
Therapeutic Advances in Medical Oncology

journals.sagepub.com/home/tam 1

Ther Adv Med Oncol

2018, Vol. 10: 1 –12

DOI: 10.1177/ 
1758835918793105

© The Author(s), 2018.  
Article reuse guidelines:  
sagepub.com/journals-
permissions

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License  
(http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission 
provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

Immunotherapy for Lung Cancer: 
Progress, Opportunities and Challenges
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Introduction
Recent advances in cancer immunotherapy have 
been achieved with antibodies that inhibit 
immune checkpoint receptors on immune cells 
and tumor cells, mainly programmed-cell death 1 
(PD-1), its ligand PD-L1 and cytotoxic T lym-
phocyte-associated molecule-4 (CTLA-4).1 
However, most cancer patients do not respond to 
single checkpoint inhibition.2–4 Among the rea-
sons is the lack of tumor infiltration by cytotoxic 
CD8+ T-cells.5 Non-T-cell-infiltrated tumors 
(‘cold tumors’) probably require the combination 
of checkpoint inhibitors with other therapies 
designed to attract these effector cells into the 
tumor microenvironment.

The immune system has two arms, (i) the innate 
immune arm that is rapidly activated after an 
appropriate stimulus but lacks antigen-specificity 
and memory, and (ii) the adaptive immune 
response that requires time to appear but is anti-
gen-specific and long-lasting.6 Both arms of the 
immune system are intimately linked such that the 
innate arm provides the conditions for an efficient 
activation of the adaptive response (Figure 1).

Elements of the innate defense system are physi-
cal barriers, soluble factors such as complement 
proteins, interferons (IFNs) and IFN-stimulated 
proteins, and immune cells such as dendritic 
cells, macrophages, neutrophils and natural killer 

(NK) cells. The adaptive arm of the immune sys-
tem comprises T and B lymphocyte subpopula-
tions that recognize pathogens in an antigen- 
specific way via divergent T-cell receptors and 
B-cell receptors, respectively. Among the latter 
are CD4+ T-helper and T-regulatory cells 
(Tregs), cytotoxic CD8+ T-cells, B-cells and 
antibody-producing plasma cells.6

Several virus infections including Papilloma 
viruses, Merkel cell polyomavirus, and hepatitis B 
and C viruses can induce tumors in humans. 
Interestingly, such tumors that are linked to virus 
infections seem to respond better to checkpoint 
inhibitors than tumors that are not virus-linked.7,8 
The reason for this seems related to a more acti-
vated innate immune response.9–16 Thus, like in 
virus infections, the innate immune system prob-
ably provides a better microenvironment for the 
development of a potent specific antitumor 
response.17,18

Type I IFNs are key regulatory elements in this 
aspect. They are produced for example when 
virus components or cell-derived damage-associ-
ated molecular patterns (DAMPs) bind and acti-
vate pattern recognition receptors (PRRs).19 The 
secreted IFNs can then activate dendritic cells 
(DCs) in tumor-draining lymph nodes and 
enhance the cross-presentation of tumor- 
associated antigens to CD8+ T-cells,20 which 
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subsequently may lead to tumor-specific CD8+ 
T-cell expansion and tumor destruction.

A detailed understanding of the innate immune 
response against viruses may provide opportuni-
ties for developing more efficient treatments in the 
field of cancer immunotherapy. Indeed, the com-
bination of checkpoint inhibitors with agents that 
trigger the innate immune response enhances their 
antitumor effect. Here, we will review the recently 
described means of activating innate immune 
responses to improve immunotherapy for cancer 
patients. Novel strategies that activate directly or 
indirectly PRRs will be commented on.

Pathogen recognition receptors (PRRs)
The innate immune response initiates with the 
recognition of foreign nucleic acids or other mole-
cules in host cells by PRRs. PRRs recognize mole-
cules derived from pathogen-associated molecular 
patterns, as well as DAMPs released from endog-
enous tissues that have suffered some damage.21 
The understanding of the immunostimulatory as 

well as pro- or antitumoral function of PRRs is 
necessary to exploit them for enhancing cancer 
immunotherapy.

Several different subtypes of PRRs are described 
today: Toll-like receptors (TLRs), NOD-like 
receptors (NLRs), c-type lectin receptors (CLRs), 
cytosol dsDNA sensors (CDSs) and retinol acid 
inducible gene 1 (RIG-1)-like receptors 
(RLRs).22,23 PRRs are classified according to 
their cellular location. They are located in cell 
membranes, such as TLRs, or in the cytoplasm 
like NLRs, CLRs, CDSs and RIG-1-like recep-
tors (RLRs).21 PRR activation induces the pro-
duction of type I IFNs (mainly IFN-α proteins 
and IFN-β).22 Subsequently, type I IFNs control 
the transcription of genes that are restricting viral 
infections (so-called ‘virus restriction factors’). 
In addition, type I IFNs activate NK cells, pro-
mote antigen presentation24 and participate in 
the differentiation of specific CD8+ cytotoxic T 
lymphocytes (CTLs). Finally, type I IFNs have 
antiproliferative functions that are through TP53 
gene induction.25,26

Figure 1. From stimulating innate immune responses to an adaptive antitumor response. A schematic view 
is given. In the tumor microenvironment, activation of PRRs is achieved by the recognition of DAMPs released by dying 
tumor cells and by drugs such as TLR agonists, STING agonists, DNA demethylating agents and treatments based on the 
use of modified oncolytic viruses. The activation of the innate immune response leads to an efficient priming by dendritic 
cells of T-cells in lymph nodes and to the infiltration by tumor-specific T-cells into the tumor. Details are described in the 
text.
DAMP, danger-associated molecular pattern; ISG, interferon-stimulated gene; PRR, pattern recognition receptor; TLR, Toll-
like receptor; STING, stimulator of interferon genes complex.
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TLRs constitute a receptor family that is mainly 
expressed on macrophages and DCs. In humans, 
the family has 11 members27 located on the extra-
cellular membrane (TLR 1, 2, 4, 5, 6 and 11) or 
in the intracellular counterpart of endosomes 
(TLR 2, 3, 7, 8, 9 and 10). Cell membrane-bound 
TLRs recognize glycoproteins, while endosome-
placed TLRs respond to nucleic acid molecules, 
in particular viral RNA.27–29

TLR4 was the first TLR identified. Activation of 
TLR4 signaling is preceded by binding of 
lipopolysaccharides produced by Gram-negative 
bacteria.30,31 In cancer, TLR4 activation has a 
dual role. Although its upregulation is associated 
with chemoresistance,32 metastasis and immuno-
suppression33 in several tumor types, TLR4 acti-
vation has also an anticancer effect. While TLR4 
antagonists could help reduce metastasis, TLR4 
agonists have been shown to induce antitumor 
immunity in patients and models of cancer. 

Several TLR4 agonists, such as OM-174,34 or the 
Streptococcus-derived agent OK-432,35,36 Coley 
toxin (a mixture of killed Streptococcus pyogenes 
and Serratiamarcescens bacteria) and Bacillus 
Calmette-Guerin, have antitumoral effects.36–38

Double-stranded RNA (dsRNA) is detected via 
TLR3 and RLRs (RIG1 and MDA5). Among 
immune cells, myeloid DCs and macrophages 
express TLR3. TLR3 is also expressed in fibro-
blasts and hepatocytes. When activated, TLR3, 
through TIR-domain-containing adapter-induc-
ing interferon-β (TRIF), tumor necrosis factor 
(TNF) receptor-associated factor 6 (TRAF6) 
and tankyrase 1 (TANK1), activates the tran-
scription factors interferon response factor 3 
(IRF-3) and nuclear factor kappa B (NF-κB). 
This then leads to the expression of type I IFNs, 
mainly IFN-β39 (Figure 2). RLRs use protein 
adaptor mitochondrial antiviral signaling to acti-
vate IRF-3, IRF-7 and NF-κB40 (Figure 2). RLRs 

Figure 2. Main subtypes of PRRs as targets for cancer treatment: Toll-like receptors (TLR3, TLR7/8, 
TLR9), cytosol dsDNA sensors (cGAS/IFI that activate STING) and the retinol acid inducible gene RIG-1 like 
receptors (RIG1 and MDA5). Activation of these receptors, following detection of nucleic acids from virus, induces 
production of type I IFNs (IFN-α and IFN-β). dsRNA (from HERVs re-expressed after treatment with azacytidine or from 
exogenous infection) activates TLR3, MDA5 and RIG1; ssRNA activates TLR7/8; DNA (from pathogens or from tumor cells) 
activates STING.
HERV, human endogenous retrovirus; IFN, interferon; IL, interleukin; IRF-3, IFN-regulatory factor-3; NFκB, nuclear factor 
kappa B; PRR, pathogen recognition receptor; ssRNA, single stranded RNA; STING, stimulator of interferon genes complex; 
TBK1, TANK-binding kinase 1; TNF, tumor necrosis factor; TRAF6, TNF receptor-associated factor 6; TRIF, Toll/IL-1 receptor 
domain-containing adaptor inducing IFN-β.
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are expressed in many tissues and play a promi-
nent role in myeloid cells, fibroblasts, hepatocytes 
and central nervous system cells. While highly 
expressed in plasmacytoid DCs, RLRs are not 
essential for IFN type I production by these 
cells.41

The synthetic dsRNA BO-112 that activates mela-
noma differentiation-associated protein 5 (MDA5) 
demonstrated tumor-specific immune responses 
with a good toxicity profile in a first in-human 
trial.42 A phase I clinical trial testing the combi-
nation of BO-112 with anti-PD-1 antibodies is 
ongoing in several centers of Spain (Table 1). 
Other interesting antitumoral compounds in devel-
opment are the synthetic analogs of dsRNA 

polyinosinic:polycytidylic acid (poly I:C) that acti-
vate TLR337,43–45 and RIG1/MDA546 and 5′ 
triphosphate small interfering RNA (ppp-siRNA) 
that activates RIG1 and silences specific onco-
genes like BCL-2 via RNA-interference. Both 
types of compounds have demonstrated antitumor 
activities in vivo.47

The detection of single stranded RNA (ssRNA) is 
due to TLR7 and TLR8 which activate NF-κB, 
IRF-3 and IRF-7, and lead to the expression of 
type I IFN, TNF-α, interleukin (IL)-1 and IL-1248 
(Figure 2). TLR7 is mainly expressed in plasma-
cytoid DCs and B-cells, while TLR8 is expressed 
in myeloid DCs and Tregs. Imidazoquinolinamin 
derivates, such as imiquimod, approved for the 

Table 1. Cancer clinical trials in progress with drugs targeting innate immune response.

Drug class Drug Target In combination with Tumor type NCT number

PRR MEDI9197 TLR7/8 Durvalumab (anti-PD-L1) Solid tumors 02556463

MGN1703 TLR9 Ipilimumab (anti-CTLA-4) Solid tumors 02668770

GLA-SE TLR4 Radiotherapy Sarcoma 02180698

SD-101 TLR9 Ibrutinib, radiotherapy

Pembrolizumab (anti-PD-1)

Folicular 
lymphoma
Melanoma

02927964

02521870

GSK1795091 TLR4 - Solid tumors 02798978

Poly ICLC TLR3 Durvalumab (anti-PD-L1) + 
tremelimumab (anti-CTLA-4)

Solid tumors 02643303

G100 TLR4 Pembrolizumab
(anti-PD-1)

Solid tumors 02501473

MIW815 (ADU-S100) STING PDR001 (anti-PD-L1) Solid tumors 03172936

BO-112 MDA5 Anti-PD-1 Solid tumors 02828098

Epigenetic Azacitidine + 
entinostat

DNMT
HDAC

Nivolumab (anti-PD-1) NSCLC 01928576

Azacitidine DNMT Pembrolizumab (anti-PD-1) Melanoma 02816021

Decitabine DNMT MBG453 (TRIM3)
PDR001 (anti-PD-L1)

MDS, Leukemia 03066648

Decitabine DNMT Nivolumab (anti-PD-1) MDS 03259516

Decitabine DNMT Ipilimumab (anti-CTLA-4) MDS, Leukemia 02890329

Guadecitabine DNMT Durvalumab (anti-PD-L1) + 
tremelimumab (anti-CTLA-4)

SCLC 03085849

CTLA-4, cytotoxic T lymphocyte-associated molecule-4; DNMT, DNA methyltransferase; HDAC, histone deacetylase; MDA, melanoma differentiation-
associated protein; MDS, myelodysplastic syndromes; NCT, National Clinical Trials; NSCLC, non-small cell lung cancer; PD-1, programmed-cell 
death 1; PRR, pathogen recognition receptor; SCLC, small cell lung cancer; STING, stimulator of interferon genes complex; TLR, Toll-like receptor.
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treatment of basal cell carcinoma, show antitu-
moral effects through TLR7 and TLR8 activa-
tion.49 Intratumoral resiquimod (R848), a ligand 
of TLR7 and TLR8, in combination with anti-
OX40 in animal models induces a systemic antitu-
mor effect.50 MEDI9197 (formerly 3M-052), is a 
novel TLR7/8 dual agonist formulated for intratu-
moral injection that has been studied in patients 
with cutaneous tumors, demonstrating safety and 
immunogenicity.51

TLR9 recognizes unmethylated CpG motifs from 
bacteria and viruses52 and RNA:DNA hybrids.53 
Its triggering activates plasmacytoid DCs and 
B-cells.54 Several synthetic CpG oligonucleotides 
have been developed as TLR9 agonists mimicking 
natural CpG motifs (Table 1). The combination 
of intratumoral CpG SD-101 with anti-OX40, 
which triggers a T-cell immune response, demon-
strated complete responses and long-term sur-
vival in animal models.50 Similarly, data from a 
phase I clinical trial in advanced melanoma 
showed objective responses in four of the five 
patients treated with the combination of intratu-
moral CpG SD-101 and the anti-PD-1 antibody 
pembrolizumab.55

The CDSs cGAS and IFI16 operate via stimulator 
of interferon genes complex (STING) to detect 
free DNA in the cytosol. When cytosolic DNA is 
detected by cGAS it catalyzes the STING ligand 
cGAMP.56 STING is then activated, translocates 
to perinuclear endosomes and recruits TBK1 and 
IRF3. These molecules are phosphorylated and 
translocate to the nucleus with subsequent tran-
scription of type I IFNs56 (Figure 2). STING is 
essential for the production of type I IFN signaling 
in DCs which enables them to present tumor anti-
gens and prime CD8+ T lymphocytes leading to 
T-cell infiltration into the tumor.18,57 STING is 
located at the cytosolic site of the endoplasmic 
reticulum membrane56 and is activated by DNA 
from damaged tumor cells that reach the cytosol of 
DCs.58 Some intratumoral-injected compounds 
can activate STING in mice, like 5,6-dimethylxan-
thenone-4-acetic acid (DMXAA).59 In humans, 
the STING agonist ML RR-S2 CDA (MIW815, 
ADU-S100) is in clinical development60 (Table 1).

Interferons
IFNs were discovered in the late 1950s during 
replication studies of influenza virus.61 They are 
cytokines that play a critical role in innate 
immune responses against viral infections and 

participate in the activation of the adaptive 
immune response.26 Several types of IFNs have 
been described including type I IFNs (various 
IFN-α, IFN-β, and others), the type II IFNγ, 
and the more recently classified type III IFNs 
(IFN-λ). Type I IFNs are produced by most  
cell types: fibroblasts, DCs and hepatocytes 
(through RIG-1), plasmacytoid DCs (through 
TLR9 and TLR7/8) and macrophages and 
hepatocytes (through TLR3 and TLR4). Type 
II IFNs are mainly secreted by T-helper-1 (Th-
1) lymphocytes, CD8+ lymphocytes, NK and 
NK T-cells.62

All the different types of IFNs signal through IFN 
receptors that are differently distributed among 
cell types. IFN-β binds to the IFN-α/β receptor 
(IFNAR) to further activate production of more 
type I IFN63 (Figure 3). IFNAR activates janus 
kinase (JAK) family members JAK1 and Tyk-2, 
and subsequently signal transducer and activator 
of transcription 1 (STAT1) and 2 (STAT2). 
STAT1/2 bind to IRF9 (p48) and form the IFN-
stimulated gene factor 3 (ISGF3; Figure 3). 
ISGF3 initiates the transcription of several inter-
feron-stimulated genes (ISGs) by binding to the 
promoter region of IFN-stimulated response ele-
ments (ISRE; Figure 3). ISGs include PKR, 
IRF-1 and IRF7. When activated by TBK-1/
IKKe, ISGs regulate IFNα gene transcription.64 
ISGs activate antimicrobial programs that both 
degrade viral proteins and inhibit cancer cell pro-
liferation65 (Figure 3). Type I IFNs also stimulate 
the adaptive immune response. Specifically, they 
promote major histocompatibility complex 
(MHC) class I and II expression on antigen-pre-
senting cells like DCs that is required for efficient 
T-cell stimulation. Mature DCs are then able to 
initiate the adaptive immune response by activat-
ing antigen-specific naïve T-cells to proliferate 
and produce type II IFN.66,67 The type II IFN 
receptor is called IFNGR. It activates genes con-
taining a gamma-activated sequence (GAS) 
through JAK1/2 and STAT1 signaling (Figure 3). 
Type II IFNs stimulate the adaptive immune 
response and activate macrophages and NK cells.

The expression levels of ISGs are predictive of the 
response to immune checkpoint inhibitors in mel-
anoma patients treated with anti-CTLA-4 anti-
bodies.68 Likewise, tumor samples from 
melanoma, ovarian, lung, breast or colorectal 
cancer can be classified according to high or low 
expression levels of IFN-stimulated viral defense 
genes for example IRF7, RIG1 STAT1, IFNB1, 
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IFI6 induced by the hypomethylating agent 
(HMA) 5-aza-cytidine (5-aza).69 Our own work 
shows that lung cancer and melanoma patients 
with high tumoral expression of IFN-γ have a 
better outcome with immunotherapy compared 
with patients with low IFN-γ expression.70

The role of DNA methylation in innate 
immune responses
Epigenetic modulator drugs can restore immuno-
genicity and immune recognition of tumors. 
Therefore, there is an increasing interest in com-
bined epigenetic therapy and immunotherapy.71

DNA methyltransferases (DNMTs) are impor-
tant players in epigenetic modulation of the innate 
immune response. In non-small cell lung cancer 
with mesenchymal phenotype, STAT3 activates 
DNMT1, which methylates the promoter regions 
of RIG1 as well as IRF1, immunoproteasomes 
(PSMB8, PSMB9) and HLA molecules leading 

to the reduction of their expression.72 STAT3 
also inhibits STAT1 expression, a key regulator 
of the antigen-presentation machinery in epithe-
lial cells.70,72

HMAs such as the nucleoside analogs of 
cytidine,5-aza and 5-aza-2-deoxycytidine (5- 
aza-2dc or decitabine) inhibit DNMTs and are 
currently approved for the treatment of hemato-
logic malignancies.73,74 HMAs activate the innate 
immune response through PRRs, but they also 
have several other activities that make them a 
good partner to combine with immune check-
point inhibitors. For instance, HMAs reactivate 
silenced tumor suppressor genes that encode 
proteins which limit the proliferative and survival 
capacity of a cell.75,76 HMAs induce T-cell 
responses by stimulating HLA I expression. For 
example, in brain tumors, decitabine promotes 
the surface presentation of tumor-associated 
peptides in the context of HLA I and is thus a 
good candidate to be combined with other 

Figure 3. Interferon pathway. Type I IFN binds to the IFNAR. IFNAR activates the JAK family members JAK1 and Tyk-2, 
with subsequent phosphorylation of signal transducer and activator of transcription 1 (STAT1) and 2 (STAT2) proteins. These 
proteins form the complex called ISGF3 when they bind to IRF9 (p48). ISGF3 initiates transcription of several ISGs by binding 
to ISREs in their promoter regions. The receptor of type II IFN is called IFNGR and also initiates induction of JAK1 and JAK2 
recruitment with STAT1 homodimers that activate genes containing a GAS.
GAS, gamma-activated sequence; IFN, interferon; IFNAR, IFN-α/β receptor; ISG, interferon-stimulated gene; ISGF3, IFN-
stimulated gene factor 3; ISRE, IFN-stimulated response element; JAK, Janus kinase.
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immunotherapeutic regimen.77 Furthermore, 
treatment of tumor cell lines with the DNA 
methyltransferase inhibitor 5-azacytidine (AZA) 
enrich tumors in genes involved in immunomod-
ulatory pathways, defining an ‘AZA IMmune 
gene set (AIMs)’ that can classify primary tumors 
into ‘high’ and ‘low’ AIM gene expression sub-
sets (see Table 1, in Li and colleagues78). HMAs 
induce the expression of chemokines that ulti-
mately re-educate tumor cells to become more 
immunogenic.71,79

Last but not least, HMAs have antitumor activi-
ties by causing the re-expression of endogenous 
retroviruses (ERVs) in preclinical cancer mod-
els. Human ERVs (HERVs) are retroviral ele-
ments that have been fixed within the human 
genome through evolution. About 8% of the 
human genome is composed of these HERVs, 
most of which are non-functional due to the 
accumulation of mutations and epigenetic con-
trol. Chiappinelli and colleagues showed in 
preclinical models that HMAs through ERV 
expression induce viral mimicry and IFN sign-
aling to increase tumor immunogenicity and 
recognition.13 Other investigators have reported 
similar findings in colon cancer, demonstrating 
an IFN response through activation of MDA5 
by dsRNA.80 This effect, through induction of 
HERVs, was synergistic with the effect of anti-
CTLA-4 or anti-PD-1/PD-L1 antibodies.79,13,81 
One way to activate TLRs is through induction 
of dsRNA from HERVs using low doses of 
HMAs. HERV-derived viral transcripts then 
increase within the cytosol leading to RIG1, 
MDA5 and TLR3 activation and subsequently 
type I IFN production.82 The HMA-induced 
upregulation of HERVs is synergistic with anti-
PD-1/PD-L1 antibodies80 and anti-CTLA-4 
antibodies.82,83

In a subset of non-small cell lung cancer patients, 
20% of durable responses were observed when 
the anti-PD-1 antibody was given after tumor 
progression under low dose of HMAs, indicating 
that HMAs may prime tumors for a subsequent 
response to immunotherapy.79,84 Based on the 
above and other evidences, there is currently a 
long list of clinical trials in several types of tumors 
combining immune checkpoint inhibitors with 
epigenetic drugs (Table 1 and Table 1 in Dunn 
and colleagues71).

Interestingly, apart from HMAs, cyclin-depend-
ent kinase 4/6 (CDK4/6) inhibitors also suppress 

DNMT1 and induce viral mimicry. The combi-
nation of immune checkpoint inhibitors with 
CDK4/6 inhibitors was found to be synergistic in 
vitro and in vivo85,86 and clinical trials are now 
ongoing with this combination [ClinicalTrials.
gov identifiers: NCT02791334, NCT02079636, 
and NCT02779751].

Other factors in the innate immune 
response and antitumor therapy
NK cells play an important role against tumor 
cells. Cells infected by viruses, as well as cancer 
cells, may downregulate surface MHC class I 
molecules in order to avoid recognition by CD8+ 
T-cells.87 Paradoxically, this phenomenon makes 
them susceptible to NK cells, that are activated 
when their membrane receptors, killer-cell immu-
noglobulin-like receptors (KIRs), are not bound 
to MHC class I molecules. Some cancer cells 
bypass NK control because they downregulate 
specific MHC class I molecules, that are needed 
to present peptides to CD8+ T-cells, while they 
still express MHC class I peptides that serve as 
KIR ligands.88

Viral restriction factors comprise a group of sev-
eral proteins expressed by cells to suppress viral 
replication. These restriction factors constitute an 
early defense against viral infections, and are 
partly induced by IFNs.89 The best characterized 
restriction factors are: apolipoprotein B messenger 
RNA editing enzyme catalytic polypeptide-like3 
(APOBEC3) proteins, tripartite-motif-containing 
5a (TRIM5a), SAM domain and HD domain-
containing protein 1 (SAMHD1), Schlafen 11 
(SLFN11) and Tetherin.89 Their role in the 
immune response to cancer cells has not been 
studied, however it is known that some of them 
are involved in the process of somatic mutagenesis 
during tumor development90,91 APOBEC3 altera-
tions (mutations or overexpression) in cancer cells 
have been linked to a specific hypermutation sta-
tus named ‘kataegis’ that correlates with respon-
siveness to immunotherapy.92 Finally, a strong 
correlation has been reported among APOBEC3 
proteins, IFNγ and PD-L1 expression in cancer 
cells.92

There are several compounds in development 
with the aim to activate an innate immune 
response and direct CD8+ T-cells into tumors 
(Table 1). Such strategies include the combina-
tion of anti-PD-1 antibodies with oncolytic viro-
therapy which has shown impressive results in 
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early clinical trials.93 Melanoma patients treated 
with the combination of the anti-PD-1 antibody 
pembrolizumab plus talimogene laherparepvec 
(T-VEC) had an objective response rate of 62% 
with 32% of complete responses.10 Although the 
exact mechanism by which oncolytic viruses 
increase the activity of immune checkpoint block-
ade is unknown, biopsies taken from patients 
before treatment and after 6 weeks, demonstrated 
an increase in CD8+ T-cell infiltration as well as 
increased expression of IFN-γ suggesting a role 
of innate immune response activation by 
T-VEC.10 Similarly, a hybrid of an oncolytic, 
nonpathogenic poliovirus (PV) and a human rhi-
novirus (PVSRIPO) demonstrated an increased 
release of DAMPs through tumor lysis activating 
a type I IFN response in DCs in different cancer 
models.9

Conclusions and future perspectives
Innate immune responses in the form of IFN 
production and their subsequent effects provide 
the appropriate microenvironment for the effi-
cient stimulation of adaptive responses that are 
key in fighting microbial infections. As tumors 
are derived from tissue cells that carry mainly 
self-antigens, they are expected to be purely 
immunogenic, and may lack innate immune acti-
vation, at least initially. Subsequently, the grow-
ing tumor can exploit all of the immune 
suppressive mechanisms that are well described 
in chronic infections.

Recent clinical trials and preclinical cancer mod-
els now impressively demonstrate that stimuli of 
innate immunity in combination with other 
immunotherapeutic regimens can significantly 
augment tumor-specific responses that translate 
into increased response and cure rates (Figure 1). 
Thus, suppressive mechanisms and low immuno-
genicity may be overcome at least when sufficient 
numbers of tumor neoantigens are present in the 
tissue.

While presently the PRRs agonists and HMAs 
stand out, other drugs and drug combinations are 
under study in numerous trials (Table 1). 
Furthermore, there are now ongoing trials that 
include cancer patients with persistent virus infec-
tions that have previously been excluded. For 
example, we are currently exploring several 
above-mentioned factors and their relationship 
with innate immune responses in a phase II 
Spanish Lung Cancer Group clinical trial. The 

anti-PD-L1 inhibitor durvalumab is given to 
HIV-1-infected patients with solid tumors 
[ClinicalTrials.gov identifier: NCT03094286]. 
The trial enables us to investigate the effect of 
immune checkpoint inhibition in reversing cancer 
pathways and to characterize HIV-specific T-cell 
functions during persistent HIV infection. The 
study results of this trial and of others are eagerly 
awaited.

It seems that after many years of stagnation, we 
finally face most fruitful and exciting times in 
tumor immunology.
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