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ABSTRACT: In this work, we demonstrate the use of two-dimensional electronic spectroscopy
(2DES) to study the mechanism and time scale of the femtosecond Stokes shift dynamics in
molecules characterized by intramolecular charge transfer, such as distyryl-functionalized boron
dipyrromethene (BODIPY) molecules. The obtained results demonstrate that 2DES allows clear
and direct visualization of the phenomenon. The analysis of the 2D data in terms of 2D
frequency−frequency decay associated maps provides indeed not only the time scale of the
relaxation process but also the starting and the final point of the energy flow and the associated
reorganization energy, identified by looking at the coordinates of a negative signature below the
diagonal. The sensitivity of the 2DES technique to vibrational coherence dynamics also allowed
the identification of a possible relaxation mechanism involving specific interaction between a
vibrational mode of the dye and the solvent.

The first steps of equilibration of excited states following
photoexcitation in condensed phase have been the subject

of intense investigation for many decades (see for example ref 1
for a recent review). Crucial in these ultrafast dynamics is the
coupling between electronic and vibrational degrees of freedom
of solute and solvent. In solution, indeed, the change of the
dipole moment between ground and excited electronic states of
the photoexcited solute is stabilized by reorganization of the
solvent around the molecule and nuclei relaxation. This effect is
spectroscopically revealed by the Stokes shift, i.e., the difference
between the maximum energy of absorption and fluorescence.
This shift often evolves in time after photoexcitation, witnessing
a dynamic response to charge redistribution upon light
absorption. As far as time scales are concerned, one
distinguishes the so-called inertial response on a time scale of
a few tens to a few hundreds of femtoseconds and the
subsequent collective motion with diffusive character, typically
developing on time scales from a few hundreds of femto-
seconds to nanoseconds.2 The time development of the inertial
response and the coupling mechanisms regulating at the
molecular level these dynamics are key parameters in many

fields, and in particular, for all those applications involving
excitation energy conversions and dissipations, such as
photosynthesis and artificial solar energy conversion. This
topic is of particular interest nowadays, especially in light of
recent developments suggesting a possible functional role of
coherent dynamics in the inertial response time scales.3

Nonetheless, the characterization of the inertial component is
particularly challenging because of its faster dynamics.
Fluorescence up-conversion and 3PEPS measurements are
typically exploited to this aim.4 However, while the former
struggles to detect time scales faster than 40−50 fs,5 the latter
may require challenging interpretations when more than two
levels are involved.6 Therefore, to achieve an accurate easy
rationalization of the complex ultrafast dynamics of ICT
molecules, novel approaches, as well as new spectroscopic tools,
become essential.7 We have recently demonstrated that two-
dimensional electronic spectroscopy (2DES) can be conven-
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iently exploited, together with newly developed data analysis
tools, to reveal the fine ultrafast details of intraband relaxation
dynamics with a time resolution up to 10 fs.8,9 Using a similar
approach, here we exploit 2DES together with high-level time-
dependent density functional theory (TDDFT) calculations10

and novel data analysis tools to capture signatures of this
process in a model molecular system.
The attention was focused in particular on polar molecules

characterized by intramolecular charge transfer (ICT) because
their pronounced difference of charge distribution in the
ground and excited state makes these systems particularly
suitable for following energy redistribution upon photo-
excitation. Therefore, boron dipyrromethene (BODIPY)
derivatives have been chosen. These molecules present highly
promising chemical and photophysical properties.11−14 The
charge distribution and the ICT character of BODIPY dyes can
be finely tuned by introducing electron releasing or with-
drawing groups at suitable positions.15,16 In particular, attach-
ment of electron-donating styrylamino groups to a C8-phenyl
substituted BODIPY core generates a push−pull structure
resulting in pronounced spectral changes by activation of ICT
and photoinduced electron transfer.17

In this work we focused our attention on two similar
compounds: 8-phenyl-3,5-di(diamino)styryl-borondipyrrome-
thene (PHDB) and the analogous 8-(p-nitrophenyl)-3,5-
di(diamino)styryl-borondipyrromethene (NO2-PHDB). The

molecular structures are reported in Figure 1a. The choice of
these particular structures has been motivated, beyond their
recognized ICT character, by the possibility of using the
molecules as building blocks for more complex supra-molecular
structures.
The solvatochromic properties of amino distyryl-BODIPYs

are already known and characterized;12,15 therefore, here we
limited the analysis to only two different solvents, tetrahy-
drofuran (THF) and methanol (MeOH), to assess the ICT
character of the excited state and verify the effect of the nitro
group. The photophysical properties of the two molecules in
THF and MeOH solutions have been preliminarily charac-
terized by steady-state absorption, fluorescence, and time-
resolved fluorescence spectroscopy (see the Supporting
Information). Figure 1b reports the absorption and emission
spectra of the two species in THF.
Also, the vibrational properties of the molecules have been

fully characterized by recording the resonant Raman spectra on
crystalline powders excited at 633 nm (Figure 1c). The Raman
spectra of the two species are very similar, as expected
considering the similarity of the backbone of the molecules.
The main differences are recorded in the regions 400−500 and
1300−1500 cm−1 and can be ascribed to the contributions of
the nitro group.19

The photophysical studies have also been supported by
quantum mechanical (QM) calculations carried out at the DFT

Figure 1. (a) Structures of NO2-PHDB and PHDB. (b) Absorption (solid lines) and emission (dashed lines) spectra of the molecules in THF
solutions (red = PHDB; black = NO2-PHDB). The orange area represents the laser spectrum profile used in the 2DES experiments.(c) Resonant
Raman spectra of powders recorded with excitation at 633 nm. The vibrational modes commented in the text (vide infra) are highlighted. Spectra
have been normalized on the 1606 cm−1 band assigned to the CC−N stretching.18 Computed stick Raman spectra computed at the harmonic
level are also reported for comparison. The frequencies are scaled by a factor of 0.98 to account empirically for anharmonic effects.
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and TDDFT levels with the Gaussian09 suite of programs20

using the long-range corrected CAM-B3LYP21 functional
coupled with the 6-311G(d,p) basis set. In all the calculations
the solvent effects were accounted for using the polarizable
continuum model (PCM).22 The calculations of the ground-
and excited-state optimized structures highlight that no
significant structural variations occur during the transition
(Figure 2a). Figure 1c compares the simulated stick Raman
spectra computed at the harmonic level with the experimental
ones. A good agreement was found, especially in the prediction
of the main differences between the spectra of the molecules in
the region below 1000 cm−1. The assignment of the relevant
normal modes is reported in Figure S2.2.
The calculations of vertical excitation and emission processes

of the two molecules have been carried out by employing the
nonequilibrium linear responses (NEQ-LR-PCM) and the
equilibrium state specific (EQ-SS-PCM) approaches, respec-
tively.23,24 All the values are reported in Table S2.1. They reveal
that the first singlet excited state is due to a dipole-allowed π→
π* transition with high oscillator strength from the highest
occupied molecular orbital (HOMO) to the lowest unoccupied
molecular orbital (LUMO) shown in Figure 2b for PHDB. In
both molecules, the HOMOs are delocalized in the whole
molecule, whereas the LUMOs are mainly localized in the
BODIPY core. The first electronic transition seems to have a
partial ICT character as also observed by looking at the electron
density change (ΔρS1−S0) reported in Figure 2c. To determine

the spatial extent associated with the electronic transition and
to better quantify its ICT character, the charge-transfer distance
(dCT) and the transferred charge (qCT) have been calculated.25

The associated dipole (μCT = qCTdCT) has then been
determined as 4.70 and 4.97 D for PHDB and NO2-PHDB
in THF, respectively. Despite the presence of the electron-
withdrawing nitro group, the calculations did not predict
significant differences in the ICT character of the transition in
the two molecules. The contour plots showing the electrostatic
potential of the molecules (Figure 2d) confirm this similarity.
2D measurements have been performed on THF and MeOH

solutions of PHDB and NO2-PHDB. The experimental setup
has been already described in ref 26. More details about the
experimental setup and the pulse properties are reported in the
Supporting Information, section 4.1. Qualitatively, the 2D
spectra obtained for the two molecules in the two analyzed
solvents present similar features. Figure 3 summarizes only the
results on THF solutions of NO2-PHDB, but the full series of
data are available in the Supporting Information. Panel a
illustrates the evolution of the rephasing 2D spectra at selected
values of population time. In the investigated time range, the
signal is dominated by a positive diagonal peak elongated along
the diagonal direction, attributed to ground-state bleaching and
stimulated emission of the S1 state.
The dynamic evolution of the 2D maps has been studied

with a recently proposed global analysis methodology.27 For all
the samples, together with a long time constant (>500 fs)
describing the overall decay of the maps, the dynamics in the
investigated time window is characterized by a time constant of
a few tens of femtoseconds (Table 1). The amplitude
distribution of this short component can be shown in the
form of 2D decay-associated spectrum (DAS), as exemplified in
Figure 3b. Positive (negative) features in a DAS represent
signals that are decaying (rising) with the associated time

Figure 2. (a) Overlayered ground (sticks colored by element) and excited (yellow sticks) optimized structures of the two molecules investigated.(b)
Kohn−Sham molecular orbitals involved during the S0−S1 transition for PHDB. (c) Electron density change (ΔρS1−S0) upon absorption of light for

PHDB. Dark green clouds represent the region where the electron density increases during the transition. (d) Electrostatic potential mapped onto
the electronic density for PHDB and NO2-PHDB in THF solvent.
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constant. The amplitude distribution of this DAS cannot be
entirely justified with spectral diffusion, which would have given
rise to symmetric negative signals above and below the
diagonal.27 Similarly to what was recently observed in a
different system,9 a prominent negative feature below the
diagonal witnesses a relaxation from higher to lower energy
states. In the specific case of the molecules under investigation,
this dynamics can be interpreted as the relaxation from the
vertically excited Franck−Condon state (FC) toward a relaxed
configuration, labeled with R in Figure 3e. The double-sided
Feynmann diagram accounting for the signal in the lower
diagonal region is illustrated in panel f of Figure 3, while panel g
shows the decay of the signal at FC coordinates (blue) and the
corresponding rise, with the same time constant, of the signal at

relaxed coordinates (red). This dynamics can, therefore, be
interpreted as the previously defined inertial response of intra-
and intermolecular degrees of freedom.
Differently from the results of other techniques typically

employed for the characterization of the inertial response, the
DAS in Figure 3b allows clear and direct visualization of the
phenomenon, not only providing the time scale of the
relaxation processes but also showing in a 2D frequency−
frequency correlation map (DAS) the starting (FC) and the
final (R) point of the energy flow, identifiable with the x and y
coordinate of the negative cross peak, respectively. One can
thus readily estimate the reorganization energy involved in the
dynamical process described by the specific time constant
associated with the DAS.
In support of this approach, it is also possible to simulate the

data and obtain these parameters from the simulation. In this
specific case, the 2DES response was modeled using a two-level
system coupled to an external bath. The interaction with the
environment and nuclear degrees of freedom were incorporated
into the line shape function associated with the electronic
transition employing the Brownian oscillator formalism.28

Figure 3. (a) 2D maps recorded for NO2-PHDB in THF at selected values of population time T. (b) 2D decay associated spectrum relative to the
ultrafast relaxation dynamics with time constant 30 fs (DAS1) . (c and d) Same maps as obtained from the simulations. (e) Schematic illustration of
the energy curves involved in the ultrafast relaxation dynamics after photoexcitation in the displaced harmonic oscillator model. Two orthogonal
degrees of freedom are represented: the inertial coordinate (black) and the vibrational coordinates (blue for the FC coordinate and red for the
relaxed R coordinate). The green arrow represents the inertial S1,FC → S1,R relaxation, characterized by a time constant of 30 fs for NO2-PHDB in
THF. The reorganization energy for this process is estimated to be about 600 cm−1. (f) Feynman diagram describing the rising of the signal in the
lower off-diagonal part of the 2D map and attributed to the S1,FC → S1,R relaxation. (g) Decay of the signal at FC state coordinates (14 500, 14 500
cm−1; blue) and corresponding rising of the signal at relaxed coordinates (14 500, 13 800 cm−1; red).

Table 1. Time Constants for the Inertial Relaxation Process
Resulting from the Global Fitting Analysis for the Two
Molecules in the Two Solvents

PHDB NO2-PHDB

THF 13 fs 29 fs
MeOH 16 fs 41 fs
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Following standard nonlinear response function theory,29 the
line shape function was then used as input to calculate the
nonlinear response functions, which were fully convoluted with
the laser pulse profile to obtain the 2DES spectra. To
satisfactorily reproduce broadening and relaxation dynamics
of the 2DES response, two overdamped Brownian oscillators
were added to the line shape. A first oscillator accounts for the
static inhomogeneous broadening, while the second introduces
spectral diffusion and Stokes shift dynamics in the ultrafast time
scale. A full agreement between experimental and simulated
data, both in terms of shape of the 2D maps and amplitude
distribution of the DAS, could be obtained imposing an
ultrafast reorganization energy of 600 and 650 cm−1 for PHDB
and NO2-PHDB in THF, respectively (Figure 3c,d and the
Supporting Information).
A careful look at the time constants characterizing the inertial

relaxation of the two molecules in the two solvents reveals
slightly different rates, as summarized in Table 1. The values
found for the MeOH solutions are in reasonably good
agreement with recent measurements on a molecule with a
similar structure.30 These time constants are very fast and,
especially in the case of PHDB, close to the time resolution of
the experiment, leading to a non-negligible uncertainty in their
determination. Nevertheless, beyond the exact value of time
constants, the comparison of the decays recorded for different
sample solutions reveals trends as a function of solvent and
presence of the nitro group. In general, the dynamics in THF
always results in faster decay than in MeOH. This trend can be
justified in light of the higher polarizability of THF,31 which is
able to reorganize faster toward the new equilibrium
configuration. On the other hand, the functionalization with
the nitro group has the effect of slowing the inertial relaxation.
This effect could be connected with the more significant
spreading of the charge distribution in the NO2-PHDB
compound (Figure 2d), which is expected to slow the inertial
response.

Additional details about the degrees of freedom more actively
involved in the inertial relaxation can be obtained looking at the
evolution of vibrational coherent wave packets. The initial
photoexcitation can generate coherent superpositions of
vibrational levels, often leading to coherent wave packet
dynamics in the excited-state potential manifold, whose
dephasing strongly depends on the properties of the potential
energy surface and the nature of the interaction with the
environment.
The evolution of vibrational coherent wave packet is

manifested in 2D spectra as oscillations of the signal along
the population time. The corresponding beating frequencies are
typically extracted by performing a Fourier transform (FT) of
the oscillating residuals. The FT spectra calculated by
integrating the whole 2D maps for the four samples (Figure
4a) show that the oscillations in the 2D signal of PHDB are
dominated by a mode beating at ν1= 230 cm−1, both in THF
and MeOH. The oscillating pattern of NO2-PHDB presents
more fetaures: in MeOH, together with a signal at ν1 = 220
cm−1, a strong signal at ν2 = 450 cm−1 also emerges. In THF, an
additional broad feature centered at ν3 = 950 appears. All these
frequencies roughly correspond to vibrational modes also
detected in the Raman spectra and identified in the calculations
(Figure 1c). The presence of a higher number of frequencies in
the oscillating pattern of NO2-PHDB follows the trend already
recognized in Raman spectra, where the presence of additional
signals at about 450 cm−1 was previously identified. For both
molecules in both solvents, the ν1 and ν2 signals are
characterized by a dephasing time longer than the investigated
time window, which is therefore estimated to be >0.5 ps.
Furthermore, the amplitude distribution of these modes across
the 2D maps follows the behavior expected for vibrational
coherence,28 supporting their interpretation in terms of
vibrational modes of the molecules.
Different is the behavior of ν3, showing the maximum

amplitude in the region below diagonal, in correspondence of

Figure 4. (a) Fourier spectra of the four samples highlighting the frequency components more strongly contributing to the beating pattern of the 2D
signal. The spectra are obtained by Fourier transforming the integrated 2D maps. The main oscillating frequencies (ν1 = 220, ν2 = 450, and ν3 = 950
cm−1) are emphasized. The inset shows the amplitude distribution of the ν3 beating mode for NO2-PHDB in THF. (b) Time−frequency transform
analysis of the oscillating residuals for NO2-PHDB in THF at coordinates (14 500, 13 800) cm−1 pinpointed with the red dot in the inset of panel a.
Upper panel: oscillating residuals at the same coordinates. The feature at around 500 cm−1 is a residual of the ν2 signal, partially contributing also at
these coordinates because of broadening effects.
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the negative cross peak feature localized in the DAS (inset of
Figure 4a) and characterized by a much shorter dephasing time.
Figure 4b shows the results of a time-frequency transform
(TFT) applied to the oscillating residuals recorded at
coordinates (14500, 13800) cm−1 in THF. This analysis
overcomes the limitations of conventional methods based on
Fourier transforms maintaining both frequency and time
resolution.32 The figure immediately highlights that the signal
at 950 cm−1 is characterized by a considerably shorter damping
time and, in agreement with the time−frequency indetermina-
tion principle, by a larger bandwidth. The fast dephasing time
of this signal suggests the presence of additional dynamic
mechanisms contributing to the evolution of this vibrational
coherence. A first indication to identify this mechanism is that,
as shown in the amplitude distribution map shown in the inset
of Figure 4a, this frequency contributes mainly at off-diagonal
coordinates where a signal due to the inertial environment
reorganization has been already ascertained.
THF solvent has a vibrational mode with a similar frequency

at 914 cm−1. However, the assignment of this component to a
nonresonant signal of the pure solvent can be ruled out
considering that it does not appear in THF solutions of PHDB
and that its amplitude distribution and dynamics do not follow
the expected behavior.33,34

A careful look at the 2D response of NO2-PHDB in MeOH
reveals the possible presence of a weak signal at slightly higher
frequency (about 1050 cm−1). This mode is not recognizable
from the integrated Fourier spectra in Figure 4a, but it weakly
emerges from the analysis of the residuals at a single coordinate
(14 500, 13 800 cm−1). The corresponding TFT analysis
reported in Figure S4.2 reveals a time behavior similar to the
one already found for ν3 in THF, although characterized by a
slightly longer dephasing time. It is noteworthy that, also in this
case, a solvent vibration close in frequency is present (MeOH
has a vibrational mode at 1040 cm−1).
All these pieces of evidence seem to suggest that the ν3 signal

is strongly affected by a specific interaction of the NO2-PHDB
molecule with the THF solvent, likely enhanced by the
resonance between vibronic energy gaps of dye and solvent
molecules. This phenomenon is more evident in THF than in
MeOH. This can be justified by recognizing that the NO2-
PHDB molecule has two intense vibrational modes (at 958 and
994 cm−1) near resonant with the vibrational mode of THF at
914 cm−1, whereas there is only a weak mode at 1027 cm−1 that
can be resonant with the vibrational mode of MeOH at 1040
cm−1. The absence of distinguishable features at ν3 in PHDB
can instead be justified considering three main aspects: (i) the
overwhelming intensity of the ν1 signal, dominating the
oscillating response and possibly covering weaker contribu-
tions; (ii) the Raman modes of PHDB in the region 900−1000
cm−1 are characterized by a slightly smaller intensity with
respect to the nitro-analogous; (iii) the faster relaxation
dynamics of PHDB (see Table 1), probably too fast to
guarantee the activation of the coupling mechanism.
Because the ν3 beating mode is dampened in the same time

scale found for the inertial environment reorganization process,
it is tempting to associate this beating dynamics to the same
process. In particular, we could suppose that the presence of a
vibrational mode of the solvent, resonant with a vibrational
mode of the dye, acts as a sort of sink for the dye wave packets,
causing a fast dephasing of corresponding vibrations and
promoting the relaxation toward the R coordinates. This
mechanism, active for NO2-PHDB more in THF than in

MeOH, could also contribute to explain the faster relaxation
recorded in the former solvent. This would imply that the
inertial relaxation from FC to R state can be strongly influenced
by vibrational modes of the solvent, and it would open a
completely new view into the microscopic details affecting the
initial ultrafast relaxation dynamics.
The idea of a vibrational energy flow from one mode to

another inside a molecule and from one molecule to another is
certainly not new. Vibrational energy transfer from solute to
solvent has been the subject of intense investigation in the last
two decades,2,35 but the experimental observations are typically
limited to spectroscopies in the IR regime and thus in the
electronic ground state.36,37 Our 2DES data seem instead to
provide new evidence for a strong coupling mechanism actively
contributing to the ultrafast relaxation dynamics in the excited
state of the solute. Clearly, to verify the generality of the
process and clarify the details of the interplay between solvent
and dye degrees of freedom in the ultrafast inertial relaxation
dynamics more systematic investigations on different solvents
and molecules are required.
In conclusion, this work demonstrates that 2DES measure-

ments complemented by suitably developed data analysis
procedures and TDDFT calculations represent an outstanding
tool to characterize the ultrafast dynamic steps of inertial
equilibration dynamics in ICT molecules. The analysis of the
2D data in terms of 2D frequency−frequency decay associated
maps not only provides the time constant of the relaxation
process but also allows a direct determination of the associated
reorganization energy, identifiable by looking at the coordinates
of a negative signature below the diagonal. The sensitivity of
the 2DES technique to vibrational coherence dynamics also
allowed the identification of a possible relaxation mechanism
involving specific interaction between a vibrational mode of the
dye and the solvent. While further measurements and
theoretical investigations are surely needed to verify the actual
nature of this mechanism, several experimental pieces of
evidence point toward this interpretation and suggest an
intriguing role of the solvent in the relaxation dynamics of ICT
molecules. Owing to the importance and diffusion of ICT states
in biology and materials science, recognizing their characteristic
features in the 2DES response starting from the study of model
molecules is particularly relevant.
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