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Let G be a simple finite graph and G ′ be a subgraph of G . A G ′-design (X, B) of order n
is said to be embedded into a G-design (X ∪ U , C) of order n + u, if there is an injective 
function f : B → C such that B is a subgraph of f (B) for every B ∈ B. The function f is 
called an embedding of (X, B) into (X ∪U , C). If u attains the minimum possible value, then 
f is a minimum embedding. Here, by means of König’s Line Coloring Theorem and edge 
coloring properties, some results on the embedding of Ck-systems into k-sun systems are 
obtained and a complete solution to the problem of determining a minimum embedding 
of any Steiner Triple System into a 3-sun system is given.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

If G is a graph, then let V (G) and E(G) denote the vertex-set and edge-set of G , respectively. Given a set � of pairwise 
non-isomorphic simple graphs, a �-design or �-system of order n is a pair (X, B) where B is a collection of graphs (called 
blocks) each isomorphic to some element of �, whose edges partition E(Kn), where Kn is the complete graph of order n on 
X ; if the edges of the blocks of B partition a proper spanning subgraph of Kn , then we speak of partial �-design of order n. If 
� = {G}, then we simply write G-design. Let �(G) denote the set of all integers n such that there exists a G-design of order 
n. A k-cycle (x1, x2, . . . , xk) consists of the k distinct vertices x1, x2, . . . , xk and the k edges {xi, xi+1}, i = 1, 2, . . .k − 1, and 
{x1, xk}. By adding to a k-cycle Ck = (x1, x2, . . . , xk) an independent set of edges {{xi, x′

i}, 1 ≤ i ≤ k} we obtain the k-sun on 
2k vertices denoted by S(Ck) = (x1, x2, . . . , xk; x′

1, x
′
2, . . . , x

′
k). Obviously, a necessary condition for the existence of a k-sun 

system of order n, shortly a kSS(n), is n ≥ 2k and n(n − 1) ≡ 0 (mod 4k). The sufficiency of this condition was proved for 
k ∈ {3, 4, 5, 6, 8} and only recently Buratti et al. ([2]) made remarkable progress towards solving the spectrum problem for 
kSS when k is odd and gave a complete solution whenever k is an odd prime. It is well-known that �(Ck) = {n ∈ N : n ≡ 1
(mod 2), n(n − 1) ≡ 0 (mod 2k)}. A K3-design (which is also a C3-system) of order n is known as a Steiner triple system and 
denoted by STS(n); obviously, �(K3) = {n ∈ N : n ≡ 1, 3 (mod 6)}.

Let G be a simple finite graph and G ′ be a subgraph of G . A G ′-design (X, B) of order n is said to be embedded into a 
G-design (X ∪ U , C) of order n + u, if there is an injective function f : B → C such that B is a subgraph of f (B) for every 
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B ∈ B. The function f is called an embedding of (X, B) into (X ∪ U , C). If u attains the minimum possible value, then f is a 
minimum embedding. Note that a special case occurs when G = G ′ and the related embedding problem is better known as 
Doyen-Wilson problem (see [8,10,12–14]).

The embedding problems have interesting applications to networks ([7]), that is why they have been investigated in 
several papers (see [4–6,11,15–18]). In particular, the minimum embedding problem of STSs into G-designs has been studied 
in the case when G = K4, G = K4 − e (the complete graph on four vertices with one deleted edge), or G = K3 + e (a kite, 
i.e., a triangle with one pendant edge) and solved in [5], [6], [11], [15].

In [9] the authors embed a cyclic STS of order n ≡ 1 (mod 6) into a 3SS(2n − 1) and as an open problem they ask 
whether it is possible to embed any STS into a 3SS of some order. Here we give an answer to this open problem and for 
any STS, not only we determine the minimum order of a 3-sun system which embeds the STS, but also give a construction 
for this embedding. More precisely, for every integer n ∈ �(K3), denoted by umin(n) the minimum integer u such that any 
STS(n) can be embedded into a 3-sun system of order n + u, as main result we prove the following theorem.

Main Theorem.

(i) If n ≡ 1, 3, 9, 19 (mod 24), then umin(n) = n−1
2 for every n 
= 3, 9, umin(3) = 6, and umin(9) = 7.

(ii) If n ≡ 7, 13, 15, 21 (mod 24), then umin(n) = n−1
2 + 2 for every n 
= 7, 13, umin(7) = 6, and umin(13) = 11.

Furthermore, embeddings of k-cycle systems of order n ≥ 2k into k-sun systems of order 3n−1
2 are given when n−1

2 ∈
�(S(Ck)).

To get our main goal we make use of some results on edge colorings and, in particular, of König’s Line Coloring Theorem, 
which here, for convenience, is formulated in terms of matchings (for definitions and results on edge colorings or matchings, 
the reader is referred to [1]).

Theorem 1.1. (König’s Line Coloring Theorem) Let G be a bipartite multigraph with maximum degree �. Then E(G) can be parti-
tioned into M1, M2 , . . . , M� such that each Mi, 1 ≤ i ≤ �, is a matching in G.

2. Embedding Ck-systems into kSSs, for k ≥ 3

In this section we will give the necessary condition for embedding a Ck-system into a partial k-sun system. Moreover, if 
n ∈ �(Ck) and n−1

2 ∈ �(S(Ck)), we embed any Ck-system of order n into a kSS( 3n−1
2 ) and prove some useful results to get 

our main result.

Lemma 2.1. If there exists a kSS(n + u) containing an embedded Ck-system of order n, then u ≥ n−1
2 .

Proof. Since a Ck-system of order n has n(n−1)
2k blocks, then in order to complete every k-cycle and obtain a k-sun, neces-

sarily n · u ≥ k n(n−1)
2k and so u ≥ n−1

2 . �
In general, to construct a kSS(n + u) (X ∪ U , S) containing an embedded Ck-system of order n (X, C), we need to 

complete each k-cycle of C to a k-sun by using some edges of the complete bipartite graph Kn,u on X ∪ U and partition into 
k-suns the remaining edges of Kn,u along with those of the complete graph Ku on U . In the following lemma a partial kSS 
containing an embedded Ck-system of order n is constructed by using all the edges of the above complete bipartite graph.

Lemma 2.2. Any Ck-system of order n ≥ 2k + 1 can be embedded into a partial kSS( 3n−1
2 ).

Proof. Let (X, C) be a Ck-system of order n and consider its incidence graph I , i.e., the bipartite graph whose vertex 
set is X ∪ C and whose edges are determined by joining x ∈ X to C ∈ C if and only if x ∈ C . In the graph I ev-
ery vertex of X has degree n−1

2 and every vertex of C has degree k. Since the maximum degree of I is � = n−1
2 , by 

König’s Line Coloring Theorem the edges of I can be partitioned into � matchings M1, M2, . . . , M� , each of which sat-
urates the vertices of X , i.e., every vertex of X is incident to an edge of each matching. Let S be the set of k-suns on 
X ∪ {M1, M2, . . . , M�} obtained by completing each k-cycle of C to a k-sun as follows: for every C = (x1, x2, . . . , xk) ∈ C , 
consider the k-sun (x1, x2, . . . , xk; Mi1 , Mi2 , . . . , Mik ), where {x j, C} ∈ Mi j for every j = 1, 2, . . . , k. (X ∪{M1, M2, . . . , M�}, S)

is a partial kSS( 3n−1
2 ) which embeds (X, C). �

The lower bound given by Lemma 2.1 is attained if there exists a kSS(n−1
2 ), as it is established by the following proposi-

tion.

Proposition 2.1. Let n ∈ �(Ck) such that n ≥ 2k + 1 and n−1
2 ∈ �(S(Ck)). Then any Ck-system of order n can be embedded into a 

kSS( 3n−1 ).
2

2
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Proof. Let (X, C) be any Ck-system of order n. By Lemma 2.2, it can be embedded into a partial kSS( 3n−1
2 ) (X ∪{M1, M2, . . ., 

M n−1
2

}, S). Since n−1
2 ∈ �(S(Ck)), there exists a kSS(n−1

2 ) ({M1, M2, . . . , M n−1
2

}, S ′). Then (X ∪ {M1, M2, . . . , M n−1
2

}, S ∪ S ′)
is a kSS( 3n−1

2 ) which embeds (X, T ). The result follows by Lemma 2.1. �
3. The case k = 3

In this section we completely solve the minimum embedding problem of any STS into a 3SS.
To start with, since a 3SS(n) exists if and only if n ≡ 0, 1, 4, 9 (mod 12), n ≥ 9 (see [9]), when k = 3 Proposition 2.1 can 

be stated as follows.

Proposition 3.1. For every n ≡ 1, 3, 9, 19 (mod 24), n ≥ 19, umin(n) = n−1
2 .

From now on, we will denote:

• the kite consisting of the triangle (a, b, c) and the pendant edge {c, d} by (a, b, c; d);
• the bull graph consisting of the triangle (a, b, c) and the pendant edges {b, d} and {c, e} by (a, b, c; d, e);

If G is a kite, a bull, or a 3-sun, then its triangle will be denoted by t(G). Finally, if f is an embedding of an STS (X, T )

into a 3SS (X ∪ U , S), then f (T ) will be denoted by ST .

Lemma 3.1. If n = 3, 9, then umin(n) = 6, 7, respectively.

Proof. Any STS(3) can be trivially embedded into a 3SS of any admissible order v ≥ 9 and so umin(3) = 6.
Let (X ∪ U , S) be a 3SS(9 + u) containing an embedded STS(9) (X, T ). By Lemma 2.1 u ≥ 4. If u = 4, then S \ST would 

contain only one 3-sun S such that V (S) ⊆ U , which is impossible and so umin(9) ≥ 7. The following set of graphs on Z16

is the block-set of a 3SS which embeds the unique STS(9) (whose triangles are in bold):

(0,1,2;9,10,11), ((0,3,6;10,15,9), (0,4,8;11,9,13),

(0,5,7;12,9,15), (1,3,8;9,10,11), (1,4,7;11,10,9),

(1,5,6;12,10,13), (2,3,7;9,11,12), (2,4,6;10,11,12),

(2,5,8;12,13,14), (3,4,5;9,12,14), (6,7,8;11,10,9),

(0,13,15;14,7,8), (1,14,15;13,4,9), (3,12,14;13,15,11)

(2,13,14;15,4,7), (5,11,12;15,7,10), (6,10,14;15,8,9),

(9,12,13;10,8,11), (10,11,15;13,9,4). �
Lemma 3.2. Let n ≡ 7, 13, 15, 21 (mod 24). If there exists a 3S S(n + u) containing an embedded STS(n), then u ≥ n−1

2 + 2.

Proof. Let n = 24k + r, r ∈ {7, 13, 15, 21}. If (X, S) is a 3SS(n + u) containing an embedded STS(n), then by Lemma 2.1
n + u ≥ 3n−1

2 = 36k + 3r−1
2 , where 3r−1

2 ∈ {10, 19, 22, 31}. Since n + u ≡ 0, 1, 4, 9 (mod 12), this implies u ≥ n−1
2 + 2. �

Remark 3.1. For every n ≡ 7, 13, 15, 21 (mod 24), if (X ∪ U , S) is a 3SS(n + n+3
2 ) containing an embedded STS(n) (X, T ), 

then each vertex x ∈ X appears in exactly two blocks of S \ST as a pendant vertex and so for every S ∈ S \ST the vertices 
of t(S) are in U .

The lower bound established by Lemma 3.2 is not attained when n = 7, 13, as it is shown by the following lemma.

Lemma 3.3. If n = 7, 13, then umin(n) = 6, 11, respectively.

Proof. Let (X ∪ U , S) be a 3SS(n + u) containing an embedded STS(n) (X, T ), where n = 7, 13. By Lemma 3.2, u ≥ n+3
2 .

For n = 7, by Remark 3.1 |S \ ST | ≥ 5 and so umin(7) ≥ 6. To prove that umin(7) = 6, on Z13 we give the blocks of a 3SS 
which embeds the unique STS(7):

(0,1,2;7,8,9), ((0,3,4;8,7,9), (0,5,6;9,8,10), (1,3,5;9,8,7),

(1,4,6;10,7,12), (2,3,6;7,9,8), (2,4,5;8,11,9),
3
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(0,10,11;12,5,3), (1,7,12;11,8,5), (2,10,12;11,9,8), (4,8,10;12,9,3),

(9,11,12;7,5,3), (6,7,11;9,10,8).

For n = 13, if u = 8, then |S \ ST | = 9 and by Remark 3.1 a partial triple system on U with 9 triangles should exist, which 
is impossible because a maximum packing of K8 with triangles (i.e., a partial K3-design of order 8 with the maximum 
number of blocks) have 8 blocks. Therefore, umin(13) ≥ 11. Since there are two non-isomorphic STS(13)s, in order to prove 
that umin(13) = 11 we need to embed each STS(13). Firstly, we embed the cyclic one into a 3SS on Z24 as follows:

(0,1,4;13,18,14), (1,2,5;13,23,14), (2,3,6;13,18,14),

(3,4,7;13,15,14), (4,5,8;13,15,14), (5,6,9;13,18,19),

(6,7,10;13,15,14), (7,8,11;13,15,14), (8,9,12;13,20,15),

(9,10,0;13,15,14), (10,11,1;13,16,14), (11,12,2;13,16,14),

(12,0,3;13,15,23), (0,2,7;16,22,21), (1,3,8;15,19,16),

(2,4,9;15,16,14), (3,5,10;14,16,17), (4,6,11;17,15,18),

(5,7,12;17,16,14), (6,8,0;16,17,18), (7,9,1;17,15,16),

(8,10,2;18,16,17), (9,11,3;16,15,17), (10,12,4;18,17,19),

(11,0,5;17,19,18), (12,1,6;18,17,19),

(0,17,20;21,6,1), (1,19,21;22,2,3), (2,16,18;20,3,4),

(3,15,20;22,13,4), (4,21,22;23,2,0), (5,19,20;21,7,6),

(6,21,23;22,8,0), (7,18,20;22,9,8), (8,19,22;23,10,5),

(9,17,21;22,13,10), (10,20,22;23,11,12), (11,19,23;21,12,1),

(12,20,21;23,13,14), (13,14,16;18,15,17), (13,22,23;19,11,5),

(14,17,19;18,15,16), (14,20,23;22,16,7), (15,16,21;19,23,13),

(15,18,22;23,19,16), (17,18,23;22,21,9).

A 3SS(24) which embeds the non cyclic STS(13) can be obtained from the above one by replacing the 3-suns

(0,1,4;13,18,14), (0,2,7;16,22,21),

(2,4,9;15,16,14), (7,9,1;17,15,16),

with

(9,1,4;14,18,16), (9,2,7;15,22,17),

(0,2,4;16,15,14), (0,1,7;13,16,21). �
In order to prove that for every n ≡ 7, 13, 15, 21 (mod 24), n 
= 7, 13, umin(n) equals the lower bound of Lemma 3.2, the 

following lemma is useful.

Lemma 3.4. ([1], Lemma 6.3) Let M and N be disjoint matchings of a graph G with size |M| and |N| such that |M| > |N|. Then there 
are disjoint matchings M ′ and N ′ of G such that |M ′| = |M| − 1, |N ′| = |N| + 1 and M ′ ∪ N ′ = M ∪ N.

Now, we determine umin(n) for every n ≡ 7, 13, 15, 21 (mod 24) with the exception of few small orders, which will be 
settled in Section 3.1.

In graph theory, the degree of a vertex of a graph G is the number of edges of G that are incident to the vertex; here, 
we define 2-degree of a vertex x of a �-design D, and denote by d2(x), the number of blocks of D containing x as a vertex 
of degree 2. The 2-degree sequence of D is the non-decreasing sequence of its vertex 2-degrees.

In what follows, if G is a graph whose vertices belong to Zu , then we call orbit of B under Zu the set (G) = {G + i : i ∈ Zu}, 
where G + i is the graph with V (G + i) = {a + i : a ∈ V (G)} and E(G + i) = {{a + i, b + i} : {a, b} ∈ E(G)}.

Lemma 3.5. For any u = 12k + h, h = 5, 8, 9, 12 and k ≥ 3, there exists a {bull, 3-sun}-design of order u whose 2-degree sequence is 
(2, 3, 3, 3, 3, 4, 4, . . . , 4).
4
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Proof. Consider the following orbits under Zu : for i = 1, 2, 3, Bi = (Bi), where B1 = (0, 6k − 2, 4k + 3; 3k, 6k − 1), B2 =
(6k, 0, 4k +1; 6k +2, 6k +1), and B3 = (0, 6k −1, 4k +2; 3k, 6k); for j = 0, 1, . . . , k −4, S j = (S j), where S j = (5k +1 + j, 5k −
j, 0; 3k, k, u − 2 − 2 j). On Zu define the set of graphs A = (B1 ∪B∗

2 ∪B∗
3 ∪B) ∪ [(∪k−4

j=0S j) ∪ S∗ ∪ S], where B∗
2 = B2 \ {B2}, 

B∗
3 = B3 \ {B3 + i : i = 0, 4k + 1, 6k, 6k + 1, 6k + 2}, S∗ = {(6k − 1, 4k + 2, 0; 3k, 6k, 4k + 1), (10k, 8k + 3, 4k + 1; 7k + 1, 10k +

1, 6k), (12k − 1, 10k + 2, 6k; 9k, 12k, 0), (12k, 10k + 3, 6k + 1; 9k + 1, 12k + 1, 4k + 1), (12k + 1, 10k + 4, 6k + 2; 9k + 2, 12k +
2, 0)}; B and S depending on h and summarized as follows:
a) h = 5: B is the orbit of (6k + 1, 0, 3k; 3k + 2, 6k + 3) under Zu ; S = ∅.
b) h = 8: B = {(6k + 3 + i, i, 3k + i; 6k + 4 + i, 9k + 1 + i), (9k + 5 + i, 3k + 2 + i, 6k + 2 + i; 6k + 4 + i, 12k + 3 + i) : i =
0, 1, . . . , 3k + 1, i ∈ Zu} ∪ {(12k + 7 + i, 6k + 4 + i, 9k + 4 + i; 9k + 5 + i, 3k − 3 + i) : i = 0, 1, . . . , 6k + 3, i ∈ Zu}; S =
{(i, 3k + 2 + i, 9k + 6 + i; 3k + 1 + i, 6k + 3 + i, 6k + 4 + i)) : i = 0, 1, . . . , 3k + 1, i ∈ Zu}.
c) h = 9: B is the orbit of (6k + 1, 0, 3k; 3k + 3, 9k + 3) under Zu ; S = {(3i, 3k + 2 + 3i, 6k + 4 + 3i; 6k + 5 + 3i, 9k + 7 +
3i, 9k + 6 + 3i)) : i = 0, 1, . . . , 4k + 2, i ∈ Zu}.
d) h = 12: B = {(6k + 1 + i, i, 3k + i; 6k + 6 + i, 9k + 5 + i), (9k + 4 + i, 3k + 3 + i, 6k + 3 + i; 6k + 6 + i, 12k + 8 + i) :
i = 0, 1, . . . , 3k + 2, i ∈ Zu} ∪ {(12k + 7 + i, 6k + 6 + i, 9k + 6 + i; 12k + 9 + i, 3k − 1 + i) : i = 0, 1, . . . , 6k + 5, i ∈ Zu}; 
S = {(i, 3k + 3 + i, 9k + 9 + i; 6k + 3 + i, 9k + 6 + i, 6k + 6 + i)) : i = 0, 1, . . . , 3k + 2, i ∈ Zu} ∪{(3i, 3k + 2 + 3i, 6k + 4 + 3i; 6k +
8 + 3i, 9k + 10 + 3i, 9k + 6 + 3i)) : i = 0, 1, . . . , 4k + 3, i ∈ Zu}.
(Zu, A) is the required design, where d2(6k) = 2, the vertices d2(0) = d2(4k + 1) = d2(6k + 1) = d2(6k + 2) = 3, and the 
remaining vertices have 2-degree 4. �
Proposition 3.2. For every n ≡ 7, 13, 15, 21 (mod 24), n ≥ 79, umin(n) = n+3

2 .

Proof. Let (X, T ) be an STS(n), n ≡ 7, 13, 15, 21 (mod 24), n ≥ 79, and I be its incidence graph. E(I) can be partitioned 
into � = n−1

2 matchings M1, M2, . . . , M� (see proof of Lemma 2.2). Therefore there exist � + 2 mutually disjoint matchings 
M1, M2, . . . , M�, M�+1, M�+2, with M�+1 = ∅ = M�+2, such that E(I) = M1 ∪ M2 ∪ · · · ∪ M�+2. By repeatedly applying 
Lemma 3.4 to pairs of those matchings that differ in size by more than one, we eventually obtain � + 2 mutually disjoint 
matchings M ′

1, M
′
2, . . . , M

′
�+2 of E(I) such that M ′

i covers the vertices of X \ Xi , where |X1| = 2, |Xi| = 3 for i = 2, 3, 4, 5, 
and |Xi | = 4 for i = 6, 7, . . . , � + 2 (note that each vertex of X is missing in exactly two matchings). If S denotes the set 
of 3-suns on X ∪ {M ′

1, M
′
2, . . . , M

′
�+2} obtained by completing each triple of T as in the proof of Lemma 2.2, the pair (X ∪

{M ′
1, M

′
2, . . . , M

′
�+2}, S) is a partial 3SS(

3(n+1)
2 ) which embeds (X, T ). In order to complete the proof it will be sufficient to 

decompose the graph K�+2 ∪M into 3-suns, where K�+2 is the complete graph induced by {M ′
1, M

′
2, . . . , M

′
�+2} and M

is the bipartite graph on X ∪ {M ′
1, M

′
2, . . . , M

′
�+2} such that {x, M ′

i} ∈ E(M) if and only if x ∈ Xi (i.e., x is missing in M ′
i ). 

By using Lemma 3.5, the complete graph K�+2 can be decomposed into bulls or 3-suns so that d2(M ′
1) = 2, d2(M ′

i) = 3 for 
i = 2, 3, 4, 5, and d2(M ′

i) = 4 for i = 6, 7, . . . , � + 2. To obtain the required decomposition it is sufficient to complete each 
bull to a 3-sun by using the edges of M. �
3.1. Cases left

To determine umin(n) for the remaining orders n ∈ {15, 21, 31, 37, 39, 45, 55, 61, 63, 69}, we will start from an STS(n)

(X, T ), with X = {x1, x2, . . . , xn}, and prove that (X, T ) can be embedded in a 3-sun system (X ∪ Z n+3
2

, S) by taking the 
following steps.
Step 1. Partition the edges of the complete graph on Z n+3

2
into a set A of triangles, kites, bulls or 3-suns so that |A| =

|S \ T | = (n2 + 20n + 3)/48 and 
∑(n+1)/2

i=0 d2(i) = 2n. For later convenience (see Step 4.), give A partitioned into suitable 
subsets A j , j ∈ J , such that for every j ∈ J and for every vertex i ∈ Z n+3

2
, the number of blocks of A j containing i as a 

vertex of degree 2 is at most 1.
Step 2. Partition the edge-set of the incidence graph I of (X, T ) into n+3

2 matchings M0, M1, . . . , M n+1
2

such that the set 
of vertices of X not saturated by Mi , denoted by Xi , has size |Xi | = d2(i) for each i = 0, 1, . . . , n+1

2 .
Step 3. Complete each triple of T as in the proof of Lemma 2.2 and obtain a partial 3-sun system (X ∪{M0, M1, . . . , M n+1

2
},

S) which embeds (X, T ).
Step 4. Call missing graph the bipartite graph M on X ∪ {M0, M1, . . ., M n+1

2
} consisting of all the edges {x, Mi} such that 

x ∈ Xi and, for the sake of simplicity, for every i = 0, 1, . . . , n+1
2 identify Mi with i ∈ Z n+3

2
.

Step 5. Partition the edges of the missing graph into suitable matchings M ′
j , j ∈ J , such that for every j ∈ J the edges of 

M ′
j can be used to complete the blocks of A j so to obtain a 3-sun system of order 3(n+1)

2 which embeds (X, T ).
To begin with, we give an alternative solution for n ≡ 15 (mod 24) (which settles the orders v = 15, 39, 63 as well) by 

means of a technique used in [9] and involving the concepts of parallel classes and resolution of an STS.
A parallel class of an STS(n) is a set of n

3 triples such that no two triples in the set share an element; a partition of 
all triples of an STS(n) into parallel classes is a resolution and the STS is said to be resolvable. An STS(n) together with a 
resolution of its triples is a Kirkman triple system, shortly a KTS(n), and exists if and only if n ≡ 3 (mod 6) (see [3]).
5
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Proposition 3.3. For every n ≡ 15 (mod 24), umin(n) = n+3
2 .

Proof. Let (X, T ) be an STS(n), n = 24k + 15, k ≥ 0. Consider a resolution Pi , i = 1, 2, . . . , 6k + 4 of a KTS on Z n+3
2

. Without 
loss of generality, assume that P1 contains the triangle t = (0, 1, 2). Construct a set K of kites obtained by attaching the 
edges of t to the triangles t1, t2, t3 of P2 containing 0, 1, 2, respectively, and the set A0 of 3-suns obtained from the parallel 
classes Pi , i = 5, 6, . . . , 6k + 4 by using the technique in Lemma 3.8 of [9]. The set A = ∪4

j=0A j , where A1 = P1 \ {t}, 
A2 = (P2 \ {t1, t2, t3}) ∪ K and A j = P j for j = 3, 4, is a partition of E(K n+3

2
) such that |A| = (n2 + 20n + 3)/48 and 

∑(n+1)/2
i=0 d2(i) = 2n. After applying Step 2., Step 3., and Step 4., proceed as follows. It is easy to see that the missing graph 

admits two matchings M ′
1 and M ′

2 both saturating the vertices 3, 4, . . . , n+1
2 ; while, the edges of M not in M ′

1 and M ′
2

form a subgraph with maximum degree 2 and so can be partitioned into two matchings M ′
3 and M ′

4 both saturating all the 
vertices of Z n+3

2
. For every j = 1, 2, 3, 4, complete the blocks of A j by using the edges of M ′

j . �
Proposition 3.4. For every n ∈ {21, 31, 37, 45, 55, 61, 69}, umin(n) = n+3

2 .

Proof. Let (X, T ) be an STS(n).
For n = 21, partition the edges of the complete graph on Z12 into the following set A:

A1 = {(1,2,0;11), (3,7,2;5), (0,4,3;9)}}
A2 = {(0,5,6), (1,8,11), (7,4,10), (2,9,8;10), (3,1,5;10,8)}
A3 = {(0,9,10), (3,6,8), (5,7,11), (2,4,11;6), (1,7,9;6,11)}
A4 = {(0,7,8), (3,10,11), (5,9,4;8), (1,4,6;9), (2,6,10;5)}

where d2(i) = 3 for i ∈ {5, 6, 8, 9, 10, 11} and d2(i) = 4 for i ∈ {0, 1, 2, 3, 4, 7}. After applying Step 2., Step 3., and Step 4., pro-
ceed as follows. Since M has maximum degree 4, it is easy to see that M admits a matching M ′

1 saturating {0, 1, 2, 3, 4, 7}. 
Use M ′

1 to complete the kites in A1. The graph obtained from M by deleting the edges of M ′
1 is a bipartite graph such 

that all the vertices in Z12 has degree 3 and so its edges can be partitioned into three matchings M ′
2, M ′

3 and M ′
4, each of 

which saturates the vertices of Z12. For every j = 2, 3, 4, use the edges of M ′
j to complete the blocks of A j .

For n = 31, partition the edges of the complete graph on Z17 into the following set A:

A1 ={(0,4,1;7) + i : i = 2,3,4,5,11,12,13,14, i ∈ Z17}∪
{(10,12,0;3,7)}

A2 ={(0,4,1;7) + i : i = 0,1,6,7,8,9,15,16, i ∈ Z17} ∪ {(14,7,9;2,0)}
A3 ={(0,7,2;10) + i : i = 1,4,13,15,16, i ∈ Z17} ∪ {(10,14,11;0),

(9,4,2;12,0), (12,2,14;10,5)}
A4 ={(0,7,2;10) + i : i = 3,5,6,8,9,11,14, i ∈ Z17}

where d2(i) = 2 for i ∈ {0, 2, 7} and d2(i) = 4 for i ∈ Z17 \ {0, 2, 7}. After applying Step 2., Step 3., and Step 4., proceed as 
follows. Consider a subgraph M′ of the missing graph such that each vertex in Z17 has degree 2. Partition the edges of M′
into two matchings M ′

1 and M ′
2 and use them to complete the kites in A1 and A2, respectively. After deleting the edges 

of M ′
1 and M ′

2 the remaining edges of M can be partitioned into two matchings M ′
3 and M ′

4, each of which saturates the 
vertices in Z17 \ {0, 2, 7} and can be used to complete the kites in A3 and A4, respectively.

By similar arguments it is possible to settle the remaining cases n = 37, 45, 55, 61, 69, for which we refer to Appendix 
where we give the sets A j s, which automatically determine the matchings M ′

j s. �
4. Main result and conclusion

Combining Lemmas 2.1, 3.2, and Propositions 3.1, 3.2, 3.3, 3.4 gives our main result.

Main Theorem.

(i) If n ≡ 1, 3, 9, 19 (mod 24), then umin(n) = n−1
2 for every n 
= 3, 9, umin(3) = 6, and umin(9) = 7.

(ii) If n ≡ 7, 13, 15, 21 (mod 24), then umin(n) = n−1
2 + 2 for every n 
= 7, 13, umin(7) = 6, and umin(13) = 11.

In [14] a complete solution to the Doyen-Wilson problem for 3-sun systems is given and it is proved that any 3SS(n)

can be embedded in a 3SS(m) if and only if m ≥ 7 n + 1 or m = n. For every integer v ∈ �(K3), combining Main Theorem 
5

6



G. Lo Faro and A. Tripodi Discrete Mathematics 344 (2021) 112409
with the above result gives an integer mv such that any STS(v) can be embedded in a 3SS(m) for every admissible m ≥ mv . 
A question to be asked is the following.

Open Problem Can one embed any STS(v) in a 3SS(m) for every admissible m such that v + umin(v) < m < mv ?
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Appendix

n = 37:

A1 ={(4,11,0;8) + 2i : i = 0,1, . . . ,9, i ∈ Z20}
A2 ={(5,12,1;9) + 2i : i = 0,1, . . . ,9, i ∈ Z20}
A3 ={(14,16,13;2,19), (4,6,3;16,9)}
A4 ={(1,3,0;6) + i : i = 0,12,17, i ∈ Z20}∪

{(7,12,2;17), (16,17,19;14), (5,7,4;17,10), (6,8,5;18,11),

(8,10,7;15,13), (11,9,8;4,14), (10,12,9;17,15), (2,4,1;14,16)}
A5 ={(1,3,0;6) + i : i = 14,15, i ∈ Z20}∪

{(5,10,0;15), (8,13,3;18), (0,2,19;4), (3,5,2;15,8), (7,9,6;19,12),

(11,13,10;18,16), (12,14,11;19,17), (1,18,19;4,5), (6,11,1;16,7)}
n = 45:

A1 ={(1,13,7;19) + i : i = 0,1,2,3,4, i ∈ Z24}∪
{(8,16,0;22,12), (9,17,1;23,19), (10,18,2;6,20), (19,11,3;0,21),

(20,12,4;6,22), (21,13,5;19,23), (22,14,6;20,0), (7,15,23;21,12)}
A2 ={(0,1,5) + 3i : i = 0,1, . . . ,7, i ∈ Z24}
A3 ={(1,2,6) + 3i : i = 0,1, . . . ,7, i ∈ Z24}
A4 ={(2,3,7) + 3i : i = 0,1, . . . ,7, i ∈ Z24}
A5 ={(1,3,10;12,6,20) + i : i ∈ Z24 \ {11,23}} ∪ {(0,2,9;18,5,19),

(12,14,21;18,17,7)}
n = 55:

A1 ={(13,27,0;25) + i : i = 3,4, . . . ,13, i ∈ Z29}∪
{(15,0,2;25,27), (12,14,27;10,13), (28,13,15;0,11), (14,0,16;27,12),

A2 ={(13,27,0;25) + i : i = 1,17,18, . . . ,28, i ∈ Z29}
A3 ={(0,10,11;2,6) + i : i ∈ Z29}
A4 ={(0,9,12;2,6) + i : i ∈ Z29}

n = 61:
7
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A1 ={(0,10,29;9) + i : i = 0,1,2,3,6,17,18,19,20, i ∈ Z32}∪
{(14,22,6;30)} ∪ {(23,10,13;22,29) + i : i = 0,1,2, i ∈ Z32}∪
{(4,23,26;3,18) + i : i = 0,1,3,4,5, i ∈ Z32} ∪ {(26,13,16;25,24),

(21,18,31;30,7)}
A2 ={(8,16,0;24) + i : i = 0,1, . . . ,5, i ∈ Z32} ∪ {(4,14,1;13),

(0,22,19;31), (2,24,21;1)}∪
{(1,20,23;0,15) + i : i = 0,2,5, i ∈ Z32} ∪ {(5,2,15;14,7)}

A3 ={(17,4,7;16,23) + i : i = 0,1,2,3,4,5, i ∈ Z32}
A4 ={(9,0,2;11,17) + i : i ∈ Z32}
A5 ={(5,0,1;6,15) + i : i ∈ Z32}

n = 69:

A1 ={(4,2,0;6,34) + 3i : i = 5,6,7,8,9,10, i ∈ Z36}
A2 ={(4,2,0;6,34) + 3i : i = 0,1,2,3,4,11, i ∈ Z36}∪

{(24,12,0;30,18) + i, (30,18,6;24) + i : i = 0,1,2,3,4,5, i ∈ Z36}
A3 ={(0,7,15;1) + 2i : i = 0,1, . . . ,17, i ∈ Z36}
A4 ={(1,8,16;2) + 2i : i = 0,1, . . . ,17, i ∈ Z36}
A5 ={(9,20,0;3,13) + i : i ∈ Z36}
A6 ={(0,6,1;10,32,11) + 9i, (1,7,2;5,11,12) + 9i, (2,8,3;5,9,13) + 9i,

(3,9,4;6,14,8) + 9i, (4,10,5;1,7,8) + 9i, (5,11,6;35,8,9) + 9i,

(6,12,7;16,9,17) + 9i, (7,13,8;4,23,18) + 9i : i = 0,1,2,3, i ∈ Z36}
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