we studied the effect of IS on CNS cells. IS
(15–60 µM) treatment in C6 astrocyte cells increased reactive oxygen species release
and decreased nuclear factor (erythroid-derived 2)-like 2 (Nrf2) activation, and heme
oxygenase-1 (HO-1) and NAD(P)H dehydrogenase quinone 1 expression. Moreover, IS
increased Aryl hydrocarbon Receptor (AhR) and Nuclear Factor-kB (NF-kB) activation in
these cells. Similiar observations were made in primary mouse astrocytes and mixed glial
cells. Inducible nitric oxide synthase and cyclooxygenase-2 (COX-2) expression, tumor
necrosis factor-α and interleukin-6 release and nitrotyrosine formation were increased
by IS (15–60 µM) in primary mouse astrocytes and mixed glial cells. IS increased AhR
and NF-kB nuclear translocation and reduced Nrf2 translocation and HO-1 expression
in primary glial cells. In addition, IS induced cell death in neurons in a dose dependent
fashion. Injection of IS (800 mg/kg, i.p.) into mice induced histological changes and
increased COX-2 expression and nitrotyrosine formation in thebrain tissue. Taken
together, our results show a significant contribution of IS in generating a neurotoxic
enviroment and it could also have a potential role in neurodegeneration. IS could be
considered also a potential therapeutical target for CKD-associated neurodegenerative
complications.

Keywords: indoxyl sulfate, neuroinflammation, oxidative stress, neurodegeneration, uremic toxins, chronic kidney
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INTRODUCTION

Neurodegenerative diseases have become a growing health
burden and, in our aging population, are often linked to
other comorbidities. Oxidative stress and neuroinflammation
contribute to the pathogenesis of neuronal degeneration (Guo
et al., 2002) and can cause cell membrane damage from lipid
peroxidation, changes in protein structure and function, due to
protein oxidation, and structural DNA damage, hallmarks of
several neurodegenerative diseases (Adams and Odunze, 1991;
Smith et al., 1994; Petersén et al., 1999; Frank-Cannon et al.,
2009). The central nervous system (CNS) is particularly sensitive
to oxidative stress, probably because of its high oxygen demand
and the presence of polyunsaturated fatty acids and low levels
of glutathione (GSH; Richardson et al., 1990; Roger et al.,
1997). Increasing reactive oxygen species (ROS) production can
exacerbate the expression of inflammatory mediators as detected
in patients with neurodegenerative diseases (Hsieh and Yang,
2013).

Chronic kidney disease (CKD) is characterized by a
progressive loss of renal function that, in its terminal phase,
shows signs and symptoms of uremic syndrome (Vanholder
et al., 2001). Patients with CKD have many comorbidities such
as immune disorders, with the coexistence of immunodeficiency
and immune activation, and neurological complications that
largely contribute to the morbidity and mortality of this
disease (Buchman et al., 2009; Krishnan and Kiernan, 2009;
Marzocco et al., 2010). CKD is frequently associated with
cognitive impairment and, among patients with terminal CKD
receiving haemodialysis, more than 85% have cognitive deficits
(Krishnan and Kiernan, 2009). Cognitive impairment in CKD
is also associated with a poorer clinical outcomes (Sehgal
et al., 1997; Kimmel et al., 1998; Murray and Knopman, 2010;
Radic et al., 2010). Patients with CKD are also at higher risk
of cognitive decline and even dementia (Seliger et al., 2004;
Wang et al., 2010). Causes of cognitive impairment in CKD are
multifactorial and they include cerebrovascular disease, renal
anemia, secondary hyperparathyroidism, dialysis disequilibrium,
and uremic toxins accumulation. Plasmatic levels of uremic
toxins increase as CKD progresses, and they are believed to be
the main cause of cognitive impairment (Krishnan and Kiernan,
2009). However, the exact role or mechanism of uremic toxins
in cognitive disorders has not been determined yet. One of
the most important uremic toxins is indoxyl sulfate (IS), a
protein-bound uremic toxin, which is not effectively eliminated
by dialysis. IS is a nephro-vascular toxin (Niwa, 2010) that causes
nephrotoxicity especially on tubular cells, inhibits proliferation

Abbreviations: AhR, Aryl hydrocarbon Receptor; CKD, chronic kidney
disease; CNS, central nervous system; COX-2, cyclooxygenase-2; DCF,
2′,7′-dichlorofluorescein; DPI, diphenyleneiodonium; ELISA, enzyme-
linked immuno sorbent assay; EP, endogenous peroxidase; H2DCF-DA,
2′,7′-dichlorofluorescin-diacetate; H2O2, hydrogen peroxide.; HO-1, heme
oxygenase-1; HRP, horseradish peroxidase; IL-6, interleukin-6; iNOS, inducible
nitric oxide synthase; IS, indoxyl sulfate; LDH, lactate dehydrogenase; NAC,
N-acetylcysteine; NF-kB, nuclear factor-kB; NQO1, NAD(P)H dehydrogenase
quinone 1; Nrf2, nuclear factor (erythroid-derived 2)-like 2; PBS, phosphate buffer
saline; PDTC, pyrrolidine dithiocarbamate; ROS, reactive oxygen species; TNF-α,
tumor necrosis factor-α.

of endothelial cells and is an inducer of free radicals (Dou
et al., 2007). Moreover, it has been reported that IS enhances
inflammatory response and ROS in LPS-stimulated macrophages
(Adesso et al., 2013). Among various uremic toxins, IS is a
likely candidate capable to trigger cerebral dysfunction in
kidney disease (Watanabe et al., 2014). Therefore, we chose
to investigate the effects of IS on glial cells and the impact
on neuronal survival, all primary aspects involved in CNS
homeostasis.

MATERIALS AND METHODS

Reagents
All reagents and compounds, unless stated otherwise were
purchased from Sigma Chemicals Company (Sigma, Milan,
Italy).

Cell Culture
In Vitro Studies
C6 glioma cell line was obtained from American Type Culture
Collection (ATCC; Manassas, VA, United States). C6 were
cultured in DMEM, 10% FBS (mL/L), penicillin/streptomycin
(100 units/0.1 mg/mL) and 2 mML-glutamine at 37◦C in 5%
CO2 atmosphere and passaged at confluence using a solution of
0.025% trypsin and 0.01% EDTA. This cell line was originally
derived from rat brain tumors and have oligodendrocytic,
astrocytic and neuronal properties (Benda et al., 1968; Parker
et al., 1980). C6 cells are widely used as an astrocyte-like cell line
(Quincozes-Santos et al., 2009).

Ex Vivo Studies: Primary Astrocytes, Microglia and
Neurons
Cultures of mixed glial cell from cortex were prepared from
postnatal days 1–2 mouse pups (Female C57BL/6 mice; Harlan
Laboratories, Udine, Italy). Mice were housed under specific
pathogen-free conditions and fed with standard chow diet at
the University of Messina, Department of Chemical, Biological,
Pharmaceutical and Environmental Sciences. The animal
experiments were performed according protocols following
the Italian and European Community Council for Animal
Care (DL. 26/2014). Cerebral cortices were excised, meninges,
olfactory bulb and thalami removed, and the hemispheres
were transferred to petri dishes containing HBSS and were
cut into four small pieces. Brains were centrifuged for 1 min
at 200–300 g. The supernatant was removed and the pellet
was incubated with HBSS/10 mM HEPES buffer, 0.5 mg/ml
Papain, 10 µg DNAse solution for 25 min at 37◦C. The
extracted cells were centrifuged for 5 min at 200–300 g and
the pellet was resuspend in BME medium (10% FBS and
0.5% penicillin/streptomycin). The cell suspension was filtered
through a 70-µm cell strainer to remove debris. The extracted
cells were suspended in BME medium (10% FBS and 0.5%
penicillin/streptomycin) in 75 cm3 flasks. The medium was
changed after 48 h and then twice per week (Gelderblom et al.,
2012). After 20 days, in some flasks, to obtain only astrocytes
in the culture, microglia were dislodged using an orbital shaker
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(200 rpm for 1 h, 37◦C). Moreover, in order to further remove
residual microglia from the remaining cell monolayers, it was
used a 60-min exposure (50 mM) to the lysosomotropic agent
Leu-Leu-OMe (<5% microglia, referred to some microglial
cells not dethached from the treatments, was deteced by
flow cytometry using anti-Iba1 as antibody; Marinelli et al.,
2015).

Dissociated cell cultures of mouse hippocampus and cortex
were established from day 16 C57B/6J mouse embryos, as
previously described (Fann et al., 2013). Hippocampal and
cortical neurons were plated in 35, 60, or 100-mm diameter
polyethylenimine-coated plastic dishes. Primary neurons were
maintained in Neurobasal medium containing 25 mM of
glucose, B-27 supplement (Invitrogen), 0.001% gentamycin
sulfate, 2 mML-glutamine, and 1 mM HEPES (pH 7.2) at in 5%
CO2 atmosphere 37◦C. Approximately 95% of the cells in such
cultures were neurons and the remaining cells were astrocytes.

Cell Treatment
C6 cells and primary astrocytes and mixed glial cell cultures were
plated 24 h before the experiments. The cellular medium was
then replaced with fresh medium and cells were treated with IS
(15–60 µM) for 24 h in all experiments, except for NF-kB and
Nrf2 evaluation and AhR activation, where IS was added to cells
for 20 min and 1 h, respectively.

Primary hippocampal and cortical neuronal cultures were
plated for 2 weeks before the experiments. Then the cells were
treated with IS (15–60 µM) for 24 h. For the experiments, we
considered the list of uremic toxins provided by the European
Uremic Toxin Work group (Vanholder et al., 2003) and thus used
the IS concentration range found in the cerebrospinal fluid of
CKD patients (Hosoya and Tachikawa, 2011).

Measurement of ROS
Reactive oxygen species production was evaluated by the probe
H2DCF-DA as previously reported (Pepe et al., 2015). H2DCF,
in presence of ROS, is rapidly oxidized to the highly fluorescent
DCF. C6 (3.0 × 105 cells/well) and primary astrocytes and
mixed glial cell cultures (1.5 × 105 cells/well) were plated
into 24-well plates and then IS (15–60 µM) was added. After
24 h cells were collected, washed with PBS and incubated
in PBS containing H2DCF-DA (10 µM) at 37◦C. Cellular
fluorescence was evaluated using fluorescence-activated cell
sorting analysis (FACSscan; Becton Dickinson) and elaborated
with Cell Quest software. In some experiments, in C6 cells,
either DPI (10 µM), that has frequently been used to inhibit
ROS production mediated by flavoenzymes, or NAC (2 mM),
a free radicals scavenger as well as a major contributor to
maintenance of the cellular GSH, were added 1 h before IS. In
other experiments, in C6 cells, PDTC (200 µM) or CH-223191
(1 µM), a ligand-selective antagonist of the AhR, were added 1 h
before IS.

Immunofluorescence Analysis with
Confocal Microscopy
For immunofluorescence assay, C6 cells (3.0× 105/well), primary
astrocytes and mixed glial cells (2.0 × 105/well) were seeded on

coverslips in 12-well plate and treated for 1 h with IS (30 µM). In
some experiments with C6 cells, DPI (10 µM) and NAC (2 mM)
were added 1 h before IS. In other experiments, CH-223191
(1 µM), was added 1 h before IS to C6 cells. Then cells were
fixed with 4% paraformaldehyde in PBS and permeabilized with
0.1% Triton X-100 in PBS. After blocking with BSA and PBS,
cells were incubated with rabbit anti-Nrf2 antibody (Santa Cruz
Biotechnologies; sc-722; used at diluition 1:250), with mouse
anti-AhR antibody (Abcam; ab2769; used at diluition 1:250)
or with rabbit anti-p65 antibody (Santa Cruz Biotechnologies;
sc-372; used at diluition 1:250). The slides were then washed
with PBS for three times and fluorescein-conjugated secondary
antibody (Immuno Reagents; used at diluition 1:2000) was added
for 1 h. DAPI was used for counterstaining of nuclei. Coverslips
were finally mounted in mounting medium and fluorescence
images were caught using the Laser Confocal Microscope (Leica
TCS SP5) as previously reported (Del Regno et al., 2015).

HO-1, NQO1, SOD, iNOS, COX-2, and
Nitrotyrosine Detection by
Cytofluorimetry
C6 cells (5.0 × 104/well), primary astrocytes and mixed glial
cells (3.5 × 104/well) were seeded on 96-well plate and treated,
after 24 h, with IS (15–60 µM). After 24 h cells were collected,
washed with PBS and then incubated in Fixing Solution for
20 min and then incubated in Fix Perm Solution for 30 min,
at 4◦C. Anti-HO-1 antibody (Santa Cruz Biotechnologies;
sc-10789; 1:100), NQO1 antibody (Santa Cruz Biotechnologies;
sc-376023; 1:100), superoxide dismutase (SOD) antibody
(Santa Cruz Biotechnologies; sc-11407; 1:100), anti-iNOS (BD
Transducion Laboratories; 610431; 1:100) antibody, anti-COX-2
(BD Transducion Laboratories; 610203; 1:100) antibody and
anti-nitrotyrosine antibody (Millipore; 06-284; 1:100) were
added to C6 cells, primary astrocytes and mixed glial cells.
The secondary antibody (Immuno Reagents; used at diluition
1:100) was added in Fix Perm Solution and cells were evaluated
using a fluorescence-activated cell sorting (FACSscan; Becton
Dickinson) and elaborated with Cell Quest software as previously
reported (Adesso et al., 2013).

TNF-α and IL-6 Determination
Tumor necrosis factor-α and IL-6 concentration in the
supernatant of cultured primary astrocytes and mixed glial cells
stimulated for 24 h with IS (15–60 µM) were performed by an
ELISA assay. For this we used commercially available kits for
murine TNF-α and IL-6 (e-Biosciences, San Jose, CA, United
States) as previously reported (Marzocco et al., 2015).

Cytotoxicity Assay on Primary Cortical
and Hippocampal Neuronal Cultures
The cytotoxic potential of IS (15–60 µM) on primary neuronal
cultures after 3 h of treatment was performed using the
Cytotoxicity Detection KitPLUS LDH (Roche) according to
the manufacturer’s instructions. This assay was based on the
evaluation of LDH activity. In the evaluation three controls are
included: the first was the background control (assay medium),
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the second was low control (untreated cells), and the last was
the high control (maximum LDH release). To determine the
experimental absorbance values, the average absorbance values of
the samples and controls were calculated and subtracted from the
absorbance values of the background control. The percentage of
cytotoxicity was determined using the equation:

Cytotoxicity (%) = (exp. value − low control)/

(high control− low control) × 100.

In Vivo Studies
Female C57BL/6 mice (6–8 weeks; Harlan Laboratories, Udine,
Italy) were fed a standard chow diet and housed under specific
pathogen-free conditions at the University of Messina Animal
Care Review Board approved the study. The animal experiments
were performed following the regulations in Italy (D.M. 116192),
Europe (O.J. of E.C. L 358/1 12/18/1986), United States (Animal
Welfare Assurance No. A5594-01, Department of Health and
Human Services, United States).

IS was dissolved in PBS and it was injected into mice
(800 mg/kg, i.p. given once) (Ichii et al., 2014). After 3 h of
treatment, animals were sacrified and kidneys, brains and serum
were collected and stored for the analysis.

IS Serum Evaluation by HPLC
IS levels in mice serum were evaluated according the methods of
Zhu et al. (2011) as previously reported (Marzocco et al., 2013).

Serum Nitrite/Nitrate, TNF-α, and IL-6
Evaluation
Nitrite/nitrate, TNF-α, IL-6 release was evaluated on serum
samples of mice treated with IS (800 mg/kg) for 3 h. Serum
nitrite/nitrate (NOx) concentration is a marker of NO levels.
For the evaluation, serum samples were incubated with FAD
(50 µm), NADPH (1 mm), and nitrate reductase (0.1 U/mL).
The samples were then incubated with sodium pyruvate
(10 mm) and LDH (100 U/mL) for 5 min. The total NOx
concentration was measured by Griess reaction adding 100 µL of
Griess reagent (0.1% naphthylethylenediamine dihydrochloride
in H2O and 1% sulfanilamide in 5% conc. H2PO4; 1:1 v/v)
to 100 µL of serum treated samples, each in triplicate. The
optical density at 550 nm (OD550) was measured at 540 nm
in a microplate reader Titertek (Dasit, Cornaredo, Milan,
Italy) and the NOx concentrations (µM) in the samples were
calculated from a standard curve of sodium nitrite (Bianco et al.,
2012).

TNF-α and IL-6 concentration in serum mice was assessed by
an ELISA (e-Biosciences, San Jose, CA, United States).

Histology and Immunohistochemistry
For the histological examination, kidney and brain from
sacrificed mice were immediately incised and fixed in 10%
formalin. For the morphological evaluation paraffin-embedded
4 µm sections were stained with haematoxylin and eosin (H&E).
For the immunohistochemistry analysis, 4-µm-thick sections of
the brain and kidney tissue were collected on silane-coated glass

slides (Bio-Optica, Milan, Italy). Immunohistochemical stain was
performed using HRP conjugated antibodies. Antigen retrieval
pretreatments were performed using a HIER citrate buffer pH
6.0 (Bio-Optica, Milan, Italy) for 20 min at 98◦C. EP activity
was quenched with 3% H2O2 in methanol and sections were
treated with a blocking solution (MACH1, Biocare Medical LLC,
Concord, CA, United States) for 30 min each. Slides were then
incubated overnight at 4◦C with primary antibody diluted in PBS
(0.01 M PBS, pH 7,2).

The primary antibodies used were: a mouse anti-COX-2 [BD
Transduction Laboratories used at dilution 1:250; a rabbit anti-
nitrotyrosine purchased from Millipore (Temecula, CA) used at
dilution 1:100].

Antigen-antibody binding was detected by a HRP polymer
detection kit (MACH1, Biocare Medical LLC, Concord, CA,
United States). Antibody deposition was visualized using the
DAB chromogen diluted in DAB substrate buffer and the slides
were counterstained with haematoxylin. Between all incubation
steps, slides were washed two times (5 min each) in PBS. For
each tissue section, a negative control was performed using an
irrelevant mouse or rabbit Ab.

Data Analysis
Data are presented as standard error of the mean (SEM) showing
the combined data of at least three independent experiments
each in triplicate. Statistical analysis was performed by analysis
of variance test, and multiple comparisons were made by
Bonferroni’s test. A P-value lower than 0.05 was considered
significant.

RESULTS

IS Enhanced ROS Release in C6 Cells
In order to assess the effect of IS on oxidative stress in C6
cells, we evaluated intracellular ROS production. Our results
indicated that IS at all tested concentrations (15–60 µM),
induced a significant and concentration-dependent increase in
ROS production (P < 0.001 vs. control; Figure 1A). We examined
ROS production also in presence of DPI (10 µM) and NAC
(2 mM). As shown in Figure 1A, DPI and NAC significantly
inhibited ROS release induced by IS (P < 0.001 vs. IS alone,
Figure 1A).

IS Reduced Nrf2 Nuclear Translocation in
C6 Cells
Following its activation, Nrf2 translocates into the nucleus and
regulates cell protective gene expression. We labeled Nrf2 with a
green fluorescence to track the influence of IS (30 µM) added for
1 h. In presence of IS, we observed a reduction in Nrf2 nuclear
translocation (Figure 1B). To study the mechanisms of IS-
induced reduction, we also examined Nrf2 nuclear translocation
after treatment with IS (15–60 µM) in the presence of DPI and
NAC. As shown in Figure 1B, NAC more than DPI increased
Nrf2 nuclear translocation compared to IS alone (P < 0.01 vs.
IS, Figure 1B).
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FIGURE 1 | Effect of IS (15–60 µM) on ROS formation (A), evaluated by means of the probe H2DCF-DA, in C6 cells in presence of DPI and of NAC. Cellular
fluorescence was evaluated using fluorescence-activated cell sorting analysis (FACSscan; Becton Dickinson) and elaborated with Cell Quest software. Values are
expressed as mean fluorescence intensity (n = 12). Effect of IS (30 µM) on Nrf2 nuclear translocation in C6 cells in presence of DPI and NAC (B). Nuclear
translocation of Nrf2 was detected using immunofluorescence confocal microscopy. Scale bar, 10 µm. Blue and green fluorescences indicate localization of the
nucleus (DAPI) and Nrf2, respectively. Analysis was performed by confocal laser scanning microscopy. Effect of IS (15–60 µM) on HO-1 (C), NQO1 (D), and SOD (E)
expression in C6 cells. Cellular fluorescence was evaluated using fluorescence-activated cell sorting analysis (FACSscan; Becton Dickinson) and elaborated with Cell
Quest software. Effect of IS (30 µM) on AhR nuclear translocation in presence of DPI in C6 cells (F). Nuclear translocation of AhR was detected using
immunofluorescence confocal microscopy. Scale bar, 10 µm. Blue and green fluorescences indicate localization of nucleus (DAPI) and AhR, respectively. Analysis
was performed by confocal laser scanning microscopy and values are expressed as mean fluorescence intensity (n = 12). Effect of IS (15–60 µM) on ROS formation
(G), evaluated by means of the probe H2DCF-DA, in C6 cells in presence of CH-223191. Values are expressed as mean fluorescence intensity (n = 9). ◦◦◦, ◦◦, and
◦denote P < 0.001, P < 0.01, and P < 0.05 vs. control. ∗∗∗ denotes P < 0.001, vs. IS alone.
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FIGURE 2 | Effect of IS (30 µM) on p65 nuclear translocation in C6 cells in presence of the antagonists CH-223191, DPI and NAC in C6 cells (A). Nuclear
translocation of NF-kB p65 subunit was detected using immunofluorescence confocal microscopy. Scale bar, 10 µm. Blue and green fluorescences indicate
localization of the nucleus (DAPI) and p65, respectively. Analysis was performed by confocal laser scanning microscopy. Effect of IS (15–60 µM) on ROS formation
(B), evaluated by means of the probe H2DCF-DA, in C6 cells in presence of NF-kB-inhibitor PDTC. Values are expressed as mean fluorescence intensity (n = 9).
◦◦◦ denotes P < 0.001 vs. control. ∗∗∗ denotes P < 0.001 and ∗ denotes P < 0.05 vs. IS alone.

IS Reduced HO-1, NQO1, and SOD
Expression in C6 Cells
Enzymes dealing with oxygen radicals are HO-1, NQO1, and
SOD. In oder to assess their expression profile in the presence
of IS, we treated C6 cells with IS (15–60 µM). After 24 h, we
observed a decrease in HO-1 and NQO1 expression (P < 0.05 vs.
control for HO-1, P < 0.01 vs. control for NQO1; Figures 1C,D).

A weak inhibition by IS was observed on SOD expression
(Figure 1E).

IS Induced AhR Activation in C6 Cells
Aryl hydrocarbon Receptor (AhR) is the believed binding partner
of IS. Therefore, we investigated AhR activation, through a green
fluorescent labeling, in the presence of IS (30 µM) and DPI. After
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FIGURE 3 | Effect of IS (15–60 µM) on ROS formation (A), evaluated by means of the probe H2DCF-DA, in astrocytes and mixed glial cells. Cellular fluorescence
was evaluated using fluorescence-activated cell sorting analysis (FACSscan; Becton Dickinson) and elaborated with Cell Quest software. Effect of IS (15–60 µM) on
nitrotyrosine formmation (B) in astrocytes and mixed glial cells. Cellular fluorescence was evaluated using fluorescence-activated cell sorting analysis (FACSscan;
Becton Dickinson) and elaborated with Cell Quest software. Effect of IS (30 µM) on Nrf2 nuclear translocation in astrocytes and mixed glial cells (C). Nuclear
translocation of Nrf2 was detected using immunofluorescence confocal microscopy. Scale bar, 10 µm. Blue and green fluorescences indicate localization of nucleus
(DAPI) and Nrf2, respectively. Analysis was performed by confocal laser scanning microscopy. Effect of IS (15–60 µM) on HO-1 expression (D) in astrocytes and
mixed glial cells. Cellular fluorescence was evaluated using fluorescence-activated cell sorting analysis (FACSscan; Becton Dickinson) and elaborated with Cell Quest
software. Values are expressed as mean fluorescence intensity (n = 9). ◦◦◦, ◦◦, and ◦denote P < 0.001, P < 0.01, and P < 0.05 vs control. ∗∗ and ∗ denote P < 0.01
and P < 0.05 vs. astrocytes.

1 h nuclear presence of AhR was increased after IS treatment and
the IS effect could partially be blocked by DPI (Figure 1F).

To evaluate the possible involvement of AhR in ROS release
induced by IS, we analyzed ROS production in presence of
the AhR inhibitor: CH-223191 (1 µM). CH-223191 significantly
reduced IS induced ROS production (P < 0.001 vs. IS;
Figure 1G).

IS Induced p65 NF-kB Nuclear
Translocation in C6 Cells
Nuclear factor-kB p65 was labeled with a green fluorescence to
track the effect of IS (30 µM) on NF-kB activation. p65 nuclear
traslocation resulted increased after IS treatment (Figure 2A).

The IS-induced p65 NF-kB nuclear translocation was
inhibited by DPI and NAC and to a lesser extent by CH-223192
(Figure 2A). To evaluate the possible involvement of NF-kB
in ROS release induced by IS, we analyzed ROS production in

presence of a NF-kB inihibitor: PDTC (200 µM; Figure 2B).
PDTC significantly reduced IS induced ROS production
(P < 0.05 vs. IS alone; Figure 2B).

IS Influenced Oxidative Estress and
Pro-inflammatory Parameters in Primary
Astrocytes and Mixed Glial Cell Cultures
Primary astrocytes and mixed glial cell cultures are a less artificial
cell culture system. In these cells IS (15–60 µM) also induced a
significant ROS production (P < 0.001 vs. control; P < 0.05 vs.
astrocytes alone; Figure 3A).

IS led to an increase of nitrotyrosine formation (P < 0.05
vs. control, P < 0.05 vs. astrocytes alone; Figure 3B) and
to a reduction of Nrf2 translocation (Figure 3C) and HO-
1 expression (P < 0.05 vs. control; Figure 3D). In primary
mixed glial cell cultures the response was much more prominent
indicating the contribution of the microglial cells. Comparable
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FIGURE 4 | Effect of IS (30 µM) on AhR (A) and p65 (B) nuclear translocation
in astrocytes and mixed glial cells. Nuclear translocation of AhR and p65 was
detected using immunofluorescence confocal microscopy. Scale bar, 10 µm.
Blue and green fluorescences indicate localization of nucleus (DAPI) and AhR
and p65, respectively. Analysis (n = 9) was performed by confocal laser
scanning microscopy.

to the C6 cell lines, IS (30 µM) added for 1 h enhanced nulcear
translocation of AhR and p65 (Figures 4A,B).

Moreover under the same experimental conditions, we
observed a significant increase in iNOS and COX-2 expression
in astrocytes and mixed glial cell cultures treated with IS
(15–60 µM; P < 0.001 vs. control and P < 0.01 vs. astrocytes
alone; Figures 5A,B). IS treatment also induced a significant
production of TNF-α in astrocytes and mixed glial cell cultures
and IL-6 in mixed glial cell cultures (P < 0.05 vs. control and
P < 0.05 vs. astrocytes alone; Figures 5C,D).

IS Increased Cellular Death in Neuronal
Cultures
In order to investigate the effect of IS on neuronal death we used
cortical and hippocampal neuron cultures. Our results showed

FIGURE 5 | Effect of IS (15–60 µM) on iNOS (A), COX-2 (B) expression by
astrocytes and mixed glial cells. Cellular fluorescence was evaluated using
fluorescence-activated cell sorting analysis (FACSscan; Becton Dickinson) and
elaborated with Cell Quest software. Values are expressed as mean
fluorescence intensity (n = 9). Effect of IS (15–60 µM) TNF-α (C) and IL-6 (D)
release by astrocytes and mixed glial cells (n = 9). Cyokine release was
assessed by ELISA assay and expressed as pg/ml (n = 9). ◦◦◦, ◦◦, and
◦denote P < 0.001, P < 0.01, and P < 0.05 vs. control. ∗∗∗,∗∗, and ∗ denote
P < 0.001, P < 0.01, and P < 0.05 vs. astrocytes.

that both, cortical and hippocampal neurons, are susceptible
to IS-induced neuronal cell death in a dose-dependent fashion
(P < 0.05 vs. control, P < 0.005 vs. hippocampal neurons;
Figure 6).

IS enhanced NO, TNF-α, and IL-6 Levels
in Mice Serum and Increased COX-2 and
Nitrotyrosine Expression in Brain and
Kidney
To match our in vitro findings with the in vivo situation,
we injected mice with IS (800 mg/Kg) which resulted in a
significantly higher IS serum concentration (79.66 ± 1.67 µM
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FIGURE 6 | Effect of IS (15–60 µM) on cortical and on hippocampal neuronal cell viability. Values are expressed as percentage of cytotoxicity (n = 9). ◦◦◦and ◦

denote P < 0.001 and P < 0.05 vs. control, # denotes P < 0.05 vs. hippocampal neurons.

vs. 0.55 ± 0.00 µM, P < 0.001 vs. control). Total nitrite serum
increased significantly in IS-treated mice compared to control
mice (89.76 ± 9.98 vs. 55.99 ± 9.69 µM, P < 0.05). TNF-α
and IL-6 evaluation indicated that IS induced a weak increase in
TNF-α serum levels (18.91 ± 1.77 vs. 17.43 ± 2.02 of control
group; P = NS) but a significant increase if IL-6 serum levels
(23.99± 3.38 vs. 12.93± 2.48 of control group; P < 0.05).

Our results indicate a COX-2 immunoreactivity in a subset of
neurons in the brain tissue in normal as well as treated mice.
In the treated mice, more cells showed an immunoreactivity
which extended to degenerating neurons and blood vessels. Also
in the kidney, we observed a strong COX-2 staining primarily
in the glomeruli (Figure 7). Similarily, the anti-nitrotyrosine
antibody stained neurons of the treated mice, while we saw
only weak staining in the control group. Also in the kidney the
immunostaining of the glomeruli was stronger in the treated mice
compared to control (Figure 7).

IS Enhanced Not Only Kidney Cell
Damage but Also Neuronal Cell Damage
According to previous observations (Ichii et al., 2014), we found
atrophic glomeruli with thickening of the Bowman’s capsule and
mesangial matrix and aspects of segmental solidification after IS
treatment (Figure 7). The tubular epithelial cells showed granule-
fatty degeneration and sometimes vacuoles and were arranged
around amorphous and hypereosinophilic protein aggregates
(“casts”; Figure 7). We observed interstitial edema, dilatation of
renal arterioles and small hemorrhagic areas (Figure 7).

We could also observed IS effects in the brain. Histological
evaluation showed some neurons showing cytoplasm angular
margins, with eosinophilic cytoplasm and pyknotic nuclei
(neuronal necrosis). Around the necrotic neurons were slightly
hyperplastic glial cells (satellitosis).

DISCUSSION

In this study, we can provide evidence that IS can directly
influence glial function and can cause neuronal damage,

implicating IS directly in the pathways by which CKD influences
cognitive functions. Cognitive impairment of CKD patients is one
of the main complications despite pharmacological and dialytic
treatment (Vanholder et al., 2001; Raff et al., 2008; Di Micco
et al., 2012). We were able to show that IS induces oxidative
stress and inflammatory mediators in glial cells. Oxidative stress
and inflammation are essential for defense against injuries, but,
if not properly regulated, they are capable of initiating various
deleterious effects (Libetta et al., 2011). Oxidative stress increases
together with the progression of CKD and it correlates with
the level of renal function (Popolo et al., 2013) and, therefore,
also with IS levels. In addition, the antioxidant systems are also
compromised in CKD patients and worsen with the progression
of renal failure (Morena et al., 2002). Thus, the control of
inflammation and oxidative stress is of particular importance in
uremic syndrome.

Our observations point to specific pathways underlying the
oxidative stress and inflammation induced by IS in glial cells:
(i) NADPH oxidase and glutathione levels, (ii) AhR and NF-kB
activation, (iii) a reduced antioxidant response Nrf2-mediated,
(iv) activation of pro-inflammatory mediators, and (v) alteration
in glial proliferation/cell cycle. Moreover, we find a direct link
between IS and neuronal damage linking IS to neurotoxicity.
We found that IS induced a significant and concentration-related
ROS release from cultured C6 astrocytes, primary astrocytes and
to an even greater extent in mixed glial cell culture. Mechanistic
studies revealed that both NADPH oxidase, as evaluated by
the presence of DPI, and GSH homeostasis, as evaluated by
NAC addition, are involved in IS-induced ROS release. These
results are in accordance with previous studies reporting that IS
interfered both with pro- and anti-oxidant factors in endothelial
cells (Dou et al., 2007; Yu et al., 2011a), vascular smooth muscle
cells (Mozar et al., 2011), kidney cells (Shimizu et al., 2013),
and macrophages (Adesso et al., 2013). It has been also reported
that NAD(P)H oxidase levels increased in CKD patients and in
experimental models of renal insufficiency (Fortuno et al., 2005;
Castilla et al., 2008). IS is a potent AhR ligand (Schroeder et al.,
2010). In the brain, AhR is ubiquitously expressed including
the cerebral cortex, hippocampus, and cerebellum (Lin et al.,
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FIGURE 7 | Histologic and immunohistochemical findings of brain and
kidneys in treated mice (IS column). (A) (1) Brain; normal tissue from control
mouse. (2) Brain; neuronal pyknosis associated with mild satellitosis. (3)
Kidney; normal tissue from control mouse. (4) Kidney; Atrophic glomeruli and
severe vacuolar degeneration of tubules with proteinaceous amorphous
material and hypereosinophilic concretions within lumen (arrows); Hematoxylin
and Eosin (HE) stain. (B) (1) Brain; normal tissue from control mouse. (2) Brain;
strong immunoreactivity for COX-2 antibody in degenerating neurons (arrows)
from treated mouse. (3) Kidney; normal tissue from control mouse. (4) Kidney;
strong immunoreactivity for COX-2 antibody in blood vessels of the glomeruli
(arrows) from treated mouse. Immunohistochemistry (HRP-method). (C) (1)
Brain; normal tissue from control mouse. (2) Brain; the immunoreactivity with
the anti-nitrotyrosine antibody is intensely detected in the neurons of a treated
mice (arrows). (3) Kidney; normal tissue from control mouse. (4) Kidney; strong
immunoreactivity in blood vessels of an atrophic glomerulus (arrow) from
treated mouse. Immunohistochemistry (HRP-method). Data are from two
independent experiments and represent mean ± SEM (n = 5–10 per group).

2008). It has been implicated in sensorimotor and cognitive
dysfunctions caused by oxidative stress or excitotoxicity (Kim
and Yang, 2005; Williamson et al., 2005; Lin et al., 2008). Our
results indicated that IS activates AhR in astrocytes which likely
promoted further oxidative stress. This result fits with data
reporting an AhR-mediated oxidative stress pathway in human
vascular endothelial cells (Watanabe et al., 2013). Interestingly,
our data gives further insight in IS-induced AhR-ROS pathway

in astrocytes since treatment with IS in presence of DPI is able
to reduce AhR activation. Here we report that IS also activated
NF-κB and previous studies indicated a reciprocal interaction
between NF-κB and Nrf2 (Bolati et al., 2013). IS-induced ROS
is able to induce NF-kB activation. This activation could, in turn,
be responsible for the Nrf2 downregulation (Bolati et al., 2013),
because the interaction of p65 with Keap1 promotes reduction
of Nrf2 protein level through Nrf2 ubiquitination (Yu et al.,
2011b). Moreover, the upregulation of p53 expression induced
by IS-induced NF-κB activation is involved in the suppression
of Nrf2 mRNA expression (Faraonio et al., 2006). Our data
indicate a cross-talk between ROS and NF-kB because, DPI and
NAC treatment were able to reduce NF-kB activation and NF-kB
inhibition was able to interfere with ROS release in astrocytes.
Nrf-2 is a transcription factor responsible for the regulation
of the cellular redox balance and protective antioxidant and
phase II enzymes (Kensler et al., 2007). Nrf2 binding to the
antioxidant response element (ARE) induced the regulation of
some anti-oxidant proteins such as HO-1 and NQO1 (Kansanen
et al., 2013). We found that IS also reduced HO-1 and NQO1
expression, thus further contributing to a decrease of antioxidant
defenses and to oxidative stress-induced damage in CNS cells.

Astrocytes are the most abundant glial cells in the CNS and
they have a number of important physiological properties related
to the homeostatic control of the extracellular environment.
Astrocyte cells provide structural, trophic, and metabolic support
to neurons, modulate synaptic activity and are involved in
multiple brain functions contributing to neuronal development.
Moreover, astrocytes actively participate in processes triggered
by brain injuries, aimed at repairing brain damage (Vernadakis,
1996; Marchetti, 1997). It has been recently reported that
astrocytes contribute actively to various forms of dementia
(Rodríguez et al., 2009) and disturbances in the complex neuron–
glia interaction are increasingly recognized as an important
pathophysiological mechanism in a wide variety of neurological
disorders including neurodegeneration (Erol, 2010).

In response to a variety of stimuli and pathological
events, astrocytes and microglia become activated. Microglia,
activated earlier than astrocytes, promotes astrocytic activation
by releasing inflammatory mediators and ROS. On the other
hand, activated astrocytes facilitate the activation of distant
microglia, and in some cases also inhibit microglial activities
(Tremblay et al., 2011; Kingwell, 2012; Liu et al., 2012). Thus,
atrocytes–microglia interactions are important in regulating both
physiological and pathological conditions. We could demonstrate
that in mixed glial cell cultures stimulation with IS resulted in
higher levels of ROS and proinflammatory mediators.

Activated microglia and astrocytes also release a variety of
cytokines, chemokines, and toxic factors, such as TNF-α, IL-6,
and NO, all of which may lead to neuronal toxicity and result
in the aggressive neuronal apoptosis, that has been reported as
the most crucial event in neuronal loss of neurological diseases
(D’Amelio et al., 2010; Allaman et al., 2011; Heneka et al., 2015;
Varley et al., 2015). In this study, we observed that IS significant
increases in astrocytes and mixed glial cells cytokines production
and of pro-inflammatory enzymes as iNOS and COX-2 that,
together with oxidative stress conditions can influence neuronal
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death, involved in neurodegeneration. Moreover, we observed
that IS increased neuronal cell death in cortical and hippocampal
neurons thus supporting its effect in neuronal loss.

Taken together, we can show that the AhR is important for
the IS induced activation of NF-kB, ROS and pro-inflammatory
cytokine production, and downregulation of cell protective
factors such as Nrf2, HO-1 or NQO1 in glial cells. Some of these
pathways can be specifically blocked. Evidences of IS-induced
effects on CNS are here supported also by in vivo experiments.
IS induced histological brain alterations and the expression of
oxidative stress and inflammatory markers, such as nitrotyrosine
and COX-2. Until now, there was little information about the
potential of IS on SNC cells. Taken together, our results highlight
the effect of IS on CNS homeostasis. This study adds to hypothesis
that IS significantly contributes to neurological complications
observed in CKD, and that its levels could be not only a marker of
disease progression but also a pharmacological target in cognitive
dysfunction observed in CKD.
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