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Introduction
Healthcare is one of the many domains, continuously improved by the pervasive pene-
tration of IoT technologies, which are used to support core functions of healthcare insti-
tutions. This way, traditional hospitals are converted into next-generation smart digital 
environments extensively making use of interconnected sensor systems and (Big) data 
collection/processing techniques. From this perspective, Smart Healthcare can be seen 
as a complex ecosystem of smart spaces (e.g. hospital rooms, ambulances, pharmacies, 
etc.), supported by a powerful infrastructure stack (including edge devices and sensors, 
wired and wireless networks, Cloud platforms, etc.) and driven by innovative business 
models and legislation enabling the Healthcare Industry 4.0.

Abstract 
The Internet of Things (IoT) facilitates creation of smart spaces by converting existing 
environments into sensor-rich data-centric cyber-physical systems with an increasing 
degree of automation, giving rise to Industry 4.0. When adopted in commercial/indus-
trial contexts, this trend is revolutionising many aspects of our everyday life, including 
the way people access and receive healthcare services. As we move towards Health-
care Industry 4.0, the underlying IoT systems of Smart Healthcare spaces are growing in 
size and complexity, making it important to ensure that extreme amounts of collected 
data are properly processed to provide valuable insights and decisions according 
to requirements in place. This paper focuses on the Smart Healthcare domain and 
addresses the issue of data fusion in the context of IoT networks, consisting of edge 
devices, network and communications units, and Cloud platforms. We propose a 
distributed hierarchical data fusion architecture, in which different data sources are 
combined at each level of the IoT taxonomy to produce timely and accurate results. 
This way, mission-critical decisions, as demonstrated by the presented Smart Health-
care scenario, are taken with minimum time delay, as soon as necessary information is 
generated and collected. The proposed approach was implemented using the Com-
plex Event Processing technology, which natively supports the hierarchical processing 
model and specifically focuses on handling streaming data ‘on the fly’—a key require-
ment for storage-limited IoT devices and time-critical application domains. Initial 
experiments demonstrate that the proposed approach enables fine-grained decision 
taking at different data fusion levels and, as a result, improves the overall performance 
and reaction time of public healthcare services, thus promoting the adoption of the IoT 
technologies in Healthcare Industry 4.0.
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The foundation of Smart Healthcare is built on intelligent, low-power, wirelessly 
connected medical devices. These devices continuously measure, process, capture 
and protect the biometric data collected by sensors, including body position, weight 
and movements, sleep quality, blood pressure, blood oxygen saturation, body tem-
perature, heart rhythm and rate, blood oxygen, fatigue levels, respiration rate, etc. [3, 
33]. This gave rise to the Internet of Medical Things (IoMT) [12, 20]. By embedding 
sensors into internal spaces and hospital equipment, such as beds and wheelchairs 
thus becoming “medical things”, hospital staff are given an opportunity to receive 
and view valuable biometric information on their computers and/or mobile devices 
remotely via a wireless connection, while performing their daily duties. This way, 
doctors are able to take immediate decisions, thus potentially saving people’s lives. 
In most cases, however, the collected information, albeit timely and precise, is only 
intended to be displayed to the hospital personnel, who remain responsible for tak-
ing final decisions based on this received information. From this perspective, finding 
potential correlations between various human body indicators—i.e. ‘fusing’ data from 
multiple sources—is undertaken manually by a doctor, who applies his/her knowledge 
and experience to detect/prevent a potentially critical situation.

Indeed, often a single source of information is not sufficient to take reliable and 
justified decisions. Therefore, there is a need for a combination of several various data 
sources, be it streaming or static data. Establishing a diagnosis by a doctor is a repre-
sentative example in this context—i.e. a healthcare professional can only diagnose an 
illness/disease based on several examinations (e.g. blood and urine tests, blood pres-
sure, blood temperature, heart rate, etc.), not just one. Admittedly, detecting a devia-
tion in a single health indicator (e.g. body temperature) is not enough to diagnose an 
illness, as there may be plenty of reasons to an increased temperature. To this end, 
doctors typically base their decisions on several examinations, and by performing 
manual data fusion over these several sources (typically, the more the better), are able 
to minimise the uncertainty and, eventually, come to a precise, valid diagnosis. Same 
principles of combining multiple sources also apply to automated data fusion, espe-
cially in the Smart Healthcare contexts where (huge) streams of (Big) data, coming 
from different spatially-distributed locations, have to be ‘fused’, often under real-time 
constraints.

Furthermore, there may be more complex cases, when a single doctor does not have 
sufficient information and/or experience to establish a diagnosis. In these circum-
stances, to diagnose a problem, a medical board of healthcare professionals with differ-
ent specialisations needs to discuss and correlate their individual findings, after which 
the head of the board is able to take the final decision, based on the inputs provided by 
individual board members. From this perspective, this medical board resembles a hier-
archical organisation, where lower-level members provide information to a higher-level 
decision maker.

However, with these promising opportunities come emerging challenges as to how 
to process and manage avalanches of data, continuously generated by millions of sens-
ing devices. A particularly pressing concern in these circumstances is to enable smooth 
integration of multiple data sets into a consistent, accurate, and useful representation—
that is, to perform data fusion [29]. More formally, the goal of data fusion is to combine 
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relevant information from multiple data sources into a single one to provide a more 
accurate description than any of the individual data sources alone and minimise uncer-
tainty [19].

The existing approaches to enable IoT data fusion (including the Smart Healthcare 
domain) and processing have primarily adopted a Cloud-centric model, where raw data 
collected by edge devices are pushed to a Cloud that is seen as the primary processing 
location [28]. Such a vertical off-loading model, however, tends to neglect or undervalue 
(growing) computational resources of edge devices to support data analytics and pro-
cessing, including data fusion [10]. As a result, some relatively simple data fusion tasks 
instead of being accomplished immediately on the spot, are pushed to a Cloud server 
through a potentially congested public network, thereby suffering from several issues. 
First, by not processing simpler tasks locally, the overall reaction time considerably 
increases due to network latency and limited bandwidth. Second, pushing potentially 
sensitive data through a public network is associated with an increased security risk, 
whereas applying additional data encryption techniques as a way of addressing this chal-
lenge introduces unnecessary computational and network workload. Third, by not utilis-
ing computational resources of edge devices, this model requires the Cloud to cope with 
an increased (Big Data) workload, which might also reflect in the overall cost of renting 
and running the Cloud service.

Accordingly, taking the above considerations as a reference, this paper presents a hier-
archical automated data fusion architecture for Smart Healthcare ecosystems, where 
individual elements perform data fusion over multiple data sources with respect to their 
background knowledge and processing capabilities. This way, lower-level elements carry 
out relatively limited data fusion and transfer aggregated information to higher-level ele-
ments, which, in their turn, after fusing the received information, may transfer newly 
aggregated information further up to the upper elements in the hierarchy. The proposed 
architecture is implemented using the Complex Event Processing (CEP) technology, 
which aims at detecting complex event patterns in a stream of atomic events, and rep-
resents a potential way of implementing data fusion in distributed IoT systems [8, 9], 
such as smart hospitals. Deployed as close to the source of sensor data, it aims at utilis-
ing local processing capabilities wherever possible, or off-load tasks to Fog/Cloud com-
puting otherwise—thereby paving the way for a multi-layered, hierarchical data fusion 
approach. As it will be further discussed and demonstrated by a healthcare use case sce-
nario, this approach enables fine-grained decision taking at different data fusion levels, 
and, as a result, improves the overall performance and reaction time. Thus, the contri-
bution of this paper is threefold: (i) a fine-grained hierarchical data fusion approach for 
timely decision taking in digital healthcare, (ii) a prototype implementation of the pro-
posed system using the CEP technology, and (iii) evaluation and benchmarking of the 
proof-of-concept implementation against an existing centralised approach.

Accordingly, the rest of the paper is organised as follows. In “Background” section, IoT 
ecosystems and data fusion approaches are studied to identify main processing archi-
tectures and data fusion patterns. Next, in “Methods” section, these patterns and IoT 
processing models are mapped into a three-tier hierarchical solution for the Smart 
Healthcare domain. This section also provides an example of applying such a solution to 
Smart Healthcare services and demonstrates the feasibility of the proposed hierarchical 
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data fusion approach with a proof-of-concept implementation. “Results and discussion” 
section describes experimental evaluation of the proposed approach and discusses the 
results. “Conclusion” section concludes the paper with some final remarks and outlines 
directions for future work.

Background
The innovative Industry 4.0 is supported by several technological pillars, including Cloud 
computing, Big Data analytics, Cyber Physical Systems and the IoT [24]. Supported by 
the recent advancements in the networking, mobile and embedded technologies, they 
serve to enable highly automated data-centric service-oriented business processes by 
ubiquitous insertion of smart sensors for data acquisition. As a result, numerous devices, 
equipped with a wide range of sensing resources, as well as relatively advanced comput-
ing, storage and communication capabilities (thus earning the smart attribute), are ubiq-
uitously present in people’s life aiming to improve it. Such sensor-enabled smart objects 
are Internet-connected, thereby creating a global network of remotely accessible data 
sources, ready to be discovered and integrated into complex cyber-physical systems.

As a result, this new paradigm paved the way for an increased level of industrial auto-
mation and previously unknown business models. Moreover, the Industry 4.0 princi-
ples are also revolutionising other public and social domains (not necessarily related to 
production and manufacturing), including the healthcare system, thus giving rise to the 
alike concepts of Health 4.0, Healthcare Industry 4.0, and Smart Healthcare. The aim of 
these emerging trends “is to allow for progressive virtualization in order to enable the 
personalization of health and care next to real time for patients, professionals and for-
mal and informal carers” [36]. Although typically associated with the concept of a smart 
hospital (which still remain the fulcrum of a healthcare system), Healthcare Industry 4.0 
and Smart Healthcare go far beyond the boundaries of a single hospital spanning across 
multiple healthcare institutions, as well as public administrations, offices and govern-
ment and public health services. In this light, it is important to ensure that Health 4.0 is 
realised not via vertical non-sustainable solutions aiming to ‘smarten’ individual, isolated 
clinics and hospitals, but rather via an all-encompassing Smart Healthcare solution, able 
to cover much wider scenarios, involving multiple organisations and stakeholders. From 
this perspective, further implementation of the (Smart) Healthcare Industry 4.0 vision 
requires a global approach and depends on a technological convergence among various 
ICT domains, including IoT, Big Data analytics, and Cloud Computing.

At present, a common solution adopted for data management and processing in 
the context of Smart Healthcare is to offload related tasks to remote servers, typi-
cally located in datacenters and Cloud platforms, which collect, store and process 
data, thus pushing for the interaction between the IoT and the Cloud paradigms [11]. 
In this regard, Smart Healthcare has primarily adopted a ‘vertical’ offloading para-
digm, in which raw sensor data are collected by edge devices and transferred over 
the network to a central processing location via several network links. This inevita-
bly implies that raw biometric data are sent out immediately upon generation, thus 
putting strict dependency on the underlying network bandwidth. As a consequence, 
this requirement may often appear not affordable or unsustainable due to restric-
tions of the underlying (wireless) networks and related (3G/4G) providers, which 
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impacts the overall processing latency. Despite this limitation, (resource-constrained) 
edge devices are still not expected to perform data processing themselves, but rather 
have to push collected data through the network topology, albeit they may already 
have enough processing, storage and computing resources on-board, which can be 
exploited in sensor fusion (e.g. filtering, pre-processing, local analytics) with benefits 
in terms of performance and network latency.

Moreover, network communication and processing units, such as mobile edge cloud 
(MEC) servers and cloudlets [37], are usually powerful enough to support such com-
putations. This pattern was proposed by the Edge/Fog computing paradigm, aiming at 
pushing intelligence to the edge of the network topology [17]. In Edge/Fog computing, 
network devices, IoT gateways, switches, routers, servers, and cloudlets, are widely used 
to support computational tasks, incoming from edge nodes. This complements the tra-
ditional Cloud offloading and overcomes bandwidth constraints, mitigating network 
latency and delays. Therefore, a solution able to minimise costs and latency, while taking 
into account edge devices’ resource constraints, is possible by exploiting and combin-
ing local resources with those provided by the network (i.e. Edge/Fog computing) and 
remote (i.e. Cloud computing) processing nodes. To this end, relevant concepts and 
insights on infrastructure and software/data management solutions are discussed below 
to provide a baseline for an effective converging Smart Healthcare solution.

Infrastructure: IoT, Edge, Fog and Cloud
From an infrastructure perspective, a Smart Healthcare ecosystem is composed of 
multiple interconnected edge devices, network nodes, and (virtual/physical) servers. 
Connected into an IoT network, these elements differ in their capabilities, and can be 
classified into four categories, as summarised in Table 1. In this taxonomy, six features 
have been identified based on the resources provided by a specific node. The Sensing/
Actuation parameter refers to the presence of sensors and actuators that provide corre-
sponding capabilities. Then, basic network connectivity features are referred to as Inter-
net Facilities. Other features are related to Processing and Memory/Storage capabilities. 
Advanced Connectivity features refer to the forwarding and/or routing functionality, as 
well as support for software-defined and virtualised networking. Finally, the Service/
Resource Provisioning capabilities allow to provide resources and services to third parties 
on demand in a service-oriented fashion.

Table 1 IoT resources categorisation

Category Property

Sensing 
actuation

Internet 
facilities

Processing Memory, 
storage

Advanced 
connectivity

Service, 
resource 
provisioning

Device X – – * – –

Mote—basic gateway * X – * – –

Smart object—smart gateway * X X * – –

Communication and process-
ing unit

– X X X X –

Datacenter – X X X * X
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Based on this set of features, a Device can be considered as a simple node with sensing 
and actuation capabilities, but without any network facilities, thus requiring to be physi-
cally connected to an access point/gateway to send acquired data. It can have some (lim-
ited) storage capabilities to aggregate several measurements into batches before sending 
for minimising energy consumption (which is important for battery-powered devices). 
Examples are any kind of biometric sensors and actuators, as well as multiple sensor 
boards/shields.

A mote-basic gateway is a node responsible for transferring data from edge devices 
to the Internet (i.e. collecting sensor values), or vice versa (i.e. sending actuating com-
mands). It can be equipped with own sensors and actuators, or these can be connected 
through a specific (wired) interface to its pins (e.g. GPIO pins). Storage facilities can be 
present in a gateway, which typically has limited or no processing capabilities on-board. 
Examples are boards, only equipped with a micro-controller, such as Arduino Uno and 
similar.

A smart object and a smart gateway are more powerful units, equipped with process-
ing facilities, thus allowing on-board (pre-)processing of probed data, coming from own 
or pin-connected sensors. Examples are smart boards and single-board computers with 
microprocessors, such as Raspberry Pi and Arduino Yun.

Communication and processing units are network nodes and servers with advanced 
connectivity and processing capabilities, but usually without any sensing/actuation facil-
ities. They are able to support data processing tasks (filtering, analytics, data fusion, etc.) 
off-loaded by smart objects and gateways according to the Fog computing principles. 
Examples are routers, MEC servers, base stations, and cloudlets.

Datacenters provide processing, storage and networking resources to support IoT 
healthcare applications, possibly through a Cloud-based provisioning model.

According to this categorisation, data processing in the IoT-Cloud ecosystems can be 
performed at three different levels, as summarised in Table  2: on-board (i.e. ‘Mist’ or 
Edge computing), on communication and processing servers and cloudlets (i.e. Fog com-
puting), and/or in remote datacenters (i.e. Cloud computing).

Software: data fusion
Data fusion is a broad ‘umbrella’ term for several techniques and approaches, aim-
ing to combine data, information and knowledge with a goal to improve data quality, 

Table 2 Data fusion taxonomy

Category Taxonomy

Low level Middle level High level

Processing stage [22] Low Intermediate High

Levels of abstraction [30] Low Medium High

Data granularity [32] Raw data processing Feature level Decision level

Operation domains [39] Temporal Spatial Temporal and spatial

Semantics [16] Knowledge base construction Pattern matching Inference

Source relationships [13] Complementary Redundant Cooperative

User requirements [39] Local/single node Region Global/overall network
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reduce uncertainty, extract/mine advanced (emerging) features, provide statistics/
analytics, and so on. Several different data fusion patterns have been identified based 
on multiple parameters. From a data processing perspective, the primary broad clas-
sification distinguishes between standalone and distributed data fusion approaches. 
As demonstrated by the relevant literature, real case studies, and applications, the lat-
ter are widely adopted for IoT data fusion, especially in the presence of the Big Data 
challenges. Other relevant data fusion taxonomies and classifications [1] are briefly 
summarised in Table 2.

By looking at the taxonomy in Table 2, it is possible to identify a clear multi-layered 
architectural pattern, where individual levels build one on top of the other in a hierarchi-
cal manner. More specifically, a three-level model prevails in the surveyed taxonomies 
(albeit with a possibility to be extended to a greater number of layers). Accordingly, the 
conceptual three-level data fusion model can be summarised as follows:

 I. Low level includes data fusion features usually applied to raw data coming from 
sources, implementing a first stage of processing or at a low level of abstraction, 
performing local operations such as those in a temporal domain aiming at knowl-
edge base construction or cooperating with other nodes on complementary activi-
ties.

 II. Middle level includes features at a higher level, which could be performed on pre-
processed information, i.e. the results of the previous processing stage, local com-
putation or level of abstraction, for example to obtain spatial domain parameter 
estimations on a given area, or implementing feature extraction, pattern matching 
or redundant computations.

 III. High level implements the last processing stage at the highest level of abstrac-
tion on a global domain, performing inference or complex reasoning and decision 
making on data, coming from the lower layers or implementing temporal–spatial 
fusion by, for example, exploiting cooperative patterns.

Speaking of specific technologies aligned with the presented hierarchical data pro-
cessing model, a potentially promising data fusion approach, that can be potentially 
applied in the Smart Healthcare context, is Complex Event Processing (CEP) [27]. As 
opposed to the traditional Stream Processing, CEP goes beyond simple data query-
ing/transformation and aims to detect complex event patterns, themselves consist-
ing of simpler atomic events, within a data stream. Accordingly, from CEP’s point of 
view, constantly arriving tuples can be seen as notifications of events happening in 
the external world—e.g. an increase in body temperature or a sudden drop of blood 
pressure. The focus of this perspective is on detecting occurrences of particular pat-
terns of lower-level events that represent higher-level events. A standing CEP query 
fetches results if and only if a corresponding pattern of lower-level events is detected. 
For example, a common task addressed by CEP systems is detection of situation pat-
terns, where one atomic event happened strictly after another. To achieve this, CEP 
systems rely on event timestamps; they extend existing query languages with sequen-
tial operators, which allow specifying the chronological order of events or, simply put, 
whether one event happens before or after another in time.
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CEP’s capabilities to enable data fusion over incoming streams have been utilised in 
scenarios, where data are continuously pushed from a distributed network to be dynami-
cally analysed as soon as they arrive. More specifically, a number of network intrusion 
detection systems (IDSs) [5, 14, 23] were implemented using CEP. These IDSs aim to col-
lect and correlate all network events in one place to detect critical situations, which are 
represented as pre-defined CEP rules. There is also evidence of utilising CEP techniques 
in the context of IoT systems. Similarly, the motivation is to enable run-time monitoring 
and data fusion in the context of distributed IoT networks [6, 15, 18, 38]. Admittedly, 
similar challenges in terms of timely detection and reaction to collected sensor measure-
ments are present in the Smart Healthcare domain.

There are two main aspects, however, which are not addressed by the literature yet. 
First, existing approaches tend to implement CEP only at the highest level of Cloud com-
puting, thus neglecting the possibility of introducing intermediate data fusion at the lev-
els of networking and edge devices. Second, there is little evidence of the bi-directional 
communication—that is, existing approaches only focus on data collection, and do not 
consider coordination of lower-level devices by modifying data fusion policies in a top–
down manner.

Big Data for Smart Healthcare
The rise of Smart Healthcare has triggered an exponential growth of biomedical data 
sets continuously generated by millions of embedded sensors, introducing new techno-
logical challenges along with innovation/business opportunities [12, 34].

The main biomedical data sources include Electronic Medical Records (EMRs) and 
Electronic Health Records (EHRs) from healthcare providers, as well as clinical trials and 
data from pharmaceutical companies [31]. To cope with these overwhelming amounts, 
academia and industry aim to offer efficient solutions to collect, transfer, storage, aggre-
gate, and analyse data from multiple sources (i.e. data fusion).

While storing Big Healthcare Data is relatively successfully addressed by general-pur-
pose storage technologies (e.g. relational and NoSQL databases supported by horizontal 
scaling and data replication), processing and analysis of healthcare data sets is domain-
specific. In particular, the following three disjoint areas of Big Healthcare Data analytics 
can be distinguished [4]:

• Image processing medical images (e.g. tomography, magnetic resonance imaging, 
radiography, etc.) are an important source of data extensively used for diagnosis, 
therapy assessment and treatment planning. Such high-resolution images require 
large storage capacities if persisted for long term. As far as processing is concerned, 
medical images also demand fast and accurate interpretation algorithms, especially 
when images serve to assist healthcare personnel in manual decision taking. Further-
more, in cases when such image-based analytics involves other sources of informa-
tion, the challenge of providing cohesive storage and processing support requires 
advanced solutions. In recent years, this challenge has been widely addressed by 
applying artificial intelligence techniques and neural networks [25].

• Genomics analysing genome-scale data has been extensively investigated by the com-
putational biology research that aims to develop actionable recommendations for a 
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clinical setting. Genomic data sets are characterised by extremely high density which 
makes their exploration, discovery, and clinical translation an attractive are for apply-
ing novel Big Data analytics approaches [21, 35].

• Signal processing signals, generated by medical sensors, are characterised by their 
volume and velocity aspects. This is especially challenging in the context of the Inter-
net of Medical Things (IoMT), where a multitude of monitors connected to each 
patient generates a continuous stream of multi-dimensional sensor readings [2]. Fur-
thermore, in addition to the volume and velocity issues, the spatio–temporal nature 
of physiological signals needs to be addressed to make analysis of sensor signals more 
valuable by taking into consideration the situational context. Such context awareness 
needs to be embedded into continuous monitoring and predictive IoMT systems to 
ensure that current sensor observations are correlated with the context. Tradition-
ally, existing healthcare systems tend to focus on single sources of information while 
lacking the remaining context of the patients’ true physiological conditions from a 
broader and more comprehensive viewpoint. Therefore, there is a need to develop 
improved and more comprehensive approaches for combining multi-modal clinical 
time series data [2]—a challenge which is currently beyond manual capabilities of 
humans. As it is further explained in this paper, to address these issues we introduce 
a data fusion approach based on CEP.

Methods
Proposed approach
A data fusion architecture for a Smart Healthcare ecosystem can be naturally identi-
fied by matching IoT infrastructure capabilities within healthcare organisations with 
the existing data fusion models. The three-level data fusion model, inspired by the tax-
onomies in Table 2, indeed, naturally fits the classification of IoT processing elements 
in Table 1, pairing and deploying the low level into edge devices (i.e. Edge computing), 
the medium one into communication and processing units (i.e. Fog computing) and/
or the high one into remote datacenters (i.e. Cloud computing). On this premise, it is 
therefore natural to think on how to exploit edge devices and network nodes in support-
ing data fusion tasks. Given the different types of devices and their locations within an 
IoT network topology, as well as data fusion patterns, in this paper we propose a hier-
archical multi-level architecture for data fusion in IoT healthcare systems. According 
to our approach, data should be first processed on-board (i.e. locally on Edge objects) 
whenever possible, or pushed to communication and processing units and/or, finally, to 
remote datacenters following the three-level data fusion pattern in Table 2. As depicted 
in Fig. 1, the proposed architecture thus includes three conceptual levels, which can also 
be aligned with geographical areas, from which IoT healthcare data are collected:

 I. Low level data fusion (LDF) is supposed to take place on smart objects, which col-
lect data, coming from edge devices via gateways, or smart devices themselves—
the amount of data is relatively small, and data fusion can be performed on-board. 
The main goal of LDF is to detect critical health conditions of individual patients. 
By combining streaming sensor data (i.e. sensor fusion) with patients’ personal his-
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toric health records, it is possible to detect potentially critical health conditions, 
send a corresponding alert to a higher level, and notify hospital staff members in 
charge. For example, by collecting seemingly ‘healthy’ sensor readings, the LDF 
engine is able to match them with personal records and see that for this specific 
patient the observed values actually might indicate deteriorating health conditions. 
This way, data fusion—i.e. integration of sensor readings and static background 
information—takes place as close to the source of data as possible, thus only fil-
tered/aggregated values are transferred to an upper-level processing node, whereas 
hospital staff is immediately provided with a possible diagnosis.

 II. Middle level data fusion (MDF) refers to performing more intensive analytics over 
information pushed from a wider network of devices. In the IoT ecosystems, MDF 
is supposed to be performed on communication and processing units following 
principles of Fog computing. The middle-level MDF performs data fusion over a 
larger area of interest (i.e. a clinic or a hospital), aiming to achieve two main goals. 
First, MDF aims to detect/prevent potential disease outbreaks, by mapping critical 
values coming from bed sensor devices to physical locations, where these devices 
are actually placed. This way, MDF becomes aware of hospital rooms and floors, 
where there is a potential disease spread. Second, by identifying rooms and floors 
within the hospital with an increased healthcare demand (including epidemic dis-
eases), MDF aims to organise and manage the staff more efficiently (e.g. by allocat-
ing more nurses to a specific floor, where currently an increased demand is being 
observed). For these purposes, MDF needs to rely on background knowledge with 
a mapping for individual sensor devices to rooms/floors, where they are placed. 
By performing data fusion over these multiple data sources, the system is not only 
able to detect a spread of a sudden infectious disease, but also to efficiently manage 
and direct hospital personnel by allocating them according to the current demand.

 III. High level data fusion (HDF) refers to the highest level of data fusion, which pro-
vides a global view on the whole managed system of edge devices and networking 
nodes. This involves processing of large amounts of data, and therefore is expected 
to be implemented in a remote datacenter or a Cloud. HDF collects data from all 

Fig. 1 Overview of a multi-level hierarchical data fusion on a Smart Healthcare scenario. This figure illustrates 
the proposed approach at a high level. It shows what elements constitute each of the levels of the data 
fusion hierarchy
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hospitals within a city and performs data fusion over the whole managed urban 
area. First, this way, the HDF engine is able to provide a global real-time view on 
the current utilisation of individual hospitals and other healthcare institutions, 
and manage emergency vehicles accordingly. More specifically, it can combine the 
streaming information from hospitals and current GPS positions of emergency 
vehicles with static information on traffic routes and hospital locations nearby. As 
a result, an emergency vehicle might be directed to a hospital, which is not neces-
sarily the closest to the vehicle at the moment, but which has more available staff to 
provide first aid in time. Second, the incoming information from multiple hospitals 
may be correlated to identify and prevent an outbreak of an epidemic disease on 
the regional scale in a timely manner—a mission-critical requirement in the light 
of the recent occurrences of the Ebola virus disease and Avian influenza.

It is worth noting that modern IoT systems, especially the ones related to Smart 
Healthcare, tend to go beyond the notion of the ‘bottom–up’ monitoring—i.e. raw data 
are collected by edge devices and transferred through the network- and also implement 
‘top–down’ feedback communication between managed and managing devices (e.g. 
for actuating commands). As part of such bi-directional communication, the proposed 
approach introduces the notion of coordination, which is responsible for communication 
between the layers just described. More specifically, coordination is a twofold function-
ality. On the one hand, it receives data from lower-level devices, collecting and dispatch-
ing them to data fusion processors and engines, as well as to the higher level, if required. 
On the other, it uploads new and modifies/deletes existing processing rules, according to 
changing requirements.

As a result, the described high-level conceptual data fusion architecture is realised 
through deploying and running instances of the data fusion logic on devices, constitut-
ing multi-level IoT systems. It implements main two functions—namely, (i) actual data 
fusion, and (ii) communication with devices, located at lower levels of the IoT network 
topology, and orchestration of data processing tasks distributed across lower-level 
nodes. The reference architecture in Fig.  2 depicts this conceptual separation of con-
cerns—all three levels are equipped with dedicated data fusion (DF) engine instances 
(i.e. low-level DF—LDF, middle-level DF—MDF and high-level DF—HDF Engines, 
respectively), whereas the upper two levels also include coordination components (LDF 
and MDF Coordinators), responsible for bi-directional communication between lower- 
and higher-level nodes and management of offloading requests incoming from lower-
level nodes.

Interactions among such components are depicted by the workflow in Fig. 3. Initially, 
data generated by a smart object are gathered and sent to the LDF Engine which first 
evaluates if the related data fusion task can be processed on-board and, if so, processes 
it. Otherwise, it splits the task into n ≥ 1 subtasks which can then be redistributed inter-
nally, and/or forwards to Edge nodes, interacting with its middle-level counterpart, i.e. 
the LDF Coordinator. Similarly, this module assesses the (sub-)task and sends it to the 
MDF Engine, if processable. Otherwise, it decomposes and redistributes the (sub-)task 
internally, or forwards the latter to the high-level MDF Coordinator running on the 
remote datacenter and/or back to the LDF Engine. In its turn, the MDF Coordinator 
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implements a similar process—i.e. it first evaluates the incoming request and processes 
it by means of the HDF Engine if feasible, or partitions the request into simpler requests 
to be re-submitted to the HDF level, and back to the lower MDF/LDF levels through the 
MDF Coordinator.

It is worth noting that the presence of one of the two upper layers in the hierarchy 
is optional, since an LDF Engine could directly interact with a MDF Coordinator, or a 
LDF Coordinator can assign requests only to MDF and LDF engines. Potentially, the 
approach is flexible in the number of levels in the hierarchy—i.e. it can also accommo-
date more than three levels, if necessary, by deploying two or more engines and coordi-
nators at higher levels, such as communication and processing units and datacenters.

LDF 
Engine

LDF 
Coordinator

MDF 
Engine

MDF 
Coordinator

HDF 
Engine

High Level - 
Datacenter

Middle Level - 
Comm. and Proc. Unit

Low Level -
 Smart Object

Fig. 2 Conceptual architecture of the multi-level hierarchical data fusion for digital healthcare ecosystems. 
This figure illustrates the proposed approach at a conceptual level and depicts how data fusion levels interact 
with each other

HDF 
Engine

LDF  
Coord .

LDF      Engine MDF Coord .MDF 
Engine

User 
Generate 

Data

Assess

Process Partition Assess

Process

Partition Assess

Process

Partition

Fig. 3 IoT hierarchical data fusion workflow. This figure depicts the general data fusion workflow where data 
generated at a low level is processed and transformed as it is pushed upwards through the hierarchy
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Case study
Some of the main goals for automated data fusion in the Smart Healthcare domain are 
(i) to perform situation assessment and minimise the uncertainty by bringing multi-
ple data sources together, (ii) to support timely automated decision taking, and (iii) to 
reduce security risks associated with sending data remotely over a public network. A 
potentially promising solution to address such requirements is to use processing capa-
bilities of smart objects, ubiquitously present in IoT networks. However, data fusion in 
distributed IoT networks is a multi-faceted problem that needs to be addressed from 
multiple perspectives. Taking the taxonomy in Table  2 as a reference, we specifically 
consider the following three types of data fusion present in the Smart Health domain, 
and explain how they can be addressed using CEP.

Temporal data fusion refers to aggregation of data coming from the same data source, 
but at different points in time. It looks into the chronological order of distinct values, 
trying to find temporal correlation among them, usually within a specific time frame. 
For instance, temporal fusion needs to be applied to body temperature sensor readings 
to detect rapid increases within a short period of time, which are very likely to represent 
a fever or similar types of health deterioration. Using CEP, temporal data fusion can be 
implemented by sequential (i.e. to detect the exact chronological order of events) and 
iterative (i.e. to detect changes with respect to previously arrived values) operators. For 
example, the former operators can detect critical situations when an increase in body 
temperature strictly follows a drop in blood pressure, whereas the latter can identify 
fever symptoms, such as sudden elevations and drops in body temperature.

Spatial data fusion refers to aggregation of multiple physically and/or logically distrib-
uted sources into a single common representation. In Smart Healthcare, spatial fusion 
may need to be performed, for example, over data coming from health sensors placed in 
different rooms within a hospital with a goal to identify an epidemic pattern. CEP sup-
ports spatial data fusion by applying conditions to individual patterns. More specifically, 
it is possible to check whether events originate from the same location, or compare the 
source of events with a specific pre-defined location. This way, it is possible to group 
incoming sensor values with respect to the hospital rooms/floors they are coming from, 
or extract only a subset of values coming from a specific (i.e. matching) area of interest.

Semantic data fusion refers to the heterogeneous nature of various data sources (i.e. 
physical and virtual sensors) present in the IoT healthcare domain, which need to be 
uniformly represented and aggregated in order to enable further analysis and pattern 
detection. An example of semantic data fusion can be the detection and diagnosis of 
an illness based on several measured body indicators, such as temperature, blood pres-
sure, heart rate, etc. CEP on its own cannot address the heterogeneity issue of multi-
ple data sources—this task is delegated to an actual CEP implementation, which enables 
the common data representation and format as part of its programming model. That is, 
in order to be able to handle, for example, body temperature, blood pressure, or heart 
rate within a single CEP pattern, it is required to define them as programming classes 
(possibly as subclasses of the same super-class) with corresponding sets of properties. 
Once corresponding sensor readings (possibly in an semi-structured form, such as JSON 
or XML) arrive in the system, they are marshalled into corresponding CEP classes and 
streamed to the actual CEP engine for processing.
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Table 3 summarises data fusion levels, goals, and types, as well as potential CEP pat-
terns to be used at each level. As it already follows from the example above, in prac-
tice, these three data fusion types usually appear in combinations, meaning that 
corresponding CEP techniques also need to be combined to address complex data fusion 
requirements. To this end, we consider several possible data fusion patterns that can 
be addressed using CEP. These patterns reflect the sample Smart Healthcare scenario, 
where sensor-rich smart hospital beds continuously collect multiple heterogeneous data 
related to a patient’s health state to be analysed and acted upon at different data fusion 
levels.

Automation of manual healthcare procedures, such as data collection and fusion, is 
expected to shorten the time required for establishing a diagnosis. Moreover, timely 
detection of critical health conditions of individual patients has the potential to con-
tribute to mission-critical activities, such as efficient management of hospital staff and 
ambulances, and timely detection of disease outbreaks within a single hospital or a 
whole metropolitan area. The lowest level of the case study is constituted by smart hos-
pital beds, equipped with multiple biometric sensors, among which blood pressure, body 
temperature and heart rate are primarily taken into account. Please note that the use 
case scenario is only intended to demonstrate the viability of the presented approach, 
and is therefore correspondingly simplified.

As a first step towards validating the proposed hierarchical data fusion approach, an 
initial proof-of-concept prototype was implemented. The prototype utilises Apache 
Flink1 as the underlying CEP middleware. Being just one of the pluggable modules of 
the larger modular platform, Flink CEP is a light-weight open-source implementation, 
which combines CEP expressiveness (i.e. temporal reasoning over events and sliding 
windows of interest), relatively low resource requirements, and well-maintained client 
libraries. As a result, the Flink CEP components were deployed at three levels of the 
hierarchical Smart Healthcare architecture (as depicted in Fig. 4).

Thus, adopting the proposed approach and terminology, and taking CEP as an under-
lying data fusion implementation technology, we identify the following three-level CEP 
hierarchy.

Fig. 4 Implementation of three-level hierarchical data fusion for Smart Healthcare. This figure depicts the 
implementation details of the pilot prototype. It also shows what CEP framework was used and which events 
are generated and transferred in the system

1 https ://flink .apach e.org/.

https://flink.apache.org/
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Low-level CEP (LCEP) is deployed on several Raspberry Pi boards, each of which cor-
responds to a single smart bed and is, therefore, responsible for data fusion concerning a 
single bed/patient. Accordingly, in the presented scenario, Flink CEP can detect a com-
plex pattern of sensor events (SE), where all three key indicators (i.e. temperature, blood 
pressure, and heart rate) are exceeding critical thresholds. It also checks with personal 
health records whether these increased values are indeed critical for a given patient, pro-
vides an initial diagnosis based on these records to a dedicated member of staff, and 
sends a higher-level device event (DE) to the next CEP level.

Middle-level CEP (MCEP) is deployed on a server, responsible for collecting data 
from multiple Raspberry Pi devices, installed across the whole hospital, and performing 
data fusion over a larger area of interest. It takes as input a continuous stream of device 
events, containing patient diagnoses and device IDs, and performs CEP by combining 
streaming data with two types of background knowledge. First, MCEP is able to iden-
tify a disease spread, based on previously stored epidemic patterns. Second, it is able 
to map individual sensor devices to hospital rooms, where they are placed. This way, 
the system is not only able to detect a spread of a sudden infectious disease, but also 
to efficiently manage and direct hospital personnel by allocating them according to the 
current demand. Finally, MCEP sends these aggregated values, containing information 
about potential diseases within a hospital and current utilisation of the staff, as hospital 
events (HE) to the next CEP level.

High-level CEP (HCEP) is deployed on the Amazon EC22 Cloud. It collects data from 
managed hospitals within a city and performs data fusion over the whole metropolitan 
area. By combining incoming hospital events with a static knowledge base of hospital 
locations, maps, and traffic routes, HCEP is able to (i) detect an epidemic outbreak on 
a regional scale, and (ii) provide online navigation instructions to emergency vehicles, 
directing them to less overloaded hospitals.

More specifically, the case study implements a three-level hierarchical CEP ranging 
from hospital beds to urban areas. To describe the three CEP level logic formally the 
complex event logic (CEL) [7] is adopted. The CEL is, to the best of our knowledge, 
the first and yet not exhaustive attempt to provide a formal logic for the CEP domain. 
Advanced CEP options and features, such as correlation and time windows, are not yet 
implemented indeed, so we will try to frame our example into the current CEL core 
framework. The case study assumes that all devices are globally synchronised, and the 
events occurring in the environment are time stamped.

To formally specify the Smart Healthcare case study, we first need to define the CEP 
events involved in this scenario at three levels.

Definition 1 The LCEP sensor event SE is defined by the triple

where T is the temperature sample value; ts is the sample timestamp; id is the device id, 
uniquely identifying the LCEP device generating the sample.

SE = {T , ts, id}

2 https ://aws.amazo n.com/ec2/.

https://aws.amazon.com/ec2/
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This way, the LCEP logic, running on an IoT Smart object-gateway (as defined in Table 3) 
can be described by the CEL formula below (Eq. 1)

that captures a sudden increase in body temperature, where the temperature of a patient 
without fever ( x.T <= 37  ) starts suddenly raising up ( y.T > x.T  ) to fever ( z.T > 38  ), 
i.e. within a minute ( (z.ts − x.ts) =< 60 ).

Definition 2 The MCEP device event DE is defined by the pair

where SE is the set of sensor events triggered by the LCEP according to Eq. (1); rid is the 
hospital room id.

The MCEP logic, running on Fog nodes or servers, is specified by the following CEL for-
mula (Eq. 2)

that detects similar health deterioration patterns ( x.SE[i] >= 38  , y.SE[j].T >= 38  ) on at 
least two patients ( y.SE[j].id! = x.SE[i].id ) in the same room ( x.rid == y.rid ) within a 
minute ( (z.SE[k].ts − x.SE[i].ts) =< 60 ).

Definition 3 The HCEP hospital event HE is defined by the triple

where DE is the set of device events triggered by the MCEP according to Eq. (2); sy iden-
tifies the symptom; aid is the area id.

The HCEP logic, running on Cloud nodes or servers, is specified by the following CEL 
formula (Eq. 2)

(1)
ϕLCEP = [SE AS x; (SE AS y)+; SE AS z]

FILTER

(x.T < = 37 ∧ z.T > 38 ∧ y.T > x.T ∧ (z.ts − x.ts =< 60 ))

DE = {SE, rid}

(2)

ϕMCEP = [DE AS x; (DE AS y)+; DE AS z]

FILTER

(x.SE[i].T > = 38 ∧ y.SE[j].T > = 38 ∧ y.SE[j].id! = x.SE[i].id∧

∧ x.rid == y.rid ∧ (z.SE[k].ts − x.SE[i].ts) =< 60 )

HE = {DE, sy, aid}

(3)

ϕHCEP = [HE AS x; (HE AS y)+; HE AS z]

FILTER

(x.sy == y.sy == “Ebola” ∧ y.DE[i].SE[j].id! = x.DE[k].SE[h].id∧

∧ x.aid == y.aid ∧ z.DE[p].SE[q].id! = x.DE[k].SE[h].id∧

∧ (z.DE[p].SE[q].ts − x.DE[k].SE[h].ts) =< 60 )
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that detects similar health deterioration symptoms ( x.sy == y.sy == “Ebola” ) 
on at least two patients ( y.DE[i].SE[j].id! = x.DE[k].SE[h].id , 
z.DE[p].SE[q].id! = x.DE[k].SE[h].id ) in an urban area ( x.aid == y.aid ) within a min-
ute ( (z.DE[p].SE[q].ts − x.DE[k].SE[h].ts) =< 60 ).

As far as implementation is concerned, below we present these three sample CEP 
patterns expressed in Java as part of the Apache Flink deployment. In simple terms, 
the code in Listing 1 defines the LCEP pattern of Eq. (1), where an initial event that 
carries some physiological measurements, including body temperature, is followed by 
other events, so that every next temperature value is greater than the previous one, 
within a time frame of 60  s. This way, it is possible to detect a rapid increase in a 
patient’s body temperature reaching the 38 ◦ C threshold. 

Listing 2 defines the MCEP pattern specified in Eq. (2) where an initial event that 
carries a body temperature value greater than 38, is followed by at least one other 
event, which also exhibits an increased temperature level and originates from the 
same hospital room, within the last 60 s. This way, it is possible to detect and localise 
some sort of rapid health deterioration within a hospital. 
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Similarly, Listing 3 defines the HCEP pattern of Eq. (3) where an initial event from a 
hospital indicates symptoms of the Ebola virus disease, and is followed by at least one 
other event, which also exhibits same symptoms and originate from the same urban area 
(but not the same hospital), within the last 60 s. This way, it is possible to detect and 
localise a rapid disease outbreak within a city. 

Results and discussion
The proposed hierarchical data fusion approach was compared to the traditional estab-
lished practice of sending all low-level sensor readings to a central cloud-based CEP 
component for analysis. This means that multiple sensors were configured to send raw 
data directly to the Cloud over the public Internet connection. The main benchmark-
ing metric in the experiments was time delay—i.e. time difference between the moment 
when sensor data are first generated and the moment when valuable insights are drawn 
based on these data. In both cases, communication between individual nodes was imple-
mented using the Message Queue Telemetry Transport (MQTT) protocol. Communica-
tion took place either on a local area network (for LCEP and MCEP), or on the public 
Internet (for HCEP). An average size of an MQTT message, containing several sensor 
readings, was about 1 kB.

The configuration of all three testbeds is summarised in Table 4, which covers both 
hardware and network specification. To minimise latency, the physical location of the 
GCC instance was set to Western Europe. Admittedly, the limited hardware capabili-
ties of the LDF and MDF setups is compensated by the increased throughput and low 
latency of the local network connection, as well as the relatively small amount of data 
to be processed. On contrary, the elastic resources of the cloud HDF setup suffers from 
the increased latency of the public network. Same applies to the traditional centralised 
approach for healthcare analytics.
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The results of this comparison are summarised in Fig. 5. The main observation to 
be drawn from the diagram is the fact that the proposed approach facilitates timely 
and fine-grained decision taking, as opposed to the centralised approach. That is, 
decisions are made at each level of the data fusion hierarchy as soon as relevant data 
are collected. More specifically, decisions about (i) health conditions of individual 
patients can be taken within 66 ms, (ii) disease spreads in a hospital and staff man-
agement—within 311  ms, and (iii) disease outbreaks on an urban scale and emer-
gency vehicle management—within 5513 ms. The latter value is slightly higher than 
the one corresponding to the centralised approach. The major difference, however, is 
that with the centralised approach time delay is fixed for all types of problem detec-
tion and decision taking procedures. In other words, even the simplest diagnosis task 
might require more than 5 s to be performed, and another 5 s to be spent on propa-
gating the results back to the hospital staff.

It is worth noting that the presented hypothetical use case scenario is somewhat 
simplified to demonstrate the general viability of the approach. In practice, the 
benchmarked time delays are expected to be higher due to network bandwidth, size 
of network packets being transferred, number of sensors, beds, and hospitals, etc., 
thus potentially resulting in  situations, when health-critical decisions are taken 
with a fixed time delay of up to several minutes. As demonstrated by the presented 
approach, it is possible to enable more timely operation by implementing a hierarchi-
cal data fusion (i.e. decision taking) architecture. This way, lower-level data fusion is 

Table 4 Testbed hardware specs and network speed test

Hardware Uplink, Mbit/s Downlink, 
Mbit/s

Round trip 
time, ms

LDF Raspberry Pi 3 (1.2 GHz ARM Cortex-A53, 1 GB RAM) 16.58 26.9 144

MDF PC (2.00 GHz Intel Core i7-4510U CPU, 16 GB RAM) 16.58 26.9 144

HDF Google Compute Engine n1-standard-1 (located in 
EU, 2.52 GHz vCPU, 3.75 GB RAM)

1.24 1.63 482

Centralised 
approach

Google Compute Engine n1-standard-1 (located in 
EU, 2.52 GHz vCPU, 3.75 GB RAM)

1.24 1.63 482

LCEP MCEP HCEP Total Centralised
0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

65.89 245.11

5,201.57
5,512.57 5,378.42

Fig. 5 Processing time benchmarking results, ms. This figure contains experimental results that demonstrate 
how much time is required at each level to process data and take a decision using the proposed approach, as 
well as using the existing vertical solution
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performed within a LAN, and, therefore, does not suffer from network congestions 
and increased latency.

Conclusion
The emerging Healthcare Industry 4.0 relies on the ubiquitous presence of smart sens-
ing devices to enable timely data collection and decision. To address the time constraints 
and deal with the increasing number of heterogeneous data sources, this paper pro-
posed a distributed hierarchical data fusion approach, utilising the processing capabili-
ties of individual nodes of the Smart Healthcare ecosystem, thus splitting data fusion 
tasks between smart edge objects (i.e. Edge computing), communication and processing 
units (i.e. Fog computing), and remote datacenters (i.e. Cloud computing). This three-
level processing model naturally follows from and is aligned with the existing data fusion 
taxonomies, where a hierarchical pattern is frequently applied to enable data fusion at 
various levels. The CEP technology, which natively supports the hierarchical process-
ing of streaming data, was applied as an enabling technology to implement data fusion. 
Feasibility and effectiveness of the proposed approach has been demonstrated through 
a Smart Healthcare case study, in which the whole IoT network topology, including sen-
sor-enabled hospital beds, LAN processing units, and Cloud datacenters, was equipped 
with CEP functionality, thus resulting in a three-level hierarchical CEP framework. The 
results, albeit demonstrating a greater latency at the highest HCEP level when compared 
to a centralised stand-alone Cloud-based CEP solution, indicate the effectiveness of the 
approach at lower levels, where decisions can be taken 20×–90× times faster—a prom-
ising achievement given the life-critical nature of healthcare-related decisions.

To make the proposed approach even more flexible, we are eager to extend its func-
tionality with a bi-directional coordination channel. That is, it will be possible to mod-
ify the exiting CEP policies at each level in a top–down manner through a Cloud-based 
management interface. This way, and changes in the CEP rule base (i.e. addition, modifi-
cation, deletion) will be propagated down the managed IoT topology to reflect emerging 
requirements. In these circumstances, it is important to ensure that the CEP functional-
ity on participating devices is remotely accessible and configurable—a requirement that 
can be addressed using the existing containerisation technology, which supports remote 
dynamic ‘injection’ of system updates over the network in a seamless and transparent 
manner [26].

Finally, apart from Smart Healthcare, the ideas and concepts proposed in this paper 
can be potentially applied to a wider range of smart scenarios, such as Intelligent Trans-
portation Systems, Smart Factories, or Smart Surveillance. In all these systems, sen-
sor-rich edge devices constituting cyber-physical systems continuously generate data 
streams to be processed and analysed. Accordingly, to meet stringent time constraints 
and enable near-real time decision taking, it is possible to implement data fusion at 
different levels using the CEP technology, thereby minimising the impact of network 
latency associated with remote (Cloud-based) data processing.
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