
Journal of Visual Languages and Computing 42 (2017) 13–22

Contents lists available at ScienceDirect

Journal of Visual Languages and Computing

journal homepage: www.elsevier.com/locate/jvlc

An effective and efficient approximate two-dimensional dynamic

programming algorithm for supporting advanced computer vision

applications

Alfredo Cuzzocrea

a , ∗, Enzo Mumolo

b , Giorgio Mario Grasso

c , Gianni Vercelli d

a DIA Department, University of Trieste and ICAR-CNR, Italy
b DIA Department, University of Trieste, Italy
c CSECS Department, University of Messina, Italy
d DIBRIS Department, University of Genova, Italy

a r t i c l e i n f o

Article history:

Received 7 January 2017

Accepted 11 July 2017

Available online 2 August 2017

Keywords:

Two-dimensional dynamic programming

CUDA platform

Computer vision

Intelligent systems

a b s t r a c t

Dynamic programming is a popular optimization technique, developed in the 60’s and still widely used

today in several fields for its ability to find global optimum. Dynamic Programming Algorithms (DPAs) can

be developed in many dimension. However, it is known that if the DPA dimension is greater or equal to

two, the algorithm is an NP complete problem. In this paper we present an approximation of the fully

two-dimensional DPA (2D-DPA) with polynomial complexity. Then, we describe an implementation of the

algorithm on a recent parallel device based on CUDA architecture. We show that our parallel implemen-

tation presents a speed-up of about 25 with respect to a sequential implementation on an Intel I7 CPU.

In particular, our system allows a speed of about ten 2D-DPA executions per second for 85 × 85 pixels

images. Experiments and case studies support our thesis.

© 2017 Elsevier Ltd. All rights reserved.

1

n

v

o

s

s

l

g

s

i

i

a

t

(

c

m

t

(

o

a

e

t

a

m

[

m

l

M

d

j

d

[

a

e

a

l

h

1

. Introduction

In this paper we describe an approximate Two-Dimensional Dy-

amic Programming Algorithm (2D-DPA) running on a CUDA de-

ice. Dynamic programming (DP), based on the Bellman’s Principle

f Optimality [1] , is a fast, elegant method for finding the global

olution to optimization problems. What characterizes a problem

uitable for dynamic programming is that solutions to these prob-

ems can be formulated as a sequence of simpler problems, and the

lobal optimum is obtained as a sequence of local optima. A clas-

ic example may be that of finding the length of a shortest path

n a directed graph that has no cycles. Another classical example

s that of sequence alignment. Generally-speaking, computer vision

pplications are emerging trends for such a context, and, recently,

he research community has devoted a lot of attention to this topic

e.g., [2–11]).

DP has been applied to various tasks in pattern recognition and

omputer vision [12,13] . Nowadays, DP is considered a classic opti-

ization method and ever though there are many other optimiza-

ion techniques available, many researchers still choose DP in their
∗ Corresponding author.

E-mail addresses: alfredo.cuzzocrea@dia.units.it (A. Cuzzocrea), mumolo@units.it

E. Mumolo), gmgrasso@unime.it (G.M. Grasso), gianni.vercelli@unige.it (G. Vercelli).

b

i

o

r

ttp://dx.doi.org/10.1016/j.jvlc.2017.07.002

045-926X/© 2017 Elsevier Ltd. All rights reserved.
ptimization problems because of its conciseness, versatility, and

bility to obtain globally optimal solution. Actually, DP is consid-

red an ideal technique for solving a wide variety of discrete op-

imization problems such as scheduling, string editing, packaging,

nd inventory management. Of the recent application of DP we can

ention tracking [14] , stereo [15,16] , and elastic image matching

17] problems. Elastic matching is a typical application of 2D-DPA.

DPA was originally developed as a continuous optimization

ethod to obtain the solution efficiently [1] . Angel [18] used ana-

ytical DP to smooth interpolated data. Serra and Berthod [19] and

unich and Perona [20] used it for nonlinear alignment of one-

imensional patterns. Recently, Uchida et al. [21] used it in ob-

ect tracking. DP matching (and its stochastic extension, i.e. Hid-

en Markov Models) is a classical technique for speech recognition

22] and for on-line character recognition [23] .

Sequential 1D-DP matching algorithms have been extended to

 two-dimensional one by many authors. Truly two-dimensional

lastic image matching have been described in [24,25] , but the

uthors have encountered the inherent NP-hardness of the prob-

em [26] . Because of this computational intractability, practical DP-

ased elastic image matching algorithms employ various approx-

mation strategies, the most popular of which is the limitation

f matching flexibility, as the pseudo 2D elastic matching algo-

ithm described in [27] . Another approximation strategy is the

http://dx.doi.org/10.1016/j.jvlc.2017.07.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jvlc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jvlc.2017.07.002&domain=pdf
mailto:alfredo.cuzzocrea@dia.units.it
mailto:mumolo@units.it
mailto:gmgrasso@unime.it
mailto:gianni.vercelli@unige.it
http://dx.doi.org/10.1016/j.jvlc.2017.07.002

14 A. Cuzzocrea et al. / Journal of Visual Languages and Computing 42 (2017) 13–22

v

j

o

v

o

t

t

m

t

3

d

n

D

i

w

s

i

o

s

a

q

c

s

d

b

m ∑

t

m

t

D

t

p

b

s

o

p

D

w

r

D

w

t

w

w

i

s
partial omission of the mutual dependency between 4-adjacent

pixels (e.g., the tree representation in [28]). Other approximations

consist in the introduction of pruning and coarse-to-fine strategies

[29] , at the cost of global optimality. Notwithstanding these strate-

gies, there is currently no practical DP algorithm that can provide

both globally optimal and truly two-dimensional elastic matching.

All the conventional DP-based elastic matching algorithms used

DP as a combinatorial optimization method. In fact a recent sur-

vey [13] reported only combinatorial (i.e., discrete) DP algorithms.

Even if the DP optimization problem was originally formulated as

a continuous variational problem, it has been discretized and then

solved by DP as a combinatorial optimization problem [12] .

The paper is organized as follows. Section 2 reports some

other CUDA implementations of various DPA based applications.

Section 3 describes the Dynamic Programming Algorithms, both in

one and two dimensional formulations. It has been shown that

the implementation of 2D-DPA has an exponential complexity,

therefore in Section 4 we describe an approximation of the two-

dimensional algorithm with polynomial complexity. In Section 5 ,

we provide general architecture and functionalities of the CUDA

platform. Section 6 focuses the attention on the CUDA-based im-

plementation of approximate DPA. Section 7 reports experiments

showing the benefits that derive from our proposed algorithm. In

Section 8 , we report a complete case study and related experimen-

tal results obtained from the application of the algorithm to fin-

gerprint verification. Finally, in Section 9 , we report concluding re-

marks and future work.

2. Related work

In this Section, we provide an overview of state-of-the-art pro-

posals related to our research. Since the sequential implementation

of various types of DPA has high computational demand, many au-

thors implemented the algorithm on Graphics Processing Devices.

Two issues have been mainly considered: how to find the best way

to parallelize the DPA itself and how to parallelize the problem

which has to be solved with DPA.

Many problems have been solved with DPA. The most popu-

lar are Stereo Matching in stereo vision, Elastic Matching of im-

ages, or various discrete numerical calculus problems. In 2007, a

Dynamic Programming-based low density real-time Stereo Match-

ing was implemented on an ATI Radeon X 800, an early GPU device.

They obtained a frame rate from 10 to 20 fps [30] .

In 2009, Xiao et al. address the problem of mapping DPA on

Graphics Processing Units . They propose a fine-grained paralleliza-

tion of a single instance of the algorithm that is mapped to the

GPU. Steffen et al. [31] describe in 2010 an implementation, on

a GTX 280, of a numerical framework, called Algebraic Dynamic

Programming , for encoding a broad range of optimization prob-

lems. Depending on the application, they report speed ups rang-

ing from about 6 to about 25. In the same year, Congote et al.

[32] describe the implementation of a Dense Stereo Matching algo-

rithm based on Dynamic Programming to recover depth map from

two-dimensional images using dynamic programming. They used

a number of GPU’s available in that year for a parallel implemen-

tation of the dynamic programming based algorithm. The sequen-

tial implementation was performed with an Intel Pentium proces-

sor E 2180. They found a speed-up of about 16 between the two

devices. Stivala et al. [33] published in 2010 a paper showing how

to parallelize any DPA on a shared memory multi-core computer

by means of a shared lock-free hash table, via starting multiple

threads that compute the DP recursion in a top-down fashion and

memorizing the result in a shared lock-free hash table.

In 2011, Wu et al. [34] present the GPU acceleration of an im-

portant category of DP problems, called Non-Serial Polyadic Dy-

namic Programming . Since in these problems the parallelism level
aries significantly in different stages of computation, they ad-

usted the thread-level parallelism in mapping a NPDP problem

nto the GPU. They report a speed up of about 13 over the pre-

iously published GPU algorithm. Nishida et al. in 2012 solved an

ptimization problem with a known dynamic programming solu-

ion on a NVIDIA GeForce GTX 580. The problem was the computa-

ion of the optimal polygon triangulation of a convex polygon with

inimum total weight. The algorithm they published in [35] at-

ained a very high speed up factor of about 250.

. One- and two-dimensional DPA

In this Section, we focus the attention on one- and two-

imensional DPA. A popular way to describe One-Dimensional Dy-

amic Programming Algorithms (1D-DPA) is by means of the Edit

istance [36] . The Edit Distance, which finds applications in bio-

nformatics [37] , natural language processing [38] and spoken-

ord recognition [22] , is a way to measure the similarity of two

trings or, in other words, to align the two strings. In the follow-

ng description we extend the Edit algorithm to the comparison

f one-dimensional sequences, similar to the comparison between

poken words [22] .

Given two one-dimensional sequences, A = (a 1 , a 2 , . . . , a i , . . . ,

 N) and B = (b 1 , b 2 , . . . , . . . , b j , . . . b M

) , the mapping of one se-

uence to the other is represented by a path M

′ which starts from

ell (1, 1) to cell (N, M). The path is formed by a number of points

o that each point k of the path corresponds to a couple of coor-

inates, M k = (i k , j k) . A distance between the two sequences can

e defined by the sum of the local distances between the ele-

ents of the sequences, a i , b j , computed along a path, namely:
 | M

′ |
k =1

∥∥a i k − b j k

∥∥, where | M

′ | is the length of the path M

′ . Clearly,

here exists a path along which the cumulative distance is mini-

um. In this case the cumulative distance is the distance between

he two sequences:

 (A, B) =

min

M

′
∑ | M

′ |
k =1

d(M

′
k
)

| M

′ |

=

min

M

′
∑ | M

′ |
k =1

d(i k , j k)

| M

′ | =

min

M

′
∑ | M

′ |
k =1

∥∥a i k − b j k

∥∥
| M

′ | (1)

It is worth noting that the factor at the denominator is needed

o normalize the distance against different lengths of the optimum

ath, and it is needed when Eq. (1) is used to measure the distance

etween images.

By Dynamic Programming, the optimization problem of (1) is

olved by updating the cumulative distance D (i, j) at each point

f the A − B space using the recursion described in Eq. (2) , which

erforms the optimal principle of DP.

 (i, j) = min

{

D (i − 1 , j) + d(i, j)
D (i − 1 , j − 1) + 2 d (i, j)
D (i, j − 1) + d (i, j)

(2)

here D (1 , 1) = 2 d(1 , 1) . The DP recursion described in Eq. (2) is

epresented by in Fig. 1 .

After examination of the A − B space, Eq. (1) becomes Eq. (3) :

 (A, B) =

D (N, M)

N + M

(3)

here D (N, M) is the cumulative distance at the point (N, M), and

he fact that the length of the optimum path is N + M is due to the

eight of 2 on the diagonal move. It is important to note that M

′
hich corresponds to the minimum cumulative distance D (N, M)

s the optimal map between A and B and can be used to align one

equence on the other. This operation is called warping. We can

A. Cuzzocrea et al. / Journal of Visual Languages and Computing 42 (2017) 13–22 15

Fig. 1. Graphical representation of DP recursion.

t

t

i

l

m

M

d

d

fi

D

w

t

s

a

s

t

s

d

g

1

i

m

p

i

n

p

i

4

s

b

a

i

o

i

T

g

e

Fig. 2. GPU architecture.

r

y

m

o

c

d

(

b

d

(

b

D

f

o

i

i

l

5

i

t

t

t

s

r
hink of the goal of matching as bending and stretching the curves

o make them identical.

When the sequences to be compared are two-dimensional, ie

mages, the optimization of Eq. (1) can be re-formulated in the fol-

owing way. Given two images, X = { x (i, j) } and Y = { y (u, v) } , the

apping of one image to the other is represented by the image

′ ′ . Each element of M

′ ′ corresponds to a couple of pixel’s coor-

inates of the two images, i.e. M

′′
k,l

= (i j k,l , u v k,l) . As in the one-

imensional case, a distance between the two images can be de-

ned as depicted in Eq. (4) .

 (X, Y) =

min

M

′′
∑

k

∑

l d(M

′′
k,l

)

| M

′′ |

=

min

M

′′
∑

k

∑

l ‖

x (i, j k,l − y (u, v k,l) ‖

| M

′′ | (4)

here, as before, | M

′ ′ | is a normalization factor.

Similarly to the one-dimensional case, once the distance be-

ween the two images is found by solving the optimization de-

cribed in Eq. (4) , a warping map M

′ ′ is found. Warping one im-

ge to the other, can be described as the operation to bend and

cratch an image to make it comparable to the other image better

han you can.

However, in [26] it has been shown that the optimization de-

cribed in (4) is NP-complete. As reported before, many authors

eveloped tractable algorithms using various approximation strate-

ies. One early algorithm developed by Levin and Pieraccini in

992 has a complexity of O (N

4 N) [24] . In [25] , a 2D-DPA algorithm

s described with a complexity of O (N

2 9 2 N). A continuous and

onotonic 2D-DPA algorithm with complexity as O (N

3 9 N) was re-

orted in [39] . In [17] Uchida and Sakoe surveys the elastic match-

ng algorithms proposed so far, seven of which are based on dy-

amic programming.

The algorithm described in the following Section 4 has a com-

lexity of O (N

4), where M is the images size, assuming that the

mages have equal height and width.

. 2D approximate two-dimensional DPA

In this Section, we provide the main contribution of our re-

earch, i.e. the approximate 2D-DPA.

The algorithm proposed here for the mapping of images is

ased on the one-dimensional DPA described in Section 3 . Consider

n image as a vector whose elements are the rows of pixels of the

mage itself. Let us indicate with x (i , :), y (i , :) the i-th row of pixels

f the images X, Y . The X, Y images are thus described as reported

n (5) .

X = [x (1 , :) , x (2 , :) , . . . , x (i, :) , . . . , x (N, :)]
T

Y = [y (1 , :) , y (2 , :) , . . . , y (j, :) , . . . , y (N, :)]
T (5)

In (5) the images are assumed for simplicity of the same size.

he idea of this paper is to apply the one-dimensional DPA al-

orithm on the two sequences X and Y . We remark that each

lement of these sequences is an entire row of pixels. The i th
ow of X is x (i, :) = (x i, 1 , . . . , x i,n , . . . , x i,N) and the j th row of Y is

 (j, :) = (y j, 1 , . . . , y j,m

, . . . , y j,N) . The distance between two ele-

ents of X, Y or, in other terms, the distance between two rows

f pixels is again performed with one-dimensional DPA. The appli-

ation of Eq. (1) to x (i , :), y (j , :) becomes Eq. (6) .

(x (i, :) , y (j, :)) =

min

M

′
∑ | M

′ |
l=1

d(M

′
l
)

| M

′ |

=

min

M

′
∑ 2 N

l=1

∥∥x i,n l − y j,m l

∥∥
2 N

(6)

On the other hand, the application of (1) to X, Y results in Eq.

7) . In this case the map M

′ is between all the rows of X and Y . As

efore, | M

′ | is the length of the path of the M

′ map.

(X i , Y j) =

min

M

′
∑ | M

′ |
l=1

d(M

′
l
)

| M

′ |

=

min

M

′
∑ | M

′ |
l=1

∥∥x i l ,n l − y j l ,m l

∥∥
2 N

(7)

Finally, the distance between the two images is obtained by Eq.

8) . In this case the map M

′ is between all the rows of X and Y. As

efore, | M

′ | is the length of the path.

 (X, Y) =

min

M

′

∑

k d(M

′
k)

| M

′ |

=

min

M

′

∑

k d(X i k
, Y j k)

| M

′ | =

min

M

′

∑

k

min
M ′

∑ | M ′ |
l=1

d(M

′
l
)

2 N

2 N

=

min

M

′
{ ∑

k min

M

′
∑ | M

′ |
l=1

∥∥x i,n l − y j,m l

∥∥}
4 N

2
(8)

The term at the denominator of Eq. (8) is obtained with the

ollowing reasoning. Assuming that the images are of equal size

f N × N pixels, the length of the optimum path between the two

mages is equal to 2 N . The local distances in each point of this path

s obtained with other 1D-DPA with paths of length 2 N . The total

ength is the sum of 2 N along the 2 N long path, giving 4 N

2 .

. CUDA platform: architecture and functionalities

In this Section, we provide general architecture and funtional-

ties of the CUDA platform. First, GPU is a parallel processor ini-

ially developed to accelerate graphical applications. In fact, the

ypical GPU architecture, reported in Fig. 2 , is a parallel architec-

ure with many computation units, organized in vertex and pixel

hader, which are programmable sequences of instructions which

espectively allow the transformation from 3D coordinates to 2D

16 A. Cuzzocrea et al. / Journal of Visual Languages and Computing 42 (2017) 13–22

Fig. 3. Grids, blocks and threads in CUDA.

a

i

i

E

t

a

a

a

c

t

i

f

S

m

g

a

o

h

a

e

w

m

i

d

a

b

6

m

t

e

L

t

s

l

i

s

s

t

t

t

and the assignment of color to each pixel of the image. A GPU de-

vice is interfaced with a host computer.

In 2006, it was introduced CUDA (Compute Unified Device Ar-

chitecture), designed to overcome many of the obstacles that pre-

vented a smooth non-graphical programming. Instead of dividing

the computational resources in vertex and pixel shaders, the CUDA

architecture makes use of unified shaders capable of performing

any type of shader (vertex, pixel, etc ..). This means that every

single ALU on the chip is driven by a program that has as objec-

tive to perform general calculations. These ALUs are constructed

to comply with the requirements for IEEE arithmetic in single-

precision floating point and are designed to use a set of instruc-

tions customized to the general calculation rather than one specif-

ically graphic. In addition the executive units have arbitrary read

and write access. Furthermore, they can make use of a cache main-

tained in software known as shared memory. All these features

have been added to the CUDA architecture to create a GPU suit-

able to calculate and graph the general-purpose computing.

5.1. CUDA programming

CUDA programming can be performed using libraries, such as

OpenCL, and languages, such as CUDA C/C ++ , used in this im-

plementation. CUDA C allows the programmer to define C func-

tions (called kernels) that, when called by the CPU (host), are per-

formed on the GPU (device) N times in parallel by N different

CUDA threads, and when they end return control back to the host.

Threads are organized by CUDA in grids of blocks and scheduled in

hardware.

A kernel is defined using the statement __global__ and re-

turns a void parameter. The number of threads running that ker-

nel is specified as the second parameter p 2 inside the brackets

< < < p 1 , p 2 > > > . Each thread is assigned a unique ID, which is

accessible within the kernel code by the variable threadIdx . This

variable is a three component vector, such that the threads can

be identified using an one-dimensional, two-dimensional, three-

dimensional index, forming a block of threads with one, two,

three-dimensional. This facilitates calculation by elements of do-

mains as vectors, matrices, volumes.

The index of a thread and its ID are related in this way. For a

one-dimensional block they are identical. For a two-dimensional

block of size (Dx , Dy), the ID of a thread of index (x , y), i.e.

(threadIdx.x , threadIdy.y), is (x + y Dx). For a three-

dimensional block of size (Dx , Dy , Dz), the ID of a thread of index

(x , y , z) is (x + y Dx + z Dx Dy).
There is a limit to the number of threads per block, since all of

the threads of a block reside on the same core and must share the

limited memory of the same.

The blocks, similar to threads, are arranged in one or two-

dimensional grids. The number of blocks per grid is specified as

the first parameter p 1 inside the brackets < < < p 1 , p 2 > > > .

Each grid block is identified by a one or two-dimensional index ac-

cessible within the kernel using the variable blockIdx . The block

size, ie the number of threads that compose it, is accessible with

the variable blockDim while the size of the grid blocks is speci-

fied by the variable gridDim (Fig. 3).

There is a maximum number of blocks that can be executed.

The blocks must also run independently: it must be possible to

execute them in any order, in parallel or in series. This need of

independence means that the blocks are scheduled in any order

through any number of cores.

Threads within a block can cooperate by sharing data through

shared memory and synchronizing their execution to coordinate

memory access. Specifically, you can specify synchronization points

in the kernel code calling the function __syncthreads() ; it acts
s a barrier to which all threads of the block must wait before each

s allowed to continue.

Threads can access data from different memory locations dur-

ng their execution. Each thread has its own private local memory.

ach block has its own shared memory visible to all the threads of

he block and with the same time of life of the block. All threads of

ll blocks have access to a global memory (global memory). There

re also two additional spaces of read-only memory accessible by

ll threads: the constant memory and texture memory. The global,

onstant, and texture memory survive after different executions of

he kernels of the same application.

The memory spaces in the device are typically allocated us-

ng cudaMalloc() and released with cudaFree() ; data trans-

er between host and device is implemented by cudaMemcpy() .
ince the bandwidth between memory and the host device is

uch lower than that between two locations device, the pro-

rammer should try to minimize data transfers between the host

nd the device. CUDA also provides functions to allow the use

f page-locked host memory (as opposed to traditional pageable

ost memory allocated with malloc()): cudaHostAlloc()
nd cudaFreeHost() .

The page-locked buffers have an important property: the op-

rating system ensures that they will reside in physical memory

ithout being stored to disk. The GPU can thus use the direct

emory access (DMA) to copy data to and from the host, allow-

ng a significant increase in performance. Both the allocation and

e-allocation of memory to create grids of thread blocks are not

llowed inside the kernel because they are controlled exclusively

y the host.

. CUDA implementation of approximate DPA

This Section focuses the attention on the CUDA-based imple-

entation of approximate DPA. As shown in Eq. (7) , the compu-

ation of the approximate 2D-DPA is obtained by a 1D-DPA where

ach node of the optimum path is computed by another 1D-DPA.

et us first look at Fig. 4 .

It represents various stages of a 1D-DPA between two 1D pat-

erns of length 4 for simplicity. In the left square, top row, we can

ee the initial 1D-DPA operation. The square drawn in black is the

ocal optimization corresponding to the first parameter of the hor-

zontal pattern and the first parameter of the vertical pattern, as

hown in Eq. (2) and in Fig. 1 . We want to compute in parallel most

quares as possible. It is evident that, although possible according

o the Eq. (2) operation, it is not possible to compute in parallel all

he first column, as it were possible in a sequential operation: only

he square drawn in black can be computed.

A. Cuzzocrea et al. / Journal of Visual Languages and Computing 42 (2017) 13–22 17

Fig. 4. Explicative graphic sequence of DP operation, clockwise from the left top square. The black cells within a square represent the cells that can be executed in parallel

within that square.

Fig. 5. Simplified representation of the mapping of the algorithm on GPU. Each

black cell represent a thread. Horizontal and vertical patterns will be image rows.

o

p

t

p

t

s

t

f

4

t

b

n

m

a

h

t

t

a

w

p

i

e

t

t

m

a

n

t

t

i

t

o

t

t

b

Fig. 6. GPU-CPU execution speed ups.

c

t

s

b

t

t

t

a

c

t

t

t

l

1

a

D

After the first black square, i.e. going to the second parameter

f the horizontal pattern, the only cells that can be computed in

arallel are the two black cells shown in the second to the left,

op row, square of Fig. 4 . Clearly, the cell at (1, 1) cannot be com-

uted in parallel to the other because of the lack of the values in

he bottom and left cells, which must be still computed. Same rea-

oning at the third parameter of the horizontal pattern, shown in

he third to the left, top row, square.

It is clear that the parallel computation of 1D-DPA can be per-

ormed in sequences of diagonal cells of increasing size, from 1 to

. After the diagonal of length 4, shown in the right square of the

op row, things change in the sense that the only cells that can

e computed in parallel are diagonal sequence of cells, but their

umber decrease from 4 to 1.

Let us now consider Fig. 5 , which shows in a simplified way, our

apping of the algorithm on the GPU. It represent, on the vertical

xis, a number of patterns, each with 4 elements, from 0 to 3. The

orizontal patterns are elaborated one element at a time, from left

o right. In the figure it is represented the situation related to the

hird horizontal element of the horizontal pattern. It is evident that

ll the cells drawn in black of Fig. 5 can be computed in parallel.

In our case, the patterns are the rows of the two images on

hich Eq. (7) is computed. The elements of the patterns are the

ixels of the rows. In the experimental Section we assume that the

mages are of equal size, i.e. N × N , so the images have N rows, and

ach row have N pixels. In other words, the parallel implementa-

ion is implemented taking into account all the templates at once:

he relation between the token and the various templates occur si-

ultaneously. This way you do not have a loop that passes through

ll the templates, nor reset and copies of the flag and the coordi-

ates x , a process that would increased the time of execution of

he code. Now there is only one cycle while which focuses on

he number of iterations required to complete the matrix of min-

ma, which is equal to DimX + DimY - 1 . The variable DimX is

he width of the matrix, DimY the height. As now, all the matrices

f the comparisons are considered together, the number of itera-

ions needed to complete the calculation is linked to the size of

he larger array.

The algorithm is as follows:

The outer loop handles all the rows of one image, represented

y the variable r . The inner loops perform DP for each pixel of the
hosen row. As shown, the first loop perform activate initially one

hread per block, then two, then three and so forth, until N . The

econd loop goes to the last cell, in the right top position of each

lock.

At this point it is important to remark the following three

hings.

• One is that initially the images are loaded in the global memory

of the GPU, to avoid data transfers from the Host.

• The second is that the operation realized by the code above has

the result to compute the local distances matrix between all the

rows of the image. On that matrix will be performed another

1D-DPA to solve Eq. (7) .

• Finally, we remark that, while the distance is obtained by the

last cell of the space of the two images, the warping path is

obtained by back-tracing from the last cell to the initial. That

means that all the information regarding the slopes taken dur-

ing the DP computation must be stored in data structures and

recovered during back-tracing. That means, during the DPAs be-

tween the image’s rows and during the DPA computed on the

local distance matrix.

In fact, the array d_cell is virtually a super-matrices that con-

ains all the matrices of individual comparisons. It is basically a

hree-dimensional matrix in which the linearized coordinates x
nd y adds a coordinated z , necessary to specify how the token

ompares template. The main difference in the code of the func-

ion 1D-DPA is therefore to map the indexes of the block with

he three-dimensional coordinates of the matrix. Clearly, in addi-

ion to storing the backtracking for each association between the

ines, you need to store the mapping pixels within the same row.

We now report the pseudo-code of the kernel that performs

D-DPA on the Kepler GPU. For the sake of simplicity, we denoted

s U, V, W the cumulative distances D (i − 1 , j − 1) , D (i, j − 1) and

 (i − 1 , j) respectively.

18 A. Cuzzocrea et al. / Journal of Visual Languages and Computing 42 (2017) 13–22

A. Cuzzocrea et al. / Journal of Visual Languages and Computing 42 (2017) 13–22 19

Fig. 7. From the left: first handwritten sequence, second handwritten sequence,

second image warped onto the first.

t

7

t

w

t

2

w

v

d

p

i

i

a

h

d

c

s

O

F

p

w

p

p

i

T

m

w

O

r

u

w

s

p

t

d

i

g

Fig. 8. From the left: first image, second image, second image warped onto the first

(Uchida paper).

Fig. 9. From the left: first handwritten sequence, second handwritten sequence,

second image warped onto the first (public dataset).

Fig. 10. From the left: first fingerprint, second fingerprint, second fingerprint

warped onto the first.

v

t

i

8

v

p

t

r

o

fi

e

a

p

g

t

t

i

T

t

s

o

b

r

k

d

fi

s

fi

f

o

v

p

t
There are a couple of other very important remarks to make at

his point.

• The first regards the way the implementation use to synchro-

nize the executions. It has to remember that when a kernel is

started, all the created thread share the same code, so how we

can stop the thread that cannot execute like all the cells above

the black one in the upper left square of Fig. 4 and all the other

similar cells in the same figure. We perform synchronization

simply with the d _ check f lag[] Boolean variables, which are set

when data is available and reset when not.

• The second remark is the use of the flags Wfree and Vfree . They

are used to impose a path that cannot have two subsequent

horizontal or vertical moves, to avoid real paths.

. Experimental results

In this Section, we report experiments showing the benefits

hat derive from our proposed algorithm. The solution of Eq. (1)

as first obtained using a sequential implementation on a In-

el I7 CPU with 8 cores running at 3.07 GHz and a memory of

4GB. Then, the algorithm has been rewritten in the CUDA frame-

ork and executed on a NVidia Kepler TM GK110 device. This de-

ice has many improved features over the previous CUDA Fermi

evices, such as dynamic parallelism, the possibility that multi-

le CPU cores start executions on a single GPU simultaneously,

mproved Grid management, and enhanced memory subsystem,

ncluding additional caching capabilities, more bandwidth , and

 faster DRAM I/O implementation. These improvements lead to

igher computation capability with respect to the previous Fermi

evices.

The algorithm executed on the I7 CPU takes about 2500ms to

ompute Eq. (1) with 85 pixels images. For the same images, the

ame algorithm running on Kepler TM GK110 takes about 100ms.

f course, the execution times depend on the size of the images.

ig. 6 shows the speed-up obtained with difference image sizes.

The algorithm can be applied in many applications as explained

reviously. In this paper, we considered image matching and image

arping applications. We report in this Section only some exam-

les regarding warping. We left image comparison results to future

apers. The images were taken from a Uchida’s paper and from an

mage dataset.

In Fig. 7 , we show three sets of three handwritten characters.

he set at the left is written in a vertical manner, the set in the

iddle is rather inclined and the set at the right is obtained by

arping the set in the middle according to the optimum path.

f course the warped image could be passed to an OCR for its

ecognition. Otherwise, the score obtained with Eq. (7) could be

sed to automatically infer psychological aspects from handwritten

riting.

Similar results are shown in Fig. 8 . In this case the image repre-

ent a human face. The warped face (image on the right) could be

assed to a face recognition system. The image at the left and in

he middle of this figure are taken from a Uchida paper.

The human face image shown in Fig. 9 is taken from a public

ataset. Same considerations as that related to Fig. 8 could be done.

Finally, the result shown in Fig. 10 are related to a fingerprint

mage. In this case we can think that the alignment of the fin-

erprint at the left and that in the middle could simplify the
erification process. However, there is a field in fingerprint verifica-

ion area that address the recovery of orientation of the fingerprint

mages.

. Case study: 2D approximate DPA for supporting fingerprint

erification

In this Section we report a complete case study and related ex-

erimental results obtained from the application of the algorithm

o fingerprint verification. The idea is take a given fingerprint as

eference and to warp any unknown fingerprint to the reference

ne. Warping between images is discussed in Section 3 . The veri-

cation is obtained according to the following rule: if the differ-

nce between the reference and the warped fingerprints is below

 threshold, then the unknown fingerprint belongs to the same

erson to whom belongs the reference finger. If the difference is

reater than the threshold, then the unknown fingerprint belongs

o a different person. This decision rule is motivated from the fact

hat the warping operation is easier if it is performed between

nter-persons fingerprints than between intra-person fingerprints.

he first step of our fingerprint verification algorithm is to enhance

he raw fingerprint images with the Gabor filters [40] . The second

tep is to binarize the enhanced fingerprints using a global thresh-

ld on the image. The identity of each human user is represented

y one Gabor-filtered and binarized fingerprint which is used as a

eference for the user to whom the fingerprint belongs. The un-

nown fingerprints are Gabor-filtered and binarized too. The fun-

amental additional step is that they are warped to the reference

ngerprint with the 2D DPA computed on the Kepler CPU as de-

cribed in Section 6 . The difference between reference and warped

ngerprint is evaluated and the total number of pixels of the dif-

erence image is evaluated. If this number is greater than a thresh-

ld then the unknown fingerprint is verified, otherwise it is not

erified. This verification process is quite simple and, if the finger-

rints have a size of 100 × 100 pixels, takes only 100 ms, which is

he time to compute the 2D-DPA on the Kepler GPU. A verification

20 A. Cuzzocrea et al. / Journal of Visual Languages and Computing 42 (2017) 13–22

Fig. 11. From the left: reference fingerprint, unknown fingerprint, difference

reference-warped unknown (first case).

Fig. 12. From the left: reference fingerprint, unknown fingerprint, difference

reference-warped unknown (second case).

Fig. 13. From the left: original fingerprint, Gabor-filtered fingerprint, thinned fin-

gerprint, ridge reconstructed fingerprint.

8

b

h

p

t

v

b

q

b

a

t

s

i

c

b

o

b

i

t

E

L

a

N

s

o

r

u

s

P

w

e

m

P

P

n

h

example is reported in Fig. 11 and Fig. 12 , for two different cases.

In Fig. 11 it is shown, for the first case, from the left, the reference

fingerprint of a given user, an unknown fingerprint (but we know

it comes from a different imprint of the same user) and the dif-

ference from reference and the warped unknown fingerprints. The

fingerprint is verified since the number of pixels of the difference

image is 20500 and the threshold is set to 270 0 0.

In Fig. 12 it is shown, for the second case, from the left, the

reference fingerprint, an unknown fingerprint (but we know it be-

longs to a different user) and the difference from reference and the

warped unknown fingerprint. In this case the fingerprint is not ver-

ified since the number of pixels of the difference image is 32200

and the threshold is 270 0 0.

However, some interruptions in the ridges of the fingerprints

may appear in the Gabor-filtered and binarized fingerprints in

some noisy fingerprints. The verification results can be improved

if the interruptions are restored because the number of valid pix-

els would be increased.

8.1. Restoring the fingerprint ridges continuity

We have developed a novel technique for restoring the con-

tinuity of the fingerprint ridges. The technique is inspired from

[41] and takes the following steps:

• thinning of the reference and warped fingerprints;

• reconstruction of the fingerprint ridges.

These two algorithms are summarized in the following sub-

sections.

8.1.1. Thinning algorithm

The Thinning algorithm aims at reducing the ridge thickness,

which after Gabor filtering can be several pixels thick, to a only

one pixel. In this way the ridges are filiform. Our algorithm is made

of the following phases:

• Pre-processing. This operation reduces the ridge thickness to a

single medium point.

• Isolated points removal. This is done to reduce noise.

• Discontinuities connection. Small discontinuity zones are

searched for and if they are found, they are connected.

• Filling. Pre-processing operation works better if there are no

empty regions in the ridges to be thinned. Therefore, white

points in the ridges are looked for and, if found, they are filled.

• Removal of not connected pixels. The pixels that have no con-

nections with other pixels are removed using an iterative algo-

rithm based on suitable masks.
• End line correction. When all the previous points are applied,

artifacts may be generated at the end of the lines. For correct-

ing these artifacts, an anisotropic operator is applied to modify

particular pixel configurations.

.1.2. Ridge reconstruction

This phase aims at reconstructing small interruptions that can

e still present in the ridge. The ridge reconstruction must be co-

erent with the contiguous ridges to ensure continuity. For this

urpose, a ridge representation should be generated. A represen-

ation is obtained by searching the runs of connected pixels. Ob-

iously, a run of connected pixel have a slope. The slopes can

e in the range [−π
2 . . . − π

2] . For practical reasons, the slopes are

uantized in 13 values, coming from dividing the range of possi-

le slopes in 15 o degrees bands. That is, the first band contains

ll the slopes from −90 o to −82 . 5 o , the second band from −82 . 5 o

o −67 . 5 o and so on until the 13th band that contains all the

lopes from +82 . 5 o to +90 o . First of all, the fingerprint is divided

n 4 × 4 pixels sub-blocks. Each sub-block is labeled with the prin-

ipal slope of the runs found in the sub-block. This is performed

y computing the R l (k) values, where l is a number of contigu-

usly connected pixels, k is the number of band, and R is the num-

er of runs of length l found in the texel with a slope situated

n the k th band. With the R l (k) values, a couple of other quanti-

ies are computed for each sub-block, as described in Eq. (9) and

q. (10) .

 (k) =

∑ n
l=1 l

2 R l (k) ∑ n
l=1 R l (k)

(9)

nd

(k) =

∑ n
l=1 R

2
l
(k) ∑ n

l=1 R l (k)
(10)

These two quantities have the following meaning: Eq. (9) mea-

ures the presence of long runs and Eq. (10) measures the presence

f many small runs. Eqs. (9) and (10) are normalized in the [0 . . . 1]

ange for each k value over all the sub-block to compare their val-

es. With the normalized values, the predominant slope in each

ub-block can be estimated using Eqs. (11) and (12) .

 (k) = max { 0 , L (k) − αN(k) } , k = 1 . . . 13 (11)

here P (k) is normalized in the [0 . . . 1] range for each k value in

ach sub-block. The predominant slope of each sub-block is esti-

ated with Eq. (13) .

 (14) = min { N(k) } , k = 1 . . . 13 (12)

redominant Slope = argmax { P (k) } , k = 1 . . . 14 (13)

With the predominant slope information, the runs can be fi-

ally connected. The connection is performed using a set of simple

euristic rule, reported as follows.

• The connection is performed only for runs belonging to sub-

block labeled from 1 to 13.

A. Cuzzocrea et al. / Journal of Visual Languages and Computing 42 (2017) 13–22 21

Fig. 14. Performance results of our algorithms on the FVC2002 dataset.

t

s

a

a

n

c

8

r

m

a

g

a

d

e

s

d

[

t

j

w

t

o

u

t

t

o

l

o

a

9

d

c

t

o

c

t

c

p

t

a

p

b

R

• In general, the runs are connected according to the minimum

distance between the runs.

• Connection between two runs belonging to sub-block of oppo-

site predominant slope is avoided.

• When more than one run is available for connection, only the

closes one is connected.

At the end of this Section we report an example of the results

hat can be obtained from the low level processing techniques de-

cribed so far, namely the Gabor filtering, the binarization/thinning

nd the ridge reconstruction. In Fig. 13 , from left to right, we report

n example of a raw fingerprint, of Gabor enhancement, of Thin-

ing and of ridge reconstruction. In the red circle we highlight a

ase of successful reconstruction.

.2. Experimental results

The algorithm composed by fingerprints enhancement, bina-

ization, and Warping of unknown fingerprints by 2D-DPA imple-

ented on GPU is called the simplified verification algorithm. The

lgorithm composed by the simplified one plus thinning of the fin-

erprints plus restoring of the fingerprint ridges is called the over-

ll verification algorithm. Both the algorithms use the verification

ecision rule based on the computation of the total number of pix-

ls of the difference between reference and warped images. The

implified and overall verification algorithms are tested with the

ataset of the second fingerprint verification competition FVC2002

42] . Generally the performance of a fingerprint verification sys-

em are measured in terms of False Accept Rate (FAR) and False Re-

ect Rate (FRR). FAR is the rate of accepting as verified a fingerprint

hich in reality belongs to an impostor. FRR is the rate of rejec-

ion of valid inputs. Both these measures depend on the thresh-

ld of the fingerprint verification algorithm. The threshold value is

sually given by the Equal Error Rate (EER). ERR corresponds to the

hreshold which indicates that FAR is equal to FRR.

The FAR and FRR measures and the ERR value evaluated in our

est are reported in Fig. 14 . The dashed red line reports the result

f the simplified verification algorithm while the continuous green

ine is the result of the overall algorithm.

It can be seen that the difference between the simplified and

verall algorithms is that the overall one has an ERR less than

bout 3% of the simplified one.
. Conclusions and future work

In this paper we describe an approximation of two-dimensional

ynamic programming. The algorithm has been mapped on a re-

ent GPU device with Kepler architecture. Our results show that

wo-dimensional dynamic programming can be executed at a rate

f about 10 frames per second for images of size 85 × 85 pixels. Of

ourse other mapping of the algorithm could be devised. In addi-

ion to the first experimental campaign, we provided a complete

ase study and related experimental results obtained from the ap-

lication of the algorithm to fingerprint verification.

Future work on this topic will be to find better mappings of

he algorithm on a GPU on one side, and to apply the algorithm in

pplications that need real time processing. On the other hand, we

lan to extend our framework as to deal with emerging trends of

ig data management and analytics (e.g., [43–50]).

eferences

[1] R. Bellman , Bynamic Programming, Princeton University Press, 1957 .
[2] A . Morales , A . Kumar , M.A . Ferrer , Interdigital palm region for biometric iden-

tification, Comput. Vis. Image Understanding 142 (2016) 125–133 .

[3] Z. Wu , M. Betke , Global optimization for coupled detection and data associa-
tion in multiple object tracking, Comput. Vis. Image Understanding 143 (2016)

25–37 .
[4] Y. Long , F. Zhu , L. Shao , Recognising occluded multi-view actions using local

nearest neighbour embedding, Comput. Vis. Image Understanding 144 (2016)
36–45 .

[5] K. Avgerinakis , A. Briassouli , Y. Kompatsiaris , Activity detection using sequen-

tial statistical boundary detection (SSBD), Comput. Vis. Image Understanding
144 (2016) 46–61 .

[6] J. Wang , Z. Xu , Spatio-temporal texture modelling for real-time crowd anomaly
detection, Comput. Vis. Image Understanding 144 (2016) 177–187 .

[7] P.R. Lumertz , L. Ribeiro , L.M. Duarte , User interfaces metamodel based on
graphs, J. Vis. Lang. Comput. 32 (2016) 1–34 .

[8] K. Zhang , M.A. Orgun , R. Shankaran , D. Zhang , Classifying high dimensional

data by interactive visual analysis, J. Vis. Lang. Comput. 33 (2016) 24–36 .
[9] W. Wang , M.L. Huang , Q.V. Nguyen , W. Huang , K. Zhang , T. Huang , Enabling

decision trend analysis with interactive scatter plot matrices visualization, J.
Vis. Lang. Comput. 33 (2016) 13–23 .

[10] N.A.M. ElSayed , B.H. Thomas , K. Marriott , J. Piantadosi , R.T. Smith , Situated an-
alytics: demonstrating immersive analytical tools with augmented reality, J.

Vis. Lang. Comput. 36 (2016) 13–23 .
[11] C. Lin , W. Huang , W. Liu , S. Tanizar , S. Jhong , Evaluating esthetics for user-

sketched layouts of clustered graphs with known clustering information, J. Vis.

Lang. Comput. 37 (2016) 1–11 .
[12] A .A . Amini , T.E. Weymouth , R.C. Jain , Using dynamic programming for solving

variational problems in vision, PAMI 12 (9) (1990) .
[13] P.F. Felzenszwalb , R. Zabih , Dynamic programming and graph algorithms in

computer vision, PAMI 33 (4) (2011) .

http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0001
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0001
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0002
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0002
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0002
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0002
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0003
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0003
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0003
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0004
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0004
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0004
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0004
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0005
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0005
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0005
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0005
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0006
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0006
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0006
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0007
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0007
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0007
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0007
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0008
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0008
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0008
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0008
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0008
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0009
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0009
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0009
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0009
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0009
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0009
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0009
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0010
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0010
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0010
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0010
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0010
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0010
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0011
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0011
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0011
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0011
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0011
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0011
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0012
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0012
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0012
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0012
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0013
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0013
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0013

22 A. Cuzzocrea et al. / Journal of Visual Languages and Computing 42 (2017) 13–22

[

[14] A . Buchanan , A . Fitzgibbon , Interactive feature tracking using k-d trees and dy-
namic programming, in: Proceedings of CVPR, 2006 .

[15] O. Veksler , Stereo correspondence by dynamic programming on a tree, in: Pro-
ceedings of CVPR, 2005 .

[16] C. Lei , J. Selzer , Y.H. Yang , Region-tree based stereo using dynamic program-
ming optimization, in: Proceedings of CVPR, 2, 2006, pp. 2378–2385 .

[17] S. Uchida , H. Sakoe , Survey of elastic matching techniques for handwritten
character recognition, IEICE Trans. Inf. Syst. (2005) 1781–1790 .

[18] E. Angel , Dynamic programming for noncausal problems, IEEE Trans. Autom.

Control (1981) .
[19] B. Serra, M. Berthod, Subpixel contour matching using continuous dynamic

programming, in: Proceedings of CVPR, 1994.
[20] M.E. Munich , P. Perona , Continuous dynamic time warping for translation in-

variant curve alignment with applications to signature verification., Proceed-
ings of ICCV, 1999 .

[21] S. Uchida , I. Fujimura , H. Kawano , Y. Feng , Analytical dynamic programming

tracker, in: Proceedings of ACCV, 2010 .
[22] H. Sakoe, S. Chiba, Readings in Speech Recognition, Morgan Kaufmann Publish-

ers Inc., 1990, pp. 159–165.
[23] C.L. Liu , S. Jaeger , M. Nakagawa , Online recognition of Chinese characters:the

state-of-the-art, PAMI 26 (2) (2004) .
[24] E. Levin , R. Pieraccini , Dynamic planar warping for optical character recogni-

tion, in: Proceeding ICASSP, 1992, pp. 149–152 .

[25] S. Uchida, H. Sakoe, A monotonic and continuous two-dimensional warping
based on dynamic programming, in: Proceedings of 14th ICPR, 1998.

[26] D. Keysers , W. Unger , Elastic image matching is NP complete, Pattern Recognit.
Lett. 24 (2003) 445–453 .

[27] D. Keysers , T. Deselaers , C. Gollan , H. Ney , Deformation models for image
recognition, IEEE Trans. Pattern Anal. Mach. Intell. (2007) .

[28] V. Mottl , S. Dvoenko , A. Kopylov , Pattern recognition in interrelated data:

the problem, fundamental assumptions, recognition algorithms, Proceedings of
ICPR, 2004 .

[29] H. Lester , S.R. Arridge , A survey of hierarchical non-linear medical image reg-
istration, Pattern Recognit. 32 (1) (1999) .

[30] M. Gong , Y.-H. Yang , Real-time stereo matching using orthogonal reliabil-
ity-based dynamic programming, IEEE Trans. Image Process. 16 (3) (2007)

879–884 .

[31] P. Steffen , R. Giegerich , M. Giraud , GPU Parallelization of Algebraic Dynamic
Programming, in: Proceedings of PPAM 2009, 2, 2009, pp. 290–299 .

[32] J. Congote , J. Barandiaran , I. Barandiaran , O. Ruiz , Realtime dense stereo match-
ing with dynamic programming in CUDA, in: Proceedings of CEIG’09, 32, 2009 .

[33] A. Stivala , P.J. Stuckeya , M.G. de la Bandac , M. Hermenegildod , Lock-free paral-
lel dynamic programming, J Parallel Distrib. Comput. (2010) 839–848 .

[34] C. Wu , Y. Ke , H. Lin , W. Feng , Optimizing dynamic programming on graph-

ics processing units via adaptive thread-level parallelism, in: Proceedings of
IEEE 17th International Conference on Parallel and Distributed Systems, 2011,

pp. 96–103 .
[35] Y.I. Kazufumi Nishida , Koji Nakano , Accelerating the dynamic programming for
the optimal polygon triangulation on the GPU, in: Algorithms and Architec-

tures for Parallel Processing, 2012, pp. 1–15 .
[36] N. Gonzalo , A guided tour to approximate string matching, ACM Comput. Surv.

(2001) 31–88 .
[37] C. Di Neil , P. Pevzner , An Introduction to Bioinformatics Algorithms, MIT Press,

2004 .
[38] C.J. Hopfe , Y. Rezgui , E. Mtais , A. Preece , H. Li , Natural Language Processing and

Information Systems, Springer, 2010 . LNCS6177

[39] S. Uchida , H. Sakoe , An efficient two-dimensional warping algorithm, IEICE
Trans. Inf. Syst. (1999) .

[40] J. Yang , L. Liu , T. Jiang , Y. Fan , A modified gabor filter design method for finger-
print image enhancement, Pattern Recognit. Lett. 24 (12) (2003) 1805–1817 .

[41] E. Mumolo , Spectral domain texture analysis for speech enhancement, Pattern
Recognit. 35 (10) (2002) 2181–2191 .

[42] D. Maio , D. Maltoni , R. Cappelli , J.L. Wayman , A.K. Jain , FVC2002: second fin-

gerprint verification competition, in: 16th International Conference on Pat-
tern Recognition, ICPR 2002, Quebec, Canada, August 11–15, 2002., 2002,

pp. 811–814 .
[43] M. Cheung , J. She , Z. Jie , Connection discovery using big data of user-shared

images in social media, IEEE Trans. Multimedia 17 (9) (2015) 1417–1428 .
44] M. Chen , S. Mao , Y. Liu , Big data: a survey, MONET 19 (2) (2014) 171–209 .

[45] A. Cuzzocrea , L. Bellatreche , I. Song , Data warehousing and OLAP over big

data: current challenges and future research directions, in: Proceedings of the
16thInternational Workshop on Data Warehousing and OLAP, DOLAP 2013, San

Francisco, CA, USA, October 28, 2013, 2013, pp. 67–70 .
[46] A. Cuzzocrea , F. Furfaro , D. Saccà, Hand-OLAP: a system for delivering OLAP

services on handheld devices, in: 6th International Symposium on Au-
tonomous Decentralized Systems (ISADS 2003), 9–11 April 2003, Pisa, Italy,

2003, pp. 80–87 .

[47] A. Cuzzocrea , Analytics over big data: exploring the convergence of dataware-
housing, OLAP and data-intensive cloud infrastructures, in: 37th Annual IEEE

Computer Software and Applications Conference, COMPSAC 2013, Kyoto, Japan,
July 22–26, 2013, 2013, pp. 4 81–4 83 .

[48] B. Yu , A. Cuzzocrea , D.H. Jeong , S. Maydebura , On managing very large sen-
sor-network data using bigtable, in: 12th IEEE/ACM International Symposium

on Cluster, Cloud and Grid Computing, CCGrid 2012, Ottawa, Canada, May

13–16, 2012, 2012, pp. 918–922 .
[49] S. Felix , A. Csillaghy , A computer vision approach to mining big solar data, in:

2014 IEEE International Conference on Big Data, Big Data 2014, Washington,
DC, USA, October 27–30, 2014, 2014, pp. 27–35 .

[50] A.F. Villán , R. Casado , R. Usamentiaga , A real-time big data architecture for
glasses detection using computer vision techniques, in: 3rd International Con-

ference on Future Internet of Things and Cloud, FiCloud 2015, Rome, Italy, Au-

gust 24–26, 2015, 2015, pp. 591–596 .

http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0014
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0014
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0014
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0015
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0015
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0016
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0016
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0016
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0016
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0017
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0017
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0017
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0018
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0018
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0019
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0019
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0019
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0020
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0020
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0020
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0020
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0020
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0021
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0021
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0021
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0021
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0022
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0022
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0022
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0023
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0023
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0023
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0024
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0024
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0024
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0024
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0024
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0025
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0025
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0025
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0025
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0026
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0026
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0026
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0027
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0027
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0027
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0028a
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0028a
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0028a
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0028a
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0028
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0028
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0028
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0028
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0028
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0029
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0029
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0029
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0029
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0029
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0030
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0030
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0030
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0030
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0030
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0031
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0031
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0031
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0032
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0032
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0033
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0033
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0033
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0034
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0034
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0034
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0034
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0034
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0034
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0034
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0035
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0035
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0035
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0036
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0036
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0036
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0036
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0036
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0037
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0037
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0038
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0038
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0038
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0038
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0038
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0038
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0039
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0039
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0039
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0039
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0040
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0040
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0040
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0040
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0041
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0041
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0041
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0041
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0042
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0042
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0042
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0042
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0043
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0043
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0044
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0044
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0044
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0044
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0044
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0045
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0045
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0045
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0046
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0046
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0046
http://refhub.elsevier.com/S1045-926X(17)30004-6/sbref0046

	An effective and efficient approximate two-dimensional dynamic programming algorithm for supporting advanced computer vision applications
	1 Introduction
	2 Related work
	3 One- and two-dimensional DPA
	4 2D approximate two-dimensional DPA
	5 CUDA platform: architecture and functionalities
	5.1 CUDA programming

	6 CUDA implementation of approximate DPA
	7 Experimental results
	8 Case study: 2D approximate DPA for supporting fingerprint verification
	8.1 Restoring the fingerprint ridges continuity
	8.1.1 Thinning algorithm
	8.1.2 Ridge reconstruction

	8.2 Experimental results

	9 Conclusions and future work
	 References

