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Abstract

Even though robotic rehabilitation is very useful to improve motor function, there is no con-

clusive evidence on its role in reducing post-stroke spasticity. Focal muscle vibration (MV) is

instead very useful to reduce segmental spasticity, with a consequent positive effect on

motor function. Therefore, it could be possible to strengthen the effects of robotic rehabilita-

tion by coupling MV. To this end, we designed a pilot randomized controlled trial (Clinical

Trial NCT03110718) that included twenty patients suffering from unilateral post-stroke

upper limb spasticity. Patients underwent 40 daily sessions of Armeo-Power training (1

hour/session, 5 sessions/week, for 8 weeks) with or without spastic antagonist MV. They

were randomized into two groups of 10 individuals, which received (group-A) or not (group-

B) MV. The intensity of MV, represented by the peak acceleration (a-peak), was calculated

by the formula (2πf)2A, where f is the frequency of MV and A is the amplitude. Modified Ash-

worth Scale (MAS), short intracortical inhibition (SICI), and Hmax/Mmax ratio (HMR) were the

primary outcomes measured before and after (immediately and 4 weeks later) the end of

the treatment. In all patients of group-A, we observed a greater reduction of MAS (p = 0.007,

d = 0.6) and HMR (p<0.001, d = 0.7), and a more evident increase of SICI (p<0.001, d = 0.7)

up to 4 weeks after the end of the treatment, as compared to group-B. Likewise, group-A

showed a greater function outcome of upper limb (Functional Independence Measure p =

0.1, d = 0.7; Fugl-Meyer Assessment of the Upper Extremity p = 0.007, d = 0.4) up to 4

weeks after the end of the treatment. A significant correlation was found between the degree

of MAS reduction and SICI increase in the agonist spastic muscles (p = 0.004). Our data

show that this combined rehabilitative approach could be a promising option in improving

upper limb spasticity and motor function. We could hypothesize that the greater rehabilita-

tive outcome improvement may depend on a reshape of corticospinal plasticity induced by a

sort of associative plasticity between Armeo-Power and MV.
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Introduction

Spasticity is defined as a velocity-dependent increase in muscle tone due to the hyper-excitabil-

ity of muscle stretch reflex [1]. Spasticity of the upper limb is a common condition following

stroke and traumatic brain injury and needs to be assessed carefully because of the significant

adverse effects on patient’s motor functions, autonomy, and quality of life [2].

Different pharmacological and non-pharmacological approaches are currently available for

upper limb spasticity management, as physiotherapy (including magnetic stimulation, electro-

magnetic therapy, sensory-motor techniques, and functional electrical stimulation treatment)

and robot-assisted therapy [3–4]. In this regard, several studies suggest robotic devices, includ-

ing the Armeo1 (a robotic exoskeleton for the rehabilitation of upper limbs), may help reduc-

ing spasticity by modifying spasticity-related synaptic processes at either the brain or spinal

level [5–13], resulting in spasticity reduction in antagonist muscles through, e.g., a strengthen-

ing of spinal reciprocal inhibition mechanisms [11].

Growing research is proposing segmental muscle vibration (MV) as being a powerful tool

for the treatment of focal spasticity in post-stroke patients [14–15]. Mechanical devices deliver

low-amplitude/high-frequency vibratory stimuli to specific muscles [16–17], thus offering

strong proprioceptive inputs by activating the neural pathway from muscle spindle annulos-

piral endings to Ia-fiber, dorsal column–medial lemniscal pathway, the ventral posterolateral

nucleus of the thalamus (and other nuclei of the basal ganglia), up to the primary somatosen-

sory area (postcentral gyrus and posterior paracentral lobule of the parietal lobe), and the pri-

mary motor cortex [18–19]. At the cortical network level, proprioceptive inputs can alter the

excitability of the corticospinal pathway by modulating intracortical inhibitory and facilitatory

networks within primary sensory and motor cortex, and affecting the strength of sensory

inputs to motor circuits [20–22]. In particular, periods of focal MV delivered alone can modify

sensorimotor organization within the primary motor cortex (i.e., can increase or decrease

motor evoked potential—MEP—and short intracortical inhibition (SICI) magnitude in the

vibrated muscles, while opposite changes occur in the neighboring muscles), thus reducing

segmental hyper-excitability and spasticity [20–22].

While focal MV is commonly used to reduce upper limb post-stroke spasticity, there is no

conclusive evidence on the role of robotic rehabilitation in such a condition [14–17,23–27]. A

strengthening of the effects of neurorobotics and MV on spasticity could be achieved by com-

bining MV and neurorobotics. The rationale for combining Armeo-Power and MV to reduce

spasticity could lie in the summation and amplification of their single modulatory effects on

corticospinal excitability [28]. Specifically, it is hypothesizable that MV may strengthen the

learning-dependent plasticity processes within sensory-motor areas that are in turn triggered

by the intensive, repetitive, and task-oriented movement training offered by Armeo-Power

[29–30]. Such an amplification may depend on a sort of associative plasticity (i.e., the one gen-

erated by timely coupling two different synaptic inputs) between MV and Armeo-Power [31–

33].

To the best of our knowledge, this is the first attempt to investigate such approach. Indeed,

a previous study combining MV with conventional physiotherapy used Armeo only as evaluat-

ing tool [14].

The aim of our study was to assess whether a combined protocol employing MV and

Armeo-Power training, as compared to Armeo-Power alone, may improve upper limb spastic-

ity and motor function in patients suffering from a hemispheric stroke in the chronic phase.

To this end, we compared the clinical and electrophysiological after-effects of Armeo-Power

with or without MV on upper limb spasticity. We also assessed the effects on upper limb

motor function and muscle activation, disability burden, and mood, given that spasticity may
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have significant negative consequences on these outcomes. Further, it is important to evaluate

mood, as it may negatively affect functional recovery [34–36], increase mortality [37], and

weaken the compliance of the patient to the rehabilitative training [38–39].

Materials and methods

Design

We consecutively included all the eligible patients affected by stroke who were attending the

Neurorobotic Rehabilitation Laboratory of the IRCCS Centro Neurolesi “Bonino-Pulejo”

(Messina, Italy), from January 2015 to June 2015 (Clinical Trial: NCT03110718). See S1 and S2

Files for trial study protocol.

The study was designed as a pilot randomized controlled trial using a double-blind, paral-

lel-group study design. The enrolled patients were randomly assigned to receive Armeo-Power

paired with real MV (group-A) or Armeo-Power with sham MV (group-B) using an auto-

mated computer randomization program. The patients, the clinical assessors (who were differ-

ent from the physiotherapist who managed Armeo-Power and MV), and the statisticians (who

differed from the clinical assessors) were blinded to group allocation.

Twenty patients were included in this pilot study according to inclusion criteria as follows:

a first ever supra-tentorial unilateral (left hemisphere) ischemic stroke experienced more than

3 months before the enrollment; a deficit of shoulder abductor, arm flexor, and elbow extensor

muscles ranging from 2 to 4 on the Medical Research Council scale [40–41]; a spasticity of

biceps brachii, pectoralis major, and latissimus dorsi (namely, spastic agonist muscles) ranging

from 1+ to 3 on the Modified Ashworth Scale (MAS) [42–43]; ages between 50 and 80 years

old; and Caucasian ethnicity. We excluded the patients who had history of concomitant neuro-

degenerative diseases or brain surgery; severe cognitive or language impairment; systemic,

bone, or joint disorders; changes in central or peripheral sensitivity; concomitant use of drugs

for spasticity; or contraindications to transcranial magnetic stimulation (TMS). CONSORT

flowchart is reported in Fig 1; see S1 Table for CONSORT checklist.

The Local Ethics Committee approved the study and the procedures for gaining consent

(study number registration 43/2013), and all the participants gave their written informed con-

sent to the study. In comparison to the original trial study protocol (see supporting informa-

tion), we lengthened the duration and number of rehabilitative sessions, and the epochs of

assessment of clinical and electrophysiological outcomes, which were adapted to the aims and

scope of the present pilot randomized clinical trial.

Interventions

The Armeo-Powera is a robotic, ergonomic arm exoskeleton for rehabilitation that cradles the

entire arm, from shoulder to the hand (thus allowing intensive, repetitive, and task-oriented

training of shoulder, elbow, wrist, and grasping movements) and counterbalances the weight

of the patients’ arm thanks to a gravity-support system (offered by the arm exoskeleton).

Armeo-Power allows the treatment of motor function impairment by enhancing any residual

function and neuromuscular control, assisting active movement across a large 3D workspace,

and providing augmented feedback [5–8,44].

All the patients underwent a daily Armeo-Power training session lasting about one hour,

scheduled five times a week for eight consecutive weeks (for a total of 40 sessions). During the

first session, the device was adjusted to the patient’s arm size and the angle of suspension. The

working space and the exercises were selected once the upper limb had been fitted with the sys-

tem. Subjects performed repetitively a customized group of exercises under the supervision of

a skilled physiotherapist. Such exercises required all the available arm and elbow movements
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to improve shoulder abduction, arm flexion, and elbow extension (e.g., to parry penalties, col-

lect drops of water with a cup, take the apples and place them in the shopping cart, clean sur-

faces, clean the stove, and break an egg into the pan). Device guidance force and arm weight

support were individually adapted during the Armeo-Power training. The device automatically

recorded information about the exercise (including the scheduled difficulty level, the score

obtained, the time required to perform the exercise, the force exerted by the patient, and the

passive and active range of movement).

Fig 1. CONSORT flow diagram.

https://doi.org/10.1371/journal.pone.0185936.g001
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All the subjects assigned to group-A received a focal belly MV on the spastic antagonist

muscles (i.e., triceps brachialis, supraspinatus, and deltoid) during shoulder abduction and

elbow extension (Fig 2).

MV was delivered by a pneumatic vibrator powered by compressed airb, and wired to

probes with appropriate muscle diameter (up to 2cm2). The intensity of MV, represented by

the peak acceleration (a-peak), was calculated by the formula (2πf)2A, where f is the frequency

of MV (set at 80 Hz) and A is the amplitude of vibration (i.e., of the peak-to-peak sinusoidal

displacement of the underneath structures), which was individually adapted (0.3±0.1 mm) to

be just below the threshold for perceiving an illusory movement. We chose such a set up to

avoid any signs of muscle contraction potentially reflecting either possible voluntary move-

ment or occurrence of the tonic vibration reflex. Sham MV intensity was set at the same fre-

quency but at 0.1 mm below the individually adjusted amplitude for real MV. MV parameter

were kept constant throughout the treatment.

Primary outcome measures

Patients were assessed at baseline (T0), directly after the neurorehabilitative training (T1), and

after one month of rest from Armeo-Power training (T2) (during which the participants

underwent a standard physical therapy treatment).

Fig 2. Combined rehabilitative approach.

https://doi.org/10.1371/journal.pone.0185936.g002
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The primary outcomes consisted of the MAS from spastic agonist muscles (causing arm

adduction, inward rotation, flexion, and forearm flexion), the SICI, and the Hmax/Mmax ratio

(HMR).

The MAS measures spasticity, evaluating the resistance of a relaxed limb to a rapid passive

stretch in six stages [45–46]. A score of zero indicates a normal or slightly increased muscle

tone, whilst five indicates a state in which the passive movement is impossible. We tested the

abduction–adduction, the flexion–extension, the intrarotation–extrarotation of the shoulder,

and the flexion and extension of the elbow.

SICI is a measure of cortical excitability, given that it probes intracortical GABAergic inter-

neurons within the primary motor area. It is tested by quantifying the inhibitory effect of a

TMS pulse (conditioning) preceding of few milliseconds that eliciting MEP (test stimulus).

SICI is typically reduced (i.e., values going toward 100%) in spasticity, maybe because of a

deteriorated interhemispheric inhibition following brain damage. There is a significant corre-

lation between spasticity and SICI given that baclofen has been shown to reduce spasticity by

increasing GABAergic inhibition [47–48]. Consequently, one would expect a strengthening

(i.e., a decrease) of intracortical inhibition when spasticity improves (i.e., the MAS score

decreases).

HMR is commonly used to study the excitability of spinal motor circuitry. In particular,

HMR represents the neurophysiological correlate of the function of spinal inhibitory interneu-

rons and of the descending pathways impairment in spasticity [49]. HMR alterations are there-

fore associated with spasticity and correlate, although nonlinearly, with MAS scores [50]. A

higher ratio suggests higher corticospinal excitability subtending spasticity.

In the present trial, the primary endpoint with respect to the efficacy of MV was the propor-

tion of patients achieving a minimal detectable change (which is a statistical estimate of the

smallest amount of change that can be detected by a measure, corresponding to a noticeable

change in the measure) of approximately a one-point decrease on the MAS as reported in the

literature [51]. This minimal detectable change also reflects a clinically important difference

[51]. Concerning SICI and HMR, there are no data available on the minimal detectable

change. Nonetheless, we found in our previous work on Armeo-Power that a decrease in SICI

and HMR of at least 15% represents a noticeable change [13].

Secondary outcome measures

We measured the effects of training on the recovery in post-stroke hemiplegic patients as mea-

sured by Fugl-Meyer Assessment of the Upper Extremity (FMA-UE) [52–53]. Each item of

motor function for the upper limb is scored on a 3-point ordinal scale (0 = cannot perform,

1 = performs partially, and 2 = performs fully; the total score ranges from 0 to 66).

Disability burden was assessed by the Functional Independence Measure (FIM)[54], which

provides a measure for disability based on the International Classification of Impairment, Dis-

abilities and Handicaps. FIM measures the level of a patient’s disability and indicates how

much assistance is required for the individual to carry out activities of daily living. Beyond the

total FIM score, we assessed some subitems, i.e., eating, grooming, bathing, upper body dress-

ing, lower body dressing, and toileting, which are related to self-care mainly involving upper

limb function [55]. Each task is rated on a 7-point ordinal scale that ranges from 1 = total assis-

tance (or complete dependence) to 7 = complete independence.

We also assessed mood and anxiety by Hamilton Rating Scale for depression (HRS-D) and

Hamilton Rating Scale for anxiety (HRS-A), which are multiple-item questionnaires used to

provide an indication of depression and anxiety and as a guide to evaluate recovery [56–59].

The higher the score, the more severe is the mood/anxiety impairment.
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Kinematic properties of upper limb were quantified by measuring with the Armeo-Power

device the passive range of movement (measured in degree) and the force (in

Newton × meter) of the abduction–adduction, flexion–extension, intrarotation–extrarotation

of the shoulder, and the flexion and extension of the elbow. Moreover, we measured the arm

weight support offered by the Armeo-Power device to sustain the upper limb during exercise

training and the device guidance force (that is, the assist-as-needed support provided by the

robotic arm exoskeleton that automatically adapts the force exerted by the device itself to the

patient’s capabilities to accomplish the movements required by the tasks (i.e., shoulder abduc-

tion, arm flexion, and elbow extension through different spaces).

Additionally, we measured the resting motor threshold (measured as % of TMS stimulator

output) and the peak-to-peak MEP amplitude (in mV), which more broadly reflects the excit-

ability of corticomotor projections during muscle relaxation [60] and the intracortical facilita-

tion (ICF). This is a measure of cortical facilitation carried by interneurons within the primary

motor cortex. Similar to SICI, some correlations have been found between spasticity and ICF,

given that this is abnormally increased in pure spasticity [61]. Consequently, one would expect

a weakening (i.e., a decrease) of ICF when spasticity improves (i.e., the MAS score decreases).

Finally, we quantified the root mean square value from the surface electromyography sig-

nals of all the vibrated (triceps brachialis, supraspinatus, and deltoid) and nonvibrated muscles

(biceps brachii, latissimus dorsi, and pectoralis maior). Root mean square value quantifies and

reflects the physiological activity in the motor unit during contraction, thus expressing a corre-

lation between the contraction force and the root mean square value [62].

Transcranial magnetic stimulation

Primary motor cortex excitability at rest was tested through monophasic TMS pulses delivered

by a figure-of-eight coil (with an external loop diameter of 9 cm) wired to a high-power Mag-

stim200 stimulator 2 [63]. During the experiments, EMG activity was continuously monitored

by visual- auditory feedback (i.e., an oscilloscope with loudspeakers, which was placed in front

of the subject) to ensure complete muscle relaxation. We first determined the resting motor

threshold from biceps brachii muscle [64]. Then, we delivered 15 supra-threshold monophasic

pulses (120% resting motor threshold), and the mean amplitude was calculated. SICI and ICF

were determined according to the paired-pulse method described by Kujirai and colleagues

[64]. The intensity of the conditioning stimulus was set at 70% of resting motor threshold. The

intensity of the test stimulus was 120% resting motor threshold. Stimulus intensities were kept

constant across the blocks of measurement. SICI and ICF were assessed at an ISI of 2 and 12

ms, respectively [65–71]. Fifteen trials were recorded for each ISI and randomly intermingled

with 15 trials in which MEPs were elicited by the test stimulus alone. The peak-to-peak ampli-

tude of the unconditioned MEP was taken as a measure of corticospinal excitability. Mean

amplitude of the conditioned MEP was expressed as a percentage of the amplitude of the

unconditioned MEP. The relative change in MEP amplitude induced by the conditioning

stimulus characterized the strength of SICI and ICF.

Hmax/Mmax ratio

The H-reflex and M-wave were recorded in the affected arm while the subject lay prone on a

gurney with the shoulder abducted to 90˚, palm facing up with the elbow slightly flexed. Bipo-

lar Ag-AgCl surface electrodes (Nicolet Biomedical, Maddison, Wisconsin, USA) were applied

in a belly-tendon montage over the spastic biceps brachii. The H-reflex was identified as a tri-

phasic wave with a small initial positive deflection followed by a larger negative one. The maxi-

mum amplitudes of the H-reflex and the M-wave were measured from the peak of the positive
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to the peak of the negative deflections. The HMR was calculated by dividing the maximum

amplitudes of the H-reflex by that of the M-wave.

Surface electromyographic recording

Surface adhesive electrodes were applied on both vibrated and nonvibrated muscles, with a

bipolar belly-tendon montage. Although the supraspinatus has not routinely been monitored

through surface electrodes, a small window of access to the trapezius tendon exists (i.e., at the

midpoint and two fingerbreadths superior to the scapular spine) [72]. In addition, we used a

high-pass filtering [73], and the raw signals were amplified and filtered at 30–1000Hz (Neuro-

log System) (Digitimer Ltd, Welwyn Garden City, UK). Patients wore the robotic arm and

were invited to align their upper limb to the scapular plane to the best of their ability, thus

abducting, flexing, and extra-rotating the arm, and extending the elbow. The task was repeated

15 times. The subject had to perform such tasks without Armeo-Power support (i.e., the sub-

ject held only the weight of his arm). The electrical activity that is displayed in form of surface

EMG signals is the result of neuromuscular activation associated with muscle contraction. The

amplitude of EMG signal reveals is roughly proportional to the force exerted by the underlying

muscle. To analyze the amplitude of surface EMG signal, we calculated the root mean square,

that is the square root of average power of a signal for given period of time [74]. To this end,

raw EMG data were full-wave rectified and processed using an algorithm with a 20 ms moving

window. EMG with the greatest rectified and smoothed amplitude was quantified for a 2 sec

period during each test. The data resulting from this period were utilized for analysis of each

muscle test performed for normalization and each exercise.

Statistical analysis

Descriptive statistics are given as mean ± standard deviation (SD) or median. The Shapiro-

Wilk statistic was used to test the normality of the distribution of all variables; electrophysio-

logical and kinematic measures were normally distributed (p>0.2), whereas clinical measures

showed a non-normal distribution (p<0.05). Therefore, parametric and nonparametric statis-

tics were used to describe changes from baseline (T0) to post-treatment (T1 and T2). One-way

analysis of variance (ANOVA) for repeated measures or the Friedman test were performed

depending on normal or non-normal distribution of the data, respectively. A pair-wise com-

parison was performed using the Wilcoxon signed-rank test to identify significant difference

across time. Repeated measure ANOVAs, followed by Bonferroni correction for multiple com-

parisons for post-hoc analysis, were used to examine differences between the groups (two lev-

els: A and B) over time (three levels: T0, T1, and T2). Clinical-demographic characteristics

(age, gender, disease duration, and localization of brain lesion at magnetic resonance imaging)

and kinematic factors (body weight support and device guidance force) were added in the

ANOVA as covariates. Descriptive analysis was used to evaluate the effect size measures

between the two groups (Cohen’s d calculation).

We measured the incidence of subjects (namely, “responder patients”) exceeding a decre-

ment of at least 1-point at the MAS from T0 to T2 (i.e., a minimal detectable change at the 95%

confidence interval, according to literature data) [50–51] and a decrement of at least 15% at

SICI and HMR (according to our previous work) [13]. To assess the difference between the

two groups, we calculated the relative risk (RR) of an improvement when the patient is really

treated with MV. A patient was considered improved when the minimal detectable change at

T2 of the MAS score was a decrease of at least 1 point at the MAS and of at least 15% at the

SICI and HMR (at the 95% confidence interval and according to the currently available data)
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[13,50–51,75]. Finally, clinical-electrophysiological correlations were evaluated by Fisher’s

exact test.

Statistical analyses were carried out using Statview software (version 5; SAS Institute Inc.,

Cary, NC).

Results

Twenty patients were recruited from January 2015 to June 2015. The recruitment was then

stopped because all the patients who were treated at our rehabilitation unit had been evaluated

to participate in the study. Baseline clinical-demographic characteristics (age, gender, disease

duration, and localization of brain lesion at magnetic resonance imaging) were similar in both

groups (Table 1).

All the patients showed a mild-to-severe upper limb motor impairment and disability bur-

den, in parallel to low MEP amplitude and high SICI, ICF, and HMR values from the spastic

biceps brachii (Table 2). Arm weight support and device guidance force were initially set at

40% and 80%, respectively, in both groups.

Primary outcomes

All the patients of group-A and three patients of group-B (30%) achieved the primary endpoint

(namely, “responder patients”), i.e., a MAS reduction of at least 1 point and an HMR and SICI

decrease of at least 15% (RR = 3.3; 95% confidence interval 1.29 to 8.59; p = 0.01). Primary out-

come measures are summarized in Table 2. The repeated-measures analysis showed a signifi-

cant interaction time×group for each primary outcome (p<0.001), thus indicating that there

was a significant difference between the groups at T1 and T2.

The results show a significant reduction in MAS, SICI, and HMR at T1 and T2 only in

group-A (p<0.001).

Table 1. Clinical-demographic characteristics at baseline.

Parameter A B

Age (years) 66±5 67±4

Gender (M:F) 5:5 4:6

Disease duration (months) 5±2 6±2

MRI pattern

(n. of patients)

1 2 2

2 2 2

3 2 4

4 2 2

5 2 0

MAS 3.4±0.9 3.2±0.8

FMA-UE 23±14 22±17

FIM (all items) 63±4 73±3

FIM (six items) 21±2 31±2

HRS-D 19±4 21±2

HRS-A 10±5 8±4

Legend: MAS Modified Ashworth Scale, FMA-UE Fugl-Meyer Assessment, FIM Functional Independence

Measure, HRS-D Hamilton Rating Scale for depression, HRS-A Hamilton Rating Scale for anxiety, MRI

number of patients with a lesion site at magnetic resonance imaging (1, cortical/subcortical fronto-parietal, 2,

cortical/subcortical fronto-temporo-parietal, 3 cortical/subcortical parietal, 4 cortical/subcortical parieto-

temporal, 5 subcortical).

https://doi.org/10.1371/journal.pone.0185936.t001
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Concerning clinical-electrophysiological correlations (Fisher’s exact test), we observed that

a greater decrease in MAS scoring was correlated to a greater SICI strengthening in the biceps

brachii (Z = 2.8, p = 0.004).

Secondary clinical outcomes

The patients of group-A showed a more evident clinical improvement than group-B patients,

with significant FIM six items and FMA-UE increase, and HRS-D and HRS-A decrease. Sec-

ondary clinical outcome measures are summarized in Table 3.

The repeated-measures analysis showed a significant interaction time×group for the six

items of FIM (p<0.001), FMA-UE (p = 0.003), HRS-D (p = 0.02), and HRS-A (p = 0.001), thus

indicating that there was a significant difference between the groups at T1 and T2.

However, a significant increase in FIM, and a decrease in HRS-D and HRS-A was found

only in the group-A (p<0.001). FMA-UE increased in the group-A at T1 and T2 (p<0.001),

whereas it augmented in group-B only at T1 (p<0.001).

As additional data, we observed a reduction in flexion muscle synergies (couplings of shoul-

der elevation movements with elbow flexion) in favor of extension muscle synergies (shoulder

adduction/internal-rotation with elbow extension) in all patients of group-A and three subjects

of group-B.

Table 2. Repeated results of primary clinical and electrophysiological outcomes.

group T0 T1 T2 Post-hoc T1 Post-hoc T2 d

MAS A 3.4±0.9 2±0.6 3±0.6 <0.001 0.007 0.6

B 3.2±0.8 2.4±0.7 3.2±0.5 0.3 0.4

SICI (%) A 80±2 51±2 50±3 <0.001 <0.001 0.7

B 79±3 69±3 81±3 0.5 0.1

HMR (%) A 130±3 81±4 89±5 <0.001 <0.001 0.7

B 131±3 96±4 128±3 0.3 0.5

Legend: MAS Modified Ashworth Scale, SICI short intracortical inhibition, HMR Hmax/Mmax ratio, NS non-significant.

https://doi.org/10.1371/journal.pone.0185936.t002

Table 3. Repeated results of secondary clinical and electrophysiological outcomes.

group T0 T1 T2 Post-hoc T1 Post-hoc T2 d

FIM

Six-items

A 21±2 26±3 25±2 <0.001 0.01 0.7

B 31±2 33±2 32±1 0.2 0.3

FMA-UE A 23±14 37±8 26±6 0.001 0.007 0.4

B 22±17 26±4 27±5 0.04 0.3

HRS-A A 10±5 7±2 7±2 0.001 0.001 0.7

B 8±4 8±2 8±2 0.1 0.2

HRS-D A 19±5 11±3 11±3 0.001 0.001 0.6

B 21±2 18±4 18±4 0.2 0.5

MEP (mV) A 0.41±0.1 0.5±0.1 0.52±0.1 0.001 0.007 0.8

B 0.38±0.1 0.4±0.1 0.41±0.1 0.3 0.4

ICF (%) A 111±8 112±8 115±10 0.4 0.3 0.1

B 109±8 109±7 110±8 0.1 0.2

Legend: FIM Functional Independence Measure, FMA-UE Fugl-Meyer Assessment, HamD Hamilton Rating Scale for depression, HamA Hamilton Rating

Scale for anxiety, MEP motor evoked potential, ICF intracortical facilitation, NS non-significant.

https://doi.org/10.1371/journal.pone.0185936.t003
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Secondary electrophysiological outcomes

The patients of group-A showed a greater activation of vibrated muscles and a MEP amplitude

increase than patients of group-B. Secondary electrophysiological outcome measures are sum-

marized in Tables 3 and 4.

The repeated-measures analysis showed a significant interaction time×group for MEP

amplitude (p = 0.002) and root mean square magnitude of deltoids (p = 0.01) and supraspina-

tus (p<0.001), thus indicating that there was a significant difference between the groups at T1

and T2. In particular, we found an increase of MEP amplitude and root mean square magni-

tude of deltoids and supraspinatus only in the group-A at T1 and T2 (p<0.001). Instead, the

magnitude of root mean square magnitude of triceps brachii increased in both groups at T1

and T2 (p<0.001)

Table 4. Repeated results of secondary kinematic outcomes.

group T0 T1 T2 Post-hoc T1 Post-hoc T2 d

force (N×m) E-fl/ex A 1±0.1 1.5±0.1 0.8±0.1 0.4 0.3 0.1

B 0.9±0.1 1.2±0.1 0.8±0.1

S-ab/ad A 0.8±0.1 0.9±0.3 0.9±0.1 <0.001 <0.001 0.6

B 0.7±0.1 0.8±0.2 0.7±0.4 0.03 0.5

S-fl/ex A 2.3±0.1 5.5±0.4 3.9±0.2 0.2 0.2 0.1

B 2.4±0.1 4±0.5 3±0.2

S-ir/er A 2±0.1 6.3±0.1 5±0.1 0.3 0.3 0.1

B 1.7±0.1 6±0.1 2±0.1

ROM (deg) E-fl/ex A 46±4 76±5 61±4 0.5 0.2 0.1

B 48±4 68±4 61±3

S-ab/ad A 64±2 81±6 76±3 <0.001 0.03 0.6

B 61±2 71±5 65±3 <0.001 0.3

S-fl/ex A 69±4 82±4 79±3 0.5 0.5 0.1

B 67±3 72±4 65±2

S-ir/er A 72±3 81±10 77±5 0.2 0.5 0.1

B 73±4 77±8 75±4

AWS (%) A 41±3 31±2 34±3 <0.001 <0.001 0.6

B 39±3 33±2 38±3 0.01 0.2

DGF (%) A 81±3 60±2 66±2 <0.001 <0.001 0.4

B 82±2 69±2 80±2 0.01 0.3

RMS (μV) non-vibrated BB A 114±12 120±13 118±12 0.1 0.2 0.1

B 114±12 121±13 115±12

LD A 79±6 88±7 85±6 0.5 0.1 0.1

B 82±5 84±9 82±5

PM A 80±7 86±8 84±4 0.4 0.4 0.1

B 83±4 84±5 82±3

Vibrated DE A 123±8 162±15 145±15 <0.001 <0.001 0.8

B 128±10 138±16 135±14 0.4 0.4

SS A 48±5 76±8 62±8 <0.001 <0.001 0.8

B 50±6 66±7 60±5 0.3 0.1

TB A 79±6 112±9 98±5 0.002 0.009 0.4

B 83±9 90±5 86±4 0.01 0.03

Legend: ROM range of movement, RMS root mean square, AWS arm weight support, DGF device guidance force, E elbow, S shoulder, fl/ex flexion/

extension, ab/ad abduction/adduction, ir/er intrarotation/extrarotation, BB biceps brachii, LD latissimus dorsi, PM pectoralis maior, DE deltoids, SS

supraspinatus, TB triceps brachii, N�m Newton×meter, NS non-significant.

https://doi.org/10.1371/journal.pone.0185936.t004
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The strength of ICF and the magnitude of root mean square magnitude of non-vibrated

muscles showed no significant changes.

Secondary kinematic outcomes

The patients of group-A showed a greater kinematic amelioration (consisting of an increase in

passive range of motion and force in shoulder abduction and adduction movements, and in

reduced arm weight support and device guidance force) than the patients of group-B (Table 4).

The repeated-measures analysis showed a significant interaction time×group for arm weight

support (p<0.001), device guidance force (p = 0.006), and force (p<0.001) and passive range of

movement (p<0.001) of shoulder abduction and adduction, thus indicating that there was a sig-

nificant difference between the groups at T1 and T2.

Specifically, the increase of force and range of movement of shoulder abduction and adduc-

tion, and the decrease of arm weight support and device guidance force were significant in

group-A at T1 and T2 (p<0.001), whereas such changes were significant in group-B only at

T1. The remaining kinematic parameters showed no changes.

To investigate whether MAS change (as main primary outcome measure) induced by MV

could be affected by arm weight support and device guidance force, we calculated an ANOVA

using these factors as covariates. There were no interactions among arm weight support, device

guidance force, and MV in both the groups (group×arm-weight-support×device-guidance-force
p = 0.9).

Discussion

The data of our pilot study suggest the usefulness of focal MV when combined with robotic

neurorehabilitation in managing upper limb spasticity in chronic stroke patients. In fact, MV

induced a MAS decrease, paralleled by an HMR decrease and a SICI strengthening in all the

patients of group-A, who thus achieved the primary outcome. Moreover, the MAS decrease

correlated significantly with SICI potentiation. Finally, MV strengthened the amelioration of

the other outcomes yielded by the Armeo-Power alone and determined a duration of Armeo-

Power aftereffects up to 1 month, as compared to Armeo-Power delivered alone. Altogether,

these data suggest that the improvement in spasticity (namely, MAS reduction) induced by the

association between motor training and MV may depend on a modulation of motor cortex

and spinal excitability, i.e., an increase of the inhibitory output from motor cortex to spinal

level, as suggested by the SICI increase and the HMR decrease. In fact, Armeo-Power alone

did not influence MAS, SICI, or HMR substantially (except in three patients). Nonetheless, we

have to be cautious in interpreting our data concerning the efficacy of focal MV when com-

bined with robotic neurorehabilitation, given the underpowered nature of the study. Although

promising, our data ought confirmation by further large sample studies.

Putative mechanisms of spasticity reduction

There are some conflicting reports in the literature concerning the improvement in spasticity

sustained by MV and Armeo-Power practiced alone [76–77]. Our data suggest that MV com-

bined with robotic neurorehabilitation may improve spasticity in post-stroke patients, proba-

bly in keeping with the principles of associative plasticity [9–12,23,32–33]. In fact, MV allowed

for boosting corticospinal excitability at both the cortical and spinal level (i.e., a clear modula-

tion SICI and HMR) as compared to Armeo-Power delivered alone. These effects may depend

on a direct entrainment of muscle spindle Ia-afferent firing up to 80Hz, which may be sensitive

to MV protocol [16–17]. Of note, we applied an intensity of vibration below the threshold for

eliciting tonic vibratory reflex or inducing movements. This may have increased antagonist
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muscle activation and reduced agonist activation, probably by harnessing mechanisms of

reciprocal inhibition, presynaptic inhibition, and changes in the intrinsic regulation of trans-

mitter release from the Ia-afferents of spastic muscles at spinal level, besides variations of the

intrinsic biomechanical and electrophysiological properties of the target muscles [23–27,33].

Nonetheless, some studies have shown that MV of spastic agonist muscle also led to a spasticity

decrease, probably owing to post-activation depression phenomena, an increase of reflex

threshold, or a co-contraction decrease [78–80]. In addition, MV effects may also depend on

the characteristics of the MV device itself [23–27,33].

The amount of proprioceptive information from muscle and joint receptors that reaches

the sensory-motor cortices during MV may also have an important role [22]. Indeed, the MV

of antagonist muscles led to a primary motor cortex excitability increase and SICI potentiation

in biceps brachii muscle (i.e., spastic agonist muscle). These findings agree with previous func-

tional neuroimaging studies suggesting that MV activates primary sensory and motor areas

(beyond premotor, supplementary motor, and cingulate cortices) [81]. Hence, in analogy with

premotor-motor facilitation, the effects on SICI could depend on a modulation of bidirectional

connections linking premotor and motor cortices sustaining MEP amplitude increase.

Notably, the Armeo-Power also offers a considerable amount of sensory input. In fact, it

has been demonstrated that primary motor cortex and supplementary motor area are activated

during a sensory stimulation using passive cyclical joint movements [82]. However, these pas-

sive movements activate the joint and cutaneous receptors more than the Ia-afferents, which

are essential for primary motor cortex proprioceptive activation [83–84]. Thus, the prominent

involvement of Ia-afferents could account for the stronger modulation of primary motor cor-

tex excitability following the Armeo-Power paired with real MV in comparison to the Armeo-

Power paired with sham-MV. In addition, proprioceptive stimuli modulate spinal reflexes

more than the exteroceptive stimuli. Finally, the cortical processing of such information may

in turn modulate spinal reflexes through cortico(-brainstem)-spinal inhibitory pathways onto

spinal Ia-dependent inhibitory interneurons [83–84].

Secondary outcomes

The combined approach also led to a greater improvement in mood, anxiety, and upper limb

motor function (FMA-UE increase), as compared to Armeo-Power practice alone. We may

argue that MV plays a key role in improving the gain in motor performance yielded by Armeo-

Power practice, regardless of spasticity. This gain in motor performance may in turn improve

mood and reduce anxiety. MV can recruit complex networks encompassing premotor-sensory-

motor areas [85], thus probably enhancing movement planning, favoring the recruitment of

perilesional and neighboring areas, and improving the feedback control of tracking movements,

the volume of the available workspace, the movement smoothness, and the inter-joint coordina-

tion (which all represent targets of Armeo-Power practice). This may also reduce the abnormal

muscle activation coupling [86–91], of which we observed a reduction of flexor synergies in

favor of extensor synergies in all the patients of group-A and in three subjects of group-B. The

decrease in pathologic compensatory strategies may have also contributed to the clinical amelio-

ration. In fact, compensatory strategies have an immediate benefit on daily life activity, but they

also have a negative impact on the quality of movement performance and limit the long-term

prognosis owing to the learned disuse phenomenon [86–91].

Study limitations

The main limitation of our pilot study consists of its underpowered nature. In fact, the

required sample size, based on detecting the proportion of patients achieving a minimal
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detectable change of approximately a one-point decrease on the MAS and a decrease in SICI

and HMR of at least 15% (two-tailed test, α level of 0.05, and 80%power), was 30 individuals

per group. This limits the significance of multiple comparisons we made, as the required sam-

ple size increases linearly with the logarithm of the number of comparisons made [92–93].

Even though pilot-study guidelines report that stage-2 clinical rehabilitation pilot studies on

physical and cognitive interventions, such as ours, can begin with a convenience sample of at

least six participants, we have to be cautious about the inferences that can be drawn from tis

underpowered study [94]. Larger samples and crossover studies are necessary to confirm our

promising findings.

Other limitations of our study consisted of the lack of a longer follow-up and the relatively

high variability of FMA-UE scoring in both groups (slightly more evident in group-B). Such

high variability could account for the milder responsiveness of group-B patients to Armeo-

Power training alone, while MV allowed group-A patients to meet primary and several sec-

ondary outcomes for a longer period, thus strengthening Armeo-Power aftereffects.

Additionally, the improvements observed in those three patients in group-B (“responder”

patients, as those belonging to group-A) may question the possibility that the clinical-electrophys-

iological changes were due to the combination of the interventions, given that they could rather

depend on the intensive and repetitive motor activity during Armeo-Power training. However,

these group-B “responder” patients had lower FMA-UE and MAS scoring as compared to the

other group-B “nonresponder” subjects. Nonetheless, the group-B “responder” patients (as well

as the other group-B “nonresponder” subjects) neither showed the corticospinal excitability mod-

ulation shown by group-A, nor maintained their outcome improvement at T2 (as instead the

patients of group-A did). These issues may confirm that MV is consistently able to strengthen

and prolong Armeo-Power effects, probably through both spasticity reduction and corticospinal

excitability modulation, beyond primarily facilitating spasticity reduction.

Finally, FIM values are a few below those available in the literature, which however come

from patients with a more varying disease duration and mixed stroke etiology than our

patients [95–100].

Conclusions

Our pilot study suggests that MV combined with Armeo-Power may consistently reduce

upper limb spasticity, and strengthen and lengthen the Armeo-Power effects regarding upper

limb motor function, mood, and the disability burden. The stronger effect of the combined

approach on spasticity and upper limb functions may depend on a sort of associative plasticity

between the two coupled trainings, which could have reshaped corticospinal plasticity with a

consequent reduction of segmental excitability at the spinal level and an entrainment of recov-

ery processes at the cortical level.

Although larger samples and crossover studies are necessary to confirm our promising

findings, we may suggest that MV could be usefully harnessed to increase the functional out-

comes obtained by using Armeo-Power, and to improve upper limb spasticity and functions

in post-stroke patients.

Suppliers list

a Armeo-Power; Hocoma AG, Switzerland, Industriestrasse 4 CH-8604 Volketswil; Tel.

+41434442200, Fax +41434442201; info@hocoma.com; www.hocoma.com.

b Vibraplus; a circle s.p.a., via Ferrara 21–40018 San Pietro in Casale (BO) Italy; tel.:

+39051817550—fax: +39051811993.

Muscle vibration plus robotic rehabilitation to improve upper limb spasticity

PLOS ONE | https://doi.org/10.1371/journal.pone.0185936 October 3, 2017 14 / 20

http://www.hocoma.com/
https://doi.org/10.1371/journal.pone.0185936


Supporting information

S1 Table. CONSORT checklist.

(DOC)

S1 File. Trial study protocol in English language.

(DOC)

S2 File. Trial study protocol in Italian language.

(DOC)

Author Contributions

Conceptualization: Rocco Salvatore Calabrò, Antonino Naro, Serena Filoni.

Data curation: Antonino Naro, Margherita Russo, Demetrio Milardi, Antonino Leo, Antonia

Trinchera.

Formal analysis: Antonino Naro, Demetrio Milardi, Antonino Leo, Antonia Trinchera.

Investigation: Margherita Russo.

Methodology: Antonino Naro, Demetrio Milardi, Serena Filoni.

Project administration: Placido Bramanti.

Resources: Placido Bramanti.

Supervision: Rocco Salvatore Calabrò.

Validation: Rocco Salvatore Calabrò, Serena Filoni, Antonia Trinchera.

Visualization: Margherita Russo, Antonino Leo.

Writing – original draft: Antonino Naro.

Writing – review & editing: Rocco Salvatore Calabrò, Placido Bramanti.

References
1. Trompetto C, Marinelli L, Mori L, Pelosin E, Currà A, Molfetta L, et al. Pathophysiology of spasticity

implications for neurorehabilitation Biomed Res Int 2014; 2014:354906. https://doi.org/10.1155/2014/

354906 PMID: 25530960

2. Langhorne P, Bernhardt J, Kwakkel G. Stroke rehabilitation Lancet 2011; 377:693–1702. https://doi.

org/10.1016/S0140-6736(10)61546-2
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