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1. Introduction

Reaction-diffusion systems have attracted a considerable amount of attention in recent years.
They arise naturally in various biological, chemical and physical models to describe the spatio-
temporal concentration change of one or more species which involve both local reaction and diffusion
simultaneously. The reaction-diffusion system consists of a set of partial differential equations (PDEs)
to represent the behaviour of each species individually. Recently, the interest in the study of reaction-
diffusion systems has been extended to fractional reaction-diffusion systems [1–5] which from one
side exhibit self-organization phenomena and from the other side introduce a new parameter to these
systems, which is a fractional derivative index. It gives a greater degree of freedom for diversity
of self-organization phenomena and it can exhibit new types of solutions that are not possible to
find in classical reaction-diffusion equations with integer derivatives [6–8]. From numerical point of

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2021529


9110

view, several methods have been developed, including, for example, finite element schemes [9], finite
volume [10] and finite difference methods [11, 12] and spectral ones [13, 14].

In this paper, we consider a system of two coupled nonlinear time-fractional reaction-diffusion
equations (TF-RDEs)

{
∂αt u(t, x) − k1∂xxu(t, x) + f (t, x, u, v) = 0,
∂αt v(t, x) − k2∂xxv(t, x) + g(t, x, u, v) = 0,

0 < α < 1, (1.1)

where ∂αt is the Riemann-Liouville fractional derivative operator [15–20]

∂αt w(t, x) =
1

Γ(1 − α)
∂

∂t

∫ t

0

w(s, x)
(t − s)α

ds (1.2)

u(t, x) and v(x, t) being the field variables with t and x independent variables, k1 > 0 and k2 > 0 the
diffusion coefficients, and f = f (t, x, u, v) and g = g(t, x, u, v) the nonlinear interaction terms. This
kind of fractional problem has been numerically studied in a lot of papers, see, for example [21–24].

The main aim of this paper is to solve the system of reaction-diffusion equations (1.1) by
applying the procedure recently proposed that combines the Lie symmetry analysis with the numerical
methods to get exact and numerical solutions. This procedure was applied to a wide class of FDES:
time-fractional advection–diffusion–reaction equations [25, 26], space-fractional advection–diffusion–
reaction equations with linear [27] and nonlinear sources terms [28], time-fractional and space-
fractional advection-diffusion-reaction equations with linear and nonlinear sources terms [29], two
dimensional time-fractional reaction-diffusion equations [30].

As well known, classical Lie symmetries allow to reduce the partial differential equations to
ordinary differential equations, for this reason, recently the Lie symmetries theory has been extended
to the FDES [31–34]. By using this extension of Lie symmetries approach to FPDEs, we find the Lie
symmetries admitted by the model (1.1), then Lie transformations that map the coupled nonlinear FT-
PDEs to a system of nonlinear fractional ordinary differential equations (FODEs). We find solutions of
a system of two nonlinear time-fractional reaction-diffusion equations by solving the reduced FODEs
such that the solutions of the reduced equations lead to obtain solutions of the original equations. The
original model is written in terms of the Riemann-Liouville fractional derivative in order to determine
the Lie symmetries by applying the MAPLE package, that automates the method of finding symmetries
for FDEs as proposed in [31–34]. After the reduction of the model to a fractional ordinary differential
equation, we introduce the Caputo derivative, and rewrite the FODE in terms of this derivative so that
we are able to compute the numerical solutions. Classical finite difference methods are proposed with
the aim of showing the simplicity of application of the procedure and to obtain, at the same time, highly
accurate solutions and a low computational cost.

The plan of the paper is the follows: In Section 2, the Lie symmetries theory for FDEs is presented;
in Section 3, we describe the reduction of the original model to FODEs and report some examples of
mathematical models obtained by suitable choices of involved parameters and functions; the Section 4
is devoted to describe the numerical method used to obtain solutions of the reduced FODEs and, then,
of the assigned original model. Finally, we end with the concluding remarks.
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2. Lie symmetries theory for FDEs

In general, for a 2 × 2 system of (integer order) partial differential equations

∆i(t, x, u, v, . . . , u(r1), v(r2)) = 0, i = 1, 2 (2.1)

where t, x are the independent variables, u and v are the dependent variables, and u(r1), v(r2) are all
partial derivatives of the u and v with respect to t and x up to the maximum order r1 and r2 (integer
order) respectively, we recall that the invertible transformations of the variables t, x, u, v

T = T (t, x, u, v, a), X = X(t, x, u, v, a), (2.2)
U = U(t, x, u, v, a), V = V(t, x, u, v, a) (2.3)

depending on a continuous parameter a, are said to be one-parameter (a) Lie point symmetry
transformations of the Eq (2.1) if the Eq (2.1) has the same form in the new variables T, X,U,V .

The set G of all such transformations forms a continuous group, also known as the group admitted
by the Eq (2.1).

According to the Lie theory, by expanding (2.3) in Taylor’s series around a = 0, we get the
infinitesimal transformations

T = t + a ξ1(t, x, u, v) + o(a), X = x + a ξ2(t, x, u, v) + o(a), (2.4)
U = u + a η1(t, x, u, v) + o(a), V = v + a η2(t, x, u, v) + o(a), (2.5)

where their infinitesimals ξ1, ξ2, η1 and η2 are given by

ξ1(t, x, u, v) =
∂T
∂a

∣∣∣∣∣
a=0

, ξ2(t, x, u, v) =
∂X
∂a

∣∣∣∣∣
a=0

η1(t, x, u, v) =
∂U
∂a

∣∣∣∣∣
a=0

, η2(t, x, u, v) =
∂V
∂a

∣∣∣∣∣
a=0

.

The corresponding operator

Ξ = ξ1(t, x, u, v)∂t + ξ2(t, x, u, v)∂x + η1(t, x, u, v)∂u + η2(t, x, u, v)∂v (2.6)

is known in the literature as the infinitesimal operator or generator of the group G.
The point transformations leaving a differential equation (2.1) invariant are found by means of the

straightforward Lie’s algorithm, requiring that the k-order prolongation of the operator (2.6) acting on
(2.1) is zero along the solutions, i.e.:

Ξk∆i = 0|∆i=0, (2.7)

where k is the maximum order of derivations. The invariance condition (2.7) provides an
overdetermined set of linear differential equations (determining equations) for the infinitesimals whose
integration gives the generators of Lie point symmetries admitted by the Eq (2.1).

Recently, in a series of papers of Buckwar, Luchko, Gazizov et al. [31–35], Lie symmetry methods
have been extended to to FDEs. By extending transformations (2.5) to the operator of Riemann-
Liouville fractional differentiation on derivatives of u with respect to t, Dα

t u j, and v with respect to
t,Dα

t v, we have

Dα
t̄ u(t̄, x̄) = Dα

t u(t, x) + aζ1
α + o(a), (2.8)
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Dα
t̄ v(t̄, x̄) = Dα

t v(t, x) + aζ2
α + o(a) (2.9)

where ζ1
α and ζ2

α the infinitesimals of fractional derivatives, are given by prolongation formula i.e.
[32, 36],

ζ1
α = Dα

t (η1) + ξ2 Dα
t (ux) − Dα

t (ξ2 ux) + Dα
t (Dt(ξ1) u) − Dα+1

t (ξ1 u) + ξ1 Dα+1
t (u),

ζ2
α = Dα

t (η2) + ξ2 Dα
t (vx) − Dα

t (ξ2 vx) + Dα
t (Dt(ξ1) v) − Dα+1

t (ξ1 v) + ξ1 Dα+1
t (v)

(2.10)

where Dt denotes the total derivative. Moreover, in order to conserve the structure of the fractional
derivative operator, the following invariance condition is also required

ξ1(t, x, u)|t=0 = 0.

Finally, the coefficients of the determining equation depend on all derivatives of variable u, v, Dα
t u and

Dα
t v.

For the determination of the Lie point symmetries of (1.1), the authors apply an algorithm that has
been implemented in the MAPLE package FracSym [37, 38]; this algorithm uses some routines of the
MAPLE symmetry packages DESOLVII [37] and ASP [38]; the routines in FracSym automate the
method of finding symmetries for FDEs as proposed in [31–34]; these are the first routines to automate
the search of symmetries for FDEs in MAPLE. A limit of the algorithm FracSym is that only the
fractional derivatives of Riemann-Liouville type are considered. Moreover, it is important to note that
the generator of the dependent variables u and v are assumed linear in u and v respectively, as usually
done in the literature [33–40].

3. Lie symmetries and reduction to FODEs

The extend Lie symmetries method leads to get the following infinitesimals for Eq (1.1)

ξ1 = 4a3t, ξ2 = a0 + 2a3αx,

η1 = χ1(t, x) + (a1 + 2a3(α − 1))u, η2 = χ2(t, x) + a2v,
(3.1)

where the function χ1 = χ1(t, x) and χ2 = χ2(t, x) satisfy the constraints

2a3 (2t∂t f + αx∂x f + (α − 1)u∂u f + (1 + α) f ) + ∂αt χ1 − k1∂xxχ1

+ a0∂x f + (χ1 + a1u)∂u f + (χ2 + a2v)∂v f − a1 f = 0,
2a3 (2t∂tg + αx∂xg + (α − 1)u∂ug + 2g) + ∂αt χ2 − k2∂xxχ2

+ a0∂xg + (χ1 + a1u)∂ug + (χ2 + a2v)∂vg − a2g = 0,

(3.2)

that link the arbitrary functions χ1 = χ1(t, x) and χ2 = χ2(t, x) to the nonlinear reaction terms f =

f (t, x, u, v) and g = g(t, x, u, v), where ai, i = 0, . . . , 3, are the arbitrary parameters.
In the following, the stretching symmetry (i.e. a3) is neglected; then the constraints (3.2) reduce to

∂αt χ1 − k1∂xxχ1 + a0∂x f + (χ1 + a1u)∂u f + (χ2 + a2v)∂v f − a1 f = 0 (3.3)
∂αt χ2 − k2∂xxχ2 + a0∂xg + (χ1 + a1u)∂ug + (χ2 + a2v)∂vg − a2g = 0
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and the infinitesimals read

ξ1 = 0, ξ2 = a0, η1 = χ1 + a1u, η2 = χ2 + a2v. (3.4)

We obtain the transformation

T = t, U = u(t, x)e−a1 x −

∫
e−a1 xχ1dx, V = v(t, x)e−a2 x −

∫
e−a2 xχ2dx , (3.5)

where we choose a0 = 1. By integrating the constraints (3.3) with respect to x, and using the properties
of the Riemann-Liouville fractional derivatives, the following forms of f and g are determined

f = ea1 x

(
φ1 −

∫
e−a1 x (∂αt χ1 − k1∂xxχ1

)
dx

)
(3.6)

g = ea2 x

(
φ2 −

∫
e−a2 x (∂αt χ2 − k2∂xxχ2

)
dx

)
(3.7)

where φ1 = φ1(T,U,V) and φ2 = φ2(T,U,V) are arbitrary functions of their arguments.
When the transformation (3.5) and the previous forms of f and g are inserted into the system (1.1),

it is reduced into the following system of fractional nonlinear ordinary differential equations

Dα
T U(T ) − k1a2

1U(T ) + φ1(T,U,V) = 0 (3.8)
Dα

T V(T ) − k2a2
2V(T ) + φ2(T,U,V) = 0. (3.9)

The choice of the arbitrary functions φ1 and φ2 characterize the solutions of the Eqs (3.8) and (3.9)
that, with a suitable choice of χ1 and χ2, specialize the source terms f and g and, then, the classes of
solutions given by (3.5).

In order to perform some example of solutions of the system under study, we decide to choose φ1

and φ2 as nonlinear functions of two field variables U and V

φ1 = c1U + c0UV + h1(T ) (3.10)
φ2 = c2V + c0UV + h2(T ), (3.11)

that lead to get a reaction-diffusion model describes the interaction between two filed variables. The
functions φ1 and φ2 characterize the source terms (3.6) and (3.7) of mathematical models that can
be used in order to describe several natural phenomena where the fractional order temporal variation
of the field variables involves both the reaction and diffusion processes, simultaneously. They have
been applied in several contexts such as chemical reactions [41], genes behaviour [42], populations
evolution [43], biological pattern formation [44], epidemics [45] and computer virus spreading [46].
Moreover, they are strictly valid to describe spatially distributed chemical and biochemical system,
and can also be applied with considerable success to model non-molecular ensembles of interacting
and diffusing objects [47]. The functions h1 = h1(T ) and h2 = h2(T ) are arbitrary ones of the time
variable.

By these assumptions, the FODEs (3.8) and (3.9) read

Dα
T U(T ) + (c1 − k1a2

1)U(T ) + c0U(T )V(T ) + h1(T ) = 0 (3.12)
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Dα
T V(T ) + (c2 − k2a2

2)V(T ) + c0U(T )V(T ) + h2(T ) = 0. (3.13)

The system (3.12)–(3.13) reduces to the following FODE

Dα
T (V(T ) − U(T )) + (c2 − k2a2

2)(V(T ) − U(T )) + h2(T ) − h1(T ) = 0 (3.14)

if we impose that
c1 − k1a2

1 = c2 − k2a2
2.

Under non-vanishing initial condition

lim
T→0

Dα−1
T (V(T ) − U(T )) = b0, (3.15)

and by the Laplace transform, it demonstrates that the FODE (3.14) admits the following exact solution
(see [18] for more details)

V(T ) = U(T ) + b0Tα−1Eα,α((k1a2
1 − c1)Tα)

−

∫ T

0
(T − S )α−1Eα,α((k1a2

1 − c1)(T − S )α) (h2(S ) − h1(S )) dS (3.16)

where Eα,α(t) =

∞∑
k=0

tk

Γ(α(k + 1))
is the Mittag-Leffler function. Substituting in (3.12), we get the

following FODE

Dα
T U(T ) + c0U(T )2 +

(
(c1 − k1a2

1) + c0b0Tα−1Eα,α((k1a2
1 − c1)Tα) (3.17)

−c0

∫ T

0
(T − S )α−1Eα,α((k1a2

1 − c1)(T − S )α) (h2(S ) − h1(S )) dS
)

U(T ) + h1(T ) = 0.

By solving the (3.17), we find the solution U(T ) that leads to compute the solution V(T ) by the (3.16)
and, then, by the inverse transformations (3.5), the solutions of the proposed system of FPDEs (1.1)
with source terms (3.6) and (3.7) characterized by (3.10) and (3.11). In general, Eq (3.17) could
be not analytically resolvable, except for suitable choices of parameters and arbitrary functions, then
numerical methods are proposed in order to compute the approximation of the exact solutions, as
shown in the following Sections.

3.1. Examples of mathematical models

Starting from Eq (3.17) and setting c1 = k1a2
1 and b0 = 0, we get the following FODE

Dα
T U(T ) + c0U2(T ) −

c0

Γ(α)

(∫ T

0
(T − S )α−1(h2(S ) − h1(S ))dS

)
U(T ) + h1(T ) = 0. (3.18)

Suitable choices of the functions h1(T ) and h2(T ), involved in (3.18), are proposed with the aim to
perform examples of mathematical models of interest in many fields of the applied sciences.

Example 1: By following choice of the functions h1(T ) and h2(T )

h1(T ) = −
h0

c0

(
1

Γ(α)
+ 1

)
eλT , h2(T ) =

h0

c0

(
1

Γ(α)
− 1

)
eλT ,
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with h0 and λ arbitrary constants, the Eq (3.18) reads

Dα
T U(T ) + c0U2(T ) − 2h0

Γ(α) − Γ(α, λT )
λαΓ(α)2 eλT U(T ) −

h0

c0

(
1

Γ(α)
+ 1

)
eλT = 0. (3.19)

Computed U(T ), the solution V(T ), given in (3.16), reads

V(T ) = U(T ) − 2
h0

c0

Γ(α) − Γ(α, λT )
λαΓ(α)2 eλT . (3.20)

Finally, (3.10) and (3.11) assume the following form

φ1(T,U,V) = k1a2
1U + c0UV −

h0

c0

(
1

Γ(α)
+ 1

)
eλT

φ2(T,U,V) = k2a2
2V + c0UV +

h0

c0

(
1

Γ(α)
− 1

)
eλT .

Found U(T ) and V(T ), by inverse transformations (3.5), we get the solutions u(t, x) and v(t, x) of target
model (1.1) with source terms obtained by inserting φ1 and φ2 in (3.6) and (3.7).

Remark 1: For α = 1, we are able to solve the FODE (3.19) that assumes the following form

U′(T ) + c0U2(T ) +
2h0

λ
(1 − eλT )U(T ) −

2h0

c0
eλT = 0,

whose exact solution, when U(0) = 0, is

U(T ) = 2h0
eλT − 1

c0λ
(3.21)

and substituting in (3.16), we obtain
V(T ) = 0.

By inverse transformation (2.3), assumed χ1(x, t) = χ2(x, t) = 0, we get the solutions

u(t, x) = 2h0ea1 x eλt − 1
c0λ

, v(t, x) = 0,

of the system of PDEs with the source terms

f (t, x, u, v) = c1u + c0e−a2 xuv −
2h0

c0
eλt+a1 x,

g(t, x, u, v) = c2v + c0e−a1 xuv.

The exact solution of the model with α = 1 is considered in the following numerical examples as a
reference for testing the qualitative behavior of the numerical solution of the model (3.19) for values
of the α parameter increasing towards 1.

Example 2: By following choice of the functions h1(T ) and h2(T )

h1(T ) =
h0

Γ(α − 1)Tα
+
λ2

4c0
eλT

(
eλT + 2

1 − Γ(α)
Γ(α)

)
,
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h2(T ) =
h0

Γ(α − 1)Tα
+
λ2

4c0
eλT

(
eλT − 2

1 + Γ(α)
Γ(α)

)
,

with h0 and λ arbitrary constants, the Eq (3.18) reads

Dα
T U(T ) + c0U2(T ) + λ2−αΓ(α) − Γ(α, λt)

Γ(α)2 eλtU(T ) +
h0

Γ(α − 1)Tα
+
λ2

4c0
eλt

(
eλt + 2

1 − Γ(α)
Γ(α)

)
= 0.(3.22)

Computed the solution U(T ), the solution V(T ), given in (3.16), reads

V(T ) = U(T ) + λ2−αΓ(α) − Γ(α, λt)
c0Γ(α)2 eλt (3.23)

and (3.10) and (3.11) assume the following form

φ1(T,U,V) = k1a2
1U + c0UV +

h0

Γ(α − 1)Tα
+
λ2

4c0
eλT

(
eλT + 2

1 − Γ(α)
Γ(α)

)
φ2(T,U,V) = k2a2

2V + c0UV +
h0

Γ(α − 1)Tα
+
λ2

4c0
eλT

(
eλT − 2

1 + Γ(α)
Γ(α)

)
.

Found U(T ) and V(T ), by inverse transformations (3.5), we get the solutions u(t, x) and v(t, x) of target
model (1.1) with source terms obtained by inserting φ1 and φ2 in (3.6) and (3.7).

Remark 2: For α = 1, the FODE (3.22) reduces to

U′(T ) + c0U2(T ) + λ(eλt − 1)U(T ) +
λ2

4c0
e2λt = 0,

whose the exact solution, when U(0) = b1, is

U(T ) =
λeλT

2c0

(
2(2b1c0 + λ)

(2b1c0 + λ)eλT − 2b1c0 + λ
− 1

)
. (3.24)

Substituting in (3.16), it has

V(T ) =
λ

2c0

(
2(2b1c0 − λ)

(2b1c0 + λ)eλT − 2b1c0 + λ
+ eλT

)
,

and, by the inverse transformation, we obtain the solutions

u(t, x) =
λeλt+a1 x

2c0

(
2(2b1c0 + λ)

(2b1c0 + λ)eλt − 2b1c0 + λ
− 1

)
,

v(t, x) = ea2 x λ

2c0

(
2(2b1c0 − λ)

(2b1c0 + λ)eλt − 2b1c0 + λ
+ eλt

)
,

of the system of PDEs with the following source terms

f (t, x, u, v) = k1a2
1u + c0e−a2 xuv +

λ2

4c0
e2λt+a1 x,

g(t, x, u, v) = k2a2
2v + c0e−a1 xuv +

λ2

4c0
e2λt+a2 x.

The exact solution of the model with α = 1 is considered in the following numerical examples as a
reference for testing the qualitative behavior of the numerical solution of the model (3.22) for values
of the α parameter increasing towards 1.
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4. Numerical method and numerical solutions

In this Section, we find the numerical solution of the system of FPDEs (1.1) computed by solving
the following FODE

Dα
T U(T ) + c0U2(T ) −

c0

Γ(α)

(∫ T

0
(T − S )α−1(h2(S ) − h1(S ))dS

)
U(T ) + h1(T ) = 0,

obtained in the previous Section by the suitable choice of the parameters. Computed the numerical
solution U(T ), we obtain the solution V(T ) by (3.16) and, then the solutions u(t, x) and v(t, x) of the
target model (1.1) by the inverse transformations (3.5).

We introduce the α-order Caputo fractional derivative of the solution U(T )

CDα
T U(T ) =

1
Γ(1 − α)

∫ T

0
(T − S )−αU′(S )dS

and its connection with the α-order Riemann-Liouville fractional derivative

CDα
T U(T ) = Dα

T (U(T ) − U(0)) ,

with U(0) initial condition. We remark that the Caputo definition of the fractional derivative allows
to define a FIVP whose the initial conditions are given in terms of the field variable and its integer
order derivatives in agreement with the clear physical meaning of most of the processes arising in the
real world. In terms of the Caputo derivative, the following fractional initial value problem (FIVP) is
obtained

CDα
T U(T ) = F(T,U), (4.1)

U(0) = U0,

where

F(T,U) = −c0U2(T ) +

(
c0

Γ(α)

∫ T

0
(T − S )α−1(h2(S ) − h1(S ))dS

)
U(T ) − h1(T ) −

U0

Γ(α − 1)Tα
.

In order to numerically solve the FIVP (4.1), the classical implicit trapezoidal method (PI2 Im) is
used. We built a computational uniform mesh of grid points denoted by T n, with T n = T 0 + n∆T
and integration step sizes ∆T and N positive integer. We denote by Un the numerical approximation
provided by the numerical method of the exact solution U(T n) at the mesh points T n, for n = 0, · · · ,N.
The numerical method reads

Un+1 = U0 +
1

Γ(α)

β0F(T 0,U0) +

n+1∑
k=1

βkF(T k,Uk)

 , (4.2)

where the coefficient values βk, for k = 0, · · · , n + 1, are computed as follows

β0 =
1

α(α + 1)
(T n+1)α((T 1 − T 0)(α + 1) − T n+1) + (T n+1 − T 1)α+1

T 1 − T 0 ,
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βk =
1

α(α + 1)
× k = 1, · · · , n,

×

(
(T n+1 − T k−1)α+1 − (T n+1 − T k)α+1

T k − T k−1 −
(T n+1 − T k)α+1 − (T n+1 − T k+1)α+1

T k+1 − T k

)
,

βn+1 =
1

α(α + 1)
(T n+1 − T n)α .

The convergence order of the scheme is O((∆T )min(1+α,2)). Note that, the convergence order of the
trapezoidal method usually is 1 + α when 0 < α < 1, and only when α > 1 or when the solution
is sufficiently smooth we obtain the reached order two [48]. In general, the numerical method (4.2)
leads to obtain a nonlinear equation for whose resolution a root-finding solver is needed. The classical
Newton method is proposed.

In the follows, we report some test problems with the aim to validate the proposed approach. Note
that the proposed mathematical models represent a wide class of mathematical ones that can be used
in order to describe several natural phenomena arising in many field of the applied sciences. Different
simulation parameters, initial conditions and fractional α parameter values are considered as the input
features of the proposed models. The exact solutions, reported in Remarks 1 and 2, are considered as
references for testing qualitative behavior of the numerical solutions of the models (3.19) and (3.22)
for values of the α parameter increasing towards 1. All numerical simulations are performed on Intel
Core i7 by using Matlab 2020 software.

Example 1: In this example, we recall the FIVP (3.19), obtained in the previous Section, and we
rewrite it in term of the Caputo fractional derivative choosing U0 = 0

CDα
T U(T ) + c0U2(T ) − 2h0

Γ(α) − Γ(α, λT )
λαΓ(α)2 eλT U(T ) −

h0

c0

(
1

Γ(α)
+ 1

)
eλT = 0,

U(0) = 0. (4.3)

We set the parameters values as follows: c0 = 5, h0 = 1 and λ = −1 and choose a computational
domain [0,Tmax] with Tmax = 10 and N = 100 grid points. In Figure 1, we report the numerical results
obtained for different values of the α parameter: in the left frame, the numerical solution Un obtained
by solving the FIVP (4.3) by using the PI2 Im numerical method; in the right frame, the numerical
solution Vn (3.20) obtained by applying the (3.16). The black lines represent the exact solution U(T )
given by (3.21) of the model with α = 1 and the exact solution V(T ) computed by the (3.16). They are
reported in order to test the qualitative behavior of the numerical solutions as the α parameter increases
towards 1. The solutions reveal a similar behaviour: Both starts from the value 0, both increase at the
beginning of the integration process and, after, decreases as the time evolves. Note that, as the value of
α increases, the solution U(T ) increases unlike the solution V(T ) decreases.
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Figure 1. Numerical solutions for different values of α. Left frame: Numerical solution Un

of the FIVP (4.3). Right frame: Numerical solution Vn.

In Figure 2, we report the numerical solutions un
j and vn

j , approximations of the exact solutions
obtained by the inverse transformations (3.5),

u(t, x) = U(t)ea1 x, v(t, x) = V(t)ea2 x,

solutions of the model (1.1) with source terms

f (t, x, u, v) = k1a2
1u + c0e−a2 xuv −

h0

c0

(
1

Γ(α)
+ 1

)
eλt+a1 x,

g(t, x, u, v) = k2a2
2v + c0e−a1 xuv +

h0

c0

(
1

Γ(α)
− 1

)
eλt+a2 x,

computed by setting k1 = k2 = 0.5, for α = 0.5, with c1 = k1a2
1 and c2 = k2a2

2 with a1 = a2 = −1, on a
computational domain [0,Tmax] × [0, Xmax] with Tmax = 10, Xmax = 1 and N = J = 100 grid points.
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Figure 2. Numerical solutions of the system of FPDE (1.1) for α = 0.5. Left frame:
Numerical solution un

j . Right frame: Numerical solution vn
j .
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Example 2: In this example, we recall the FIVP (3.22), obtained in the previous Section, and we
rewrite it in term of the Caputo fractional derivative choosing U0 = b1 = −h0

CDα
T U(T ) + c0U2(T ) + λ2−αΓ(α) − Γ(α, λt)

Γ(α)2 eλtU(T ) +
λ2

4c0
eλt

(
eλt + 2

1 − Γ(α)
Γ(α)

)
= 0,

U(0) = U0. (4.4)

We choose the initial condition U0 = 1 and set the parameters values as follows: c0 = 0.5 and λ = −1
and consider a computational domain [0,Tmax] with Tmax = 10 and N = 100 grid points. In Figure
3, we report the numerical results obtained for different values of α parameter: in the left frame, the
numerical solution Un obtained by solving the FIVP (4.4) by using the PI2 Im numerical method; in
the right frame, the numerical solution Vn (3.23) obtained by the (3.16). The black lines represent the
exact solution U(T ) given by (3.24) of the model with α = 1 and the exact solution V(T ) computed by
the (3.16). They are reported in order to test the qualitative behavior of the numerical solutions as the α
parameter increases towards 1. The solutions reveal a different behaviour: both starts from the value 1
but, the solution U(T ) immediately decreases as the time evolves, unlike the solution V(T ) increases at
the beginning of the integration process and, after, decreases. As the value of α increases, the solution
U(T ) decreases unlike the solution V(T ) increases.
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Figure 3. Numerical solutions for different values of α. Left frame: Numerical solution Un

of the FIVP (4.4). Right frame: Numerical solution Vn.

In Figure 4, we report the numerical solutions un
j and vn

j , approximations of the exact solutions
obtained by the inverse transformations (3.5), u(t, x) = U(t)ea1 x and v(t, x) = V(t)ea2 x, solutions of the
model (1.1) with source terms

f (t, x, u, v) = k1a2
1u + c0e−a2 xuv +

h0

Γ(α − 1)Tα
+
λ2

4c0
eλt+a1 x

(
eλt + 2

1 − Γ(α)
Γ(α)

)
,

g(t, x, u, v) = k2a2
2v + c0e−a1 xuv +

h0

Γ(α − 1)Tα
+
λ2

4c0
eλt+a2 x

(
eλt − 2

1 + Γ(α)
Γ(α)

)
, (4.5)

computed by setting k1 = k2 = 0.5, for α = 0.5, with c1 = k1a2
1 and c2 = k2a2

2 with a1 = a2 = −1, on a
computational domain [0,Tmax] × [0, Xmax] with Tmax = 10, Xmax = 1 and N = J = 100 grid points.
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Figure 4. Numerical solutions of the system of FPDE (1.1) for α = 0.5. Left frame:
Numerical solution un

j . Right frame: Numerical solution vn
j .

For the second test, we set the parameters values as before and c0 = 5 in order to provide an
example of how this parameter, that represent the rate of interaction between the two solutions, affects
their behaviour as the time evolves. In Figure 5, we report the numerical results obtained for different
values of α parameter: in the left frame, the numerical solution Un obtained by solving the FIVP (4.4)
by using the PI2 Im numerical method, in the right frame, the numerical solution Vn (3.23) obtained by
the (3.16). The black lines represent the exact solution U(T ) given by (3.24) of the model with α = 1
and the exact solution V(T ) computed by the (3.16). The solutions reveal a very similar behaviour:
both starts from the value 1 and both immediately decrease as the time evolves. As the values of α
increases, the solution U(T ) decreases. A slightly different behaviour appears for the solution V(T ) in
the last part of the domain.
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Figure 5. Numerical solutions for different values of α. Left frame: Numerical solution Un

of the FIVP (4.4). Right frame: Numerical solution Vn.

In Figure 6, we report the numerical solutions un
j and vn

j , approximations of the exact solutions
obtained by the inverse transformations (3.5), solutions of the model (1.1) with source terms given by
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(4.5), computed by setting k1 = k2 = 0.5, for α = 0.5, with c1 = k1a2
1 and c2 = k2a2

2 with a1 = a2 = −1,
on a computational domain [0,Tmax]× [0, Xmax] with Tmax = 10, Xmax = 1 and N = J = 100 grid points.
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Figure 6. Numerical solutions of the system of FPDE (1.1) for α = 0.5. Left frame:
Numerical solution un

j . Right frame: Numerical solution vn
j .

5. Concluding remarks

This paper deals with the solutions of coupled nonlinear time-fractional reaction–diffusion
equations, where the fractional derivatives are defined in terms of the Riemann-Liouville ones. We
apply the strategy that combines an analytical and numerical approach in order to solve the problem
under study, used recently in [25–30]. By Lie symmetries, the assigned system of two FPDEs is
reduced into a system of two nonlinear FODEs and, under suitable assumptions of the involved
parameters and functions, it is reduced into a nonlinear FODE. By introducing the Caputo derivative,
we are able to properly handle the obtained FIVP and, then, by the trapezoidal numerical method, to
find the solutions. Finally, the inverse transformations deal to compute the solutions of the original
model. We remark that the Caputo definition of the fractional derivative allows to define a FIVP
whose the initial condition is given in terms of the field variable in agreement with most of the
processes with a clear physical meaning. Numerical examples are performed in order to show how
the proposed approach good works with nonlinear systems of FPDEs confirming the clear advantage,
from numerical point of view, to use a combined strategy: we numerically solve only a FODE whose
solution allows to compute the solution of the original model of FPDEs. We remark that the presented
test problems, performed in order to confirm the efficiency of the proposed approach, represent a wide
class of mathematical models that can be used in order to describe several natural phenomena arising
in many field of the applied sciences.
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